数学三维设计答案
高中数学三维设计人教A版浙江专版必修5讲义:模块复习精要 复习课(三)不等式 含答案
复习课(三) 不等式一元二次不等式和一元二次方程、一元二次函数三者构成一个统一的整体.贯穿于高中数学的始终,更是高考的重点内容,在考题中有时单独对某类不等式的解法进行考查,一般以小题形式出现,难度不大,但有时在解答题中与其它知识联系在一起,难度较大.[考点精要]解一元二次不等式需熟悉一元二次方程、二次函数和一元二次不等式三者之间的关系,其中二次函数的零点是联系这三个“二次”的枢纽.(1)确定ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)在判别式Δ>0时解集的结构是关键.在未确定a 的取值情况下,应先分a =0和a ≠0两种情况进行讨论.(2)若给出了一元二次不等式的解集,则可知二次项系数a 的符号和方程ax 2+bx +c =0的两个根,再由根与系数的关系就可知a ,b ,c 之间的关系.(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.[典例] (1)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x |-1<x <12B.⎩⎨⎧⎭⎬⎫x |x <-1或x >12C .{x |-2<x <1}D .{x |x <-2或x >1}(2)解关于x 的不等式ax 2-2ax +a +3>0.[解析] (1)由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由根与系数的关系得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0. 解得-1<x <12.[答案] A(2)解:当a =0时,解集为R ;当a >0时,Δ=-12a <0,∴解集为R ;当a <0时,Δ=-12a >0,方程ax 2-2ax +a +3=0的两根分别为a +-3a a ,a --3aa,∴此时不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +-3a a <x <a --3a a . 综上所述,当a ≥0时,不等式的解集为R ;a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +-3a a <x <a --3a a . [类题通法]解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.[题组训练]1.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.解析:根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.答案:22.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎨⎧1+b =3a ,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.高考中线性规划主要考查平面区域的表示和图解法的具体应用,命题形式以选择题、填空题为主,命题模式是以线性规划为载体,考查区域的划分、区域的面积,涉及区域的最值问题、决策问题、整点问题、参数的取值范围问题等.[考点精要]1.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法. 2.利用线性规划求最值,一般用图解法求解,其步骤是 (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. [典例] (1)设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =y +1x的最小值为( )A .1B .2C .3D .4(2)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元[解析] (1)不等式组所表示的平面区域如图中的△ABC ,目标函数的几何意义是区域内的点与点P (0,-1)连线的斜率,显然图中AP 的斜率最小.由⎩⎪⎨⎪⎧x +y =3,2x -y =3解得点A 的坐标为(2,1),故目标函数z =y +1x 的最小值为1+12=1.(2)设对项目甲投资x 万元,对项目乙投资y 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5.目标函数z =0.4x +0.6y .作出可行域如图所示,由直线斜率的关系知目标函数在A 点取最大值,代入得z max =0.4×24+0.6×36=31.2,所以选B.[答案] (1)A (2)B [类题通法](1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是准确作出可行域,理解目标函数的意义.(2)在约束条件是线性的情况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时也可以根据可行域的顶点直接进行检验.[题组训练]1.不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大解析:选B 不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即为所求.求出点A ,B ,C 的坐标分别为(1,2),(2,2),(3,0),则△ABC 的面积为S =12×(2-1)×2=1.2.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a =________.解析:依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.答案:13.某公司用两种机器来生产某种产品,第一种机器每台需花3万日元及人民币50元的维护费;第二种机器则需5万日元及人民币20元的维护费.第一种机器的年利润每台有9万日元,第二种机器的年利润每台有6万日元,但政府核准的外汇日元为135万元,并且公司的总维护费不得超过1 800元,为了使年利润达到最大值,第一种机器应购买________台,第二种机器应购买________台.解析:设第一种机器购买x 台,第二种机器购买y 台,总的年利润为z 万日元,则⎩⎪⎨⎪⎧3x +5y ≤135,50x +20y ≤1 800,x ,y ∈N ,目标函数为z =9x +6y .不等式组表示的平面区域如图阴影部分中的整点.当直线z =9x +6y 经过点M ⎝⎛⎭⎫63019,13519,即到达l 1位置时,z 取得最大值,但题目要求x ,y 均为自然数,故进行调整,调整到与M 邻近的整数点(33,7),此时z =9x +6y 取得最大值,即第一种机器购买33台,第二种机器购买7台获得年利润最大.答案:33 7考试中单纯对不等式性质的考查并不多,但是不等式作为工具几乎渗透到各个考点,所以其重要性不言而喻.而利用基本不等式求最值,解决实际问题是考试的热点,题型既有选择题、填空题,又有解答题,难度为中、低档题.[考点精要] 基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立;(2)a 2+b 2≥2ab ,ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R),当且仅当a =b 时,等号成立; (3)b a +ab ≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立;(4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.[典例] (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5D .6(2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )A.43B.53 C .2D.54[解析] (1)由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )⎝⎛⎭⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立, ∴3x +4y 的最小值是5.(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.[答案] (1)C (2)C [类题通法]条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.[题组训练]1.若正数a ,b 满足1a +1b =1,则1a -1+4b -1的最小值为( )A .3B .4C .5D .6解析:选B 依题意,因为1a +1b =1, ∴(a -1)(b -1)=1, 因此1a -1+4b -1≥24(a -1)(b -1)=4,当且仅当1a -1=4b -1,即a =32,b =3时“=”成立.2.设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值为________. 解析:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案:9绝对值不等式主要考查解法及简单的应用,题目难度中档偏下,着重考查学生的分类讨论思想及应用能力.[考点精要]1.公式法|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); |f (x )|<g (x )⇔-g (x )<f (x )<g (x ). 2.平方法|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2. 3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.4.对于不等式恒成立求参数范围问题,常用分离参数法、更换主元法、数形结合法解决.[典例] 已知f (x )=|ax +1|(a ∈R),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. [解] (1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意. 当a >0时,-4a ≤x ≤2a ,得a =2. (2)法一:记h (x )=f (x )-2f ⎝⎛⎭⎫x 2,则h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3,-1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k 的取值范围是[1,+∞).法二:⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2=||2x +1|-2|x +1|| =2⎪⎪⎪⎪⎪⎪⎪⎪x +12-|x +1|≤1,由⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立, 可知k ≥1,所以k 的取值范围是[1,+∞). [类题通法]解绝对值不等式的关键是去掉绝对值符号,化成不含绝对值的不等式,其一是依据绝对值的意义;其二是先令每一个绝对值等于零,找到分界点,通过讨论每一区间内的代数式的符号去掉绝对值.[题组训练]1.不等式|2x +1|-2|x -1|>0的解集为________.解析:原不等式即|2x +1|>2|x -1|,两端平方后解得12x >3,即x >14.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x >142.设关于x 的不等式lg(|x +3|+|x -7|)>a . (1)当a =1时,解此不等式;(2)当a 为何值时,此不等式的解集是R. 解:(1)当a =1时,lg(|x +3|+|x -7|)>1, ⇔|x +3|+|x -7|>10,⇔⎩⎪⎨⎪⎧ x ≥7,2x -4>10或⎩⎪⎨⎪⎧ -3<x <7,10>10或⎩⎪⎨⎪⎧x ≤-3,4-2x >10, ⇔x >7或x <-3.所以不等式的解集为{x |x <-3或x >7}.(2)设f (x )=|x +3|+|x -7|,则有f (x )≥|(x +3)-(x -7)|=10,当且仅当(x +3)(x -7)≤0, 即-3≤x ≤7时,f (x )取得最小值10. ∴lg(|x +3|+|x -7|)≥1.要使lg(|x +3|+|x -7|)>a 的解集为R ,只要a <1.1.若1a <1b <0,则下列不等式不正确的是( )A .a +b <ab B.b a +a b >0 C .ab <b 2D .a 2>b 2解析:选D 由1a <1b <0,可得b <a <0,故选D.2.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意:A ={x |-1<x <3},B ={x |-3<x <2}.A ∩B ={x |-1<x <2},由根与系数的关系可知:a =-1,b =-2,∴a +b =-3.3.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1, ∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2 ≥23+2(当且仅当x -1=3x -1,即x =3+1时等号成立). 4.不等式|x -2|-|x -1|>0的解集为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-32,+∞ 解析:选A 不等式|x -2|-|x -1|>0即|x -2|>|x -1|,平方化简可得 2x <3,解得x <32,故选A. 5.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49解析:选C 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94D .3解析:选B 由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx-3. 又x ,y ,z 为正实数,∴x y +4y x ≥4,即xyz ≤1, 当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2 =-⎝⎛⎭⎫1y 2+2y =-⎝⎛⎭⎫1y -12+1, 当1y =1,即y =1时,上式有最大值1. 7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解析:画出可行域如图阴影部分所示, ∵yx 表示过点(x ,y )与原点(0,0)的直线的斜率, ∴点(x ,y )在点A 处时yx 最大.由⎩⎪⎨⎪⎧ x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3). ∴yx 的最大值为3. 答案:38.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12(填“>”“≥”“≤”或“<”).解析:因为a 2+a -2>0,所以a <-2或a >1,又a >0,所以a >1,因为t >0,所以t +12≥ t , 所以log a t +12≥log a t =12log a t . 答案:≤9.若实数x ,y 满足约束条件⎩⎪⎨⎪⎧ y ≥x ,x +y ≤4,2x -y ≥k .已知点(x ,y )所表示的平面区域为三角形,则实数k 的取值范围为________,又z =x +2y 有最大值8,则实数k =________.解析:作出一元二次不等式组所表示的平面区域如图中阴影部分所示.要想点(x ,y )所表示的平面区域为三角形,则B (2,2)必须在直线2x-y =k 的右下方,即2×2-2>k ,则k <2,则实数k 的取值范围为(-∞,2).观察图象可知,当直线z =x +2y 过点A 时,z 有最大值,联立⎩⎪⎨⎪⎧ 2x -y =k ,x +y =4,解得⎩⎨⎧ x =4+k 3,y =8-k 3,即A ⎝⎛⎭⎫4+k 3,8-k 3,代入z =x +2y 中,即4+k 3+2×8-k 3=8,解得k =-4.答案:(-∞,2) -410.已知函数f (x )=|x -2|.(1)解不等式:f (x +1)+f (x +2)<4;(2)已知a >2,求证:对任意x ∈R ,f (ax )+af (x )>2恒成立.解:(1)f (x +1)+f (x +2)<4,即|x -1|+|x |<4,①当x ≤0时,不等式为1-x -x <4,即x >-32, ∴-32<x ≤0是不等式的解; ②当0<x ≤1时,不等式为1-x +x <4,即1<4恒成立,∴0<x ≤1是不等式的解;③当x >1时,不等式为x -1+x <4,即x <52, ∴1<x <52是不等式的解. 综上所述,不等式的解集为⎝⎛⎭⎫-32,52.(2)证明:∵a >2,∴f (ax )+af (x )=|ax -2|+a |x -2|=|ax -2|+|ax -2a |=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|>2,∴对任意x ∈R ,f (ax )+af (x )>2恒成立.11.某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f (n )表示前n 年的纯利润总和.(注:f (n )=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获利?(2)若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂;问哪种方案最合算?为什么?解:由题意知,每年的经费是以12为首项,4为公差的等差数列,∴f (n )=-2n 2+40n -72.(1)获利就是要求f (n )>0,所以-2n 2+40n -72>0,解得2<n <18.由n ∈N 知从第三年开始获利.(2)①年平均利润=f (n )n=40-2⎝⎛⎫n +36n ≤16. 当且仅当n =6时取等号.故此方案共获利6×16+48=144(万美元),此时n =6.②f (n )=-2(n -10)2+128.当n =10时,f (n )max =128.故第②种方案共获利128+16=144(万美元),故比较两种方案,获利都是144万美元.但第①种方案只需6年,而第②种方案需10年,故选择第①种方案最合算.12.已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值.解:设f (x )=x 2+ax +2b ,由题意f (x )在[0,1]和[1,2]上各有一个零点,∴⎩⎪⎨⎪⎧ f (0)≥0,f (1)≤0,f (2)≥0,即⎩⎪⎨⎪⎧ b ≥0,a +2b +1≤0,a +b +2≥0,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图.由⎩⎪⎨⎪⎧ a +2b +1=0,a +b +2=0, 解得⎩⎪⎨⎪⎧a =-3,b =1,即C (-3,1). 令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率. 又B (-1,0),C (-3,1),则k AB =32,k AC =12, ∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12.。
三维设计课时跟踪检测答案(四十) 数学归纳法 高三数学教材
(ⅰ)n=1 时已知结论成立. (ⅱ)假设 n=k(k≥1,k∈N*)时结论成立, 即 Sk=k+k 1, 当 n=k+1 时,由①得 Sk+1=2-1Sk, 即 Sk+1=kk++21,故 n=k+1 时结论也成立. 综上,由(ⅰ)(ⅱ)可知 Sn=n+n 1对所有正整数 n 都成立.
数学(四川专版)
6.选 D (1)当 k=1 时,显然只有 3(2+7k)能被 9 整除. (2)假设当 k=n(n∈N*)时,命题成立,即 3(2+7n)能被 9 整除,那么 3(2+7n+1)=21(2+7n)-36. 这就是说,k=n+1 时命题也成立. 由(1)(2)可知,命题对任何 k∈N*都成立.
课时跟踪检测(四十) A级
1.选 B 由题意 n=k 成立,则 n=k+2 也成立,又 n=2 时 成立,则 p(n)对所有正偶数都成立.
2.选 B 可逐个验证,n=8 成立. 3.选 D 由条件知,左边是从 20,21 一直到 2n-1 都是连续的,
因此当 n=k+1 时,左边应为 1+2+22+…+2k-1+2k,而 右边应为 2k+1-1.
数学(四川专版)
数学(四川专版)
4.选 C 边数增加 1,顶点也相应增加 1 个,它与和它不相 邻的 n-2 个顶点连接成对角线,原来的一条边也成为对 角线,因此,对角线增加 n-1 条.
5.选 C 由 a1=13,Sn=n(2n-1)an 求得 a2=115=3×1 5,a3= 315=5×1 7,a4=613=7×1 9.猜想 an=2n-112n+1.
数学(四川专版)
9.解析:由(S1-1)2=S21得:S1=12; 由(S2-1)2=(S2-S1)S2 得:S2=23; 由(S3-1)2=(S3-S2)S3 得:S3=34. 猜想 Sn=n+n 1. 答案:n+n 1
高中数学 三维设计 立体几何初步 基本立体图形
8.1 基本立体图形第一课时棱柱、棱锥、棱台新课程标准新学法解读利用实物模型、计算机软件等观察空间图形,认识柱、锥、台的结构特征,能运用这些特征描述现实生活中简单物体的结构.1.与平面几何的有关概念、图形和性质进行适当类比,初步学会运用类比的思想分析和解决问题.2.结合身边的实物模型,认识棱柱、棱锥、棱台的结构特征,培养数学抽象核心素养.[思考发现]1.下列棱锥有6个面的是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选C由棱锥的结构特征可知,五棱锥有6个面.故选C.2.下面多面体中,是棱柱的共有()A.1个B.2个C.3个D.4个解析:选D根据棱柱的结构特征进行判定知,这4个图都满足.故选D.3.下面四个几何体中,是棱台的是()解析:选C由棱台的结构特征知,两个底面平行且相似,侧面都是梯形.侧棱延长应交于一点.故选C.4.下面属于多面体的是________(将正确答案的序号填在横线上).①建筑用的方砖;②埃及的金字塔;③茶杯;④球.解析:由多面体的结构特征可知,①②是多面体,而③④是旋转体.答案:①②5.一个棱柱至少有________个面,顶点最少的一个棱台有________条侧棱.解析:面最少的棱柱是三棱柱,它有5个面;顶点最少的棱台是三棱台,它有3条侧棱.答案:53[系统归纳]1.可以从以下几个方面理解棱柱(1)棱柱的两个主要结构特征:①有两个面互相平行;②各侧棱都互相平行,各侧面都是平行四边形.通俗地讲,棱柱“两头一样平,上下一样粗”.(2)有两个面互相平行,并不表明只有两个面互相平行,如长方体,有三组对面互相平行,其中任意一组对面都可以作为底面.(3)从运动的观点来看,棱柱也可以看成是一个平面多边形从一个位置沿一条不与其共面的直线运动到另一位置时,其运动轨迹所形成的几何体.(4)棱柱可按底面多边形的边数进行分类,如底面是三角形的棱柱叫做三棱柱.注意:棱柱概念的推广①斜棱柱:侧棱不垂直于底面的棱柱.②直棱柱:侧棱垂直于底面的棱柱.③正棱柱:底面是正多边形的直棱柱.④平行六面体:底面是平行四边形的四棱柱,即平行六面体的六个面都是平行四边形.⑤长方体:底面是矩形的直棱柱.⑥正方体:棱长都相等的长方体.2.棱锥的两个本质特征(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.注意:底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥,棱锥还可按底面多边形边数进行分类.3.正确认识棱台的结构特征(1)上底面与下底面是互相平行的相似多边形;(2)侧面都是梯形;(3)侧棱延长线必交于一点.注意:各侧面是全等的等腰梯形的是棱台称为正棱台.棱台还可按底面多边形的边数进行分类.棱柱的结构特征[例1]下列说法中,正确的是()A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形[解析]A选项不符合棱柱的结构特征;B选项中,如图①,构造四棱柱ABCDA1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的结构特征.故选D.[答案]D棱柱结构特征问题的解题策略(1)有关棱柱概念辨析问题应紧扣棱柱定义:①两个面互相平行;②其余各面是平行四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个面平行,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[变式训练][多选]下列关于棱柱的说法正确的是()A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面解析:选ABD对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.故选A、B、D.棱锥、棱台的结构特征[例2]下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[解析]①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案]①②判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[变式训练]下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为三棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.故选B.多面体的平面展开图问题[例3](1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)()(2)如图是三个几何体的平面展开图,请问各是什么几何体?[解析](1)由选项验证可知选A.(2)图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱特点;图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥特点;图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点.把平面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[答案](1)A(2)①为五棱柱,②为五棱锥,③为三棱台多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)由展开图复原几何体:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推. 同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.[变式训练]1.[变条件,变设问]将本例(1)中改为:水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐解析:选B将图形折成正方体知选B.2.[变条件,变设问]将本例(2)的条件改为:一个几何体的平面展开图如图所示.(1)该几何体是哪种几何体?(2)该几何体中与“祝”字面相对的是哪个面?“你”字面相对的是哪个面?解:(1)该几何体是四棱台.(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.A级——学考合格性考试达标练1.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点解析:选C四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).故选C.2.下面图形中,为棱锥的是()A.①③B.①③④C.①②④D.①②解析:选C根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.[多选]下列关于棱柱的说法中不正确的是()A.棱柱的侧面是平行四边形,但它一定不是矩形B.棱柱的一条侧棱的长叫做棱柱的高C.棱柱的两个互相平行的平面一定是棱柱的底面D.棱柱的所有面中,至少有两个面互相平行解析:选ABC由棱柱的定义,知A不正确,例如长方体;只有直棱柱才满足选项B 的条件,故B不正确;C不正确,例如正六棱柱的相对侧面互相平行;D显然正确.故选A、B、C.4.如图所示,在三棱台A′B′C′ABC中,截去三棱锥A′ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体解析:选B余下部分是四棱锥A′BCC′B′.故选B.5.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.6.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.答案:5697.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.答案:128.下列说法正确的是________.①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.解析:①正确.②不正确,四棱锥的底面是正方形,它的侧棱可以相等.也可以不等.③不正确,五棱锥除了五条侧棱外,还有五条底边,故共10条棱.④正确.答案:①④9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成,有几个面、几个顶点、几条棱?解:这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.B级——面向全国卷高考高分练1.下列说法中正确的是()A.所有的棱柱都有一个底面B.棱柱的顶点至少有6个C.棱柱的侧棱至少有4条D.棱柱的棱至少有4条解析:选B棱柱有两个底面,所以A项不正确;棱柱底面的边数至少是3,则在棱柱中,三棱柱的顶点数是6,三棱柱的侧棱数是3,三棱柱的棱数是9,所以C、D项不正确,B项正确.故选B.2.一个棱锥的各棱长都相等,那么这个棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.故选D.3.下列说法正确的是()A.多面体至少有3个面B.有2个面平行,其余各面都是梯形的几何体是棱台C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项A错误;选项B错误,反例如图1;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.故选D.4.如图,模块①~⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①~⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体,则下列选择方案中,能够完成任务的为()A.模块①②⑤B.模块①③⑤C.模块②④⑤D.模块③④⑤解析:选A先补齐中间一层,只能用模块⑤或①,且如果补①则后续两块无法补齐,所以只能先用⑤补齐中间一层,然后用①②补齐.故选A.5.用一个平面去截一个三棱锥,截面形状可能是________.(填序号)①三角形;②四边形;③五边形;④不可能为四边形.解析:按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.答案:①②6.如图,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________cm.解析:由题意,若以BC为折叠线展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为折叠线展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:137.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S△PEF=12a2,S△DPF=S △DPE=12×2a×a=a2,S△DEF=32a2.C级——拓展探索性题目应用练长方体ABCDA1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.解:沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:(1)若将C1D1剪开,使面AB1与面A1C1共面,可求得AC1=42+(5+3)2=80=4 5.(2)若将AD剪开,使面AC与面BC1共面,可求得AC1=32+(5+4)2=90=310.(3)若将CC1剪开,使面BC1与面AB1共面,可求得AC1=(4+3)2+52=74.相比较可得蚂蚁爬行的最短路线长为74.第二课时圆柱、圆锥、圆台、球和简单组合体新课程标准新学法解读利用实物模型、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构.1.与平面几何的有关概念、图形和性质进行适当类比,初步学会运用类比的思想分析和解决问题.2.结合身边已有的实物模型,认识圆柱、圆锥、圆台及球的结构特征,发现圆柱、圆锥、圆台的联系,理解共性和个性,培养数学抽象核心素养.[思考发现]1.下列几何体中不是旋转体的是()解析:选D由旋转体的概念可知,选项D不是旋转体.故选D.2.圆锥的侧面展开图是()A.三角形B.长方形C.正方形D.扇形解析:选D利用圆锥的形成过程可得,圆锥的侧面展开图是扇形.故选D.3.下列命题:①通过圆台侧面上一点,有无数条母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是()A.①②B.②③C.①③D.②④解析:选D①③错误,②④正确.故选D.4.日常生活中,常用到的螺母可以看成一个组合体,其结构特征是() A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱解析:选B如图,螺母是一个棱柱中挖去一个圆柱.故选B.[系统归纳]1.圆柱的结构特征(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆.(3)过轴的截面(轴截面)都是全等的矩形.(4)过任意两条母线的截面是矩形.2.圆锥的结构特征(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆.(3)过轴的截面是全等的等腰三角形.(4)过任意两条母线的截面是等腰三角形.3.圆台的结构特征(1)圆台有无数条母线,且它们相等,延长后相交于一点.(2)平行于底面的截面是圆.(3)过轴的截面是全等的等腰梯形.(4)过任意两条母线的截面是等腰梯形.4.球的结构特征(1)球是旋转体,球的表面是旋转形成的曲面,球是球面及其内部空间组成的几何体.(2)根据球的定义,铅球是一个球,而足球、乒乓球、篮球、排球等,虽然它们的名字中有“球”字,但它们都是空心的,不符合球的定义,因而都不是球.5.简单组合体由简单几何体组合而成的几何体称为简单组合体,构成简单组合体的两种基本形式:①由简单几何体拼接而成;②由简单几何体裁去或挖去一部分组成.旋转体的结构特征[例1]判断下列各命题是否正确:(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球.[解](1)错.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(3)正确.(4)错.应为球面.简单旋转体结构特征问题的解题策略(1)准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决此类概念问题的关键.(2)解题时要注意明确两点:①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.[变式训练]1.下列叙述中,正确的个数是()①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的几何体是圆台;③用一个平面去截圆锥,得到一个圆锥和一个圆台;④圆面绕它的任一直径旋转形成的几何体是球.A.0B.1C.2 D.3解析:选B①应以直角三角形的一条直角边所在直线为旋转轴旋转才可得到圆锥,故①错;②以直角梯形垂直于底边的一腰所在直线为旋转轴旋转可得到圆台,故②错;③用平行于圆锥底面的平面去截圆锥,可得到一个圆锥和一个圆台,用不平行于圆锥底面的平面不能得到,故③错;④正确.故选B.2.下列命题中正确的是()①过球面上任意两点只能作一个经过球心的圆;②以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,半圆的直径叫做球的直径;③用不过球心的截面截球,球心和截面圆心的连线垂直于截面;④球面上任意三点可能在一条直线上;⑤球的半径是连接球面上任意一点和球心的线段.A.①②③B.②③④C.②③⑤D.①④⑤解析:选C任意两点与球心在一条直线上时,可作无数个圆,故①错,②正确,③正确;球面上任意三点一定不共线,故④错误;根据球的半径的定义可知⑤正确.故选C.简单组合体的结构特征[例2]如图①②所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?[解]旋转后的图形如图所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.简单组合体的识别1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[变式训练]描述下列几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.圆柱、圆锥、圆台侧面展开图问题[例3] 如图所示,已知圆柱的高为80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且P A =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?[解] 将圆柱侧面沿母线AA 1展开,得如图所示矩形. ∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm), QS =A 1B 1=10π(cm). ∴PQ =PS 2+QS 2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.求几何体表面上两点间的最小距离的步骤(1)将几何体沿着某棱(母线)剪开后展开,画出其侧面展开图; (2)将所求曲线问题转化为平面上的线段问题; (3)结合已知条件求得结果.[变式训练]如图所示,有一圆锥形粮堆,母线与底面圆的直径构成边长为6 m 的正三角形ABC ,粮堆母线AC 的中点P 处有一只老鼠正在偷吃粮食.此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,求小猫所经过的最短路程.(结果不取近似值)解:∵△ABC 为正三角形,∴BC =6, ∴l =2π×3=6π,根据底面圆的周长等于展开后扇形的弧长,得:n π×6180=6π,故n =180°,则∠B ′AC =90°,∴B′P=36+9=35(m),∴小猫所经过的最短路程是3 5 m.A级——学考合格性考试达标练1.如图所示的图形中有()A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球解析:选B根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台.故选B.2.圆柱的母线长为10,则其高等于()A.5 B.10C.20 D.不确定解析:选B圆柱的母线长与高相等,则其高等于10.故选B.3.用平面截一个几何体,所得各截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球D.圆台解析:选C由球的定义知选C.故选C.4.有下列四个说法,其中正确的是()A.圆柱的母线与轴垂直B.圆锥的母线长等于底面圆直径C.圆台的母线与轴平行D.球的直径必过球心解析:选D A:圆柱的母线与轴平行;B:圆锥的母线长与底面圆的直径不具有任何关系;C:圆台的母线延长线与轴相交.故选D.5.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是()解析:选D结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.故选D.6.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是________________.解析:由圆锥的定义知是两个同底的圆锥形成的组合体.答案:两个同底的圆锥组合体7.观察下列四个几何体,其中可看作是由两个棱柱拼接而成的是________(填序号).解析:①可看作由一个四棱柱和一个三棱柱组合而成,④可看作由两个四棱柱组合而成.答案:①④8.一个圆锥的母线长为20,母线与轴的夹角为60°,则圆锥的高为________.解析:h=20cos 60°=10.答案:109.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.10.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.。
【三维设计】人教版高中数学必修2练习:第一章 空间几何体(含答案解析)
1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征空间几何体与多面体[导入新知]1.空间几何体1.对于多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,围成一个多面体至少要4个面.一个多面体由几个面围成,就称为几面体.(2)多面体是一个“封闭”的几何体,包括其内部的部分. 2.棱柱具有以下结构特征和特点:(1)侧棱互相平行且相等,侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图a 所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图b 所示.(4)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,如图c 所示.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形,如图d 所示.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.棱柱的结构特征[例1]下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[答案](3)(4)[类题通法]有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析.①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[活学活用]下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.各个侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面均为平行四边形答案:D棱锥、棱台的结构特征[例2]下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由4个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:下列说法正确的有()①由5个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余4个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案:A多面体的平面展开图[例3]如下图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.[类题通法]1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.[活学活用]水平放置的正方体的6个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.5C.快D.乐答案:B1.柱、锥、台结构特征判断中的误区[典例]如下图所示,下列关于这个几何体的正确说法的序号为________.①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个三棱柱得到;⑤此几何体可由四棱柱截去一个三棱柱得到.[解析]①正确,因为有6个面,属于六面体的范围;②错误,因为侧棱的延长线不能交于一点,所以不正确;③正确,如果把几何体放倒就会发现是一个四棱柱;④⑤都正确,如下图所示.[答案]①③④⑤[易错防范]1.解答过程中易忽视侧棱的延长线不能交于一点,直观感觉是棱台,而不注意逻辑推理.2.解答空间几何体概念的判断题时,要注意紧扣定义,切忌只凭图形主观臆断.[成功破障]如右图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案:A一、选择题1.下列图形中,不是三棱柱的展开图的是()答案:C2.如右图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体答案:B3.下列说法正确的是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长都相等.A.①②B.①③C.②③D.②④答案:B4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案:D5.下列命题正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个互相平行的面一定是棱柱的底面C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点答案:D二、填空题6.面数最少的棱柱为________棱柱,共有________个面围成.答案:三 57.如右图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”“不一定”或“一定不”)答案:(1)不一定(2)不一定三、解答题9.如右图所示,长方体ABCD -A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA1-DCND1.10.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.第二课时 圆柱、圆锥、圆台、球的结构特征 简单组合体的结构特征旋转体 [导入新知]1.以直角三角形斜边所在的直线为旋转轴,其余两边旋转成的曲面围成的旋转体不是圆锥.2.球与球面是完全不同的两个概念,球是指球面所围成的空间,而球面只指球的表面部分.3.圆台也可以看作是等腰梯形以其底边的垂直平分线为轴,各边旋转半周形成的曲面所围成的几何体.简单组合体[导入新知]1.简单组合体的概念由简单几何体组合而成的几何体叫做简单组合体.2.简单组合体的构成形式有两种基本形式:一种是由简单几何体拼接而成的;另一种是由简单几何体截去或挖去一部分而成的.[化解疑难]简单组合体识别的要求(1)准确理解简单几何体(柱、锥、台、球)的结构特征.(2)正确掌握简单组合体构成的两种基本形式.(3)若用分割的方法,则需要根据几何体的结构特征恰当地作出辅助线(或面).旋转体的结构特征[例1]给出下列说法:(1)以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥;(2)以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥;(3)经过圆锥任意两条母线的截面是等腰三角形;(4)圆锥侧面的母线长有可能大于圆锥底面圆直径.其中说法正确的序号是________.[答案](2)(3)(4)[类题通法]1.判断简单旋转体结构特征的方法(1)明确由哪种平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.[活学活用]给出下列说法:(1)圆柱的底面是圆面;(2)经过圆柱任意两条母线的截面是一个矩形面;(3)圆台的任意两条母线的延长线可能相交,也可能不相交;(4)夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.答案:(1)(2)简单组合体[例2]观察下列几何体的结构特点,完成以下问题:(1)题图①所示几何体是由哪些简单几何体构成的?试画出几何图形,可旋转该图形180°后得到几何体①.(2)题图②所示几何体的结构特点是什么?试画出几何图形,可旋转该图形360°得到几何体②.(3)题图③所示几何体是由哪些简单几何体构成的?请说明该几何体的面数、棱数、顶点数.[解](1)图①是由圆锥和圆台组合而成.可旋转如下图形180°得到几何体①.(2)图②是由一个圆台,从上而下挖去一个圆锥,且圆锥的顶点恰为圆台底面圆的圆心.可旋转如下图形360°得到几何体②.(3)图③是由一个四棱锥与一个四棱柱组合而成,且四棱锥的底面与四棱柱底面相同.共有9个面,9个顶点,16条棱.[类题通法]1.明确组合体的结构特征,主要弄清它是由哪些简单几何体组成的,必要时也可以指出棱数、面数和顶点数,如题图③所示的组合体有9个面,9个顶点,16条棱.2.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.[活学活用]指出图①~图③的3个几何体分别是由哪些简单几何体组成的.解:图①几何体由一个圆锥、一个圆柱和一个圆台拼接而成;图②几何体由一个六棱柱和一个圆柱拼接而成;图③几何体由一个六棱柱挖去一个圆柱而成.1.旋转体的生成过程[典例]如右图所示,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.[解题流程][规范解答]以边AD所在直线为旋转轴旋转,形成的几何体是圆台,如图①所示.以边AB所在直线为旋转轴旋转,形成的几何体是一个圆锥和一个圆柱拼接而成的几何体,如图②所示.以边CD所在直线为旋转轴旋转,形成的几何体是一个圆柱挖掉一个圆锥构成的几何体,如图③所示.以边BC所在直线为旋转轴旋转,形成的几何体是由一个圆台挖掉一个圆锥构成的几何体和一个圆锥拼接而成,如图④所示.[活学活用]一个有30°角的直角三角板绕其各条边所在直线旋转一周所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解:如图①和图②所示,绕其直角边所在直线旋转一周围成的几何体是圆锥.如图③所示,绕其斜边所在直线旋转一周所得几何体是两个同底相对的圆锥.如图④所示,绕其斜边上的高所在的直线为轴旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.一、选择题1.下列说法正确的是()A.平行于圆锥某一母线的截面是等腰三角形B.平行于圆台某一母线的截面是等腰梯形C.过圆锥顶点的截面是等腰三角形D.过圆台上底面中心的截面是等腰梯形答案:C2.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括() A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆柱、一个圆台D.一个圆柱、两个圆锥答案:D3.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是() A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥答案:D4.下列叙述中正确的个数是()①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1C.2 D.3答案:B5.如右图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形答案:D二、填空题6.有下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在直线是互相平行的.其中正确的是________(把所有正确说法的序号都填上).答案:②④7.下面这个几何体的结构特征是_____________________________________.答案:由一个四棱锥、一个四棱柱拼接,又在四棱柱中挖去了一个圆柱而成8.如图是一个几何体的表面展成的平面图形,则这个几何体是________.答案:圆柱三、解答题9.指出如图①、图②、图③所示的图形分别是由哪些简单几何体构成的.解:分割原图,使它的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的简单组合体;图②是由一个圆锥和一个四棱柱拼接而成的简单组合体;图③是由一个半球、一个圆柱和一个圆台拼接而成的简单组合体.10.如右图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如右图所示,过圆台的轴作截面,截面为等腰梯形ABCD ,由已知可得上底半径O 1A =2 cm ,下底半径OB =5 cm ,且腰长AB =12 cm.设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO ,可得l -12l =25,所以l =20 cm ,即截得此圆台的圆锥的母线长为20 cm.1.2空间几何体的三视图和直观图1.2.1 & 1.2.2 中心投影与平行投影 空间几何体的三视图中心投影与平行投影 [导入新知] 1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影平行投影和中心投影都是空间图形的一种画法,但二者又有区别 (1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.三 视 图 [导入新知]1.每个视图都反映物体两个方向上的尺寸.正视图反映物体的上下和左右尺寸,俯视图反映物体的前后和左右尺寸,侧视图反映物体的前后和上下尺寸.2.画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.中心投影与平行投影 [例1] 下列说法中:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线; ③两条相交直线的平行投影是两条相交直线. 其中正确的个数为( ) A .0 B .1 C .2 D .3[答案] B [类题通法]1.判定几何体投影形状的方法.(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)对于平行投影,当图形中的直线或线段不平行于投影线时,平行投影具有以下性质: ①直线或线段的投影仍是直线或线段; ②平行直线的投影平行或重合;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.2.画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得此图形在该平面上的投影.[活学活用]如右图所示,在正方体ABCD -A′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断正确的序号是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在平面A′D′DA内的投影是菱形;③四边形BFD′E在平面A′D′DA内的投影与在平面ABB′A内的投影是全等的平行四边形.答案:①③画空间几何体的三视图[例2]画出如右图所示的四棱锥的三视图.[解]几何体的三视图如下:[类题通法]画三视图的注意事项(1)务必做到长对正,宽相等,高平齐.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.[活学活用]沿一个正方体三个面的对角线截得的几何体如下图所示,则该几何体的侧视图为()答案:B由三视图还原空间几何体[例3]如下图所示的三视图表示的几何体是什么?画出物体的形状.(1)(2)(3)[解](1)该三视图表示的是一个四棱台,如右图.(2)由俯视图可知该几何体是多面体,结合正视图、侧视图可知该几何体是正六棱锥.如下图.(3)由于俯视图有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体,结合侧视图和正视图,可知该几何体上面是一个圆柱,下面是一个四棱柱,所以该几何体的形状如右图所示.[类题通法]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.[活学活用]如图①、图②、图③、图④为4个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A.三棱台、三棱柱、圆锥、圆台B.三棱台、三棱锥、圆锥、圆台C.三棱柱、正四棱锥、圆锥、圆台D.三棱柱、三棱台、圆锥、圆台答案:C2.画几何体的三视图常见误区[典例]某几何体及其俯视图如下图所示,下列关于该几何体正视图和侧视图的画法正确的是()[解析]该几何体是由圆柱切割而得,由俯视图可知正视方向和侧视方向,进一步可画出正视图和侧视图(如图所示),故选A.[答案] A[易错防范]1.易忽视该组合体的结构特征是由圆柱切割而得到,对正视方向与侧视方向的判断不正确而出错.2.三种视图中,可见的轮廓线都画成实线,存在但不可见的轮廓线一定要画出,但要画成虚线.画三视图时,一定要分清可见轮廓线与不可见轮廓线,避免出现错误.[成功破障]沿圆柱体上底面直径截去一部分后的物体如右图所示,它的俯视图是()答案:D一、选择题1.4个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图,则在字母L,K,C的投影中,与字母N属同一种投影的有()答案:A2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()答案:D3.若某几何体的三视图如下图所示,则这个几何体的直观图可以是()答案:B4.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案:C5.将正方体(如图①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的侧视图为()答案:B二、填空题6.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.答案: 27.如图甲所示,在正方体ABCD -A1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图乙中的________.答案:(1)(2)(3)8.两条平行线在一个平面内的正投影可能是________.①两条平行线;②两个点;③两条相交直线;④一条直线和直线外的一点;⑤一条直线.答案:①②⑤三、解答题9.如下图所示,画出下列组合体的三视图.解:三视图如图①、图②所示.10.某组合体的三视图如下图所示,试画图说明此组合体的结构特征.解:该三视图表示的是组合体,如右图所示,是7个小正方体拼接而成的组合体.1.2.3空间几何体的直观图斜二测画法[导入新知]1.用斜二测画法画平面图形的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半.2.用斜二测画法画空间几何体的直观图的步骤(1)画底面,这时使用平面图形的斜二测画法即可.(2)画z′轴,z′轴过点O′,且与x′轴的夹角为90°,并画出高线(与原图高线相等,画正棱柱时只需要画侧棱即可),连线成图.(3)擦去辅助线,被遮线用虚线表示.[化解疑难]1.画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.2.用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).水平放置的平面图形的直观图[例1]按右图所示的建系方法,画水平放置的正五边形ABCDE的直观图.[解]画法:(1)在图①中作AG⊥x轴于G,作DH⊥x轴于H.(2)在图②中画相应的x′轴与y′轴,两轴相交于点O′,使∠x′O′y′=45°.。
数学三维设计解答
第一部分 专题复习 培植新的增分点专题一 集合与常用逻辑用语、函数与导数、不等式第一讲 集合与常用逻辑用语基础·单纯考点[例1] 解析:(1)∵A ={x >2或x <0},B ={x |-5<x <5}, ∴A ∩B ={x |-5<x <0或2<x <5}, A ∪B =R .(2)依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9].答案:(1)B (2)D[预测押题1] (1)选A 本题逆向运用元素与集合的关系求参数的取值范围,抓住1∉A 作为解题的突破口,1∉A 即1不满足集合A 中不等式,所以12-2×1+a ≤0⇒a ≤1.(2)选B 对于2x (x -2)<1,等价于x (x -2)<0,解得0<x <2,所以A ={x |0<x <2};集合B 表示函数y =ln(1-x )的定义域,由1-x >0,得x <1,故B ={x |x <1},∁R B ={x |x ≥1},则阴影部分表示A ∩(∁R B )={x|1≤x<2}.[例2] 解析:(1)命题p 是全称命题:∀x ∈A ,2x ∈B , 则┐p 是特称命题:∃x ∈A ,2x ∉B .(2)①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p且q 为假只能得出p ,q 中至少有一为假,④不正确.答案:(1)D (2)A[预测押题2] (1)选A 因为x 2-3x +6=⎝⎛⎭⎫x -322+154>0,所以①为假命题;若ab =0,则a 、b 中至少一个为零即可,②为假命题;x =k π+π4(k ∈R )是tan x =1的充要条件,③为假命题.(2)解析:“∃x ∈R ,2x 2-3ax +9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题,因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.答案:[-22,22][例3] 解析:(1)当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.(2)因为y =-m n x +1n 经过第一、三、四象限,所以-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.答案:(1)A (2)B[预测押题3] (1)选B 由10a >10b 得a >b ,由lg a >lg b 得a >b >0,所以“10a >10b ”是“lg a >lg b ”的必要不充分条件.(2)解析:由|x -m |<2,得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2,m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)交汇·创新考点[例1] 选A 在同一坐标系下画出椭圆x 2+y 24=1及函数y =2x 的图象,结合图形不难得知它们的图像有两个公共点,因此A ∩B 中的元素有2个,其子集共有22=4个.[预测押题1] 选B A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎨⎧a ≥34,a <43,即34≤a <43,选B.[例2] 解析:对①:取f (x )=x -1,x ∈N *,所以B =N *,A =N 是“保序同构”;对②:取f (x )=92x -72(-1≤x ≤3),所以A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}是“保序同构”;对③:取f (x )=tan ⎝⎛⎭⎫πx -π2(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”,故应填①②③.答案:①②③[预测押题2] 解析:∵A ⊆M ,且集合M 的子集有24=16个,其中“累计值”为奇数的子集为{1},{3},{1,3},共3个,故“累积值”为奇数的集合有3个.答案:3[例3] 解析:对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;对于②当b =a =0时,l 1⊥l 2,故②不正确,易知③正确.所以正确结论的序号为①③.答案:①③[预测押题3] 选D 由y =tan x 的对称中心为⎝⎛⎭⎫k π2,0(k ∈Z ),知A 正确;由回归直线方程知B 正确;在△ABC 中,若sin A =sin B ,则A =B ,C 正确.第二讲 函数的图像与性质基础·单纯考点[例1] 解析:(1)由题意,自变量x 应满足{x +3>0,1-2x≥0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)设t =1+sin x ,易知t ∈[0,2],所求问题等价于求g (t )在区间[0,2]上的值域.由g (t )=13t 3-52t 2+4t ,得g ′(t )=t 2-5t +4=(t -1)(t -4).由g ′(t )=0,可得t =1或t =4.又因为t ∈[0,2],所以t =1是g (t )的极大值点.由g (0)=0,g (1)=13-52+4=116,g (2)=13×23-52×22+4×2=23,得当t ∈[0,2]时,g (t )∈⎣⎡⎦⎤0,116,即g (1+sin x )的值域是⎣⎡⎦⎤0,116. 答案:(1)A (2)⎣⎡⎦⎤0,116[预测押题1] (1)解析:∵f (π4)=-tan π4=-1,∴f (f (π4))=f (-1)=2×(-1)3=-2.答案:-2(2)由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图像关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:-2x 2+2[例2] 解析:(1)曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x 向左平移1个单位长度得到y =e -(x +1),即f (x )=e -x -1.(2)由题图可知直线OA 的方程是y =2x ;而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,故g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3=-⎝⎛⎭⎫x -32+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0. 综上所述,g (x )的值域为⎣⎡⎦⎤0,94. 答案:(1)D (2)B[预测押题2] (1)选C 因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错.(2)选B 因为f (x )=f (-x ),所以函数f (x )是偶函数.因为f (x +2)=f (x ),所以函数f (x )的周期是2,再结合选项中的图像得出正确选项为B.[例3] 解析:(1)函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项A ,D 是奇函数,不符合;选项B 是偶函数但单调性不符合;只有选项C 符合要求.(2)∵f (x )=ax 3+b sin x +4, ① ∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4, ② ①+②得f (x )+f (-x )=8. ③又∵lg(log 210)=lg ⎝⎛⎭⎫1lg 2=lg(lg 2)-1=-lg(lg 2), ∴f (lg(lg 210))=f (-lg(lg 2))=5.又由③式知f (-lg(lg 2))+f (lg(lg 2))=8, ∴5+f (lg(lg 2))=8, ∴f (lg(lg 2))=3. 答案:(1)C (2)C[预测押题3] (1)选A 依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.(2)解析:∵f (x )=-f ⎝⎛⎭⎫x +32, ∴f ⎝⎛⎭⎫x +32=-f (x +3)=-f (x ), ∴f (x )=f (x +3),∴f (x )是以3为周期的周期函数. 则f (2014)=f (671×3+1)=f (1)=3. 答案:3 (3)解析:因为函数f (x )的图像关于y 轴对称,所以该函数是偶函数,又f (1)=0,所以f (-1)=0.又已知f (x )在(0,+∞)上为减函数,所以f (x )在(-∞,0)上为增函数.f (-x )+f (x )x<0,可化为xf (x )<0,所以当x >0时,解集为{x |x >1};当x <0时,解集为{x |-1<x <0}.综上可知,不等式的解集为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)交汇·创新考点 [例1] 解析:设x <0,则-x >0.∵当x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x ).∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ),∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎪⎨⎪⎧x 2-4x =5,x ≥0,或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观察图像可知由f (x )<5,得-5<x <5.∴由f (x +2)<5,得-5<x +2<5,∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}.答案:{x |-7<x <3}[预测押题1] 解析:根据已知条件画出f (x )图像如图所示.因为对称轴为x =-1,所以(0,1)关于x =-1的对称点为(-2,1).因f (m )<1,所以应有-2<m <0,m +2>0.因f (x )在(-1,+∞)上递增,所以f (m +2)>f (0)=1.答案:>[例2] 解析:因为A ,B 是R 的两个非空真子集,且A ∩B =∅,画出韦恩图如图所示,则实数x 与集合A ,B 的关系可分为x ∈A ,x ∈B ,x ∉A 且x ∉B 三种.(1)当x ∈A 时,根据定义,得f A (x )=1.因为A ∩B =∅,所以x ∉B ,故f B (x )=0.又因为A ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(2)当x ∈B 时,根据定义,得f B (x )=1.因为A ∩B =∅,所以x ∉A ,故f A (x )=0.又因为B ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(3)当x ∉A 且x ∉B ,根据定义,得f A (x )=0,f B (x )=0.由图可知,显然x ∉(A ∪B ),故f A ∪B (x )=0,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=0+10+0+1=1.综上,函数的值域中只有一个元素1,即函数的值域为{1}. 答案:{1}[预测押题2] 解:当x ∈A ∩B 时,因为(A ∩B )⊆(A ∪B ),所以必有x ∈A ∪B .由定义,可知f A (x )=1,f B (x )=1,f A ∪B (x )=1,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+1+1=23. 故函数F (x )的值域为{23}.第三讲 基本初等函数、函数与方程及函数的应用基础·单纯考点[例1] 解析:(1)当x =-1,y =1a -1a =0,所以函数y =a x -1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32,b =log 510=log 55+log 52=1+log 52,c =log 714=log 77+log 72=1+log 72,∵log 32>log 52>log 72,∴a >b >c .答案:(1)D (2)D [预测押题1] (1)选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)选B 依题意的a =ln x ∈(-1,0),b =⎝⎛⎭⎫12ln x ∈(1,2),c =e ln x ∈(e -1,1),因此b >c >a .[例2] 解析:(1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.答案:(1)B (2)C[预测押题2] 解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.答案:(0,1][例3] 解:(1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈n ,0≤x ≤200),y =18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈n ,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N ,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元).因为y 1max -y 2max =1980-200m -460=1520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.[预测押题3] 解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元),则f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3).所以当t =2时,f (t )max =4,即当集团投入两百万广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告费的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3).对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0,得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增;当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减.∴当x =2时,g (x )max =g (2)=253.故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的受益最大,最大收益为253百万元.交汇·创新考点[例1] 选B ∵⎝⎛⎭⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在(0,π2)上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝⎛⎭⎫π2,π上单调递增. ∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π.又f (x )是以2π为最小正周期的偶函数,知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点.[预测押题] 选D 根据f ⎝⎛⎭⎫x +54=-f ⎝⎛⎭⎫x -54,可得f ⎝⎛⎭⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x ,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2012=402×5+2,故函数在区间[0,2010]内有402×3=1206个零点,在区间(2010,2012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2012]上零点的个数为1207.第四讲 不等式基础·单纯考点[例1] 解析:(1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以原不等式的解集为⎝⎛⎦⎤-12,1. (2)由题意知,一元二次不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |-1<x <12.而f (10x )>0,∴-1<10x <12,解得x <lg 12,即x <-lg 2.答案:(1)A (2)D[预测押题1] (1)选B 当x >0时,f (x )=-2x +1x2>-1,∴-2x +1>-x 2,即x 2-2x +1>0,解得x >0且x ≠1.当x <0时,f (x )=1x>-1,即-x >1,解得x <-1.故x ∈(-∞,-1)∪(0,1)∪(1,+∞).(2)解析:∵f (x )=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -a 24=0,∴f (x )=x 2+ax+14a 2=⎝⎛⎭⎫x +12a 2.又∵f (x )<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +a 24-c =0的两根.由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9[例2] 解析:(1)曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min =-6.(2)设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈n ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).答案:(1)A (2)C[预测押题2] (1)选C 题中的不等式组表示的平面区域如图阴影部分所示,平移直线x -y =0,当平移经过该平面区域内的点(0,1)时,相应直线在x 轴上的截距达到最小,此时x -y 取得最小值,最小值是x -y =0-1=-1;当平移到经过该平面内区域内的点(2,0)时,相应直线在x 轴上的截距达到最大,此时x -y 取得最大值,最大值是x -y =2-0=2.因此x -y 的取值范围是[-1,2].(2)解析:作出可行域,如图中阴影部分所示,区域面积S =12×⎝⎛⎭⎫2a +2×2=3,解得a =2.答案:2[例3] 解析:(1)因-6≤a ≤3,所以3-a ≥0,a +6≥0,∴(3-a )(a +6)≤3-a +a +62=92,当且仅当a =-32时等号成立.(2)f (x )=4x +a x ≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36.答案:(1)B (2)36[预测押题3] (1)选D 依题意,点A (-2,-1),则-2m -n +1=0,即2m +n =1(m >0,n >0),∴1m +2n =⎝⎛⎭⎫1m +2n (2m +n )=4+⎝⎛⎭⎫n m +4m n ≥4+2n m ×4m n =8,当且仅当n m =4m n,即n =2m =12时取等号,即1m +2n的最小值是8.(2)选A 由已知得a +2b =2.又∵a >0,b >0,∴2=a +2b ≥22ab ,∴ab ≤12,当且仅当a =2b =1时取等号.交汇·创新考点[例1] 选C 作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形所有点都在圆的内部,故m ≥2,解得:m ≥2.[预测押题1] 选C 如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝⎛⎭⎫122=12,当圆的半径增大到恰好过点A (2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故a 的取值范围是12<a ≤5,故选C.[例2] 选C z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥2x y ·4yx-3=1.当且仅当x y =4yx,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2.∴当y =1时,x +2y -z 取得最大值2.[预测押题2] 解析:4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝⎛⎭⎫2x +y 22+1,∴(2x +y )2≤85,∴(2x +y )max =2105.答案:2105第五讲 导数及其应用基础·单纯考点[例1] 解析:(1)∵点(1,1)在曲线y =x2x -1上,y ′=-1(2x -1)2,∴在点(1,1)处的切线斜率为y ′|x =1=-1(2-1)2=-1,所求切线方程为y -1=-(x -1),即x +y -2=0.(2)因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.答案:(1)x +y -2=0 (2)12[预测押题1] 选D 由f (x +2)=f (x -2),得f (x +4)=f (x ),可知函数为周期函数,且周期为4.又函数f (x )为偶函数,所以f (x +2)=f (x -2)=f (2-x ),即函数的对称轴是x =2,所以f ′(-5)=f ′(3)=-f ′(1),所以函数在x =-5处的切线的斜率k =f ′(-5)=-f ′(1)=-1.[例2] 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12.令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.[预测押题2] 解:(1)当m =1时,f (x )=13x 3+x 2-3x +1,又f ′(x )=x 2+2x -3,所以f ′(2)=5.又f (2)=53,所以所求切线方程为y -53=5(x -2),即15x -3y -25=0.所以曲线y =f (x )在点(2,f (2))处的切线方程为15x -3y -25=0.(2)因为f ′(x )=x 2+2mx -3m 2,令f ′(x )=0,得x =-3m 或x =m .当m =0时,f ′(x )=x 2≥0恒成立,不符合题意;当m >0时,f (x )的单调递减区间是(-3m ,m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧-3m ≤-2,m ≥3,解得m ≥3;当m <0时,f (x )的单调递减区间是(m ,-3m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2,-3m ≥3,解得m ≤-2. 综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞).[例3] 解:(1)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得最小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.(2)当a =1时,f (x )=x -1+1ex .直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1ex (*)在R 上没有实数解.①当k =1时,方程(*)可化为1e x =0,在R 上没有实数解.②当k ≠1时,方程(*)可化为1k -1=x e x .令g (x )=x e x ,则有g ′(x )=(1+x )e x .令g ′(x )当x =-1时,g (x )min =-1e,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的取值范围为⎣⎡⎭⎫-1e ,+∞.所以当1k +1∈⎝⎛⎭⎫-∞,-1e 时,方程(*)无实数解,解得k 的取值范围是(1-e ,1).综合①②,得k 的最大值为1.[预测押题3] 解:(1)f ′(x )=a +2x 2-3x ,由题意可知f ′(23)=1,解得a =1.故f (x )=x -2x -3ln x ,∴f ′(x )=(x -1)(x -2)x 2,由f ′(x )=0,得x =2.∴f (min (2)f ′(x )=a +2x 2-3x =ax 2-3x +2x2(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0.也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a>0,h (0)>0.解得0<a <98.交汇·创新考点[例1] 解:(1)证明:设φ(x )=f (x )-1-a ⎝⎛⎭⎫1-1x =a ln x -a ⎝⎛⎭⎫1-1x (x >0),则φ′(x )=a x -ax2.令φ′(x )=0,则x =1,易知φ(x )在x =1处取到最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝⎛⎭⎫1-1x .(2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0,故h (x )在定义域上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在定义域上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以a 的取值范围为[e -1,+∞).[预测押题1] 解:(1)由f (x )=e x (x 2+ax -a )可得,f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0,即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )在[0,+∞)上是增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根.当-(a +2)>0,即a <-2时,f ′(x ),f (x )随x 的变化情况如由上表可知函数f (x )在[0,+∞)上的最小值为f (-(a +2))=a +4ea +2.因为函数f (x )在(0,-(a+2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥f (-a )=e -a (-a )>-a ,又f (0)=-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .[例2] 选C 法一:曲线y =x 与直线x =1及x 轴所围成的曲边图形的面积S =⎠⎛01x d x=⎪⎪23x 3210=23,又∵S △AOB =12,∴阴影部分的面积为S ′=23-12=16,由几何概型可知,点P 取自阴影部分的概率为P =16.法二:S 阴影=⎠⎛01(x -x )d x =16,S 正方形OABC =1,∴点P 取自阴影部分的概率为P =16.[预测押题2] 解析:画出草图,可知所求概率P =S 阴影S △AOB=⎠⎛04x d x 18=⎪⎪23x 324018=16318=827.答案:827[例3] 解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2}.因此区间I =⎝⎛⎭⎫0,a 1+a 2,故I 的长度为a1+a 2.(2)设d (a )=a1+a 2,则d ′(a )=1-a 2(1+a 2)2(a >0).令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而d (1-k )d (1+k )=1-k1+(1-k )21+k1+(1+k )2=2-k 2-k 32-k 2+k 3<1,故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k 2.[预测押题3] 解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)① 计算得f (1)=a +b 2>0,f (b a )=2ab a +b >0,f (b a )=ab >0.因为f (1)f (b a )=a +b 2·2aba +b=ab=⎣⎡⎦⎤f (b a )2,即f (1)f (b a )=⎣⎡⎦⎤f (b a )2. (*)所以f (1),f (b a ),f (b a )成等比数列.因为a +b 2≥ab ,所以f (1)≥f (b a ).由(*)得f (b a )≤f (ba).②由①知f (b a )=H ,f (b a )=G .故由H ≤f (x )≤G ,得f (b a )≤f (x )≤f (ba). (**)当a =b时,(b a )=f (x )=f (b a )=a .这时,x 的取值范围为(0,+∞);当a >b 时,0<b a <1,从而b a <b a,由f (x )在(0,+∞)上单调递增(**)式,得b a ≤x ≤b a ,即x 的取值范围为⎣⎡⎦⎤b a,b a ;当a <b时,b a >1,从而b a >b a ,由f (x )在(0,+∞)上单调递减与(**)式,得b a ≤x ≤b a,即x 的取值范围为⎣⎡⎦⎤b a ,b a .综上,当a =b 时,x 的取值范围为(0,+∞);当a >b 时,x 的取值范围为⎣⎡⎦⎤b a ,b a ;当a <b 时,x 的取值范围为⎣⎡⎦⎤b a ,b a .专题二 三角函数、解三角形、平面向量第一讲 三角函数的图像与性质基础·单纯考点[例1] 解析:(1)1-2sin (π+θ)sin ⎝⎛⎭⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝⎛⎭⎫π2,π,∴sin θ-cos θ>0,故原式=sin θ-cos θ.(2)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z ).所以2sin2α-3tan α=2sin ⎝⎛⎭⎫4k π+π3-3tan ⎝⎛⎭⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0.答案:(1)A (2)D[预测押题1] (1)选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tanα=3,故sin α=31010.(2)解析:由A 点的纵坐标为35及点A 在第二象限,得点A 的横坐标为-45,所以sin α=35,cos α=-45,tan α=-34.故tan2α=2tan α1-tan 2α=-247. 答案:35 -247[例2] 解析:(1)∵34T =512π-⎝⎛⎭⎫-π3=34π,∴T =π,∴2πω=π(ω>0),∴ω=2.由图像知当x =512π时,2×512π+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k ∈Z ).∵-π2<φ<π2,∴φ=-π3.(2)y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+φ的图像,整理得y=cos(2x -π+φ).∵其图像与y =sin ⎝⎛⎭⎫2x +π3的图像重合,∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π,即φ=5π6+2k π.又∵-π≤φ<π∴φ=5π6. 答案:(1)A (2)5π6[预测押题2] (1)选C 将y =sin ⎝⎛⎭⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位得y =sin ⎝⎛⎭⎫2x +3π4+2的图像,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,得x =π8.(2)选C 根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m 取最小值.又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3.[例3] 解:(1)f (x )4cos ωx ·sin ⎝⎛⎭⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx ·cos2ωx )+2=2sin ⎝⎛⎭⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0,从而由2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π5,即π8≤x ≤π2时,f (x )单调递减;综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.[预测押题3] 解:(1)因为f (x )=32sin 2x +1+cos 2x 2+a =sin(2x +π6)+a +12,所以T =π.由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z .故函数f (x )的单调递减区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ).(2)因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6,-12≤sin ⎝⎛⎭⎫2x +π6≤1.因为函数f (x )在⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为⎝⎛⎭⎫1+a +12+⎝⎛⎭⎫-12+a +12=32,所以a =0.交汇·创新考点[例1] 解:(1)f (x )=1+cos (2ωx -π3)2-1-cos2ωx 2=12⎣⎡⎦⎤cos ⎝⎛⎭⎫2ωx -π3+cos2ωx =12⎣⎡⎦⎤⎝⎛⎭⎫12cos2ωx +32sin2ωx +cos2ωx =12⎝⎛⎭⎫32sin2ωx +32cos2ωx =32⎝⎛⎭⎫12sin2ωx +32cos2ωx =32sin ⎝⎛⎭⎫2ωx +π3.由题意可知,f (x )的最小正周期T =π,∴2π|2ω|=π.又∵ω>0,∴ω=1,∴f (π12)=32sin ⎝⎛⎭⎫2×π12+π3=32sin π2=32. (2)|f (x )-m |≤1,即f (x )-1≤m ≤f (x )+1.∵对∀x ∈⎣⎡⎦⎤-7π12,0,都有|f (x )-m |≤1,∴m ≥f (x )max -1且m ≤f (x )min +1.∵-7π12≤x ≤0,∴-5π6≤2x +π3≤π3,∴-1≤sin ⎝⎛⎭⎫2x +π3≤32,∴-32≤32sin ⎝⎛⎭⎫2x +π3≤34,即f (x )max =34,f (x )min =-32,∴-14≤m ≤1-32.故m 的取值范围为⎣⎡⎦⎤-14,1-32.[预测押题1] 解:(1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-⎝⎛⎭⎫122=-14. (2)f (x )=cos x ·cos ⎝⎛⎭⎫x -π3=cos x ·⎝ ⎛⎭⎪⎫12cos x + 32sin x =12cos 2x +32sin x cos x =14(1+cos2x )+34sin2x =12cos ⎝⎛⎭⎫2x -π3+14.f (x )<14等价于12cos ⎝⎛⎭⎫2x -π3+14<14,即cos ⎝⎛⎭⎫2x -π3<0.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x |k π+5π12<x <k π+11π12,k ∈Z .[例2] 解析:因为圆心由(0,1)平移到了(2,1,),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切与点B ,过C 作P A 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝⎛⎭⎫2-π2=-cos2,|CD |=cos ⎝⎛⎭⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP →的坐标为(2-sin2,1-cos2).答案:(2-sin2,1-cos2)[预测押题2] 选A 画出草图,可知点Q 点落在第三象限,则可排除B 、D ;代入A ,cos ∠QOP =6×(-72)+8×(-2)62+82=-502100=-22,所以∠QOP =3π4.代入C ,cos ∠QOP =6×(-46)+8×(-2)62+82=-246-16100≠-22.第二讲 三角恒等变换与解三角形基础·单纯考点[例1] 解:(1)因为f (x )=2cos ⎝⎛⎭⎫x -π12,所以f (-π6)=2cos ⎝⎛⎭⎫-π6-π12=2cos ⎝⎛⎭⎫-π4=2cos π4=2×22=1.(2)因为θ∈⎝⎛⎭⎫3π2,2π,cos θ=35,所以sin θ=1-cos 2θ=-1-⎝⎛⎭⎫352=-45,cos2θ=2cos 2θ-1=2×(35)2-1=-275,sin 2θ=2sin θcos θ =2×35×⎝⎛⎭⎫-45=-2425.所以f (2θ+π3)=2cos ⎝⎛⎭⎫2θ+π3-π12=2cos ⎝⎛⎭⎫2θ+π4=2×⎝⎛⎭⎫22cos2θ-22sin2θ=cos2θ-sin2θ=-725-⎝⎛⎭⎫-2425=1725.[预测押题1] 解:(1)由已知可得f (x )=3cos ωx +3sin ωx =23sin ⎝⎛⎭⎫ωx +π3.所以函数f (x )的值域为[-23,23].又由于正三角形ABC 的高为23,则BC =4,所以函数f (x )的周期T =4×2=8,即2πω=8,解得ω=π4.(2)因为f (x 0)=835,由(1)得f (x 0)=23sin ⎝⎛⎭⎫πx 04+π3=835,即sin ⎝⎛⎭⎫πx 04+π3=45.由x 0∈⎝⎛⎭⎫-103,23得πx 04+π3∈⎝⎛⎭⎫-π2,π2.所以cos ⎝⎛⎫πx 04+π3=1-⎝⎛⎭⎫452=35,故f (x 0+1)=23sin ⎝⎛⎭⎫πx 04+π4+π3=23sin ⎣⎡⎦⎤⎝⎛⎭⎫πx 04+π3+π4=23⎣⎡⎦⎤sin ⎝⎛⎭⎫πx 04+π3cos π4+cos ⎝⎛⎭⎫πx 04+π3sin π4=23⎝⎛⎭⎫45×22+35×22=765.[例2] 解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=3+14-2×3×12cos30°=74.故P A =72.(2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin150°=sin αsin (30°-α),化简得3sin α=4sin α.则tan α=34,即tan ∠PBA =34.[预测押题2] 解:(1)由正弦定理得2sin B cos C =2sin A -sin C .∵在△ABC 中,sin A =sin(B+C )=sin B cos C +sin C cos B ,∴sin C (2cos B -1)=0.又0<C <π,sin C >0,∴cos B =12,注意到0<B <π,∴B =π3.(2)∵S △ABC =12ac sin B =3,∴ac =4,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ≥ac=4,当且仅当a =c =2时,等号成立,∴b 的取值范围为[2,+∞).交汇·创新考点[例1] 解:(1)∵f (x )=cos ⎝⎛⎭⎫2x -4π3+2cos 2x =cos ⎝⎛⎭⎫2x +π3+1,∴f (x )的最大值为2.f (x )取最大值时,cos ⎝⎛⎭⎫2x +π3=1,2x +π3=2k π(k ∈Z ),故x 的集合为{x |x =k π-π6,k ∈Z }.(2)由f (B +C )=cos ⎣⎡⎦⎤2(B +C )+π3+1=32,可得cos ⎝⎛⎭⎫2A -π3=12,由A ∈(0,π),可得A =π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22=1,当b =c =1时,bc 取最大值,此时a 取最小值1.[预测押题1] 解:(1)由已知得AB →·AC →=bc cos θ=8,b 2+c 2-2bc cos θ=42,故b 2+c 2=32.又b 2+c 2≥2bc ,所以bc ≤16,(当且仅当b =c =4时等号成立),即bc 的最大值为16.即8cos θ≤16,所以cos θ≥12.又0<θ<π,所以0<θ≤π3,即θ的取值范围是(0,π3].(2)f (θ)=3sin2θ+cos2θ+1=2sin ⎝⎛⎭⎫2θ+π6+1.因为0<θ≤π3,所以π6<2θ+π6≤5π6,12≤sin ⎝⎛⎭⎫2θ+π6≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2;当2θ+π6=π2,即θ=π3时,f (θ)max =2×1+1=3.[例2] 解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B=sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理ABsin C=AC sin B ,得AB =ACsin B ×sin C =12606365×45=1040(m).所以索道AB 的长为1040m. (2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+5t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已经走了50×(2+8+1)=550(m),还需要走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度控制在⎣⎡⎦⎤125043,62514(单位:m/min)范围内.[预测押题2] 解:(1)因为点C 的坐标为⎝⎛⎭⎫35,45,根据三角函数的定义,得sin ∠COA =45,cos ∠COA =35.因为△AOB 为正三角形,所以∠AOB =60°.所以cos ∠BOC =cos(∠COA +60°)=cos ∠COA cos60°-sin ∠COA sin60°=35×12-45×32=3-4310.(2)因为∠AOC =θ⎝⎛⎭⎫0<θ<π2,所以∠BOC =π3+θ.在△BOC 中,|OB |=|OC |=1,由余弦定理,可得f (θ)=|BC |2=|OC |2+|OB |2-2|OC |·|OB |·cos ∠COB =12+12-2×1×1×cos ⎝⎛⎭⎫θ+π3=2-2cos ⎝⎛⎭⎫θ+π3.因为0<θ<π2,所以π3<θ+π3<5π6.所以-32<cos ⎝⎛⎭⎫θ+π3<12.所以1<2-2cos ⎝⎛⎭⎫θ+π3<2+ 3.所以函数f (θ)的值域为(1,2+3).第三讲 平面向量基础·单纯考点 [例1] 解析:以向量:a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4[预测押题1] (1)选A 由已知,得AB →=(3,-4),所以|AB →|=5,因此与AB →同方向的单位向量是15AB →=⎝⎛⎭⎫35,-45.(2)选C 如图,连接BP ,则AP →=AC →+CP →=b +PR →,① AP →=AB →+BP →=a +RP →-RB →,②①+②,得2AP →=a +b -RB →.③又RB →=12QB →=12(AB →-AQ →)=12⎝⎛⎭⎫a -12AP →,④ 将④代入③,得2AP →=a +b -12⎝⎛⎭⎫a -12AP →,解得AP →=27a +47b .[例2] 解析:(1)由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.(2)设AB 的长为a (a >0),又因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE →=(AB →+AD →)·(AD →-12AB →)=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.答案:(1)A (2)12[预测押题2] (1)选D a ⊥(a +b)⇒a ·(a +b )=a 2+a·b =|a |2+|a ||b |cos<a ,b >=0,故cos<a ,b >=-963=-32,故所求夹角为5π6.(2)选C 设BC 的中点为M ,则AG →=23AM →.又M 为BC 中点,∴AM →=12(AB →+AC →),∴AG→=23AM →=13(AB →+AC →),∴|AG →|=13AB →2+AC →2+2AB →·AC →=13AB →2+AC →2-4.又∵AB →·AC →=-2,∠A =120°,∴|AB →||AC →|=4.∵|AG →|=13AB →2+AC →2-4≥132|AB →||AC →|-4=23,当且仅当|AB →|=|AC →|时取等号,∴|AG →|的最小值为23.交汇·创新考点[例1] 解析:设P (x ,y ),则AP →=(x -1,y +1).由题意知AB →=(2,1),AC →=(1,2).由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎨⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0,x-2y -3=0之间的距离d =35,故平面区域D 的面积为S =5×25=3.答案:3 [预测押题1] 选D 如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.故选D.[例2] 解:(1)∵g (x )=sin(π2+x )+2cos(π2-x )=2sin x +cos x ,∴OM →=(2,1),∴|OM →|=22+12= 5.(2)由已知可得h (x )=sin x +3cos x =2sin(x +π3),∵0≤x ≤π2,∴π3≤x +π3≤5π6,∴h (x )∈[1,2].∵当x +π3∈[π3,π2]时,即x ∈[0,π6]时,函数h (x )单调递增,且h (x )∈[3,2];当x +π3∈(π2,5π6]时,即x ∈(π6,π2]时,函数h (x )单调递减,且h (x )∈[1,2).∴使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围为[3,2).[预测押题2] 解:(1)由题设,可得(a +b )·(a -b )=0,即|a |2-|b |2=0.代入a ,b 的坐标,可得cos 2α+(λ-1)2sin 2α-cos 2β-sin 2β=0,所以(λ-1)2sin 2α-sin 2α=0.因为0<α<π2,故sin 2α≠0,所以(λ-1)2-1=0,解得λ=2或λ=0(舍去,因为λ>0).故λ=2.(2)由(1)及题设条件,知a·b =cos αcos β+sin αsin β=cos(α-β)=45.因为0<α<β<π2,所以-π2<α<β<0.所以sin(α-β)=-35,tan(α-β)=-34.所以tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=-34+431-(-34)×43=724.所以tan α=724.[例3] 选D a ∘b =a·b b 2=|a||b||b|2cos θ=|a||b|cos θ,b ∘a =|a||b|cos θ,因为|a |>0,|b |>0,0<cosθ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,所以|a||b|cos θ=n 2,|a||b|cos θ=m 2,其中m ,n ∈N *,两式相乘,得m ·n 2=cos 2θ.因为0<cos θ<22,所以0<cos 2θ<12,得0<m ·n <2,故m =n =1,即a ∘b =12.[预测押题3] 选D 依题意,MF 1→=(-1-x ,-y )=(-1-x )e 1-y e 2,MF 2→=(1-x ,-y )=(1-x )e 1-y e 2,由|MF 1→|=|MF 2→|,得MF 1→2=MF 2→2,∴[(-1-x )e 1-y e 2]2=[(1-x )e 1-y e 2]2,∴4x +4y e 1·e 2=0.∵∠xOy =45°,∴e 1·e 2=22,故2x +2y =0,即2x +y =0.专题三 数列第一讲 等差数列、等比数列基础·单纯考点[例1] 解析:(1)∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.(2)设等比数列{a n }的首项为a 1,公比为q ,则:由a 2+a 4=20得a 1q (1+q 2)=20,①,由a 3+a 5=40得a 1q 2(1+q 2)=40.②由①②解得q =2,a 1=2.故S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.答案:(1)C (2)2 2n +1-2[预测押题1] 解:(1)设等差数列的公差为d ,d >0.由题意得,(2+d )2=2+3d +8,d 2+d -6=(d +3)(d -2)=0,得d =2.故a n =a 1+(n -1)·d =2+(n -1)·2=2n ,故a n =2n .(2)b n =a n +2a n =2n +22n .S n =b 1+b 2+…+b n =(2+22)+(4+24)+…+(2n +22n )=(2+4+6+...+2n )+(22+24+ (22))=(2+2n )·n 2+4·(1-4n )1-4=n 2+n +4n +1-43.[例2] 解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)证明:法一:对任意k ∈N *,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k+1=2a k +1+a k +1·(-2)=0,所以,对任意k ∈N *,S k +2,S k ,S k +1成等差数列.法二:对任意k ∈N *,2S k =2a 1(1-q k )1-q ,S k +2+S k +1=a 1(1-q k +2)1-q +a 1(1-q k +1)1-q=a 1(2-q k +2-q k +1)1-q .2S k -(S k +2+S k +1)=2a 1(1-q k )1-q -a 1(2-q k +2-q k +1)1-q =a 11-q[2(1-q k )-(2-q k +2-q k +1)]=a 1q k1-q(q 2+q -2)=0,因此,对任意k ∈N *,S k +2,S k ,S k +1成等差数列.。
三维设计必修二数学答案2022
三维设计必修二数学答案20221、3.如果两个数的和是正数,那么[单选题] *A.这两个数都是正数B.一个为正,一个为零C.这两个数一正一负,且正数的绝对值较大D.必属上面三种情况之一(正确答案)2、1.(必修1P5B1改编)若集合P={x∈N|x≤2 022},a=45,则( ) [单选题] *A.a∈PB.{a}∈PC.{a}?PD.a?P(正确答案)3、15.一次社会调查中,某小组了解到某种品牌的薯片包装上注明净含量为,则下列同类产品中净含量不符合标准的是()[单选题] *A 56gB .60gC.64gD.68g(正确答案)4、43、长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为[单选题] *A.1B.2C.3(正确答案)D.45、已知二次函数f(x)=2x2-x+2,那么f(1)的值为()。
[单选题] *12283(正确答案)6、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)7、9.点(-3,4)到y轴的距离是()[单选题] *A.3(正确答案)B.4C.-3D.-48、3.检验4个工作,其中超出标准质量的克数记作正数,不足标准质量的克数记作负数,则最接近标准质量的克数是()[单选题] *A.4B.3C.-1(正确答案)D.-29、41.若m2﹣n2=5,则(m+n)2(m﹣n)2的值是()[单选题] *A.25(正确答案)B.5C.10D.1510、4.同一条直线上三点A,B,C,AB=4cm,BC=2cm,则AC的长度为()[单选题] *A.6cmB.4cm或6cmC.2cm或6cm(正确答案)D.2cm或4cm11、10. 已知方程组的解为,则、对应的值分别为()[单选题] *A、1,2B、1,5C、5,1(正确答案)D、2,412、-60°角的终边在(). [单选题] *A. 第一象限B. 第二象限C. 第三象限D. 第四象限(正确答案)13、15.如图所示,下列数轴的画法正确的是()[单选题] *A.B.C.(正确答案)D.14、花粉的质量很小,一粒某种植物花粉的质量约为000037毫克,已知1克=1000毫克,那么000037毫克可用科学记数法表示为[单选题] *A. 7×10??克B. 7×10??克C. 37×10??克D. 7×10??克(正确答案)15、5.在数轴上点A,B分别表示数-2,-5,则A,B两点之间的距离可表示为()[单选题] *A.-2+(-5)B.-2-(-5)(正确答案)C.(-5)+2D(-5)-216、8.修建高速公路时,经常把弯曲的公路改成直道,从而缩短路程,其道理用数学知识解释正确的是()[单选题] *A.线段可以比较大小B.线段有两个端点C.两点之间,线段最短(正确答案)D.过两点有且只有一条直线17、设M=(x﹣3)(x﹣7),N=(x﹣2)(x﹣8),则M与N的关系为( ) [单选题] *A. M<NB. M>N(正确答案)C. M=ND. 不能确定18、下列说法错误的是[单选题] *A.+(-3)的相反数是3B.-(+3)的相反数是3C.-(-8)的相反数是-8(正确答案)C.-(+八分之一)的相反数是819、3.下列命题中,为真命题的是( ) [单选题] *A.6的平方根为±3B.若x2>0,则x>0C.无理数是无限小数(正确答案)D.两点之间直线最短20、8.如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示图形,则∠BFD的度数是( ) [单选题] *A.15°(正确答案)B.25°C.30°D.10°21、42.已知m、n均为正整数,且2m+3n=5,则4m?8n=()[单选题] *A.16B.25C.32(正确答案)D.6422、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、12023、28.下列计算结果正确的是()[单选题] *A.(a3)4=a12(正确答案)B.a3?a3=a9C.(﹣2a)2=﹣4a2D.(ab)2=ab224、7.下列运算正确的是()[单选题] *A.-2(3X-1)=-6X-1B.-2(3X-1)=-6X+1C.-2(3X-1)=-6X-2D.-2(3X-1)=-6X+2(正确答案)25、下列各式与x3? ?2相等的是( ) [单选题] *A. (x3) ? ?2B. (x ? ?2)3C. x2·(x3) ?(正确答案)D. x3·x ?+x226、-2/5角α终边上一点P(-3,-4),则cosα=()[单选题] * -3/5(正确答案)2月3日-0.333333333-2/5角α终边上一点P(-3,-4),则tanα=()[单选题] * 27、27.下列计算正确的是()[单选题] *A.(﹣a3)2=a6(正确答案)B.3a+2b=5abC.a6÷a3=a2D.(a+b)2=a2+b228、9. 如图,在平面直角坐标系中,正方形ABCD的边长为2,点A坐标为(-2,1),沿某一方向平移后点A1的坐标为(4,2),则点C1的坐标为()[单选题]*A、(2,3)B、(2,4)(正确答案)C、(3,4)D、(3,3)29、16.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高时,气温变化记作,那么气温下降时,气温变化记作()[单选题] *A.-10℃(正确答案)B.-13℃C.+10℃D.+13℃30、60°用弧度制表示为()[单选题] *π/3(正确答案)π/6 2π/3 2π/5。
高中数学人教A版三维设计浙江专版必修讲义模块复习精要复习课(一)解三角形含答案
(2)化角为边,转化的手段主要有:
①通过正弦定理实现边角转化;
②通过余弦定理实现边角转化;
③通过三角变换找出角之间的关系;
④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.
[题组训练] 1.在△ABC 中,内角 A,B,C 所对的边长分别是 a,b,c.若 c-acos B=(2a-b)cos
在△ABC 中,由余弦定理,得 BC2=AB2+AC2-2AB×AC×cos∠BAC=122+202-
2×12×20×cos 120°=784.
解得 BC=28 海里.
BC ∴渔船甲的速度为 =14(海里/小时).
2 (2)在△ABC 中,AB=12 海里,∠BAC=120°,BC=28 海里,∠BCA=α,由正弦定
63 3
π
π
π
π
所以 B= ,C= 或 B= ,C= ,所以△ABC 为直角三角形.
6
2
2
6
正、余弦定理的实际应用
4
正、余弦定理在实际中的应用是高考中的热点,主要考查距离、高度、角度等问题, 试题以解答题为主,难度一般.
[考点精要] (1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的. (2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.
即 sin 2A·sin Asin B=sin 2B·sin Asin B.
∵0<A<π,0<B<π,∴sin 2A=sin 2B,∴2A=2B 或 2A=π-2B,即 A=B 或 A+B= π
. 2
∴△ABC 是等腰三角形或直角三角形.
[类题通法]
根据所给条件判断三角形的形状的途径
高中数学人教A版三维设计浙江专版必修讲义第一章 应用举例含答案
6
在△ABC 中,由余弦定理,得
AB2=AC2+BC2-2AC·BCcos 45°
33
3 6 23
=4+8-2× 2 × 4 × 2 =8.
6 ∴AB= 4 (km).
∴A,B 两点间的距离为
6 4
km.
当 A,B 两点之间的距离不能直接测量时,求 AB 的距离分为以下三类: (1)两点间不可通又不可视(如图①):可取某点 C,使得 A,B 与 C 之间的距离可直接 测量,测出 AC=b,BC=a 以及∠ACB=γ,利用余弦定理得: AB= a2+b2-2abcos γ. (2)两点间可视但不可到达(如图②):可选取与 B 同侧的点 C,测出 BC=a 以及∠ABC 和∠ACB,先使用内角和定理求出∠BAC,再利用正弦定理求出 AB. (3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选 取两点 C,D,测出 CD=m,∠ACB,∠BCD,∠ADC,∠ADB,再在△BCD 中求出 BC,在△ADC 中求出 AC,最后在△ABC 中,由余弦定理求出 AB.
而 β=30°,∴α=90°-45°-30°=15°.
∴点 A 在点 B 的北偏西 15°.故选 B.
3.从 A 处望 B 处的仰角为 α,从 B 处望 A 处的俯角为 β,则 α,β 的关系为( )
A.α>β
B.α=β
C.α+β=90°
D.α+β=180°
解析:选 B 根据题意和仰角、俯角的概念画出草图,如图.知 α=β,故应选 B.
3 若测得 CD= 2 km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求 A,B 两点间的距离. 解:∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°, ∴∠DAC=60°,
高中数学人教A版三维设计浙江专版必修讲义第二章 等比数列含答案
(1)若一个数列从第二项起每一项与前一项的比为常数,则该数列为等比数列( )
(2)等比数列的首项不能为零,但公比可以为零( )
(3)常数列一定为等比数列( )
(4)任何两个数都有等比中项( )
解析:(1)错误,根据等比数列的定义,只有比值为同一个常数时,该数列才是等比数
列.
(2)错误,当公比为零时,根据等比数列的定义,数列中的项也为零.
(2)证明:因为 b 是 a,c 的等比中项,
所以 b2=ac,且 a,b,c 均不为零,
又(a2+b2)(b2+c2)=a2b2+a2c2+b4+b2c2=a2b2+2a2c2+b2c2,(ab+bc)2=a2b2+2ab2c+
b2c2=a2b2+2a2c2+b2c2,所以(ab+bc)2=(a2+b2)(b2+c2),
(2)法一:因为Error!
3
④
1
由得 ③
q= ,从而 2
a1=32.
( ) 1
又 an=1,所以 32× 2
n-1=1,
即 26-n=20,所以 n=6.
1
法二:因为
a3+a6=q(a2+a5),所以
q= . 2
由 a1q+a1q4=18,得 a1=32.
由 an=a1qn-1=1,得 n=6.
等比数列的判定与证明
[典例] 在数列{an}中,若 an>0,且 an+1=2an+3(n∈N*).证明:数列{an+3}是等比数 列.
证明:[法一 定义法]
∵an>0,∴an+3>0.
又∵an+1=2an+3,
an+1+3 2an+3+3 2an+3
∴
=
an+3
an+3
= an+3 =2.
高中数学人教A版三维设计浙江专版必修讲义第三章 基本不等式含答案
求实际问题中最值的解题 4 步骤
(1)先读懂题意,设出变量,理清思路,列出函数关系式.
(2)把实际问题抽象成函数的最大值或最小值问题.
(3)在定义域内,求函数的最大值或最小值时,一般先考虑基本不等式,当基本不等式
求最值的条件不具备时,再考虑函数的单调性.
(4)正确写出答案.
[活学活用]
某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润
a+b 基本不等式: ab ≤
2
预习课本 P97~100,思考并完成以下问题
(1)基本不等式的形式是什么?需具备哪些条件?
(2)在利用基本不等式求最值时,应注意哪些方面?
(3)一般按照怎样的思路来求解实际问题中的最值问题?
1.重要不等式
[新知初探]
当 a,b 是任意实数时,有 a2+b2≥2ab,当且仅当 a=b 时,等号成立.
3
2 所以 a2+b2≥ (a+b),
2
2
2
同理 b2+c2≥ (b+c), c2+a2≥ (c+a),
2
2
2 所以 a2+b2+ b2+c2+ c2+a2≥ [(a+b)+(b+c)+(c+a)],
2
即 a2+b2+ b2+c2+ c2+a2≥ 2(a+b+c),当且仅当 a=b=c 时,等号成立.
b≥2 ab成立.
4
4
(2)错误.只有当 a>0 时,根据基本不等式,才有不等式 a+ ≥2 a· =4 成立.
a
a
( ) a+b
a+b
(3)正确.因为 ab≤ ,所以 ab≤
2.
2
2
答案:(1)× (2)× (3)√
2.若 a>b>0,则下列不等式成立的是( )
高中数学三维设计人教A版浙江专版必修4讲义第二章2.22.2.3向量数乘运算及其几何意义含答案
2.2.3向量数乘运算及其几何意义预习课本P87~90,思考并完成以下问题(1)向量数乘的定义及其几何意义是什么?(2)向量数乘运算满足哪三条运算律?(3)向量共线定理是怎样表述的?(4)向量的线性运算是指的哪三种运算?[新知初探]1.向量的数乘运算(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作:λa,它的长度和方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.(2)运算律:设λ,μ为任意实数,则有:①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb;特别地,有(-λ)a=-(λa)=λ(-a);λ(a-b)=λa-λb.[点睛](1)实数与向量可以进行数乘运算,但不能进行加减运算,如λ+a,λ-a均无法运算.(2)λa的结果为向量,所以当λ=0时,得到的结果为0而不是0.2.向量共线的条件向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.[点睛] (1)定理中a 是非零向量,其原因是:若a =0,b ≠0时,虽有a 与b 共线,但不存在实数λ使b =λa 成立;若a =b =0,a 与b 显然共线,但实数λ不唯一,任一实数λ都能使b =λa 成立.(2)a 是非零向量,b 可以是0,这时0=λa ,所以有λ=0,如果b 不是0,那么λ是不为零的实数.3.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b 及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)λa 的方向与a 的方向一致.( )(2)共线向量定理中,条件a ≠0可以去掉.( )(3)对于任意实数m 和向量a ,b ,若ma =mb ,则a =b .( ) 答案:(1)× (2)× (3)×2.若|a |=1,|b |=2,且a 与b 方向相同,则下列关系式正确的是( ) A .b =2a B .b =-2a C .a =2b D .a =-2b答案:A3.在四边形ABCD 中,若AB =-12CD ,则此四边形是( )A .平行四边形B .菱形C .梯形D .矩形答案:C4.化简:2(3a +4b )-7a =______. 答案:-a +8b[例1] 化简下列各式: (1)3(6a +b )-9⎝⎛⎭⎫a +13b ; (2)12⎣⎡⎦⎤(3a +2b )-⎝⎛⎭⎫a +12b -2⎝⎛⎭⎫12a +38b ; (3)2(5a -4b +c )-3(a -3b +c )-7a .[解] (1)原式=18a +3b -9a -3b =9a .(2)原式=12⎝⎛⎭⎫2a +32b -a -34b =a +34b -a -34b =0. (3)原式=10a -8b +2c -3a +9b -3c -7a =b -c .[活学活用] 化简下列各式:(1)2(3a -2b )+3(a +5b )-5(4b -a ); (2)16[]2(2a +8b )-4(4a -2b ). 解:(1)原式=6a -4b +3a +15b -20b +5a =14a -9b . (2)原式=16(4a +16b -16a +8b )=16(-12a +24b )=-2a +4b .[典例]N 分别是DE ,BC 的中点,已知BC =a ,BD =b ,试用a ,b 分别表示DE ,CE ,MN .[解] 由三角形中位线定理,知DE 綊12BC ,故DE =12BC ,即DE =12a . CE =CB +BD +DE =-a +b +12a =-12a +b .MN =MD +DB +BN =12ED +DB +12BC=-14a -b +12a =14a -b .如图,四边形OADB 是以向量OA =a ,OB =b 为边的平行四边形.又BM =13BC ,CN =13CD ,试用a ,b 表示OM ,ON ,MN .解:∵BM =13BC =16BA =16(OA -OB )=16(a -b ),∴OM =OB +BM =b +16a -16b =16a +56b .∵CN =13CD =16OD ,∴ON =OC +CN =12OD +16OD=23OD =23(OA +OB )=23(a +b ). ∴MN =ON -OM =23(a +b )-16a -56b =12a -16b .1.已知两个非零向量a 与b 不共线,AB =a +b ,BC =2a +8b ,CD =3(a -b ),求证:A ,B ,D 三点共线.证明:∵AB =a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB . ∴AB ,BD 共线, 又∵它们有公共点B , ∴A ,B ,D 三点共线.题点二:利用向量的共线确定参数2.已知a ,b 是不共线的两个非零向量,当8a +kb 与ka +2b 共线时,求实数k 的值. 解:∵8a +kb 与ka +2b 共线,∴存在实数λ,使得8a +kb =λ(ka +2b ), 即(8-λk )a +(k -2λ)b =0.∵a 与b 不共线,∴⎩⎪⎨⎪⎧8-λk =0,k -2λ=0,解得λ=±2,题点三:几何图形形状的判定3.如图所示,正三角形ABC 的边长为15,AP =13AB +25AC ,BQ =15AB +25AC .求证:四边形APQB 为梯形.证明:因为PQ =PA +AB +BQ =-13AB -25AC +AB +15AB +25AC =1315AB ,所以PQ ∥AB .又|AB |=15,所以|PQ |=13,故|PQ |≠|AB |,于是四边形APQB 为梯形.AB AC AB AC AB AC层级一 学业水平达标1.若|a |=5,b 与a 的方向相反,且|b |=7,则a =( ) A .57bB .-57bC .75bD .-75b解析:选B b 与a 反向,故a =λb (λ<0),|a |=-λ|b |,则5=-λ×7,所以λ=-57,∴a =57b .2.已知a =5e ,b =-3e ,c =4e ,则2a -3b +c =( ) A .5e B .-5e C .23eD .-23e解析:选C 2a -3b +c =2×5e -3×(-3e )+4e =23e .3.已知AB =a +5b ,BC =-2a +8b ,CD =3(a -b ),则( ) A .A ,B ,C 三点共线B .A ,B ,D 三点共线C .A ,C ,D 三点共线 D .B ,C ,D 三点共线解析:选B BD =BC +CD =-2a +8b +3(a -b )=a +5b =AB , 又∵BD 与AB 有公共点B ,∴A ,B ,D 三点共线.4.在△ABC 中,点P 是AB 上一点,且CP =23CA +13CB ,又AP =t AB ,则t 的值为( )A .13B .23C .12D .53解析:选A 由题意可得AP =CP -CA =23CA +13CB -CA =13(CB -CA )=13AB ,又AP =t AB ,∴t =13.5.在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是线段OD 的中点,AE 的延长线交DC 于点F ,若AB =a ,AD =b ,则AF =( )A .13a +bB .12a +bC .a +13bD .a +12b解析:选A 由已知条件可知BE =3DE ,∴DF =13AB ,∴AF =AD +DF =AD +13AB =13a +b . 6.若3(x +a )+2(x -2a )-4(x -a +b )=0,则x =______. 解析:由已知得3x +3a +2x -4a -4x +4a -4b =0, ∴x +3a -4b =0,∴x =4b -3a . 答案:4b -3a7.下列向量中a ,b 共线的有________(填序号). ①a =2e ,b =-2e ;②a =e 1-e 2,b =-2e 1+2e 2; ③a =4e 1-25e 2,b =e 1-110e 2;④a =e 1+e 2,b =2e 1-2e 2.解析:①中,a =-b ;②中,b =-2e 1+2e 2=-2(e 1-e 2)=-2a ;③中,a =4e 1-25e 2=4⎝⎛⎭⎫e 1-110e 2=4b ;④中,当e 1,e 2不共线时,a ≠λb .故填①②③. 答案:①②③8.已知向量a ,b 是两个不共线的向量,且向量ma -3b 与a +(2-m )b 共线,则实数m 的值为________.解析:因为向量ma -3b 与a +(2-m )b 共线且向量a ,b 是两个不共线的向量,所以存在实数λ,使得ma -3b =λ[a +(2-m )b ],即(m -λ)a +(mλ-2λ-3)b =0,因为a 与b 不共线,所以⎩⎪⎨⎪⎧m =λ,mλ-2λ-3=0,解得m =-1或m =3.答案:-1或3 9.计算:(1)25(a -b )-13(2a +4b )+215(2a +13b ); (2)(2m -n )a -mb -(m -n )(a -b )(m ,n 为实数). 解:(1)原式=⎝⎛⎭⎫25-23+415a +⎝⎛⎭⎫-25-43+2615b =0. (2)原式=2ma -na -mb -m (a -b )+n (a -b ) =2ma -na -mb -ma +mb +na -nb =ma -nb .10.已知e 1,e 2是两个非零不共线的向量,a =2e 1-e 2,b =ke 1+e 2,若a 与b 是共线向量,求实数k 的值.解:∵a 与b 是共线向量,∴a =λb , ∴2e 1-e 2=λ(ke 1+e 2)=λke 1+λe 2,∴⎩⎪⎨⎪⎧λk =2,λ=-1, ∴⎩⎪⎨⎪⎧k =-2,λ=-1, ∴k =-2.层级二 应试能力达标1.设a 是非零向量,λ是非零实数,则下列结论中正确的是( ) A .a 与λa 的方向相同 B .a 与-λa 的方向相反 C .a 与λ2a 的方向相同 D .|λa |=λ|a |解析:选C 只有当λ>0时,a 与λa 的方向相同,a 与-λa 的方向相反,且|λa |=λ|a |.因为λ2>0,所以a 与λ2a 的方向相同.2.已知O 是△ABC 所在平面内一点,D 为边BC 的中点,且2OA +OB +OC =0,则( )A .AO =ODB .AO =2ODC .AO =3ODD .2AO =OD解析:选A ∵在△ABC 中,D 为边BC 的中点,∴OB +OC =2OD ,∴2(OA +OD )=0,即OA +OD =0,从而AO =OD .3.已知向量a ,b 不共线,若AB =λ1a +b ,AC =a +λ2b ,且A ,B ,C 三点共线,则关于实数λ1,λ2一定成立的关系式为( )A .λ1=λ2=1B .λ1=λ2=-1C .λ1λ2=1D .λ1+λ2=1解析:选C ∵A ,B ,C 三点共线, ∴AB =k AC (k ≠0). ∴λ1a +b =k (a +λ2b )=ka +kλ2b . 又∵a ,b 不共线,∴⎩⎪⎨⎪⎧λ1=k ,1=kλ2,∴λ1λ2=1. 4.已知平面内有一点P 及一个△ABC ,若PA +PB +PC =AB ,则( ) A .点P 在△ABC 外部 B .点P 在线段AB 上 C .点P 在线段BC 上D .点P 在线段AC 上解析:选D ∵PA +PB +PC =AB , ∴PA +PB +PC -AB =0,∴PA +PB +BA +PC =0,即PA +PA +PC =0, ∴2PA =CP ,∴点P 在线段AC 上.5.设e 1,e 2是两个不共线的向量,若向量ke 1+2e 2与8e 1+ke 2方向相反,则k =______. 解析:∵ke 1+2e 2与8e 1+ke 2共线, ∴ke 1+2e 2=λ(8e 1+ke 2)=8λe 1+λke 2.∴⎩⎪⎨⎪⎧k =8λ,2=λk ,解得⎩⎪⎨⎪⎧λ=12,k =4或⎩⎪⎨⎪⎧λ=-12,k =-4.∵ke 1+2e 2与8e 1+ke 2反向, ∴λ=-12,k =-4.答案:-46.如图所示,在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M为BC 的中点,则MN =________(用a ,b )表示.解析:MN =MC +CN =MC -NC =12AD -14AC=12b -14(a +b )=14b -14a =14(b -a ). 答案:14(b -a )7.已知:在四边形ABCD 中,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,求证:四边形ABCD 为梯形.证明:如图所示.∵AD =AB +BC +CD =(a +2b )+(-4a -b )+(-5a -3b ) =-8a -2b =2(-4a -b ), ∴AD =2BC .∴AD 与BC 共线,且|AD |=2|BC |. 又∵这两个向量所在的直线不重合, ∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.8.如图,已知△OCB 中,点A 是BC 的中点,D 是将OB 分成2∶1的一个内分点,DC 和OA 交于点E ,设OA =a ,OB =b .(1)用a ,b 表示向量 OC ,DC ; (2)若OE =λOA ,求λ的值.解:(1)由A 是BC 的中点,则有OA =12(OB +OC ),从而OC =2OA -OB =2a -b .由D 是将OB 分成2∶1的一个内分点,得OD =23OB ,从而DC =OC -OD =(2a -b )-23b =2a -53b .(2)由于C ,E ,D 三点共线,则EC =μDC , 又EC =OC -OE =(2a -b )-λa =(2-λ)a -b ,DC =2a -53b ,从而(2-λ)a -b =μ⎝⎛⎭⎫2a -53b ,又a ,b 不共线,则⎩⎪⎨⎪⎧2-λ=2μ,1=53μ,解得λ=45.。
五年级下册三维参考答案
五年级下册三维参考答案五年级下册三维参考答案五年级下册是学生们学习的重要阶段,其中的数学课程中有一项难倒了很多学生,那就是三维几何。
三维几何是一门需要学生具备一定的空间想象力和逻辑思维能力的学科,因此很多学生对于三维几何的学习感到困惑。
为了帮助学生更好地掌握三维几何,我整理了一些参考答案,供学生们参考。
第一章:立体图形的认识和特征1. 以下哪个图形是立体图形?A. 圆B. 正方形C. 球体D. 三角形答案:C. 球体解析:立体图形是具有长度、宽度和高度的图形,而球体是一个具有这三个特征的图形。
2. 下面哪个图形是一个正方体?A. 三棱柱B. 圆锥体C. 球体D. 正方锥体答案:A. 三棱柱解析:正方体是一个六个面都是正方形的立体图形,而三棱柱是一个六个面中有三个是矩形的立体图形。
3. 以下哪个图形是一个正方锥体?A. 圆锥体B. 球体C. 正方体D. 正方柱体答案:D. 正方柱体解析:正方锥体是一个底面是正方形的锥体,而正方柱体是一个底面和顶面都是正方形的柱体。
第二章:平行线与平面1. 以下哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 菱形答案:C. 梯形解析:平行四边形是具有两对平行边的四边形,而梯形是一种特殊的平行四边形。
2. 以下哪个图形是平行线?A. 直线和曲线B. 直线和直线C. 曲线和曲线D. 直线和折线答案:B. 直线和直线解析:平行线是在同一个平面上,永不相交的直线。
3. 以下哪个图形是垂直线?A. 直线和曲线B. 直线和直线C. 曲线和曲线D. 直线和折线答案:D. 直线和折线解析:垂直线是与另一条线段或直线相交,且交角为90度的线。
第三章:几何体的计算1. 一个长方体的体积是12立方厘米,它的长、宽、高分别是2厘米、3厘米、2厘米,求它的表面积是多少?答案:长方体的表面积等于底面积的两倍加上底面积与侧面积的两倍。
底面积等于长乘以宽,侧面积等于底面积乘以高。
所以,这个长方体的表面积等于2×(2×3+2×2)=28平方厘米。
高中数学三维设计人教A版浙江专版必修4讲义第一章1.11.1.1任意角含答案
1.1.1任意角预习课本P2~5,思考并完成以下问题(1)角是如何定义的?角的概念推广后,分类的标准是什么?(2)象限角的含义是什么?判断角所在的象限时,要注意哪些问题?(3)终边相同的角一定相等吗?如何表示终边相同的角?[新知初探]1.任意角(1)角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示:如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类:[点睛]对角的概念的理解的关键是抓住“旋转”二字:①要明确旋转的方向;②要明确旋转量的大小;③要明确射线未作任何旋转时的位置.2.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.[点睛]象限角的条件是:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[点睛]对终边相同的角的理解(1)终边相同的角不一定相等,但相等的角终边一定相同;(2)k∈Z,即k为整数这一条件不可少;(3)终边相同的角的表示不唯一.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)-30°是第四象限角.()(2)钝角是第二象限的角.()(3)终边相同的角一定相等.()答案:(1)√(2)√(3)×2.与45°角终边相同的角是()A.-45°B.225°C.395°D.-315°答案:D3.下列说法正确的是()A.锐角是第一象限角B.第二象限角是钝角C.第一象限角是锐角D.第四象限角是负角答案:A4.将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数________.答案:-25°395°[典例]下列命题正确的是()A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角[解析]终边与始边重合的角还可能是360°,720°,…,故A错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C 正确;小于90°的角可以是0°,也可以是负角,故D 错误.[答案] C[活学活用]如图,射线OA 绕端点O 旋转90°到射线OB 的位置,接着再旋转-30°到OC 的位置,则∠AOC 的度数为________.解析:∠AOC =∠AOB +∠BOC =90°+(-30°)=60°. 答案:60°[典例] 写出与75°角终边相同的角β的集合,并求在360°≤β<1 080°范围内与75°角终边相同的角.[解] 与75°角终边相同的角的集合为 S ={β|β=k ·360°+75°,k ∈Z}.当360°≤β<1 080°时,即360°≤k ·360°+75°<1 080°, 解得1924≤k <21924.又k ∈Z ,所以k =1或k =2.当k =1时,β=435°;当k =2时,β=795°.综上所述,与75°角终边相同且在360°≤β<1 080°范围内的角为435°角和795°角.分别写出终边在下列各图所示的直线上的角的集合.解:(1)在0°~360°范围内,终边在直线y=0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S1={β|β=0°+k·360°,k∈Z},而所有与180°角终边相同的角构成集合S2={β|β=180°+k·360°,k∈Z},于是,终边在直线y=0上的角的集合为S=S1∪S2={β|β=k·180°,k∈Z}.(2)由图形易知,在0°~360°范围内,终边在直线y=-x上的角有两个,即135°和315°,因此,终边在直线y=-x上的角的集合为S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360,k∈Z}={β|β=135°+k·180°,k∈Z}.[典例]并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[解]作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.[活学活用]若α是第四象限角,则180°-α一定在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C ∵α与-α的终边关于x 轴对称,且α是第四象限角,∴-α是第一象限角.而180°-α可看成-α按逆时针旋转180°得到, ∴180°-α是第三象限角.[典例] 已知α是第二象限角,求角α2所在的象限.[解] 法一:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z). ∴k 2·360°+45°<α2<k 2·360°+90°(k ∈Z). 当k 为偶数时,令k =2n (n ∈Z),得 n ·360°+45°<α2<n ·360°+90°,这表明α2是第一象限角;当k 为奇数时,令k =2n +1(n ∈Z),得 n ·360°+225°<α2<n ·360°+270°,这表明α2是第三象限角.∴α2为第一或第三象限角.法二:如图,先将各象限分成2等份,再从x 轴正向的上方起,依次将各区域标上一、二、三、四,则标有二的区域即为α2的终边所在的区域,故α2为第一或第三象限角.[一题多变]1.[变设问]在本例条件下,求角2α的终边的位置. 解:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z). ∴k ·720°+180°<2α<k ·720°+360°(k ∈Z).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.2.[变条件]若角α变为第三象限角,则角α2是第几象限角?解:如图所示,先将各象限分成2等份,再从x 轴正半轴的上方起,按逆时针方向,依次将各区域标上一、二、三、四,则标有三的区域即为角α2的终边所在的区域,故角α2为第二或第四象限角.层级一 学业水平达标1.-215°是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.下面各组角中,终边相同的是( ) A .390°,690° B .-330°,750° C .480°,-420°D .3 000°,-840°解析:选B ∵-330°=-360°+30°,750°=720°+30°, ∴-330°与750°终边相同.3.若α=k ·180°+45°,k ∈Z ,则α所在的象限是( ) A .第一、三象限 B .第一、二象限 C .第二、四象限D .第三、四象限解析:选A 由题意知α=k ·180°+45°,k ∈Z , 当k =2n +1,n ∈Z , α=2n ·180°+180°+45° =n ·360°+225°,在第三象限, 当k =2n ,n ∈Z , α=2n ·180°+45°=n·360°+45°,在第一象限.∴α是第一或第三象限的角.4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:选D终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.5.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.-165°+(-2)×360°B.195°+(-3)×360°C.195°+(-2)×360°D.165°+(-3)×360°解析:选B-885°=195°+(-3)×360°,0°≤195°<360°,故选B.6.在下列说法中:①时钟经过两个小时,时针转过的角是60°;②钝角一定大于锐角;③射线OA绕端点O按逆时针旋转一周所成的角是0°;④-2 000°是第二象限角.其中错误说法的序号为______(错误说法的序号都写上).解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA按逆时针旋转一周所成的角是360°,所以③不正确.④-2 000°=-6×360°+160°与160°终边相同,是第二象限角,所以④正确.答案:①③7.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________.解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z.又∵180°<α<360°,∴α=270°.答案:270°8.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大负角是-144°.答案:216°-144°9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M中大于-360°且小于360°的角是哪几个?(2)写出集合M中的第二象限角β的一般表达式.解:(1)令-360°<30°+k·90°<360°,则-133<k<113,又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3,∴集合M中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)集合M中的第二象限角与120°角的终边相同,∴β=120°+k·360°,k∈Z.层级二应试能力达标1.给出下列四个结论:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正确的个数为()A.1B.2C.3 D.4解析:选D①-15°是第四象限角;②180°<185°<270°是第三象限角;③475°=360°+115°,而90°<115°<180°,所以475°是第二象限角;④-350°=-360°+10°是第一象限角,所以四个结论都是正确的.2.若角2α与240°角的终边相同,则α=()A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z解析:选B角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.3.若α与β终边相同,则α-β的终边落在()A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上解析:选A∵α=β+k·360°,k∈Z,∴α-β=k·360°,k∈Z,∴其终边在x轴的非负半轴上.4.设集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},则集合M与N的关系是()A.M∩N=∅B.M NC.N M D.M=N解析:选C对于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};对于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+1表示所有的奇数,而n 表示所有的整数,∴N M,故选C.5.从13:00到14:00,时针转过的角为________,分针转过的角为________.解析:经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.答案:-30°-360°6.已知角2α的终边在x轴的上方,那么α是第______象限角.解析:由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k ∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.答案:一或三7.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:终边在直线y=-3x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为-60°,120°.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).解:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.。
2019-2020学年高中数学三维设计人教A版浙江专版必修4讲义:复习课(三) 平面向量 Word版含答案.doc
复习课(三) 平面向量1.题型为选择题和填空题.主要考查向量的线性运算及对向量有关概念的理解,常与向量共线和平面向量基本定理及数量积运算交汇命题.2.向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算,向量的加减法满足交换律、结合律,数乘运算满足结合律、分配律.实数运算中的去括号、移项、合并同类项等变形方向在向量的线性运算中都可以使用.[典例] (北京高考)在△ABC 中,点M ,N 满足AM =2MC ,BN =NC .若MN =x AB +y AC ,则x =________;y =________.[解析] ∵AM =2MC ,∴AM =23AC .∵BN =NC ,∴AN =12(AB +AC ),∴MN =AN -AM =12(AB +AC )-23AC=12AB -16AC . 又MN =x AB +y AC , ∴x =12,y =-16.[答案]12 -16[类题通法]向量线性运算的基本原则向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量,因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.[题组训练]1.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:选D AB =(-8,8),AC =(3,y +6). ∵AB ∥AC , ∴-8(y +6)-24=0.∴y =-9.2.设点M 是线段BC 的中点,点A 在直线BC 外, |BC |2=16,|AB +AC |=|AB -AC |,则|AM |=( )A .8B .4C .2D .1解析:选C 由|BC |2=16,得|BC |=4. ∵|AB +AC |=|AB -AC |=|BC |=4, |AB +AC |=2|AM |, ∴|AM |=2.3.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且OP =3OA -OB2,则( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上解析:选B 由于2OP =3OA -OB , ∴2OP -2OA =OA -OB ,即2AP =BA , ∴AP =12BA ,则点P 在线段AB 的反向延长线上.1.题型既有选择题、填空题,又有解答题,主要考查数量积运算、向量的垂直等问题,常与平面几何、三角函数、解析几何等知识交汇命题.2.解决此类问题要掌握平面向量数量积的两种求法:一是根据数量积的定义,即a ·b =|a ||b |cos θ,二是利用坐标运算,即a ·b =x 1x 2+y 1y 2;同时还要掌握利用数量积求向量的夹角、求向量的长度和判断两个向量垂直的方法.[典例] (1)(福建高考)设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D.32(2)(四川高考)设四边形ABCD 为平行四边形,|AB |=6,|AD |=4.若点M ,N 满足BM=3MC ,DN =2NC ,则AM ·NM =( )A .20B .15C .9D .6[解析] (1)c =a +kb =(1+k,2+k ), 又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得 k =-32.(2)如图所示,由题设知:AM =AB +BM =AB +34AD , NM =NC -MC =13AB -14AD ,∴AM ·NM =⎝⎛⎭⎫AB +34 AD ·⎝⎛⎭⎫13 AB -14 AD =13|AB |2-316|AD |2+14AB ·AD -14AB ·AD =13×36-316×16=9. [答案] (1)A (2)C [类题通法](1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义; (2)可以利用数量积求向量的模和夹角,向量要分解成题中已知向量的模和夹角进行 计算.[题组训练]1.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 的夹角为( ) A .30° B .45° C .60°D .以上都不对解析:选C ∵a +b +c =0,∴c =-(a +b ), ∴c 2=(a +b )2,即|c |2=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉, ∴19=4+9+12cos 〈a ,b 〉, ∴cos 〈a ,b 〉=12.又∵0°≤〈a ,b 〉≤180°,∴〈a ,b 〉=60°.2.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,且AD ·AB =AD ·AC ,则AD ·AB 的值为( )A .0B .-4C .8D .4解析:选D 由AD ·AB =AD ·AC ,得AD ·(AB -AC )=0,即AD ·CB =0,所以AD ⊥CB ,即AD ⊥CB .又AB =4,∠ABC =30°,所以AD =AB sin 30°=2,∠BAD =60°,所以AD ·AB =AD ·AB ·cos ∠BAD =2×4×12=4.3.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________.解析:∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1. 答案:14.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC ·BE =1,则AB 的长为________.解析:设|AB |=x ,x >0,则AB ·AD =12x .又AC ·BE =(AD +AB )·⎝⎛⎭⎫AD -12 AB =1-12x 2+14x =1,解得x =12,即AB 的长为12. 答案:121.题目以解答题为主.主要包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往是数量积的运算,所研究的问题主要是讨论三角函数的图象与性质.2.解决此类问题,首先要根据向量的运算性质将向量问题转化为三角函数问题,然后利用三角公式进行恒等变换,转化为题目中所要求的问题.[典例] (广东高考)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.[解] (1)若m ⊥n ,则m ·n =0. 由向量数量积的坐标公式得22sin x -22cos x =0, ∴tan x =1.(2)∵m 与n 的夹角为π3,∴m ·n =|m |·|n |cos π3,即22sin x -22cos x =12, ∴sin ⎝⎛⎭⎫x -π4=12. 又∵x ∈⎝⎛⎭⎫0,π2, ∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=π6,即x =5π12.[类题通法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.[题组训练]1.设a =(sin x,1),b =⎝⎛⎭⎫12,cos x ,且a ∥b ,则锐角x 为( ) A.π3 B.π4 C.π6D.π12解析:选B 因为a ∥b ,所以sin x cos x -12=0,所以sin 2x =1,又x 为锐角,所以0<2x <π, 所以2x =π2,x =π4,故选B.2.设向量a =(sin x ,cos x ),b =(cos x ,cos x ),x ∈R ,函数ƒ(x )=a ·(a +b ). (1)求函数ƒ(x )的最大值与最小正周期; (2)求使不等式ƒ(x )≥32成立的x 的取值范围.解:(1)∵ƒ(x )=a ·(a +b )=a ·a +a ·b =sin 2x +cos 2x +sin x cos x +cos 2x =1+12sin 2x +12(cos 2x +1)=32+22sin ⎝⎛⎭⎫2x +π4, ∴ƒ(x )的最大值为32+22,最小正周期T =2π2=π.(2)由(1)知ƒ(x )≥32⇔32+22sin ⎝⎛⎭⎫2x +π4≥32⇔sin ⎝⎛⎭⎫2x +π4≥0⇔2k π≤2x +π4≤2k π+π⇔k π-π8≤x ≤k π+3π8(k ∈Z ). ∴使ƒ(x )≥32成立的x 的取值范围是⎩⎨⎧⎭⎬⎫x ⎪⎪k π-π8≤x ≤k π+3π8,k ∈Z .1.设P ,Q 是线段AB 的三等分点,若OA =a ,OB =b ,则OP +OQ =( ) A .a +b B .a -b C .2(a +b ) D.13(a +b ) 解析:选A 如图,OP =OA +AP ,OQ =OB +BQ ,∵AP =-BQ ,∴OP +OQ =OA +OB =a +b .2.已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=( ) A .0 B .1 C .2D. 5解析:选D 因为|a -b |2=a 2-2a ·b +b 2=1-0+22=5,所以|a -b |=5,故选D. 3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( ) A .(3,-6) B .(-3,6) C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则λ2+4λ2=35,所以λ=-3,b =(3,-6).4.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 与向量b 的夹角为( ) A.π6 B.π4 C.π3D.2π3解析:选B ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =0,∴a ·b =a 2,∵|a |=1,|b |=2,∴cos 〈a ,b 〉=a ·b |a ||b |=a 2|a ||b |=22,∴向量a 与向量b 的夹角为π4,故选B.5.在△ABC 中,(BC +BA )·AC =|AC |2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形解析:选C 由(BC +BA )·AC =|AC |2,得AC ·(BC +BA -AC )=0,即AC ·(BC +BA +CA )=0,∴2AC ·BA =0,∴AC ⊥BA ,∴A =90°.故选C.6.已知平面向量a ,b ,c 满足|a |=1,|b |=2,|c |=3,且a ,b ,c 两两所成的角相等,则|a +b +c |等于( )A .6或 3B .6或 2 C. 2D .6解析:选A ∵a ,b ,c 两两所成的角相等, ∴这个角为0°或120°.当夹角为0°时,|a +b +c |=|a |+|b |+|c |=1+2+3=6,排除C ;当夹角为120°时,a ·b =|a ||b |cos 120°=1×2×⎝⎛⎭⎫-12=-1,b ·c =|b ||c |·cos 120°=2×3×⎝⎛⎭⎫-12=-3,c ·a =|c ||a |cos 120°=3×1×⎝⎛⎭⎫-12=-32, ∴|a +b +c |2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =12+22+32+2⎝⎛⎭⎫-1-3-32=3, ∴|a +b +c |= 3. ∴|a +b +c |=6或 3.7.已知向量a =(-1,3),b =(1,t ),若(a -2b )⊥a ,则|b |=________.解析:∵a =(-1,3),b =(1,t ),∴a -2b =(-3,3-2t ).∵(a -2b )⊥a ,∴(a -2b )·a =0,即(-1)×(-3)+3(3-2t )=0,即t =2,∴b =(1,2),∴|b |=12+22= 5.答案: 58.已知平面向量a 与b 的夹角等于2π3,如果|a |=2,|b |=3,那么|2a -3b |=________.解析:|2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2=4×22-12×2×3×cos 2π3+9×32=133,∴|2a -3b |=133.答案:1339.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是________.解析:由于|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0.设向量a 与b 的夹角为θ,则cos θ=a ·b |a ||b |≤14|a |212|a |2=12,∴θ∈⎣⎡⎦⎤π3,π. 答案:⎣⎡⎦⎤π3,π10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ; (2)求|a +b |.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61, 即64-4a ·b -27=61. ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)|a +b |=a 2+2a ·b +b 2=16+2×(-6)+9=13. 11.已知向量a =(-3,2),b =(2,1),c =(3,-1),t ∈R . (1)求|a +tb |的最小值及相应的t 值; (2)若a -tb 与c 共线,求实数t . 解:(1)∵a =(-3,2),b =(2,1),∴a +tb =(-3,2)+t (2,1)=(-3+2t,2+t ), ∴|a +tb |=(-3+2t )2+(2+t )2 =5t 2-8t +13=5⎝⎛⎭⎫t -452+495≥495=755, 当且仅当t =45时取等号,即|a +tb |的最小值为755,此时t =45.(2)∵a -tb =(-3,2)-t (2,1)=(-3-2t,2-t ), 又a -tb 与c 共线,c =(3,-1), ∴(-3-2t )×(-1)-(2-t )×3=0. 解得t =35.12.已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且m ·n =-1.(1)求向量n ;(2)设向量a =(1,0),向量b =(cos x ,sin x ),其中x ∈R ,若n ·a =0,试求|n +b |的取值 范围.解:(1)令n =(x ,y ),则⎩⎪⎨⎪⎧x +y =-1,2·x 2+y 2cos 3π4=-1,∴⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴n =(-1,0)或n =(0,-1). (2)∵a =(1,0),n ·a =0,∴n =(0,-1).∴n +b =(cos x ,sin x -1).∴|n +b |=cos 2x +(sin x -1 )2=2-2sin x =2(1-sin x ). ∵-1≤sin x ≤1,∴0≤|n +b |≤2.(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.tan 8π3的值为( ) A.33B .-33C. 3D .- 3解析:选D tan8π3=tan ⎝⎛⎭⎫2π+2π3=tan 2π3=- 3. 2.下列函数中最值是12,周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A 由题意得,A =12,2πω=6π,ω=13,故选A.3.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA +OB +OC +OD 等于 ( )A .OMB .2OMC .3OMD .4OM解析:选D 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以OA +OC =2OM ,OB +OD =2OM ,所以OA +OC +OB +OD =4OM ,故选D.4.若点(sin α,sin 2α)在第四象限,则角α在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B ∵点(sin α,sin 2α)在第四象限,∴⎩⎪⎨⎪⎧ sin α>0,sin 2α<0,∴⎩⎪⎨⎪⎧sin α>0,2sin αcos α<0.即⎩⎪⎨⎪⎧sin α>0,cos α<0.∴α在第二象限. 5.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B ∵a =(1,2),b =(-2,m ), ∴1×m -2×(-2)=0, ∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).6.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)的值为( ) A.225B .-25 C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α =22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 7.已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( ) A .30° B .60° C .120°D .150°解析:选C a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又0°<θ<180°,所以θ=120°.8.将函数y =sin ⎝⎛⎭⎫2x +π3的图象经怎样的平移后所得的图象关于点⎝⎛⎭⎫-π12,0成中心对称( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:选C 函数y =sin ⎝⎛⎭⎫2x +π3的对称中心为⎝⎛⎭⎫k π2-π6,0,其中离⎝⎛⎭⎫-π12,0最近的对称中心为⎝⎛⎭⎫-π6,0,故函数图象只需向右平移π12个单位长度即可. 9.函数ƒ(x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图2所示,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2解析:选C 由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而ƒ(x )=2sin π4x .∴ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)=ƒ(1)+ƒ(2)+ƒ(3)=2sin π4+2sin π2+2sin 3π4=2+2 2.10.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )=( ) A .0 B .-35C.35D .-45解析:选B 由3a +4b +5c =0,得向量3a,4b,5c 能组成三角形,又|a |=|b |=|c |=1,所以三角形的三边长分别是3,4,5,故三角形为直角三角形,且a ⊥b ,所以a ·(b +c )=a ·c =-35. 11.如图,在四边形ABCD 中,|AB |+|BD |+|DC |=4,|AB |·|BD |+|BD |·|DC |=4,AB ·BD =BD ·DC =0,则(AB +DC )·AC 的值为( )A .4B .2C .4 2D .2 2解析:选A ∵AC =AB +BD +DC ,AB ·BD =BD ·DC =0, ∴(AB +DC )·AC=(AB +DC )·(AB +BD +DC )=AB 2+AB ·BD +AB ·DC +DC ·AB +DC ·BD +DC 2=AB 2+2AB ·DC +DC 2.∵AB ·BD =0,BD ·DC =0,∴AB ⊥BD ,DC ⊥BD ,∴AB ∥DC ,∴AB ·DC =|AB ||DC |, ∴原式=(|AB |+|DC |)2.设|AB |+|DC |=x ,则|BD |=4-x ,|BD |·x =4, ∴x 2-4x +4=0,∴x =2,∴原式=4,故选A.12.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:选A ∵函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,∴θ=π2,∴y =2cos ωx ,排除C 、D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,∴2πω=π,ω=2,排除B ,选A.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC =λAE +μAF ,其中λ,μ∈R ,则λ+μ=________.解析:设AB =a ,AD =b ,则AF =a +12b ,AE =12a +b ,AC =a +b ,代入条件得λ=μ=23,∴λ+μ=43.答案:4314.在平面直角坐标系 xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴AB ⊥OB ,∴OB ·AB =0. 又AB =OB -OA =(2,2)-(-1,t )=(3,2-t ),∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:515.已知ƒ(x )=sin ⎝⎛⎭⎫x +π6,若cos α=35⎝⎛⎭⎫0<α<π2,则ƒ⎝⎛⎭⎫α+π12=________. 解析:因为cos α=35⎝⎛⎭⎫0<α<π2,所以sin α=45; ƒ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4 =22(sin α+cos α)=7210. 答案:721016.有下列四个命题:①若α,β均为第一象限角,且α>β,则sin α>sin β; ②若函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期是4π,则a =12; ③函数y =sin 2x -sin xsin x -1是奇函数;④函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是增函数. 其中正确命题的序号为________.解析:α=390°>30°=β,但sin α=sin β,所以①不正确; 函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期为T =2π|a |=4π, 所以|a |=12,a =±12,因此②不正确;③中函数定义域是⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+π2,k ∈Z ,显然不关于原点对称,所以③不正确; 由于函数y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,它在(0,π)上单调递增,因此④正确. 答案:④三、解答题(本大题共6个小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a ·b ; (2)若a -b 与a 垂直,求θ.解:(1)∵a ∥b ,∴θ=0°或180°, ∴a ·b =|a ||b |cos θ=±2.(2)∵a -b 与a 垂直,∴(a -b )·a =0, 即|a |2-a ·b =1-2cos θ=0, ∴cos θ=22. 又0°≤θ≤180°,∴θ=45°.18.(本小题满分12分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(-α)-sin 2⎝⎛⎭⎫5π2-α的值.解:原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α +2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α )(sin α+cos α ) =sin α+cos αsin α-cos α =tan α+1tan α-1,又∵tan α=12,∴原式=12+112-1=-3.19.(本小题满分12分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈π2,π,a ·b =25,求52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2 α2.解:∵a ·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2=52sin 2α-22(cos α-sin α)1+cos α=52×⎝⎛⎭⎫-2425-22⎝⎛⎭⎫-45-351-45=-10 2.20.(本小题满分12分)已知函数ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎡⎦⎤0,π2时,求ƒ(x )的值域; (2)用五点法在下图中作出y =ƒ(x )在闭区间⎣⎡⎦⎤-π6,5π6上的简图;解:ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x =2cos x ⎝⎛⎭⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3. (1)∵x ∈⎣⎡⎦⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝⎛⎭⎫2x +π3≤1,∴当x ∈⎣⎡⎦⎤0,π2时,ƒ(x )的值域为[-3,2]. (2)由T =2π2,得T =π,列表:21.(本小题满分12分)已知f (x )=sin x +2sin π4+x2·cos ⎝⎛⎭⎫π4+x 2. (1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 解:f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2=sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. (1)由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22, ∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12.(2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35.∴sin x =2sin x 2cos x 2=2425,cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725.22.(本小题满分12分)已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤-π2,5π12时,求函数y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3的最值. 解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT=1. 又ƒ⎝⎛⎭⎫11π6=0,得A sin ⎝⎛⎭⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sin π6=2,∴A =4,∴ƒ(x )=4sin ⎝⎛⎭⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π6个单位得到g (x )= 4sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=4sin ⎝⎛⎭⎫2x -π6, 由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3 =4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π12+π6-2×4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π3+π6 =4sin ⎝⎛⎭⎫x +π4-42sin ⎝⎛⎭⎫x +π2 =4⎝⎛⎭⎫sin x ·cos π4+cos x ·sin π4-42cos x =22sin x +22cos x -42cos x=22sin x -22cos x =4sin ⎝⎛⎭⎫x -π4. ∵x ∈⎣⎡⎦⎤-π2,5π12,x -π4∈⎣⎡⎦⎤-3π4,π6, ∴sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-1,12, ∴函数的最小值为-4,最大值为2.。
三维设计数学2023答案
三维设计数学2023答案1、3.检验4个工作,其中超出标准质量的克数记作正数,不足标准质量的克数记作负数,则最接近标准质量的克数是()[单选题] *A.4B.3C.-1(正确答案)D.-22、390°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限3、24、在▲ABC中中, ∠A=∠C=55°, 形内一点使∠PAC=∠PCA, 则∠ABP为()[单选题] *A. 30°B. 35°(正确答案)C. 40°D. 45°4、16、在中,则( ). [单选题] *A. AB<2AC (正确答案)B. AB=2ACC. AB>2ACD. AB与2AC关系不确定5、17.若a与﹣2互为相反数,则a的值是()[单选题] *A.﹣2B.C.D.2(正确答案)6、y=kx+b(k是不为0的常数)是()。
[单选题] *正比例函数一次函数(正确答案)反比例函数二次函数函数7、10.如图,点O在直线AE上,OC平分∠AOE,∠DOB是直角.若∠1=25°,那么∠AOB的度数是()[单选题] *A.65°B.25°(正确答案)C.90°D.115°8、为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的( ) [单选题] *A.中位数B.平均数C.众数(正确答案)D.方差9、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ10、31、点A(-2,-3)关于y轴对称的点的坐标是()[单选题] *(2,3)(-2,-3)(3,-2)(2,-3) (正确答案)11、13.不等式x+3>5的解集为()[单选题] *A. x>1B. x>2(正确答案)C. x>3D. x>412、5.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是( ) [单选题] *A.关于x轴对称B.关于y轴对称(正确答案)C.关于原点对称D.将原图向x轴的负方向平移了1个单位长度13、5.如图,点C、D是线段AB上任意两点,点M是AC的中点,点N是DB的中点,若AB=a,MN=b,则线段CD的长是()[单选题] *A.2b﹣a(正确答案)B.2(a﹣b)C.a﹣bD.(a+b)D.14、8.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()[单选题] *A.+2B.-3C.+9D.-8(正确答案)15、16.5-(-3)-2的计算结果为()[单选题] *A.3B.4C.0D.6(正确答案)16、2.如图,BC=AB,D为AC的中点,DC=3cm,则AB的长是()[单选题] *A.4cm(正确答案)B.CmC.5cmD.cm17、x3??(m为正整数)可写成( ) [单选题] *A. x3+x?B. x3-x?C. x3·x?(正确答案)D. x3?18、48、如图,△ABC≌△AED,连接BE.若∠ABC=15°,∠D=135°,∠EAC=24°,则∠BEA的度数为()[单选题] *A.54°B.63°(正确答案)C.64°D.68°19、24.已知点M在线段AB上,点N是线段MB的中点,若AN=6,则AM+AB的值为()[单选题] *A.10B.8C.12(正确答案)D.以上答案都不对20、计算的结果是( ) [单选题] *A. -p2?(正确答案)B. p2?C. -p1?D. p1?21、6、已知点A的坐标是,如果且,那么点A在()[单选题] *x轴上y轴上x轴上,但不能包括原点(正确答案)y轴上,但不能包括原点22、已知x-y=3,x2-y2=12,那么x+y的值是( ??) [单选题] *A. 3B. 4(正确答案)C. 6D. 1223、32.已知m=()﹣2,n=(﹣2)3,p=﹣(﹣)0,则m,n,p的大小关系()[单选题] *A.m<p<nB.n<m<pC.p<n<mD.n<p<m(正确答案)24、10.若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长[单选题] *A. 12(正确答案)B. 13C. 15D. 1425、20.下列说法正确的是()[单选题] *A.符号相反的两个数互为相反数B.一个数的相反数一定是正数C.一个数的相反数一定比这个数本身小D.一个数的相反数的相反数等于原数(正确答案)26、19.下列函数在(0,+?? )上为增函数的是(). [单选题] *A.?(x)=-xB.?(x)=-1/X(正确答案)C.?(x)=-x2D.?(x)=1/X27、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] * A.4B.5C.-6D.-8(正确答案)28、10.如图是丁丁画的一张脸的示意图,如果用表示左眼,用表示右眼,那么嘴的位置可以表示成().[单选题] *A.(1,0)B(-1,0)(正确答案)C(-1,1)D(1,-1)29、14.数﹣在数轴上的位置可以是()[单选题] *A.点A与点B之间(正确答案)B.点B与点O之间C.点O与点D之间D.点D与点E之间30、已知直线l的方程为2x-y+7=0,()是直线l上的点[单选题] *A、(2,3)B、(2,4)(正确答案)C、(2,-3)D、(-2,-3)。
高中数学人教A版三维设计浙江专版必修讲义第一章第一课时 三角函数的定义与公式一含答案
(2)若 sin α=sin β,则 α=β.( )
(3)已知 α 是三角形的内角,则必有 sin α>0.( )
答案:(1)√ (2)× (3)√
2.若 sin α<0,tan α>0,则 α 在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
答案:C
52
( ) ,-
3.已知角 α 的终边与单位圆的交点 P 5
∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=
3 2.
(2)∵193π=3×2π+π3,
( ) ∴tan193π=tan
3
π × 2π+3
=tanπ3=
3.
(3)∵-314π=-4×2π+π4,
( ) ( ) ∴sin
-314π
=sin
-4
×2π+
π 4
=sinπ4=
x.已知 α 的终边求 α 的三角函数值时,用这几个公式更方便. r
(2)当角 α 的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分
类讨论.
[活学活用]
1.如果 α 的终边过点 P(2sin 30°,-2cos 30°),那么 sin α 的值等于( )
1 A.2
1 B.-2
3
3 C.- 2
∴x=-12,y=
1 1- -2
( ) ( ) ∴P
-12,
3 2
.
3 2= 2 ,
2.若角 α 的终边上一点的坐标为(1,-1),则 cos α 为( )
6
A.1
B.-1
C.
2 2
D.-
2 2
解析:选 C ∵角 α 的终边上一点的坐标为(1,-1),它与原点的距离 r= 12+ -1 2
数学三维设计答案及解析-20210826002907
数学三维设计答案及解析20210826002907数学三维设计,作为数学领域中的一个新兴分支,将数学知识与三维空间设计相结合,旨在培养学生的空间思维能力、逻辑推理能力和创新设计能力。
本文档将针对2021年8月26日的一份数学三维设计试题进行答案解析,帮助学生更好地理解题目要求和解题思路。
题目解析1. 题目要求:请根据给定的数学公式和几何图形,设计一个三维模型,并计算其表面积和体积。
解题思路1. 理解题目要求:我们需要仔细阅读题目要求,确保理解题目的核心内容。
题目要求我们根据给定的数学公式和几何图形,设计一个三维模型,并计算其表面积和体积。
这意味着我们需要先根据数学公式确定模型的形状,然后利用几何知识计算其表面积和体积。
3. 设计三维模型:在确定了模型的形状和尺寸后,我们可以开始设计三维模型。
这可以通过手工绘图、计算机辅助设计软件等方式实现。
在设计过程中,我们需要确保模型的尺寸和比例与题目要求相符。
4. 计算表面积和体积:我们需要根据模型的形状和尺寸,计算其表面积和体积。
这可以通过应用相关的数学公式和几何知识来完成。
例如,如果模型是一个球体,我们可以使用球体的表面积和体积公式来计算;如果模型是一个正方体,我们可以使用正方体的表面积和体积公式来计算。
答案解析在本题中,我们假设数学公式描述了一个球体,几何图形是一个正方形。
根据这些信息,我们设计了一个球体模型,其底面直径与正方形的边长相等。
然后,我们使用球体的表面积和体积公式计算了模型的表面积和体积。
具体计算过程如下:表面积计算:球体的表面积公式为4πr²,其中 r 为球体半径。
由于球体底面直径与正方形的边长相等,我们可以通过正方形的边长计算出球体半径,然后代入公式计算表面积。
体积计算:球体的体积公式为(4/3)πr³,其中 r 为球体半径。
同样地,我们可以通过正方形的边长计算出球体半径,然后代入公式计算体积。
通过本题的解答过程,我们可以看到数学三维设计不仅需要数学知识,还需要空间想象力和创造力。
高中数学三维设计人教A版浙江专版必修5讲义:第二章2.3等差数列前n项和含答案
等差数列的前n项和本P42~45,思考并完成以下数列前n和的定是什么?通常用什么符号表示?(2)能否根据首、末与数求出等差数列的前n和?(3)能否根据首、公差与数求出等差数列的前n和?[新知初探]1.数列的前 n和于数列{a n},一般地称a1+a2+⋯+a n数列{a n}的前n和,用S n表示,即S n=a1+a2+⋯+a n.2.等差数列的前n和公式量首,末与数首,公差与数用na1+an nn-1dSn=S n=na1+公式22[小身手]1.判断以下命是否正确.(正确的打“√〞,的打“×〞)(1)数列的前n和就是指从数列的第1a1起,一直到第n a n所有的和()(2)an=Sn-Sn-1(n≥2)化后关于n与an的函数式即数列{an}的通公式()(3)在等差数列{an}中,当数m偶数2n,S偶-S奇=an+1()解析:(1)正确.由前n和的定可知正确..例如数列{a n}中,S n=n2+2.n≥2,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1缺乏a n=S n-S n-1=2n-1,故命..当数m偶数2n,S偶-S奇=nd.答案:(1)√(2)×(3)×2.等差数列{a n }中,a 1=1,d =1,那么S n 等于( )A .nB .n(n +1)C .n(n -1)D.nn +12解析:选D因为a =1,d =1,所以S =n +nn -1×1= 2n +n 2-n n 2+n nn +1,==1n2222应选D.3.设等差数列{a n }的前n 项和为S n ,假设a 1=1,S 4=20,那么S 6等于()2A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d ,4×3即 由得4a 1+ 2 d =20,4×1+4×3d =20,解得d =3,1 226×5S 6=6×2+2×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,那么S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以 2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前 n 项和的有关计算[典例] 等差数列{a n }.(1)a 1 = 5,a 15=- 3,S n =-5,求d 和n ;6 2 (2)a 1 =4,S 8=172,求a 8和d.[解](1)∵a 15=5+(15-1)d =-3,∴d =-1.62 6S n =na 1+nn -1d =-5,2解得n =15或n =-4(舍).(2) 由,得S 8=8a 1+a 8=84+a 8=172,22解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的根本计算(1)利用根本量求值:等差数列的通项公式和前n 项和公式中有五个量 a 1,d ,n ,a n 和三求二〞.一般是利用公式列出根本量a 1和d 的方程组,解出a 1和S n ,这五个量可以“知d ,便可解决问题.解题时注意整体代换的思想.结合等差数列的性质解题:等差数列的常用性质:假设 m +n =p +q(m ,n ,p ,q ∈N *),那么a m +a n =a p +a q ,常与求和公式S n =na 1+a n结合使用.2[活学活用]设S n 是等差数列{a n }的前n 项和, a 2=3,a 8=11,那么S 9等于() A .13 B .35C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8,S 9=9a 2+a8=9×14=63.22S n 求a n 问题= [典例] 数列{a n }的前n 项和S n =-2n 2+n +2.求{a n }的通项公式;判断{a n }是否为等差数列?[解](1)∵S n =-2n 2+n +2,∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1,a n =S n -S n -1(-2n 2+n +2)-(-2n 2+5n -1)=-4n+3.又a1=S1=1,不满足a n=-4n+3,1,n=1,∴数列{a n}的通项公式是a n=-4n+3,n≥2.由(1)知,当n≥2时,a n+1-a n=[-4(n+1)+3]-(-4n+3)=-4,但a2-a1=-5-1=-6≠-4,∴{a n}不满足等差数列的定义,{a n}不是等差数列.(1)S n求a n,其方法是a n=S n-S n-1(n≥2),这里常常因为忽略条件“n≥2而〞出错.在书写{a n}的通项公式时,务必验证n=1是否满足a n(n≥2)的情形.如果不满足,那么通项公式只能用a n=S1,n=1,表示.S n-S n-1,n≥2[活学活用]1.数列{a n}的前n项和为S n=-n2,那么()A.a n=2n+1B.a n=-2n+1C.a n=-2n-1D.a n=2n-1解析:选B当n=1时,a1=S1=-1;n≥2时,a n=S n-S n-1=-n2+(n-1)2=-2n+1,此时满足a1=-1.综上可知a n=-2n+1.2.S n是数列{a n}的前n项和,根据条件求 a n.S n=2n2+3n+2;S n=3n-1.解:(1)当n=1时,a1=S1=7,n≥2时,a n=S n-S n-1=(2n2+3n+2)-[2(n-1)2+3(n-1)+2]=4n+1,又a1=7不适合上式,7,n=1,所以a n=4n+1,n≥2.当n=1时,a1=S1=2,n≥2时,a n=S n-S n-1=(3n-1)-(3n-1-1)=2×3n-1,显然a1适合上式,所以a n=2×3n-1(n∈N*).等差数列的前n项和性质[典例](1)等差数列前n 的和30,前2n 的和100,它的前3n 的和()A .130B .170C .210D .260(2)等差数列{a n }共有2n +1,所有的奇数之和132,所有的偶数之和120,n 等于________.n2n +2 5(3){a n },{b n }均等差数列,其前n 和分S n ,T n ,且S=,a =________.T nn +3b 5[解析](1)利用等差数列的性:(2) S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ),30+(S 3n -100)=2(100-30),解得S 3n =210.因等差数列共有2n +1,所以S 奇-S 偶=a n +1=S 2n+1,即132-120=132+120,2n +12n +1解得n =10.由等差数列的性,知a 1+a 9 a 1+a 9×9=S 9=2×9+2=5a 5=2 = 2.b 5b 1+b 9b 1+b 9T 99+332×925[答案] (1)C (2)10(3)3等差数列的前 n 和常用的性等差数列的依次k 之和,S k ,S 2k -S k ,S 3k -S 2k ⋯成公差k 2d 的等差数列.数列{a n }是等差数列?S n =an 2+bn(a ,b 常数)?数列S n n 等差数列.(3)假设S 奇表示奇数的和, S 偶表示偶数的和,公差d ,①当数偶数2n ,S 偶-S 奇=nd ,S奇=a n;Sa偶n +1②当数奇数2n -1,S 奇-S 偶=a n ,S奇n .=S 偶n -1[活学活用]1.等差数列 {a n }的前n 和S n ,假设S 4=8,S 8=20,a 11+a 12+a 13+a 14=()A .18B .17C .16D .15解析:选A设{a n }的公差为d ,那么a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 41=16d ,解得d =4,a 11+a 12+a 13+a 14=S 4+40d =18.S n2.等差数列{a n }的通项公式是 a n =2n +1,其前n 项和为S n ,那么数列n 的前10项和________.解析:因为a n =2n +1,所以a 1=3,所以 S n =n3+2n +1=n 2+2n ,2S n所以n =n +2, 所以Snn是公差为 1,首项为 3的等差数列,10×9所以前10项和为3×10+ ×1=75.答案:75等差数列的前 n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解]由S 17=S 9,得17×17-19×9-1d ,25×17+2d =25×9+2解得d =-2,[法一公式法]S n =25n +nn -1×(-2)=-(n -13)2+169.2由二次函数性质得,当 n =13 时,S n 有最大值169.[法二邻项变号法]a n =25-2n -1≥0,∵a 1=25>0,由a n +1=25-2n ≤0,n ≤13 1,2得即121≤n ≤131.n ≥12 1,2 22又n ∈N *,∴当n =13时,S有最大值169.n求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+nn -1d 2dn 配方,转化为求二次函数的最值问题,借助函2d =n +a 1-22数单调性来解决.(2)邻项变号法:当a 1>0,d<0时,满足a n ≥0,的项数n 使S n 取最大值.a n +1≤0当a 1<0,d>0时,满足a n ≤0,的项数n 使S n 取最小值.a n +1≥0[活学活用]{a n }为等差数列,假设a 11 S n 取得最小正<-1,且它的前n 项和S n 有最大值,那么当a 10值时,n =()A .11B .17C .19D .21解析:选C∵S n 有最大值,∴d<0,那么a 10>a 11,又a 11<-1,∴a 11<0<a 10,a 10+a 11<0,a 10S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.应选 C.层级一 学业水平达标1.数列{a n }的通项公式为a n =2-3n ,那么{a n }的前n 项和S n 等于()3 2nB .- 32 - nA .-n +2 n 22 232 n3 2nC.n +2D.n -222解析:选A∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n=-3n 2+n .22 2 2.等差数列{a n }的前n 项和为S n ,假设a 7>0,a 8<0,那么以下结论正确的选项是()A .S 7<S 8B .S 15<S 16C .S 13>0D .S 15>0解析:选C由等差数列的性质及求和公式得,S 13=13a 1+a 13=13a 7>0,S 15=215 a 1+a 15=15a 8<0,应选C.23.设等差数列 {a n }的前n 项和为S n ,假设S 3=9,S 6=36,那么a 7+a 8+a 9等于()A .63B .45C .36D .27解析:选B∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.等差数列 {a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,那么S n 取得最小值时 n 的值为( )A .5B .6C .7D .8解析:选B由7a 5+5a 9=0,得a 1=-17.d 3a 9>a 5,所以d>0,a 1<0.因为函数y =d 2+a 1-d的图象的对称轴为 =1-a 1=1+17=37,取最接近的整数2x2xx 2d2366,故S n 取得最小值时 n 的值为6.5.设S n 是等差数列{a n }的前n 项和,假设 a 5=5,那么S 9等于()a 3 9 S 5A .1B .-11C .2D.299×2a 59 2a 1+a9解析:选ASS 5=5a 1+a 5= 5×2a 32= 9a 5=9×5=1.5a 3596.假设等差数列 {a n }的前n 项和为S n =An 2+Bn ,那么该数列的公差为 ________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当 n ≥2时,a n =S n -S n -1=An 2+Bn A(n -1)2-B(n -1)=2An +B -A ,当n =1时满足,所以d =2A. 答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,那么m =________.解析:因为S n 是等差数列{a n }的前n 项和,所以数列S n是等差数列,所以S m +S m+2=nm +2m 2S m +1 -2 3=0,解得m =4. + ,即 m ++m 1 m 2答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为 33,那么这个数列的中=是________,数是________.解析:等差数列{a n}的数 2n +1, S 奇=a 1+a 3+⋯+a 2n +1n +1a 1+a2n +12(n +1)a n +1,S 偶=a 2+a 4+a 6+⋯+a 2n =na 2+a 2n=na n +1,2S 奇n +144所以 = = ,解得n =3,所以数 2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11所求中.答案:11 79.数列{a n }的前n 和S n ,且足 log 2(S n +1)=n +1,求数列{a n }的通公式.n +1S n =2n +1-1.n =1,a 1=S 1=3,n ≥2,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n ,又当n =1,3≠21,3,n =1,a n =2n ,n ≥2. 10.在等差数列 {an }中,S n 其前n 的和,a 1+a 3=22,S 5=45.求a n ,S n ;数列{S n }中最大S k ,求k.解:(1)由得2a 2=22, a 2=11, 5a 3=45,即a 3=9,a 1=13, 所以a n =-2n +15,S n =-n 2+14n.所以d =-2,由a n ≥0可得n ≤7,所以S 7最大,k =7.二 能力达1.等差数列 {a n }的前n 和S n ,S 4=40,S n =210,S n -4=130,n =( )A .12B .14C .16D .18解析:B因S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以 4(a 1+a n )=120,a 1+a n =30,由S n =na 1+a n=210,得n =14.22.在等差数列{a n }中,S n 是其前n 项和,且S 2021=S 2021,S k =S 2021,那么正整数k 为( )A . 2021B .2021C . 2021D .2021解析:选C因为等差数列的前 n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2021=S 2021,S k =S 2021,可得2021+2021=2021+k,解得k =2021.应选C.223.S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,那么S n 取最小值时,n 的值为()A . 11B .12C . 13D .14解析:选A 设等差数列{a n }的公差为 d ,由2S 21+S 25=0得,67a 1+720d =0,又d>0,67a 11=67(a 1+10d)=67a 1+670d<0,67a 12=67(a 1+11d)=67a 1+737d>0,即a 11<0,a 12>0.应选A.4.等差数列{a n }和{b n }的前n 项和分别为A n 7n +45a nA n 和B n ,且B n =+3 ,那么使得b n 为整n数的正整数n 的个数是()A .2B .3C .4D .5a 1+a 2n-1a 1+a 2n-12n -1解析:选D ∵a n=22+45= 14n +38=7==A 2n -1=72n -1b n+b -+b --- ++b 12n1b 12n1B 2n132n -12n12n222+12 ,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5.n + 15.假设数列{a n }是等差数列,首项 a 1<0,a 203+a 204>0,a 203·a 204<0,那么使前n 项和S n <0的最大自然数n 是________.(1) 解析:由a 203+a 204>0?a 1+a 406>0?S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d>0,那么数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.等差数列 {a n }的前n 项和为S n ,假设S 4≤4,S 5≥15,那么a 4的最小值为________.解析:S 4=2(a 1+a 4)≤4?2a 3-d ≤2,S 5=5a 3≥15?a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.等差数列 {a n }的公差d>0,前n 项和为S n ,且a 2a 3=45,S 4=28.求数列{a n }的通项公式;S n(2)假设b n =n +c (c 非零常数),且数列{b n }也是等差数列,求 c 的. 解:(1)∵S 4=28,∴a 1+a 4×4=28,a 1+a 4=14,a 2+a 3=14,2 a 2a 3=45,公差d>0, ∴a 2<a 3,∴a 2=5,a 3=9, a 1+d =5, a 1=1, ∴解得 ∴a n =4n -3. a 1+2d =9,d =4,n = 2n 2-n (2)由(1),知S n =2n 2-n ,∴b n =S ,n +c n +c ∴ b 1=1,b 2=6,b 3=15. 即 1+c2+c 3+c{b n }也是等差数列,∴b 1+b 3=2b 2,2×6=1+15, 2+c1+c3+c1 解得c =-2(c =0舍去). 8.在等差数列 {a n }中,a 10=23,a 25=-22.数列{a n }前多少和最大? 求{|a n |}的前n 和S n . a 1+9d =23, a 1=50,解:(1)由 得 a 1+24d =-22,d =-3, a n =a 1+(n -1)d =-3n +53.53 令a n >0,得 n<3, ∴当n ≤17,n ∈N *,a n >0;n ≥18,n ∈N *,a n <0,∴{a n }的前17和最大. 当n ≤17,n ∈N *,|a 1|+|a 2|+⋯+|a n|=a 1+a 2+⋯+a n =na 1+nn -12 = n ≥18,n ∈N *,|a 1|+|a 2|+⋯+|a n | a 1+a 2+⋯+a 17-a 18-a 19-⋯-a n32103d =-2n +2n.=2(a 1+a 2+⋯+a 17)-(a 1+a 2+⋯+a n )2-3×172+103×17--3n 2+103n 2222 32 103=n - 2 n +884. 23 2 103 * ,-n + 2 n ,n ≤17,n ∈N ∴S n = 23 2 103*. n - 2 n +884,n ≥18,n ∈N2。
高中数学人教A版三维设计浙江专版必修讲义第三章 一元二次不等式及其解法含答案
判别式 Δ=b2-4ac
Δ>0
二次函数 y=ax2+bx +c(a>0)的图象
一元二次方程 ax2+ bx+c=0(a>0)的根
ax2+ bx+ c>0(a>0) 的解集 Δ= b2- 4ac ax2+ bx
有两相异实根 x1,x2(x1<x2)
Error!或 x>x2} {x|x1 < x < x2}
解含参数的一元二次不等式时的注意点 (1)若二次项系数含有参数,则需对二次项系数大于 0 与小于 0 进行讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式 Δ 进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.
[活学活用] 设 a∈R,解关于 x 的不等式 ax2+(1-2a)x-2>0. 解:(1)当 a=0 时, 不等式可化为 x-2>0,解得 x>2,即原不等式的解集为{x|x>2}.
5
1 (2)当 a≠0 时,方程 ax2+(1-2a)x-2=0 的两根分别为 2 和- .
a
1
1
①当 a<- 时,解不等式得- <x<2,即原不等式的解集为Error!;
2
a
1 ②当 a=- 时,不等式无解,即原不等式的解集为∅;
2
1
1
③当- <a<0 时,解不等式得 2<x<- ,即原不等式的解集为Error!;
4
[活学活用] 1.若不等式 f(x)=ax2-x-c>0 的解集为(-2,1),则函数 y=f(x)的图象为( )
解析:选 B 因为不等式的解集为(-2,1),所以 a<0,排除 C、D,又与坐标轴交点的 横坐标为-2,1,故选 B.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 专题复习 培植新的增分点专题一 集合与常用逻辑用语、函数与导数、不等式第一讲 集合与常用逻辑用语基础·单纯考点[例1] 解析:(1)∵A ={x >2或x <0},B ={x |-5<x <5}, ∴A ∩B ={x |-5<x <0或2<x <5}, A ∪B =R .(2)依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9].答案:(1)B (2)D[预测押题1] (1)选A 本题逆向运用元素与集合的关系求参数的取值范围,抓住1∉A 作为解题的突破口,1∉A 即1不满足集合A 中不等式,所以12-2×1+a ≤0⇒a ≤1.(2)选B 对于2x (x -2)<1,等价于x (x -2)<0,解得0<x <2,所以A ={x |0<x <2};集合B 表示函数y =ln(1-x )的定义域,由1-x >0,得x <1,故B ={x |x <1},∁R B ={x |x ≥1},则阴影部分表示A ∩(∁R B )={x|1≤x<2}.[例2] 解析:(1)命题p 是全称命题:∀x ∈A ,2x ∈B , 则┐p 是特称命题:∃x ∈A ,2x ∉B .(2)①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p且q 为假只能得出p ,q 中至少有一为假,④不正确.答案:(1)D (2)A[预测押题2] (1)选A 因为x 2-3x +6=⎝⎛⎭⎫x -322+154>0,所以①为假命题;若ab =0,则a 、b 中至少一个为零即可,②为假命题;x =k π+π4(k ∈R )是tan x =1的充要条件,③为假命题.(2)解析:“∃x ∈R ,2x 2-3ax +9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题,因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.答案:[-22,22][例3] 解析:(1)当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.(2)因为y =-m n x +1n 经过第一、三、四象限,所以-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.答案:(1)A (2)B[预测押题3] (1)选B 由10a >10b 得a >b ,由lg a >lg b 得a >b >0,所以“10a >10b ”是“lg a >lg b ”的必要不充分条件.(2)解析:由|x -m |<2,得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2,m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)交汇·创新考点[例1] 选A 在同一坐标系下画出椭圆x 2+y 24=1及函数y =2x 的图象,结合图形不难得知它们的图像有两个公共点,因此A ∩B 中的元素有2个,其子集共有22=4个.[预测押题1] 选B A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎨⎧a ≥34,a <43,即34≤a <43,选B.[例2] 解析:对①:取f (x )=x -1,x ∈N *,所以B =N *,A =N 是“保序同构”;对②:取f (x )=92x -72(-1≤x ≤3),所以A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}是“保序同构”;对③:取f (x )=tan ⎝⎛⎭⎫πx -π2(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”,故应填①②③.答案:①②③[预测押题2] 解析:∵A ⊆M ,且集合M 的子集有24=16个,其中“累计值”为奇数的子集为{1},{3},{1,3},共3个,故“累积值”为奇数的集合有3个.答案:3[例3] 解析:对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;对于②当b =a =0时,l 1⊥l 2,故②不正确,易知③正确.所以正确结论的序号为①③.答案:①③[预测押题3] 选D 由y =tan x 的对称中心为⎝⎛⎭⎫k π2,0(k ∈Z ),知A 正确;由回归直线方程知B 正确;在△ABC 中,若sin A =sin B ,则A =B ,C 正确.第二讲 函数的图像与性质基础·单纯考点[例1] 解析:(1)由题意,自变量x 应满足{x +3>0,1-2x≥0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)设t =1+sin x ,易知t ∈[0,2],所求问题等价于求g (t )在区间[0,2]上的值域.由g (t )=13t 3-52t 2+4t ,得g ′(t )=t 2-5t +4=(t -1)(t -4).由g ′(t )=0,可得t =1或t =4.又因为t ∈[0,2],所以t =1是g (t )的极大值点.由g (0)=0,g (1)=13-52+4=116,g (2)=13×23-52×22+4×2=23,得当t ∈[0,2]时,g (t )∈⎣⎡⎦⎤0,116,即g (1+sin x )的值域是⎣⎡⎦⎤0,116. 答案:(1)A (2)⎣⎡⎦⎤0,116[预测押题1] (1)解析:∵f (π4)=-tan π4=-1,∴f (f (π4))=f (-1)=2×(-1)3=-2.答案:-2(2)由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图像关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:-2x 2+2[例2] 解析:(1)曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x 向左平移1个单位长度得到y =e -(x +1),即f (x )=e -x -1.(2)由题图可知直线OA 的方程是y =2x ;而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,故g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3=-⎝⎛⎭⎫x -32+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0. 综上所述,g (x )的值域为⎣⎡⎦⎤0,94. 答案:(1)D (2)B[预测押题2] (1)选C 因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错.(2)选B 因为f (x )=f (-x ),所以函数f (x )是偶函数.因为f (x +2)=f (x ),所以函数f (x )的周期是2,再结合选项中的图像得出正确选项为B.[例3] 解析:(1)函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项A ,D 是奇函数,不符合;选项B 是偶函数但单调性不符合;只有选项C 符合要求.(2)∵f (x )=ax 3+b sin x +4, ① ∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4, ② ①+②得f (x )+f (-x )=8. ③又∵lg(log 210)=lg ⎝⎛⎭⎫1lg 2=lg(lg 2)-1=-lg(lg 2), ∴f (lg(lg 210))=f (-lg(lg 2))=5.又由③式知f (-lg(lg 2))+f (lg(lg 2))=8, ∴5+f (lg(lg 2))=8, ∴f (lg(lg 2))=3. 答案:(1)C (2)C[预测押题3] (1)选A 依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.(2)解析:∵f (x )=-f ⎝⎛⎭⎫x +32, ∴f ⎝⎛⎭⎫x +32=-f (x +3)=-f (x ), ∴f (x )=f (x +3),∴f (x )是以3为周期的周期函数. 则f (2014)=f (671×3+1)=f (1)=3. 答案:3 (3)解析:因为函数f (x )的图像关于y 轴对称,所以该函数是偶函数,又f (1)=0,所以f (-1)=0.又已知f (x )在(0,+∞)上为减函数,所以f (x )在(-∞,0)上为增函数.f (-x )+f (x )x<0,可化为xf (x )<0,所以当x >0时,解集为{x |x >1};当x <0时,解集为{x |-1<x <0}.综上可知,不等式的解集为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)交汇·创新考点 [例1] 解析:设x <0,则-x >0.∵当x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x ).∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ),∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎪⎨⎪⎧x 2-4x =5,x ≥0,或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观察图像可知由f (x )<5,得-5<x <5.∴由f (x +2)<5,得-5<x +2<5,∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}.答案:{x |-7<x <3}[预测押题1] 解析:根据已知条件画出f (x )图像如图所示.因为对称轴为x =-1,所以(0,1)关于x =-1的对称点为(-2,1).因f (m )<1,所以应有-2<m <0,m +2>0.因f (x )在(-1,+∞)上递增,所以f (m +2)>f (0)=1.答案:>[例2] 解析:因为A ,B 是R 的两个非空真子集,且A ∩B =∅,画出韦恩图如图所示,则实数x 与集合A ,B 的关系可分为x ∈A ,x ∈B ,x ∉A 且x ∉B 三种.(1)当x ∈A 时,根据定义,得f A (x )=1.因为A ∩B =∅,所以x ∉B ,故f B (x )=0.又因为A ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(2)当x ∈B 时,根据定义,得f B (x )=1.因为A ∩B =∅,所以x ∉A ,故f A (x )=0.又因为B ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(3)当x ∉A 且x ∉B ,根据定义,得f A (x )=0,f B (x )=0.由图可知,显然x ∉(A ∪B ),故f A ∪B (x )=0,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=0+10+0+1=1.综上,函数的值域中只有一个元素1,即函数的值域为{1}. 答案:{1}[预测押题2] 解:当x ∈A ∩B 时,因为(A ∩B )⊆(A ∪B ),所以必有x ∈A ∪B .由定义,可知f A (x )=1,f B (x )=1,f A ∪B (x )=1,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+1+1=23. 故函数F (x )的值域为{23}.第三讲 基本初等函数、函数与方程及函数的应用基础·单纯考点[例1] 解析:(1)当x =-1,y =1a -1a =0,所以函数y =a x -1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32,b =log 510=log 55+log 52=1+log 52,c =log 714=log 77+log 72=1+log 72,∵log 32>log 52>log 72,∴a >b >c .答案:(1)D (2)D [预测押题1] (1)选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)选B 依题意的a =ln x ∈(-1,0),b =⎝⎛⎭⎫12ln x ∈(1,2),c =e ln x ∈(e -1,1),因此b >c >a .[例2] 解析:(1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.答案:(1)B (2)C[预测押题2] 解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.答案:(0,1][例3] 解:(1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈n ,0≤x ≤200),y =18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈n ,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N ,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元).因为y 1max -y 2max =1980-200m -460=1520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.[预测押题3] 解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元),则f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3).所以当t =2时,f (t )max =4,即当集团投入两百万广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告费的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3).对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0,得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增;当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减.∴当x =2时,g (x )max =g (2)=253.故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的受益最大,最大收益为253百万元.交汇·创新考点[例1] 选B ∵⎝⎛⎭⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在(0,π2)上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝⎛⎭⎫π2,π上单调递增. ∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π.又f (x )是以2π为最小正周期的偶函数,知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点.[预测押题] 选D 根据f ⎝⎛⎭⎫x +54=-f ⎝⎛⎭⎫x -54,可得f ⎝⎛⎭⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x ,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2012=402×5+2,故函数在区间[0,2010]内有402×3=1206个零点,在区间(2010,2012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2012]上零点的个数为1207.第四讲 不等式基础·单纯考点[例1] 解析:(1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以原不等式的解集为⎝⎛⎦⎤-12,1. (2)由题意知,一元二次不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |-1<x <12.而f (10x )>0,∴-1<10x <12,解得x <lg 12,即x <-lg 2.答案:(1)A (2)D[预测押题1] (1)选B 当x >0时,f (x )=-2x +1x2>-1,∴-2x +1>-x 2,即x 2-2x +1>0,解得x >0且x ≠1.当x <0时,f (x )=1x>-1,即-x >1,解得x <-1.故x ∈(-∞,-1)∪(0,1)∪(1,+∞).(2)解析:∵f (x )=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -a 24=0,∴f (x )=x 2+ax+14a 2=⎝⎛⎭⎫x +12a 2.又∵f (x )<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +a 24-c =0的两根.由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9[例2] 解析:(1)曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min =-6.(2)设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈n ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).答案:(1)A (2)C[预测押题2] (1)选C 题中的不等式组表示的平面区域如图阴影部分所示,平移直线x -y =0,当平移经过该平面区域内的点(0,1)时,相应直线在x 轴上的截距达到最小,此时x -y 取得最小值,最小值是x -y =0-1=-1;当平移到经过该平面内区域内的点(2,0)时,相应直线在x 轴上的截距达到最大,此时x -y 取得最大值,最大值是x -y =2-0=2.因此x -y 的取值范围是[-1,2].(2)解析:作出可行域,如图中阴影部分所示,区域面积S =12×⎝⎛⎭⎫2a +2×2=3,解得a =2.答案:2[例3] 解析:(1)因-6≤a ≤3,所以3-a ≥0,a +6≥0,∴(3-a )(a +6)≤3-a +a +62=92,当且仅当a =-32时等号成立.(2)f (x )=4x +a x ≥24x ·a x =4a (x >0,a >0),当且仅当4x =a x ,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36.答案:(1)B (2)36[预测押题3] (1)选D 依题意,点A (-2,-1),则-2m -n +1=0,即2m +n =1(m >0,n >0),∴1m +2n =⎝⎛⎭⎫1m +2n (2m +n )=4+⎝⎛⎭⎫n m +4m n ≥4+2n m ×4m n =8,当且仅当n m =4m n,即n =2m =12时取等号,即1m +2n的最小值是8.(2)选A 由已知得a +2b =2.又∵a >0,b >0,∴2=a +2b ≥22ab ,∴ab ≤12,当且仅当a =2b =1时取等号.交汇·创新考点[例1] 选C 作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形所有点都在圆的内部,故m ≥2,解得:m ≥2.[预测押题1] 选C 如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝⎛⎭⎫122=12,当圆的半径增大到恰好过点A (2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故a 的取值范围是12<a ≤5,故选C.[例2] 选Cz =x 2-3xy +4y 2(x ,y ,z ∈R+),∴z xy =x 2-3xy +4y 2xy =x y +4y x-3≥2x y ·4yx-3=1.当且仅当x y =4yx,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2.∴当y =1时,x +2y -z 取得最大值2.[预测押题2] 解析:4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝⎛⎭⎫2x +y 22+1,∴(2x +y )2≤85,∴(2x +y )max =2105.答案:2105第五讲 导数及其应用基础·单纯考点[例1] 解析:(1)∵点(1,1)在曲线y =x2x -1上,y ′=-1(2x -1)2,∴在点(1,1)处的切线斜率为y ′|x =1=-1(2-1)2=-1,所求切线方程为y -1=-(x -1),即x +y -2=0.(2)因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.答案:(1)x +y -2=0 (2)12[预测押题1] 选D 由f (x +2)=f (x -2),得f (x +4)=f (x ),可知函数为周期函数,且周期为4.又函数f (x )为偶函数,所以f (x +2)=f (x -2)=f (2-x ),即函数的对称轴是x =2,所以f ′(-5)=f ′(3)=-f ′(1),所以函数在x =-5处的切线的斜率k =f ′(-5)=-f ′(1)=-1.[例2] 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12.令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.[预测押题2] 解:(1)当m =1时,f (x )=13x 3+x 2-3x +1,又f ′(x )=x 2+2x -3,所以f ′(2)=5.又f (2)=53,所以所求切线方程为y -53=5(x -2),即15x -3y -25=0.所以曲线y =f (x )在点(2,f (2))处的切线方程为15x -3y -25=0.(2)因为f ′(x )=x 2+2mx -3m 2,令f ′(x )=0,得x =-3m 或x =m .当m =0时,f ′(x )=x 2≥0恒成立,不符合题意;当m >0时,f (x )的单调递减区间是(-3m ,m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧-3m ≤-2,m ≥3,解得m ≥3;当m <0时,f (x )的单调递减区间是(m ,-3m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2,-3m ≥3,解得m ≤-2. 综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞).[例3] 解:(1)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得最小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.(2)当a =1时,f (x )=x -1+1ex .直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1ex (*)在R 上没有实数解.①当k =1时,方程(*)可化为1e x =0,在R 上没有实数解.②当k ≠1时,方程(*)可化为1k -1=x e x .令g (x )=x e x ,则有g ′(x )=(1+x )e x .令g ′(x )当x =-1时,g (x )min =-1e,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的取值范围为⎣⎡⎭⎫-1e ,+∞.所以当1k +1∈⎝⎛⎭⎫-∞,-1e 时,方程(*)无实数解,解得k 的取值范围是(1-e ,1).综合①②,得k 的最大值为1.[预测押题3] 解:(1)f ′(x )=a +2x 2-3x ,由题意可知f ′(23)=1,解得a =1.故f (x )=x -2x -3ln x ,∴f ′(x )=(x -1)(x -2)x 2,由f ′(x )=0,得x =2.∴f (min (2)f ′(x )=a +2x 2-3x =ax 2-3x +2x 2(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0.也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a>0,h (0)>0.解得0<a <98.交汇·创新考点[例1] 解:(1)证明:设φ(x )=f (x )-1-a ⎝⎛⎭⎫1-1x =a ln x -a ⎝⎛⎭⎫1-1x (x >0),则φ′(x )=a x -ax2.令φ′(x )=0,则x =1,易知φ(x )在x =1处取到最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝⎛⎭⎫1-1x .(2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0,故h (x )在定义域上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在定义域上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以a 的取值范围为[e -1,+∞).[预测押题1] 解:(1)由f (x )=e x (x 2+ax -a )可得,f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0,即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )在[0,+∞)上是增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根.当-(a +2)>0,即a <-2时,f ′(x ),f (x )随x 的变化情况如下表:x 0 (0,-(a +2)) -(a +2) (-(a +2),+∞) f ′(x ) 0 - 0 +f (x ) -a a +4e a +2由上表可知函数f (x )在[0,+∞)上的最小值为f (-(a +2))=a +4ea +2.因为函数f (x )在(0,-(a+2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥f (-a )=e -a (-a )>-a ,又f (0)=-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .[例2] 选C 法一:曲线y =x 与直线x =1及x 轴所围成的曲边图形的面积S =⎠⎛01x d x=⎪⎪23x 3210=23,又∵S △AOB =12,∴阴影部分的面积为S ′=23-12=16,由几何概型可知,点P 取自阴影部分的概率为P =16.法二:S 阴影=⎠⎛01(x -x )d x =16,S 正方形OABC =1,∴点P 取自阴影部分的概率为P =16.[预测押题2] 解析:画出草图,可知所求概率P =S 阴影S △AOB=⎠⎛04x d x 18=⎪⎪23x 324018=16318=827.答案:827[例3] 解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2}.因此区间I =⎝⎛⎭⎫0,a 1+a 2,故I 的长度为a1+a 2.(2)设d (a )=a1+a 2,则d ′(a )=1-a 2(1+a 2)2(a >0).令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而d (1-k )d (1+k )=1-k1+(1-k )21+k1+(1+k )2=2-k 2-k 32-k 2+k 3<1,故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k 2.[预测押题3] 解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)① 计算得f (1)=a +b 2>0,f (b a )=2ab a +b >0,f (b a )=ab >0.因为f (1)f (b a )=a +b 2·2aba +b=ab=⎣⎡⎦⎤f (b a )2,即f (1)f (b a )=⎣⎡⎦⎤f (b a )2. (*)所以f (1),f (b a ),f (b a )成等比数列.因为a +b 2≥ab ,所以f (1)≥f (b a ).由(*)得f (b a )≤f (ba).②由①知f (b a )=H ,f (b a )=G .故由H ≤f (x )≤G ,得f (b a )≤f (x )≤f (ba). (**)当a =b时,(b a )=f (x )=f (b a )=a .这时,x 的取值范围为(0,+∞);当a >b 时,0<b a <1,从而b a <b a,由f (x )在(0,+∞)上单调递增(**)式,得b a ≤x ≤b a ,即x 的取值范围为⎣⎡⎦⎤b a,b a ;当a <b时,b a >1,从而b a >b a ,由f (x )在(0,+∞)上单调递减与(**)式,得b a ≤x ≤b a,即x 的取值范围为⎣⎡⎦⎤b a ,b a .综上,当a =b 时,x 的取值范围为(0,+∞);当a >b 时,x 的取值范围为⎣⎡⎦⎤b a ,b a ;当a <b 时,x 的取值范围为⎣⎡⎦⎤b a ,b a .专题二 三角函数、解三角形、平面向量第一讲 三角函数的图像与性质基础·单纯考点[例1] 解析:(1)1-2sin (π+θ)sin ⎝⎛⎭⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝⎛⎭⎫π2,π,∴sin θ-cos θ>0,故原式=sin θ-cos θ.(2)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z ).所以2sin2α-3tan α=2sin ⎝⎛⎭⎫4k π+π3-3tan ⎝⎛⎭⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0.答案:(1)A (2)D[预测押题1] (1)选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tanα=3,故sin α=31010.(2)解析:由A 点的纵坐标为35及点A 在第二象限,得点A 的横坐标为-45,所以sin α=35,cos α=-45,tan α=-34.故tan2α=2tan α1-tan 2α=-247. 答案:35 -247[例2] 解析:(1)∵34T =512π-⎝⎛⎭⎫-π3=34π,∴T =π,∴2πω=π(ω>0),∴ω=2.由图像知当x =512π时,2×512π+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k ∈Z ).∵-π2<φ<π2,∴φ=-π3.(2)y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+φ的图像,整理得y=cos(2x -π+φ).∵其图像与y =sin ⎝⎛⎭⎫2x +π3的图像重合,∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π,即φ=5π6+2k π.又∵-π≤φ<π∴φ=5π6. 答案:(1)A (2)5π6[预测押题2] (1)选C 将y =sin ⎝⎛⎭⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位得y =sin ⎝⎛⎭⎫2x +3π4+2的图像,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,得x =π8.(2)选C 根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m 取最小值.又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3.[例3] 解:(1)f (x )4cos ωx ·sin ⎝⎛⎭⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx ·cos2ωx )+2=2sin ⎝⎛⎭⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0,从而由2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π5,即π8≤x ≤π2时,f (x )单调递减;综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.[预测押题3] 解:(1)因为f (x )=32sin 2x +1+cos 2x 2+a =sin(2x +π6)+a +12,所以T =π.由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z .故函数f (x )的单调递减区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ).(2)因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6,-12≤sin ⎝⎛⎭⎫2x +π6≤1.因为函数f (x )在⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为⎝⎛⎭⎫1+a +12+⎝⎛⎭⎫-12+a +12=32,所以a =0.交汇·创新考点[例1] 解:(1)f (x )=1+cos (2ωx -π3)2-1-cos2ωx 2=12⎣⎡⎦⎤cos ⎝⎛⎭⎫2ωx -π3+cos2ωx =12⎣⎡⎦⎤⎝⎛⎭⎫12cos2ωx +32sin2ωx +cos2ωx =12⎝⎛⎭⎫32sin2ωx +32cos2ωx =32⎝⎛⎭⎫12sin2ωx +32cos2ωx =32sin ⎝⎛⎭⎫2ωx +π3.由题意可知,f (x )的最小正周期T =π,∴2π|2ω|=π.又∵ω>0,∴ω=1,∴f (π12)=32sin ⎝⎛⎭⎫2×π12+π3=32sin π2=32. (2)|f (x )-m |≤1,即f (x )-1≤m ≤f (x )+1.∵对∀x ∈⎣⎡⎦⎤-7π12,0,都有|f (x )-m |≤1,∴m ≥f (x )max -1且m ≤f (x )min +1.∵-7π12≤x ≤0,∴-5π6≤2x +π3≤π3,∴-1≤sin ⎝⎛⎭⎫2x +π3≤32,∴-32≤32sin ⎝⎛⎭⎫2x +π3≤34,即f (x )max =34,f (x )min =-32,∴-14≤m ≤1-32.故m 的取值范围为⎣⎡⎦⎤-14,1-32.[预测押题1] 解:(1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-⎝⎛⎭⎫122=-14. (2)f (x )=cos x ·cos ⎝⎛⎭⎫x -π3=cos x ·⎝ ⎛⎭⎪⎫12cos x + 32sin x =12cos 2x +32sin x cos x =14(1+cos2x )+34sin2x =12cos ⎝⎛⎭⎫2x -π3+14.f (x )<14等价于12cos ⎝⎛⎭⎫2x -π3+14<14,即cos ⎝⎛⎭⎫2x -π3<0.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x |k π+5π12<x <k π+11π12,k ∈Z .[例2] 解析:因为圆心由(0,1)平移到了(2,1,),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切与点B ,过C 作P A 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝⎛⎭⎫2-π2=-cos2,|CD |=cos ⎝⎛⎭⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP →的坐标为(2-sin2,1-cos2).答案:(2-sin2,1-cos2)[预测押题2] 选A 画出草图,可知点Q 点落在第三象限,则可排除B 、D ;代入A ,cos ∠QOP =6×(-72)+8×(-2)62+82=-502100=-22,所以∠QOP =3π4.代入C ,cos ∠QOP =6×(-46)+8×(-2)62+82=-246-16100≠-22.第二讲 三角恒等变换与解三角形基础·单纯考点[例1] 解:(1)因为f (x )=2cos ⎝⎛⎭⎫x -π12,所以f (-π6)=2cos ⎝⎛⎭⎫-π6-π12=2cos ⎝⎛⎭⎫-π4=2cos π4=2×22=1.(2)因为θ∈⎝⎛⎭⎫3π2,2π,cos θ=35,所以sin θ=1-cos 2θ=-1-⎝⎛⎭⎫352=-45,cos2θ=2cos 2θ-1=2×(35)2-1=-275,sin 2θ=2sin θcos θ =2×35×⎝⎛⎭⎫-45=-2425.所以f (2θ+π3)=2cos ⎝⎛⎭⎫2θ+π3-π12=2cos ⎝⎛⎭⎫2θ+π4=2×⎝⎛⎭⎫22cos2θ-22sin2θ=cos2θ-sin2θ=-725-⎝⎛⎭⎫-2425=1725.[预测押题1] 解:(1)由已知可得f (x )=3cos ωx +3sin ωx =23sin ⎝⎛⎭⎫ωx +π3.所以函数f (x )的值域为[-23,23].又由于正三角形ABC 的高为23,则BC =4,所以函数f (x )的周期T =4×2=8,即2πω=8,解得ω=π4.(2)因为f (x 0)=835,由(1)得f (x 0)=23sin ⎝⎛⎭⎫πx 04+π3=835,即sin ⎝⎛⎭⎫πx 04+π3=45.由x 0∈⎝⎛⎭⎫-103,23得πx 04+π3∈⎝⎛⎭⎫-π2,π2.所以cos ⎝⎛⎭⎫πx 04+π3=1-⎝⎛⎭⎫452=35,故f (x 0+1)=23sin ⎝⎛⎭⎫πx 04+π4+π3=23sin ⎣⎡⎦⎤⎝⎛⎭⎫πx 04+π3+π4=23⎣⎡⎦⎤sin ⎝⎛⎭⎫πx 04+π3cos π4+cos ⎝⎛⎭⎫πx 04+π3sin π4=23⎝⎛⎭⎫45×22+35×22=765.[例2] 解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=3+14-2×3×12cos30°=74.故P A =72.(2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin150°=sin αsin (30°-α),化简得3sin α=4sin α.则tan α=34,即tan ∠PBA =34.[预测押题2] 解:(1)由正弦定理得2sin B cos C =2sin A -sin C .∵在△ABC 中,sin A =sin(B+C )=sin B cos C +sin C cos B ,∴sin C (2cos B -1)=0.又0<C <π,sin C >0,∴cos B =12,注意到0<B <π,∴B =π3.(2)∵S △ABC =12ac sin B =3,∴ac =4,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ≥ac=4,当且仅当a =c =2时,等号成立,∴b 的取值范围为[2,+∞).交汇·创新考点[例1] 解:(1)∵f (x )=cos ⎝⎛⎭⎫2x -4π3+2cos 2x =cos ⎝⎛⎭⎫2x +π3+1,∴f (x )的最大值为2.f (x )取最大值时,cos ⎝⎛⎭⎫2x +π3=1,2x +π3=2k π(k ∈Z ),故x 的集合为{x |x =k π-π6,k ∈Z }.(2)由f (B +C )=cos ⎣⎡⎦⎤2(B +C )+π3+1=32,可得cos ⎝⎛⎭⎫2A -π3=12,由A ∈(0,π),可得A =π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22=1,当b =c =1时,bc 取最大值,此时a 取最小值1.[预测押题1] 解:(1)由已知得AB →·AC →=bc cos θ=8,b 2+c 2-2bc cos θ=42,故b 2+c 2=32.又b 2+c 2≥2bc ,所以bc ≤16,(当且仅当b =c =4时等号成立),即bc 的最大值为16.即8cos θ≤16,所以cos θ≥12.又0<θ<π,所以0<θ≤π3,即θ的取值范围是(0,π3].(2)f (θ)=3sin2θ+cos2θ+1=2sin ⎝⎛⎭⎫2θ+π6+1.因为0<θ≤π3,所以π6<2θ+π6≤5π6,12≤sin ⎝⎛⎭⎫2θ+π6≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2;当2θ+π6=π2,即θ=π3时,f (θ)max =2×1+1=3.[例2] 解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B=sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理ABsin C=AC sin B ,得AB =ACsin B ×sin C =12606365×45=1040(m).所以索道AB 的长为1040m. (2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+5t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已经走了50×(2+8+1)=550(m),还需要走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度控制在⎣⎡⎦⎤125043,62514(单位:m/min)范围内.[预测押题2] 解:(1)因为点C 的坐标为⎝⎛⎭⎫35,45,根据三角函数的定义,得sin ∠COA =45,cos ∠COA =35.因为△AOB 为正三角形,所以∠AOB =60°.所以cos ∠BOC =cos(∠COA +60°)=cos ∠COA cos60°-sin ∠COA sin60°=35×12-45×32=3-4310.(2)因为∠AOC =θ⎝⎛⎭⎫0<θ<π2,所以∠BOC =π3+θ.在△BOC 中,|OB |=|OC |=1,由余弦定理,可得f (θ)=|BC |2=|OC |2+|OB |2-2|OC |·|OB |·cos ∠COB =12+12-2×1×1×cos ⎝⎛⎭⎫θ+π3=2-2cos ⎝⎛⎭⎫θ+π3.因为0<θ<π2,所以π3<θ+π3<5π6.所以-32<cos ⎝⎛⎭⎫θ+π3<12.所以1<2-2cos ⎝⎛⎭⎫θ+π3<2+ 3.所以函数f (θ)的值域为(1,2+3).第三讲 平面向量基础·单纯考点 [例1] 解析:以向量:a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4[预测押题1] (1)选A 由已知,得AB →=(3,-4),所以|AB →|=5,因此与AB →同方向的单位向量是15AB →=⎝⎛⎭⎫35,-45.(2)选C 如图,连接BP ,则AP →=AC →+CP →=b +PR →,① AP →=AB →+BP →=a +RP →-RB →,②①+②,得2AP →=a +b -RB →.③又RB →=12QB →=12(AB →-AQ →)=12⎝⎛⎭⎫a -12AP →,④ 将④代入③,得2AP →=a +b -12⎝⎛⎭⎫a -12AP →,解得AP →=27a +47b .[例2] 解析:(1)由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.(2)设AB 的长为a (a >0),又因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE →=(AB →+AD →)·(AD →-12AB →)=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.答案:(1)A (2)12[预测押题2] (1)选D a ⊥(a +b)⇒a ·(a +b )=a 2+a·b =|a |2+|a ||b |cos<a ,b >=0,故cos<a ,b >=-963=-32,故所求夹角为5π6.(2)选C 设BC 的中点为M ,则AG →=23AM →.又M 为BC 中点,∴AM →=12(AB →+AC →),∴AG→=23AM →=13(AB →+AC →),∴|AG →|=13AB →2+AC →2+2AB →·AC →=13AB →2+AC →2-4.又∵AB →·AC →=-2,∠A =120°,∴|AB →||AC →|=4.∵|AG →|=13AB →2+AC →2-4≥132|AB →||AC →|-4=23,当且仅当|AB →|=|AC →|时取等号,∴|AG →|的最小值为23.交汇·创新考点[例1] 解析:设P (x ,y ),则AP →=(x -1,y +1).由题意知AB →=(2,1),AC →=(1,2).由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎨⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0,x-2y -3=0之间的距离d =35,故平面区域D 的面积为S =5×25=3.答案:3 [预测押题1] 选D 如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.故选D.[例2] 解:(1)∵g (x )=sin(π2+x )+2cos(π2-x )=2sin x +cos x ,∴OM →=(2,1),∴|OM →|=22+12= 5.(2)由已知可得h (x )=sin x +3cos x =2sin(x +π3),∵0≤x ≤π2,∴π3≤x +π3≤5π6,∴h (x )∈[1,2].∵当x +π3∈[π3,π2]时,即x ∈[0,π6]时,函数h (x )单调递增,且h (x )∈[3,2];当x +π3∈(π2,5π6]时,即x ∈(π6,π2]时,函数h (x )单调递减,且h (x )∈[1,2).∴使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围为[3,2).[预测押题2] 解:(1)由题设,可得(a +b )·(a -b )=0,即|a |2-|b |2=0.代入a ,b 的坐标,可得cos 2α+(λ-1)2sin 2α-cos 2β-sin 2β=0,所以(λ-1)2sin 2α-sin 2α=0.因为0<α<π2,故sin 2α≠0,所以(λ-1)2-1=0,解得λ=2或λ=0(舍去,因为λ>0).故λ=2.(2)由(1)及题设条件,知a·b =cos αcos β+sin αsin β=cos(α-β)=45.因为0<α<β<π2,所以-π2<α<β<0.所以sin(α-β)=-35,tan(α-β)=-34.所以tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=-34+431-(-34)×43=724.所以tan α=724.[例3] 选D a ∘b =a·b b 2=|a||b||b|2cos θ=|a||b|cos θ,b ∘a =|a||b|cos θ,因为|a |>0,|b |>0,0<cosθ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,所以|a||b|cos θ=n 2,|a||b|cos θ=m 2,其中m ,n ∈N *,两式相乘,得m ·n 2=cos 2θ.因为0<cos θ<22,所以0<cos 2θ<12,得0<m ·n <2,故m =n =1,即a ∘b =12.[预测押题3] 选D 依题意,MF 1→=(-1-x ,-y )=(-1-x )e 1-y e 2,MF 2→=(1-x ,-y )=(1-x )e 1-y e 2,由|MF 1→|=|MF 2→|,得MF 1→2=MF 2→2,∴[(-1-x )e 1-y e 2]2=[(1-x )e 1-y e 2]2,∴4x +4y e 1·e 2=0.∵∠xOy =45°,∴e 1·e 2=22,故2x +2y =0,即2x +y =0.专题三 数列第一讲 等差数列、等比数列基础·单纯考点[例1] 解析:(1)∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.(2)设等比数列{a n }的首项为a 1,公比为q ,则:由a 2+a 4=20得a 1q (1+q 2)=20,①,由a 3+a 5=40得a 1q 2(1+q 2)=40.②由①②解得q =2,a 1=2.故S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.答案:(1)C (2)2 2n +1-2[预测押题1] 解:(1)设等差数列的公差为d ,d >0.由题意得,(2+d )2=2+3d +8,d 2+d -6=(d +3)(d -2)=0,得d =2.故a n =a 1+(n -1)·d =2+(n -1)·2=2n ,故a n =2n .(2)b n =a n +2a n =2n +22n .S n =b 1+b 2+…+b n =(2+22)+(4+24)+…+(2n +22n )=(2+4+6+…+2n )+(22+24+…+22n )=(2+2n )·n 2+4·(1-4n )1-4=n 2+n +4n +1-43.[例2] 解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)证明:法一:对任意k ∈N *,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k+1=2a k +1+a k +1·(-2)=0,所以,对任意k ∈N *,S k +2,S k ,S k +1成等差数列.法二:对任意k ∈N *,2S k =2a 1(1-q k )1-q ,S k +2+S k +1=a 1(1-q k +2)1-q +a 1(1-q k +1)1-q=a 1(2-q k +2-q k +1)1-q .2S k -(S k +2+S k +1)=2a 1(1-q k )1-q -a 1(2-q k +2-q k +1)1-q =a 11-q[2(1-q k )-(2-q k +2-q k +1)]=a 1q k1-q(q 2+q -2)=0,因此,对任意k ∈N *,S k +2,S k ,S k +1成等差数列.[预测押题2] 解:(1)由a n +2=p ·a 2n +1a n ,得a n +2a n +1=p ·a n +1a n .令c n =a n +1a n ,则c 1=a ,c n +1=pc n .。