七年级几何图形初步(培优篇)(Word版 含解析)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①求∠ DHF 的度数; ②若 EB 平分∠ DEC,试说明:BE 平分∠ ABC. 【答案】 (1)证明:∵ CA 平分∠ BCE,
∴ ∠ ACB=∠ ACE. 在△ ABC 和△ EDC 中. ∵ BC=CD,∠ ACB=∠ ACE,AC=CE. ∴ △ ABC≌ △ EDC(SAS).
(2)解:①在△ BCF 和△ DCG 中
∴ ∠ FEH=∠ BFE(两直线平行,内错角相等), ∵ AB∥ CD,EH∥ AB,(辅助线的作法) ∴ EH∥ CD(平行线的迁移性), ∴ ∠ HEG=180°-∠ CGE(两直线平行,同旁内角互补), ∴ ∠ FEG=∠ HFG+∠ FEH=∠ BFE+180°−∠ CGE ,
故答案为:∠ BFE+180°−∠ CGE;两直线平行,内错角相等;平行线的迁移性;两直线平 行,同旁内角互补;∠ BFE+180°−∠ CGE;
一、初一数学几何模型部分解答题压轴题精选(难)
1.已知,
,点 E 是直线 AC 上一个动点(不与 A,C 重合),点 F 是 BC 边上一个定
点, 过点 E 作 G.
,交直线 AB 于点 D,连接 BE,过点 F 作
,交直线 AC 于点
(1)如图①,当点 E 在线段 AC 上时,求证:
.
(2)在(1)的条件下,判断
∵ BC=DC, ∠ BCD=∠ DCE,CF=CG, ∴ △ BCF≌ △ DCG(SAS), ∴ ∠ CBF=∠ CDG. ∵ ∠ CBF+∠ BCF=∠ CDG+∠ DHF ∴ ∠ BCF=∠ DHF=60°. ②∵ EB 平分∠ DEC, ∴ ∠ DEH=∠ BEC. ∵ ∠ DHF=60°, ∴ ∠ HDE=60°-∠ DEH. ∵ ∠ BCE=60°+60°=120°,
∵ AB∥ CD, ∴ AB∥ CD∥ EH, ∴ ∠ HEF=∠ BFE=40°,∠ HEG+∠ CGE=180°, ∵ ∠ CGE=130°, ∴ ∠ HEG=50°, ∴ ∠ GEF=∠ HEF+∠ HEG=40°+50°=90°; 故答案为:90°; 【分析】(1)如图 1,过 E 作 EH∥ AB,根据平行线的性质可得∠ HEF=∠ BFE=40 , ∠ HEG=50 ,相加可得结论;(2)由①知:∠ HEF=∠ BFE,∠ HEG+∠ CGE=180°,则 ∠ HEG=180°−∠ CGE,两式相加可得∠ GEF=∠ BFE+180°−∠ CGE;(3)如图 2,根据角平 分线的定义得:∠ BFQ= ∠ BFE,∠ CGP= ∠ CGE,由三角形的外角的性质得:∠ GPQ=
这三个角的度数和是否为一个定
值? 如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点 E 在线段 AC 的延长线上时,(2)中的结论是否仍然成立?如果不成
立, 请直接写出
之间的关系.
(4)当点 E 在线段 CA 的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直
接 写出
之间的关系.
【答案】 (1)解:∵ ∴
(2)拓展探究:∠ GEF,∠ BFE,∠ CGE 之间有怎样的数量关系?写出结论并给出证明; 答:∠ GEF=▲ . 证明:过点 E 作 EH∥ AB,
∴ ∠ FEH=∠ BFE( ▲ ), ∵ AB∥ CD,EH∥ AB,(辅助线的作法) ∴ EH∥ CD( ▲ ), ∴ ∠ HEG=180°-∠ CGE( ▲ ), ∴ ∠ FEG=∠ HFG+∠ FEH=▲ . (3)深入探究:如图 2,∠ BFE 的平分线 FQ 所在直线与∠ CGE 的平分线相交于点 P,试探 究∠ GPQ 与∠ GEF 之间的数量关系,请直接写出你的结论. 【答案】 (1)90° (2)解:∠ GEF=∠ BFE+180°−∠ CGE, 证明:过点 E 作 EH∥ AB,
(3)解:∠ GPQ+ ∠ GEF=90°, 理由是:如图 2,∵ FQ 平分∠ BFE,GP 平分∠ CGE,
∴ ∠ BFQ= ∠ BFE,∠ CGP= ∠ CGE, 在△ PMF 中,∠ GPQ=∠ GMF−∠ PFM=∠ CGP−∠ BFQ, ∴ ∠ GPQ+ ∠ GEF= ∠ CGE− ∠ BFE+ ∠ GEF= ×180°=90°. 即∠ GPQ+ ∠ GEF=90°. 【解析】【解答】(1)解:如图 1,过 E 作 EH∥ AB,
∵ ∴
∴
(2)解: 过点 G 作 ∴ ∵ ∴ ∴
∴
即
这三个角的度数和为一个定值,是 交 BE 于点 H
(3)解:过点 G 作 ∴ ∵ ∴ ∴
∴
即
交 BE 于点 H
故
的关系仍成立
(4)不成立| ∠ EGF-∠ DEC+∠ BFG=180° 【解析】【解答】解:(4)过点 G 作
∴ ∠ DEC=∠ EGH ∵ ∴ ∴ ∠ HGF+∠ BFG=180° ∵ ∠ HGF=∠ EGF-∠ EGH ∴ ∠ HGF=∠ EGF-∠ DEC ∴ ∠ EGF-∠ DEC+∠ BFG=180°
交 BE 于点 H
∴ (2)中的关系不成立,∠ EGF、∠ DEC、∠ BFG 之间关系为:∠ EGF-∠ DEC+∠ BFG=180°
故答案为:不成立,∠ EGF-∠ DEC+∠ BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出
;两条直线平行,
同位角相等,得出
,即可证明
.(2)过点 G 作
∠ GMF−∠ PFM=∠ CGP−∠ BFQ,计算∠ GPQ+ ∠ GEF 并结合②的结论可得结果.
3.如图(1),在△ ABC 和△ EDC 中,D 为△ ABC 边 AC 上一点,CA 平分∠ BCE,BC=CD, AC=CE.
(1)求证:△ ABC≌ △ EDC;
(2)如图(2),若∠ ACB=60°,连接 BE 交 AC 于 F,G 为边 CE 上一点,满足 CG=CF, 连接 DG 交 BE 于 H.
交 BE 于 点 H , 根 据 平 行 线 性 质 定 理 ,
,
,即可得到答案.(3)过点 G 作
源自文库
交 BE 于点 H,得到
,因为
,所以
,得到
,
即可求解.(4)过点 G 作
交 BE 于点 H,得∠ DEC=∠ EGH,因为
,推得∠ HGF+∠ BFG=180°,即可求解.
,所以
2. (1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥ CD,若∠ BFE=40°, ∠ CGE=130°,则∠ GEF 的度数为________;
∴ ∠ ACB=∠ ACE. 在△ ABC 和△ EDC 中. ∵ BC=CD,∠ ACB=∠ ACE,AC=CE. ∴ △ ABC≌ △ EDC(SAS).
(2)解:①在△ BCF 和△ DCG 中
∴ ∠ FEH=∠ BFE(两直线平行,内错角相等), ∵ AB∥ CD,EH∥ AB,(辅助线的作法) ∴ EH∥ CD(平行线的迁移性), ∴ ∠ HEG=180°-∠ CGE(两直线平行,同旁内角互补), ∴ ∠ FEG=∠ HFG+∠ FEH=∠ BFE+180°−∠ CGE ,
故答案为:∠ BFE+180°−∠ CGE;两直线平行,内错角相等;平行线的迁移性;两直线平 行,同旁内角互补;∠ BFE+180°−∠ CGE;
一、初一数学几何模型部分解答题压轴题精选(难)
1.已知,
,点 E 是直线 AC 上一个动点(不与 A,C 重合),点 F 是 BC 边上一个定
点, 过点 E 作 G.
,交直线 AB 于点 D,连接 BE,过点 F 作
,交直线 AC 于点
(1)如图①,当点 E 在线段 AC 上时,求证:
.
(2)在(1)的条件下,判断
∵ BC=DC, ∠ BCD=∠ DCE,CF=CG, ∴ △ BCF≌ △ DCG(SAS), ∴ ∠ CBF=∠ CDG. ∵ ∠ CBF+∠ BCF=∠ CDG+∠ DHF ∴ ∠ BCF=∠ DHF=60°. ②∵ EB 平分∠ DEC, ∴ ∠ DEH=∠ BEC. ∵ ∠ DHF=60°, ∴ ∠ HDE=60°-∠ DEH. ∵ ∠ BCE=60°+60°=120°,
∵ AB∥ CD, ∴ AB∥ CD∥ EH, ∴ ∠ HEF=∠ BFE=40°,∠ HEG+∠ CGE=180°, ∵ ∠ CGE=130°, ∴ ∠ HEG=50°, ∴ ∠ GEF=∠ HEF+∠ HEG=40°+50°=90°; 故答案为:90°; 【分析】(1)如图 1,过 E 作 EH∥ AB,根据平行线的性质可得∠ HEF=∠ BFE=40 , ∠ HEG=50 ,相加可得结论;(2)由①知:∠ HEF=∠ BFE,∠ HEG+∠ CGE=180°,则 ∠ HEG=180°−∠ CGE,两式相加可得∠ GEF=∠ BFE+180°−∠ CGE;(3)如图 2,根据角平 分线的定义得:∠ BFQ= ∠ BFE,∠ CGP= ∠ CGE,由三角形的外角的性质得:∠ GPQ=
这三个角的度数和是否为一个定
值? 如果是,求出这个值,如果不是,说明理由.
(3)如图②,当点 E 在线段 AC 的延长线上时,(2)中的结论是否仍然成立?如果不成
立, 请直接写出
之间的关系.
(4)当点 E 在线段 CA 的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直
接 写出
之间的关系.
【答案】 (1)解:∵ ∴
(2)拓展探究:∠ GEF,∠ BFE,∠ CGE 之间有怎样的数量关系?写出结论并给出证明; 答:∠ GEF=▲ . 证明:过点 E 作 EH∥ AB,
∴ ∠ FEH=∠ BFE( ▲ ), ∵ AB∥ CD,EH∥ AB,(辅助线的作法) ∴ EH∥ CD( ▲ ), ∴ ∠ HEG=180°-∠ CGE( ▲ ), ∴ ∠ FEG=∠ HFG+∠ FEH=▲ . (3)深入探究:如图 2,∠ BFE 的平分线 FQ 所在直线与∠ CGE 的平分线相交于点 P,试探 究∠ GPQ 与∠ GEF 之间的数量关系,请直接写出你的结论. 【答案】 (1)90° (2)解:∠ GEF=∠ BFE+180°−∠ CGE, 证明:过点 E 作 EH∥ AB,
(3)解:∠ GPQ+ ∠ GEF=90°, 理由是:如图 2,∵ FQ 平分∠ BFE,GP 平分∠ CGE,
∴ ∠ BFQ= ∠ BFE,∠ CGP= ∠ CGE, 在△ PMF 中,∠ GPQ=∠ GMF−∠ PFM=∠ CGP−∠ BFQ, ∴ ∠ GPQ+ ∠ GEF= ∠ CGE− ∠ BFE+ ∠ GEF= ×180°=90°. 即∠ GPQ+ ∠ GEF=90°. 【解析】【解答】(1)解:如图 1,过 E 作 EH∥ AB,
∵ ∴
∴
(2)解: 过点 G 作 ∴ ∵ ∴ ∴
∴
即
这三个角的度数和为一个定值,是 交 BE 于点 H
(3)解:过点 G 作 ∴ ∵ ∴ ∴
∴
即
交 BE 于点 H
故
的关系仍成立
(4)不成立| ∠ EGF-∠ DEC+∠ BFG=180° 【解析】【解答】解:(4)过点 G 作
∴ ∠ DEC=∠ EGH ∵ ∴ ∴ ∠ HGF+∠ BFG=180° ∵ ∠ HGF=∠ EGF-∠ EGH ∴ ∠ HGF=∠ EGF-∠ DEC ∴ ∠ EGF-∠ DEC+∠ BFG=180°
交 BE 于点 H
∴ (2)中的关系不成立,∠ EGF、∠ DEC、∠ BFG 之间关系为:∠ EGF-∠ DEC+∠ BFG=180°
故答案为:不成立,∠ EGF-∠ DEC+∠ BFG=180°
【分析】(1)根据两条直线平行,内错角相等,得出
;两条直线平行,
同位角相等,得出
,即可证明
.(2)过点 G 作
∠ GMF−∠ PFM=∠ CGP−∠ BFQ,计算∠ GPQ+ ∠ GEF 并结合②的结论可得结果.
3.如图(1),在△ ABC 和△ EDC 中,D 为△ ABC 边 AC 上一点,CA 平分∠ BCE,BC=CD, AC=CE.
(1)求证:△ ABC≌ △ EDC;
(2)如图(2),若∠ ACB=60°,连接 BE 交 AC 于 F,G 为边 CE 上一点,满足 CG=CF, 连接 DG 交 BE 于 H.
交 BE 于 点 H , 根 据 平 行 线 性 质 定 理 ,
,
,即可得到答案.(3)过点 G 作
源自文库
交 BE 于点 H,得到
,因为
,所以
,得到
,
即可求解.(4)过点 G 作
交 BE 于点 H,得∠ DEC=∠ EGH,因为
,推得∠ HGF+∠ BFG=180°,即可求解.
,所以
2. (1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥ CD,若∠ BFE=40°, ∠ CGE=130°,则∠ GEF 的度数为________;