同步电机励磁系统
第二章同步发电机励磁自动控制系统
接入系统容量越小,对发电机端电压的调节控制作用就越大,
通常在由一台发电机供电的小系统中,仅靠发电机的励磁控制 系统对发电机端电压的调节作用,就能满足系统对电压质量 的要求。
(二)控制无功功率的分配
(1)发电机无功功 率的控制原理
以同步发电机接于无穷大电力系统为例说 明发电机无功功率的控制原理。
IG
G
UG =Constant Eq
IP
UG
IQ
IG
PG UG IG cos constant
PG
EqU G Xd
sin
constant
IG cos constant Eq sin constant
发电机励磁电流的变化改变了机组 的无功功率和功率角的大小。
调节与无限大母线并联运行的机组的励磁 电流可以改变发电机无功功率的数值。
ILL
IEE EX =
IEF
G
IAVR
R ቤተ መጻሕፍቲ ባይዱE
励磁调节器
励磁机EX和发电机G同轴,靠剩 由于励磁机向它自己提供
磁建立电压。
励磁电流,故称为自励。
励磁机发出的电流,一部分(IEF) 送给发电机的励磁绕组;一部分 (IEE)经过磁场变阻器R送给励磁 机的励磁绕组。
自励:
R → IEE → UEF 励磁机→发电机
它的励磁电流控制由两种途径实现:
一是通过人工调节励磁机磁场电阻来改变励磁机的励磁电流 IEE,从而达到人工调整发电机励磁电流的目的,实现对发电 机励磁电流的手动调节。
二是通过自动励磁调节器对励磁机的励磁电流IAVR自动调节, 从而实现对发电机励磁电流的自动调节。
2 他励直流励磁机励磁系统
无刷励磁同步电机原理
无刷励磁同步电机原理一、工作原理无刷励磁同步电机是一种先进的电机,其工作原理主要基于磁场与电流的相互作用。
电机的转子上安装有励磁绕组,通过向励磁绕组提供直流电流来产生恒定的磁场。
定子绕组在气隙中产生旋转磁场,当电机转动时,转子上的永磁体产生的磁场与定子绕组产生的旋转磁场相互作用,产生转矩,驱动电机旋转。
二、励磁系统无刷励磁同步电机的励磁系统主要包括励磁电源和控制系统。
励磁电源负责提供直流电流,控制系统则负责控制励磁电流的大小和方向,以实现电机的正常运行和调速控制。
三、控制方式无刷励磁同步电机的控制方式主要包括开环控制和闭环控制。
开环控制基于电机的工作原理,通过改变励磁电流的大小和方向来控制电机的输出转矩和转速。
闭环控制则引入了反馈环节,通过比较实际转速与设定转速的差异,调整励磁电流的大小和方向,以达到更高的控制精度和稳定性。
四、运行特性无刷励磁同步电机具有高效、节能、高精度和高可靠性的特点。
由于其励磁系统采用直流电源,可以方便地进行调速控制,同时减小了电机内部的损耗和温升,提高了电机的效率。
此外,由于无刷励磁同步电机采用永磁体产生磁场,其结构简单、维护方便,且具有较高的动态响应性能。
五、优点与缺点优点:1.效率高:由于采用永磁体产生磁场,电机的损耗和温升较低,因此效率更高。
2.结构简单:电机结构简单、紧凑,维护方便。
3.调速性能好:通过调整励磁电流的大小和方向,可以实现电机的平滑调速。
4.可靠性高:电机具有较高的稳定性和可靠性,能够适应恶劣的工作环境。
5.高响应性能:具有较高的动态响应性能,能够快速响应控制信号的变化。
缺点:1.成本较高:由于采用永磁体等高成本材料,电机的制造成本较高。
2.弱磁场能力较低:对于较大的磁场变化和较大的转矩输出,无刷励磁同步电机的性能可能不如其他类型的电机。
同步电动机励磁原理
同步电动机励磁原理嘿,朋友们!今天咱来聊聊同步电动机励磁原理。
你想啊,同步电动机就好比是一辆超级跑车,而励磁系统呢,那就是让这跑车能风驰电掣的关键燃料!同步电动机要正常工作,励磁可太重要啦。
就好像人要有力气干活,得吃饱饭一样。
那励磁是怎么回事呢?简单来说,就是给电动机提供一个磁场。
这个磁场就像是给电动机注入了一股神奇的力量,让它能乖乖听话,按照我们的要求转起来。
你看啊,要是没有这个励磁,电动机就像没了方向的无头苍蝇,嗡嗡乱转可就是不往正道上跑。
而有了合适的励磁,它就能稳稳当当、高效快速地工作啦。
那励磁是怎么产生的呢?这就好比是变魔术一样神奇。
通过一些特殊的装置和电路,就能产生出这个关键的磁场来。
这就像是一个魔法师,轻轻挥动魔法棒,就出现了奇妙的景象。
而且啊,励磁的大小和方向还能调整呢,这多厉害呀!就像我们开车,可以根据路况随时调整油门和方向盘一样。
想要电动机转得快一点,就把励磁调大一点;想要它换个方向转,也能通过调整励磁来实现。
这不是很神奇吗?同步电动机的励磁原理其实并不复杂,只要我们用心去理解,就会发现它就像我们生活中的很多事情一样,有规律可循。
我们可以把它想象成是一场有趣的游戏,我们是游戏的玩家,通过掌握励磁的奥秘,让电动机成为我们手中的得力工具。
比如说,在工厂里,那些巨大的机器设备很多都是靠同步电动机来驱动的。
要是我们不懂励磁原理,那这些机器可就没法好好工作啦,那得耽误多少生产呀!所以说,了解这个原理真的很重要呢。
再想想,我们家里的很多电器,说不定也用到了同步电动机呢。
要是我们能明白励磁原理,那在使用这些电器的时候,是不是会觉得更有意思呀?总之呢,同步电动机励磁原理虽然听起来有点专业,但只要我们用一颗好奇的心去探索,就会发现它其实很有趣,也很实用。
它就像是一把打开电动机世界大门的钥匙,让我们能更好地理解和利用这些神奇的机器。
所以呀,大家可别小瞧了它哟!。
同步发电机励磁控制系统
预测控制是一种基于模型的控制方法,能够根据系统的历史数据和当前状态预测 未来的行为,实现更精确的控制。
环保与节能要求对励磁控制系统的影响
能效要求
随着能源危机和环保意识的提高,励磁控制系统需要更加注重能效,采用更高效的电机 和节能控制策略,降低能源消耗和排放。
排放要求
励磁控制系统需要符合更严格的排放标准,采用环保型的电机和控制策略,减少对环境 的污染。
转子过电流保护装置
作用
转子过电流保护装置用于监测同 步发电机转子电流,当出现异常 过电流时,及时切断励磁电流, 防止转子烧毁。
工作原理
转子过电流保护装置通过电流传 感器实时监测转子电流,当检测 到过电流时,触发保护动作,快 速切断励磁电流。
组成
转子过电流保护装置由电流传感 器、比较电路和开关器件等部分 组成,各部分协同工作实现转子 过电流保护功能。
根据励磁调节器的控制指令,输出励 磁电流给发电机励磁绕组。
励磁控制系统的功能
电压控制
通过调节励磁电流,维 持发电机端电压在给定
水平。
无功功率调节
根据系统无功需求,调 节励磁电流以改变发电
机无功功率的输出。
增磁与减磁
通过增加或减少励磁电 流来改变发电机的输出
电压。
保护功能
在异常情况下,自动采 取措施保护发电机和励
THANKS
谢谢
Байду номын сангаас
磁系统。
02
CHAPTER
励磁控制系统的主要设备
励磁调节器
作用
励磁调节器是励磁控制系统的核 心,用于调节同步发电机的励磁 电流,以控制机组的无功输出和
电压水平。
工作原理
励磁调节器通过采集发电机电压、 电流等信号,经过运算处理后,输 出控制信号给功率整流器,以调节 励磁电流。
同步电机励磁系统原理
同步电机励磁系统原理同步电机励磁系统的原理主要是通过给同步电机的电磁绕组提供直流电源来产生磁场,以实现电机的励磁。
同步电机是一种在运行时需要外加磁场的电机,只有当电磁铁绕组中通以直流电时,才能产生磁通,从而使电机能够正常运行。
同步电机励磁系统的工作原理就是在电机转子与励磁系统之间建立一个稳定的磁场以使电机能够运转。
同步电机励磁系统主要包括直流电源、可调整电压源和励磁绕组。
直流电源一般采用整流器将交流电转换为直流电,以提供给励磁绕组。
可调整电压源用于控制励磁系统的磁场大小,从而实现对同步电机的转矩和速度的调控。
励磁绕组是同步电机中的一个特殊绕组,它通常由绝缘线圈组成,绕制在电机的转子上。
当励磁绕组通以电流时,将产生一个旋转的磁场,与电机的转子磁场相互作用,形成一个力矩,在电机上产生运动。
在同步电机励磁系统中,励磁绕组产生的磁场与转子磁场的相互作用决定了电机的转矩和速度。
当励磁磁场与转子磁场同向时,电机产生正转矩。
当励磁磁场与转子磁场反向时,电机产生反转矩。
同时,通过调整励磁绕组的电流或电压,可以控制励磁系统的磁场大小,进而调控电机的转矩和速度。
通常,同步电机励磁系统的控制方法有恒定励磁方法和可调励磁方法。
恒定励磁方法是指在电机运行时,励磁绕组的电流或电压保持不变,以维持一个恒定的励磁磁场。
可调励磁方法是指根据实际需要,通过调整励磁绕组的电流或电压,来改变励磁磁场的大小,以实现对电机的转矩和速度进行调节。
总之,同步电机励磁系统的原理是通过给励磁绕组提供直流电源,产生一个稳定的磁场来实现电机的励磁。
励磁绕组产生的磁场与转子磁场相互作用决定了电机的转矩和速度。
通过调节励磁绕组的电流或电压,可以控制励磁系统的磁场大小,从而调节电机的转矩和速度。
励磁系统的控制方法有恒定励磁和可调励磁两种方法。
同步电机励磁系统在实际应用中,能够满足各种工况要求,实现电机的稳定运行。
同步发电机励磁系统分类
同步发电机励磁系统分类
同步发电机励磁系统根据其工作原理和结构特点可分为以下几种类型:
1. 静止励磁系统
- 直流励磁系统
- 交流励磁系统
2. 旋转励磁系统
- 直流励磁系统
- 交流励磁系统
3. 无刷励磁系统
- 静止无刷励磁系统
- 旋转无刷励磁系统
静止励磁系统是最传统的励磁方式,其中直流励磁系统使用直流电机或硅整流器作为励磁电源,而交流励磁系统则使用变压器或旋转变流器作为励磁电源。
旋转励磁系统将励磁绕组安装在同步发电机的转子上,与主绕组一同旋转。
直流旋转励磁系统通常使用小型直流发电机作为励磁电源,而交流旋转励磁系统则采用旋转整流器。
无刷励磁系统是近年来发展起来的一种新型励磁方式,它利用功率半
导体器件代替传统的滑环和电刷,可以避免滑环和电刷带来的维护问题。
静止无刷励磁系统将半导体整流器安装在定子上,而旋转无刷励磁系统则将其安装在转子上。
不同的励磁系统各有优缺点,在实际应用中需要根据发电机的型号、容量和运行条件等因素来选择合适的励磁方式。
同步发电机励磁系统
同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。
励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。
本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。
一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。
励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。
在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。
当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。
这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。
二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。
在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。
电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。
直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。
2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。
恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。
该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。
恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。
3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。
智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。
智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。
三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。
同步发电机励磁系统原理
同步发电机励磁系统一. 概述1-1 励磁系统的作用励磁系统是同步发电机的重要组成部分,是给发电机提供转子直流励磁电流的一种自动装置,在发电机系统中它主要有两个作用:1)电压控制及无功负荷分配。
在发电机正常运行情况下,自动励磁调节器应能够调节和维持发电机的机端电压(或升压变压器高压侧的母线电压)在给定水平,根据发电机的实际能力,在并网的发电机之间合理分配无功负荷。
2)提高同步发电机并列运行的稳定性;提高电力系统静态稳定和动态稳定极限。
电力系统在运行中随时可能受到各种各样的干扰,引起电力系统的波动,甚至破坏系统的稳定。
自动励磁调节器应能够在电力系统受到干扰时提供合适的励磁调节,使电力系统建立新的平衡和稳定状态,使电力系统的静态及动态稳定极限得到提高。
1-2 励磁系统的构成励磁系统主要由以下部分构成:1)功率部分:它由功率电源(励磁机或静止整流变压器提供)、功率整流装置(采用直流励磁机的励磁系统无整流装置)组成,是励磁系统向发电机转子提供励磁电流的主要部分。
功率部分的性质决定着励磁系统主接线的型式及使用的主要设备的类型。
如:采用直流励磁机的励磁系统不可能使用静止功率整流装置。
又如:采用静止它励型式的励磁系统不可能还有直流励磁机。
还如:使用静止励磁变压器的励磁系统必然采用静止整流功率装置。
2)自动励磁调节器:自动励磁调节器是励磁系统中的智能装置。
励磁装置对发电机电压及无功功率的控制、调节是自动励磁调节器的基本功能。
自动励磁调节器性能的好坏,决定着整个励磁系统性能的优劣。
但它只能通过控制功率部分才能发挥其作用。
现代同步电机励磁系统的两大部分是不可分离的,相互依存又相互制约,但他们又是各自独立发展的。
因此,有好的调节器未必一定有好的功率整流装置,而有了好的整流装置也未必一定有好的自动励磁调节器。
历史上出现过许多次励磁主要装置不配套的情况,他主要反映在某些新设备或新器件出现的时候。
旧式励磁系统的功率部分一般是直流励磁机,当生产出功率整流二极管(早期为汞弧整流器)以后,直流励磁机被交流励磁机取代,而生产出大功率整流二极管及大功率可控硅以后,交流励磁机又被静止励磁变压器所取代,这是历史发展的必然。
《同步电机励磁控制》课件
功率整流器
将交流电源转换为直流电源,为同步 电机提供励磁电流。
同步电机励磁控制的软件实现
控制算法
根据电机运行状态和输入信号,通过控制算法计算出励磁电流的 调节量,实现对同步电机励磁电流的精确控制。
数字信号处理器(DSP)
利用高速运算能力,实现对控制算法的实时处理和输出控制信号。
人机界面
提供操作界面,方便用户对同步电机励磁控制系统的参数进行设置 和监控。
反馈元件检测同步电机转子励 磁电流和电压,并将其反馈到 励磁调节器,以实现闭环控制 。
同步电机励磁控制系统的分类
按控制方式分类
可以分为模拟式和数字式两种类型。模拟式励磁控制系统采用模拟电路实现控 制,而数字式励磁控制系统采用数字信号处理器(DSP)或可编程控制器( PLC)实现控制。
按调节器主电路形式分类
在风力发电系统中的应用
提高风能利用率
励磁控制能够调节风力发电机的 无功功率输出,从而提高风能的
利用率。
减小谐波影响
励磁控制能够减小风力发电机产生 的谐波电流,提高电能质量。
增强并网能力
通过励磁控制,可以增强风力发电 机的并网能力,提高风电场的运行 稳定性。
在船舶推进系统中的应用
提高推进效率
励磁控制能够调节船舶推进电机 的功率输出,从而提高推进效率
模糊控制
将模糊逻辑应用于励磁控制,处理不确定性和非线性问题。
智能传感器与执行器的应用
智能传感器
采用高精度、高可靠性的传感器 ,实时监测励磁电流和电压,提 高控制精度。
智能执行器
采用电力电子技术和微处理器, 实现快速、准确的励磁电流调节 。
网络化与分布式励磁控制
网络化控制
通过工业以太网或现场总线技术,实 现多台电机之间的信息共享和协同控 制。
同步发电机励磁自动控制系统
同步发电机励磁自动控制系统在现代电力系统中,同步发电机励磁自动控制系统扮演着至关重要的角色。
它如同电力生产的“智慧大脑”,时刻精准调控着发电机的运行状态,确保电力的稳定供应和优质输出。
要理解同步发电机励磁自动控制系统,首先得明白励磁是什么。
简单来说,励磁就是给同步发电机的转子提供直流电流,从而在转子周围产生磁场。
这个磁场与定子绕组相互作用,就能产生电能。
而励磁自动控制系统呢,就是能够根据电力系统的运行状况和需求,自动调整这个励磁电流的大小和方向,从而实现对发电机输出电压、无功功率等重要参数的控制。
那么,为什么需要这样一个自动控制系统呢?这是因为电力系统的运行状态是时刻变化的。
比如,当系统中的负载突然增加时,如果不及时调整励磁电流,发电机的输出电压就会下降,可能导致电力质量下降,甚至影响到用电设备的正常运行。
反之,当负载突然减少时,若不加以控制,输出电压又会升高,可能损坏设备。
同步发电机励磁自动控制系统主要由励磁功率单元和励磁调节器两大部分组成。
励磁功率单元负责向发电机转子提供直流励磁电流,它就像是“动力源”,要保证有足够的能量和稳定的输出。
而励磁调节器则是整个系统的“指挥中心”,通过采集发电机的各种运行参数,如端电压、定子电流、无功功率等,然后按照预定的控制规律进行计算和分析,最终输出控制信号来调节励磁功率单元的输出。
在实际运行中,励磁自动控制系统有着多种控制方式。
其中,恒机端电压控制是最为常见的一种。
它的目标是保持发电机端电压恒定,无论系统中的负载如何变化。
通过不断监测端电压,并与设定的电压值进行比较,然后调整励磁电流,从而使端电压始终稳定在设定值附近。
这种控制方式能够有效地保证电力质量,满足用户对电压稳定性的要求。
另一种常见的控制方式是恒无功功率控制。
在某些情况下,电力系统需要发电机输出特定的无功功率,以维持系统的电压水平和功率因数。
此时,励磁自动控制系统就会根据无功功率的设定值来调整励磁电流,确保发电机输出的无功功率符合要求。
同步发电机励磁系统
(1) 自励直流励磁机励磁系统
励磁机EX和发电机G同轴,靠剩 磁建立电压。
励磁机发出的电流,一部分(IEF) 送给发电机的励磁绕组;一部分 (IEE)经过磁场变阻器RC送给励磁 机的励磁绕组。
由于励磁机向它自己提供励磁电流,故称为自励。
I I I LL
AVR
EE IILELE——励励磁磁机机的提励供磁的电励流磁机I流的AV励R—磁自电动流励磁调节器输出的电
自动励磁调节器通过调节晶闸管的控制角改变交流励磁机的励 磁电流,来控制发电机励磁电流。
主励磁机的频率 为 100Hz,副励 磁机的频率一般为 500Hz,以组成 快速响应的励磁系 统。
励磁系统的整流电路
整流电路
三相桥式 不可控
三相桥式 半控
三相桥式 全控
励磁调节装置原理
图为600MW发电机自并励励磁系统
它的励磁电流控制由两种途径实现:
一是通过人工调节励磁机磁场电阻来改变励磁机的励磁电流IEE,从 而达到人工调整发电机励磁电流的目的,实现对发电机励磁电流的 手动调节。
二是通过自动励磁调节器对励磁机的励磁电流IAVR自动调节,从而 实现对发电机励磁电流的自动调节。
(2) 他励直流励磁机励磁系统
它与图5.10 (a)的不同之 处在于直流励磁机的励磁 电流是由另一台与发电机 同轴的副励磁机供给,故 K I
LL
EE
Z AVR
IEE—副励磁机提供的励磁电流 K—折算系数,将IAVR折算到IEE所流过的绕 组中去输出的电流
自励直流励磁机中,IEE的增加促使励磁机电压UEF增加,而IEE的增 加又依靠UEE的增加。IEE和UEE的这种关系使得励磁机的励磁时间 常数增大了。
而它励直流励磁机则不然,它没有IEE和UEE的相互依赖关系,励磁 时间常数只决定于励磁绕组的结构和参数。所以它励直流励磁机
第6讲同步发电机励磁系统
根据输入信号和给定的调节 准则控制励磁功率单元的输出
励磁 功率单元
G
发电机
电力系统
励磁调节器
输入信息
图3-1 励磁自动控制系统构成框图
整个励磁自动控制系统是由励磁调节器、励磁功率单 元和发电机构成了反馈控制系统。
第二节 同步发电机励磁系统
同步发电机的励磁电源实质上是一个可控的直流 电源。必须具备足够的调节容量,并且要有一定的
page16
(一)他励型—交流励磁机旋转整流器励磁系统(无刷励磁)
由于整流器和发电机转子是相对静止的,所以不需要由滑环和炭刷将整 流器的输出和转子绕组连接起来,可直接连接,简化了运行维护,可靠性 提高,无碳粉污染,电机寿命长,适用于大机组。 由于相对静止,因此这种系统又称为无刷励磁。
page17
进行控制,所以时间常数小,快速性好;
可控硅整流器控制的电流大,需要的可控整流设备容量大。 晶闸管励磁的励磁机容量要比硅整流励磁的大得多。
page21
(二)自励型—交流励磁机静止整流器励磁系统
发电机G的励磁电流由交流励磁机AE经硅整流装置V供给
电子型励磁调节器控制晶闸管整流装置VS,以达到调节发电机励磁的目的 与图2-17励磁方式相比其响应速度较慢,增加了交流励磁机自励回路环节 交流励磁机自并励方式使励磁系统结构大为简化,是汽轮发电机常用的励磁 方式
page13
(一)他励型—交流励磁机静止整流器励磁系统
对该系统的评价:
①由于取消了直流励磁机,不存在换向问题,而交流励磁机的容量可以 做得很大,所以这种励磁系统的励磁容量不受限制 ②交流励磁机的时间常数较大,为了提高励磁系统的响应速度,励磁机 转子采用叠片结构,以减小其时间常数和因整流器换相引起的涡流损耗, 频率采用100Hz或150Hz 。
同步发电机励磁系统介绍
智能控制技术的应用
要点一
智能控制算法
随着智能控制算法的发展,如模糊控制、神经网络等,励 磁系统的智能化水平得到了显著提升。这些算法可以对励 磁系统进行自适应控制,自动调整励磁电流的参数,提高 发电机的运行效率和稳定性。
要点二
应用优势
智能控制技术的应用,使得励磁系统的自适应能力和鲁棒 性得到了增强。同时,通过智能控制算法,可以实现对励 磁系统的优化控制,降低发电机的运行成本和维护成本。
系统的寿命也得到了延长。
数字化控制技术的应用
数字化控制器
随着数字信号处理器(DSP)和可编程逻辑控制器(PLC)等数字化控制技术的发, 励磁系统的控制精度和响应速度得到了显著提升。数字化控制器可以对励磁电流进行快
速、准确的调节,提高发电机的动态性能和稳定性。
应用优势
数字化控制技术的应用,使得励磁系统的控制策略更加灵活和智能化。通过数字化控制 器,可以实现对励磁系统的远程监控和故障诊断,提高励磁系统的可靠性和可维护性。
高性能永磁材料的应用
永磁材料
随着高性能永磁材料的出现,如稀土永磁材 料,励磁系统的性能得到了显著提升。这些 材料具有高磁能积和矫顽力,可以替代传统 的电磁铁,减小励磁系统的体积和重量,提 高励磁系统的效率和可靠性。
应用优势
高性能永磁材料的应用,使得励磁系统在小 型化和高效化方面取得了重要突破。同时, 由于永磁材料的耐腐蚀和抗氧化性能,励磁
励磁系统的组成
励磁电源
提供励磁电流的电源设备,通常为直流电源 或交流电源。
励磁线圈
安装在发电机转子上的线圈,用于产生励磁 磁场。
励磁控制器
用于控制励磁电流的调节器,根据发电机运 行状态和电网需求进行自动调节。
同步电机励磁系统原理
同步电机励磁系统原理
同步电机励磁系统原理主要包括静态励磁和动态励磁两种方式。
静态励磁是通过直接将励磁电压加在同步电机的定子上,使电机产生励磁磁场。
这种方式通常使用直流电源来提供励磁电压,通过调节直流电压的大小和方向可以改变同步电机的励磁磁场大小和方向。
动态励磁是通过外部励磁设备产生励磁磁场,通过变压器等设备将励磁电源的交流电压转换为同步电机所需的励磁电压。
这种方式通常使用交流电源来提供励磁电压,通过调节交流电压的大小和频率可以改变同步电机的励磁磁场大小和方向。
在实际应用中,一般采用动态励磁方式来实现对同步电机的励磁控制。
励磁系统的主要功能是使同步电机的励磁磁场与电网电压的频率和相位保持同步,从而实现同步发电和同步运行的要求。
励磁系统通常由电源、励磁变压器、励磁装置和励磁控制器等组成。
励磁系统的工作原理是通过励磁控制器对励磁电源进行控制,从而控制励磁磁场的大小和方向。
励磁控制器根据同步电机的运行状态和电网的要求,调节励磁电源的电压和频率,使励磁磁场与电网电压同步,并保持合适的大小,以实现同步运行。
总之,同步电机励磁系统通过静态励磁或动态励磁的方式,通过对励磁电源进行控制,使同步电机的励磁磁场与电网电压同
步,并保持合适的大小和方向,以实现同步发电和同步运行的要求。
同步发电机励磁系统
• 他励与自励的区别在与励磁机的励磁方式不同,他励比自 励多用了一台励磁机。由于他励方式取消了励磁机的自并 励,励磁单元的时间减小,既提高了励磁系统的电压增长 速率。
• 直流励磁机有电刷、整流子等转动接触部件,运行维护繁 杂,励磁容量有限,只用在n=3000转/分的中小型容量机 组。
• 交流励磁机励磁系统根据励磁机电源的不同分为: • (一)他励交流励磁机励磁系统 • (二)自励交流励磁机励磁系统 • 交流励磁机励磁系统按整磁系统
• (一)他励交流励磁机励磁系统 • 1、交流励磁机静止整流器励磁系统
2、交流励磁机旋转整流器励磁系统(无刷励磁)
• 发电机G的励磁电流由交流励磁机AE经晶闸管整流装置 VS供给。
• 交流励磁机的励磁采用晶闸管自励恒压方式。
• 励磁调节器AVR直接控制晶闸管整流装置,其时间常数 小.但本励磁方式的励磁容量比硅整流励磁的大的多.
• 1、自励直流励磁机励磁系统
• 同步发电机G励磁绕组GLE电流由同轴的直流励磁机GE供给。 • 励磁机的励磁电流由可变电阻R供给的自励电流和励磁调节器AER供给
的励磁调节电流供给。即 I R I AVR
• 2、他励直流励磁机励磁系统 • 主励磁机DE的励磁电流I EE 是副励磁机PE提供的电流I RC和
• 励磁自动控制系统是由与主机同轴的交流励磁机、中频副励磁机和励 磁调节器组成。
• 发电机G的励磁电流由频率为100Hz的交流励磁机AE经硅整流器V供 给,交流励磁机的励磁电流由晶闸管可控整流器供给,晶闸管电源由 副励磁机提供。副励磁机是自励式中频交流发电机,用自励恒压调节 器保持其端电压恒定。由于副励磁机的启励电压较高,不能像直流励 磁机那样能依靠剩磁启励,所以在机组启动时必须外加启励电源,直 到副励磁机输出电压足以使自励恒压调节器正常工作时,启励电源方 可退出。在此励磁系统中,励磁调节器控制晶闸管元件的控制角,来 改变交流励磁机的励磁电流,达到控制发电机励磁的目的。
同步发电机励磁系统介绍
同步发电机励磁系统分类介绍1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。
励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。
发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。
电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。
2直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。
其中直流发电机称为直流励磁机。
直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。
直流励磁机励磁系统又可分为自励式和它励式。
自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。
采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。
目前大多数中小型同步发电机仍采用这种励磁系统。
长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。
缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。
近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。
因此,直流励磁机励磁系统愈来愈不能满足要求。
目前,在100MW及以上发电机上很少采用。
3半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。
同步发电机励磁系统介绍
可控硅整流桥采用相控方式。 对三相全控桥,当负载为感性负载时,控 制角在0o~90o之间为整流状态(产生正向电 压与正向电流);控制角在90o~150o(理论 上控制角可以达到180o考虑到实际存在换流重 叠角,以及触发脉冲有一定的宽度,所以一般 最大控制角取150o)之间为逆流状态(产生负 向电压与正向电流)。 因此当发电机负载发生变化时,通过改变 可控硅的控制角来调整励磁电流的大小,
这种励磁方式整个系统没有任何转动接触 元件。其原理图见图1-9。
FLQ ACL F CT
PT PMG kz 自动励磁 调节器
无刷励磁系统中,主励磁机(ACL)电枢 是旋转的,它发出的三相交流电经旋转的二极 管整流桥整流后直接送发电机转子回路。由于 主励磁机电枢及其硅整流器与主发电机转子都 在同一根轴上旋转,所以它们之间不需要任何 滑环及电刷等转动接触元件。无刷励磁系统中 的副励磁机(PMG)是一个永磁式中频发电 机,它与发电机同轴旋转。主励磁机的磁场绕 组是静止的,即它是一个磁极静止、电枢旋转 的交流发电机。
励磁变压器
励磁变压器为励磁系统提供励磁能源。对 于自并激励磁系统的励磁变压器,通常不设自 动开关。高压侧可加装高压熔断器,也可不加。 励磁变压器可设置过电流保护、温度保护。 容量较大的油浸励磁变压器还设置瓦斯保护。 大多小容量励磁变压器一般自己不设保护。变 压器高压侧接线必须包括在发电机的差动保护 范围之内。励磁变压器的联接组别,通常采用 Y/△组别,Y/Y—12组别通常不用。与普通配 电变压器一样,励磁变压器的短路压降为 4%~8%。
1.2励磁系统构成
它分为励磁功率单元和励磁调节器两 个主要部分: 1.励磁功率单元向同步发电机转子提供 励磁电流; 2.励磁调节器则根据输入信号和给定的 调节准则控制励磁功率单元的输出。
同步电机的工作原理
同步电机的工作原理同步电机是一种常见的电动机类型,其工作原理是基于电磁感应和磁场相互作用的原理。
同步电机主要由定子、转子和励磁系统组成。
1. 定子:同步电机的定子是由三相绕组组成的,通常为星型连接或三角形连接。
定子绕组通过三相交流电源供电,产生旋转磁场。
2. 转子:同步电机的转子是由磁极和磁铁组成的。
磁极通常由硅钢片制成,用于集中磁场,并提供磁通路径。
磁铁则用于产生磁场。
3. 励磁系统:同步电机的励磁系统用于激励转子产生磁场。
励磁系统可以是直流励磁或交流励磁。
直流励磁通过直流电源提供电流,产生恒定的磁场。
交流励磁通过交流电源提供电流,产生可调节的磁场。
当同步电机通电后,定子绕组中的电流产生旋转磁场,该磁场与转子的磁场相互作用,使转子跟随旋转磁场进行同步旋转。
转子的磁场由励磁系统提供,其频率与定子电流的频率相同。
同步电机的工作原理可以通过以下步骤来描述:1. 三相交流电源将电流供给定子绕组,产生旋转磁场。
2. 励磁系统提供磁场,使转子与旋转磁场相互作用。
3. 转子受到旋转磁场的作用,跟随旋转磁场进行同步旋转。
4. 转子的旋转产生机械功,将电能转化为机械能。
5. 同步电机通过轴承和机械传动装置将机械功传递给负载。
同步电机具有以下特点:1. 同步性:同步电机的转速与供电频率成正比,称为同步速度。
当同步电机的负载变化时,转速会保持不变。
2. 高效性:同步电机的效率通常较高,特别适用于大功率应用。
3. 稳定性:同步电机的转速稳定,不受负载变化的影响。
4. 同步电机的起动需要外部助力,如起动电机或其他起动装置。
同步电机广泛应用于工业领域,如电力系统、压缩机、泵和风力发电等。
其高效性和稳定性使其成为许多应用的首选电动机类型。
总结:同步电机的工作原理是基于电磁感应和磁场相互作用的原理。
通过定子绕组产生旋转磁场,与转子的磁场相互作用,使转子跟随旋转磁场进行同步旋转。
同步电机具有同步性、高效性和稳定性等特点,在工业领域有广泛的应用。
同步发电机励磁控制系统的基本工作原理
同步发电机励磁控制系统的基本工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!同步发电机励磁系统是发电机运行中的重要部分,它的基本工作原理可以分为以下几个方面:一、励磁系统的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步电机励磁系统Excitation system for synchronous electricalmachines-Definitions GB/T 7409.11997本标准是对GB 7409—87的修订。
GB 7409—87执行七年来,技术已有新的发展,其中有些内容IEC已制定了国际标准。
为适应技术发展的要求和贯彻积极采用国际标准的精神,原标准需作修订。
为便于采用IEC标准和今后增补、修订标准的方便,经技术委员会研究,将GB 7409改编为系列标准:修订后的GB 7409.1等同采用IEC 34-16-1:1991;GB 7409.2等同采用IEC 34-16-2:1991,至于GB 7409.3,由于IEC目前还没有相应的标准,此部分是根据GB 7409执行七年的情况并参考了美国IEEE std 421.1—1986、421.A—1978、421.B—1979和原苏联ГОСТ21558—88等标准编写的。
本标准定义的同步旋转电机的励磁系统术语为一般通用的术语。
同步电机励磁系统所有各分标准在使用同步电机励磁系统技术名词和术语时均符合本标准之规定。
其他未包括的术语,应在同步电机励磁系统各分标准中作补充规定。
本标准由全国旋转电机标准化技术委员会汽轮发电机分技术委员会提出并归口。
本标准负责起草单位:哈尔滨大电机研究所。
主要起草人:忽树岳。
IEC1)IEC(国际电工委员会)是由所有国家的电工技术委员会(IEC国家委员会)组成的世界范围内的标准化组织。
IEC的目的是促进电工和电子领域内所有有关标准化问题的国际间的合作。
为此目的和除其他活动之外,IEC出版国际标准。
这些标准是委托各个技术委员会制定的;对所讨论的主题感兴趣的任何一个国家委员会都可以参加起草工作,与IEC有联系的国际的,政府的和非政府的组织也可以参加起草工作。
IEC和ISO(国际标准化组织)按两大组织之间共同确定的条件紧密合作。
2)IEC关于技术问题的正式决议或协议是由代表各国家委员会专门利益的技术委员会所制定的,这些决议或协议都尽可能充分地表达了国际上所涉及的问题的一致意见。
3)这些决议或协议均以标准、技术报告或导则的形式出版且以推荐的形式供国际上使用,并在此意义上为各国家委员会所承认。
4)为了促进国际上的统一,IEC各国家委员会应尽最大可能在各自的国家和地区标准中明确地采用IEC国际标准,并应清楚地指明IEC标准与对应的本国或本地区标准之间的某些分歧。
5)IEC对任何申明符合其某些标准的设备不提供表明它已被认可的标记过程,并且也不对其负责。
IEC本标准由No.2旋转电机技术委员会制定。
本标准的原文以下述文件为根据六月法表决报告2(CO)5322(CO)547本标准形成了有关旋转电机系列出版物的第16部分第1章,其他各部分是:第1部分定额与性能,出版编号:IEC 34-1第2部分确定旋转电机损耗与效率的试验方法(牵引电机除外),出版编号:IEC 34-2第3部分涡轮型同步电机特殊要求,出版编号:IEC 34-3第4部分根据试验确定同步电机参数的方法,出版编号:IEC 34-4第5部分旋转电机外壳防护等级,出版编号:IEC 34-5第6部分旋转电机冷却方法,出版编号:IEC 34-6第7部分旋转电机的结构和安装形式分类,出版编号:IEC 34-7第8部分旋转电机的线端标记和旋转方向,出版编号:IEC 34-8第9部分噪声限值,出版编号:IEC 34-9第10部分描述同步电机的通则,出版编号:IEC 34-10第11部分装入式热保护,第1章旋转电机的保护规则。
出版编号:IEC 34-11第11-2部分装入式热保护第2章热保护系统用的热探测器和控制元件,出版编号:IEC 34-11-2第11-3部分装入式热保护第3章热保护系统用的热探测器的通则,出版编号:IEC 34-11-3第12部分电压660V及以下的单速、三相鼠笼形感应电动机的起动特性,出版编号:IEC 34-12第13部分矿用辅助电动机的技术条件,出版编号:IEC 34-13第14部分中心高56mm及以上的电机的机械振动——振动强度的测量、评定和限值,出版号:IEC 34-14第15部分带有成型定子线圈的交流电机的耐冲击电压水平,出版编号:IEC 34-15第16-2部分同步电机励磁系统第2章电力系统研究用模型,出版号:IEC 34-16-2GB/T7409.11997Excitation system for synchronous electricalmachinesDefinitions1997-04-10 1998-04-011 范围本标准的定义、术语适用于同步旋转电机的励磁系统。
2 总则2.1 励磁系统 excitation system提供电机磁场电流的装置,包括所有调节与控制元件,还有磁场放电或灭磁装置以及保护装置。
2.2 励磁机 exciter提供同步电机磁场电流的功率电源。
注:电源的举例,如:——一台旋转电机,它既可以是直流电机,也可以是交流电机以及与之联结的整流器。
——一台或几台变压器以及与之联结的整流器。
2.3 励磁控制 excitation control响应于包括同步电机、它的励磁机以及与之联结的电网在内的系统状态的信号特性,从而改变励磁功率的控制。
注:同步电机电压是主要被调量。
2.4 磁场绕组端部 field winding terminals电机磁场绕组的输入部位。
注1 假如有电刷与滑环,这些都算作磁场绕组的一部分。
2 对无刷电机,旋转整流器与电机磁场绕组的引线之间的连接点是磁场绕组端部。
2.5 励磁系统输出端部 excitation system output terminals含有励磁系统装置的输出的部位,这些端部可以与磁场绕组端部部位不同。
2.6 额定磁场电流 Irated field current I fNfN电机运行在额定电压、电流、功率因数与转速下,其磁场绕组中的直流电流。
2.7 额定磁场电压 U rated field voltage U fNfN在磁场绕组上产生额定磁场电流所需要的电机磁场绕组端部的直流电压。
这时磁场绕组的温度应是在额定负载与额定运行条件下,以及它具有在最高温度时所需要的起码的冷却介质条件下的温度。
注:假如电机有一个周期负载,使磁场绕组温度不能达到稳定,那么U应是在周期负fN载中达到的磁场绕组最高温度条件下的电压。
2.8 空载磁场电流 I no-load field current I f0f0和气隙线磁场电流I的确定 f0fg图 1 空载磁场电流I电机在空载与额定转速下产生额定电压所需要的电机磁场绕组中的电流(见图1)。
2.9 空载磁场电压 U no-load field voltage U f0f0当磁场绕组温度为25?时,产生空载磁场电流所需要的在电机磁场绕组端部的直流电压。
2.10 气隙磁场电流 I air-gap field current I fgfg在空载气隙线上产生额定电压理论上所需要的同步电机磁场绕组中的电流(见图1)。
注:当用计算机表述励磁系统模型时,气隙磁场电流是一个基本量。
2.11 气隙磁场电压 U air-gap field voltage U fgfg当磁场绕组电阻等于U/I时,产生气隙磁场电流所需要的同步电机磁场绕组端部的fNfN直流电压。
注:当用计算机表述励磁系统模型时,气隙磁场电压是一个基本量。
2.12 励磁系统额定电流 I excitation system rated current I ENEN在确定的运行条件下,考虑到电机大多数的励磁要求(通常根据电机的电压与频率偏差),励磁系统能够提供的在其输出端的直流电流。
2.13 励磁系统额定电压 U excitation system rated voltage U ENEN在确定的运行条件下,励磁系统给出额定电流时,励磁系统能够提供的在其输出端部的直流电压。
这个电压起码要满足电机的大多数励磁要求(通常根据电机的电压与频率偏差)。
2.14 励磁系统顶值电流 I excitation system ceiling current I pp在规定时间内,励磁系统从它的端部能够提供的最大直流电流。
2.15 励磁系统顶值电压 U excitation system ceiling voltage U pp在确定的条件下,励磁系统从它的端部所能提供的最大直流电压。
注1 对于从电机的电压和电流(假如有取得电源的励磁系统),电力系统扰动的性质与励磁系统和同步电机的特定设计参数将影响励磁系统的输出。
对这样的系统,顶值电压的确定要考虑适当的电压降及电流(假如有)的增长。
excitation system no-load ceiling voltage U p0p0 2 对于使用旋转励磁机的系统,顶值电压在额定转速下确定。
空载时,励磁系统从它的端部可能提供的最大直流电压。
2.16 励磁系统空载顶值电压 U图 2 励磁系统标称响应V的确定 E2.17 励磁系统负载顶值电压 U excitation system on-load ceiling voltage U PLPL当提供励磁系统顶值电流时,从励磁系统端部可能提供的最大直流电压。
2.18 励磁系统标称响应 V excitation system nominal response V EE由励磁系统电压响应曲线确定的励磁系统输出电压的增量除以额定磁场电压(见图2)。
这个比率,假定保持恒定,所扩展的电压时间面积,与在第一个半秒钟时间间隔内得到的实际曲线面积相等(如果有特别规定,也可用不同的时间间隔)。
,U,1E VSEU0.5fN注1 在励磁系统带有电阻等于U/I及足够的电感负载下,确定励磁系统标称响应,fNfN要适当地考虑电压降的影响及电流与电压波形。
2 励磁系统标称响应是这样确定的,开始励磁系统电压等于同步电机的额定磁场电压。
然后,输入一个特定的电压偏差阶跃,使得很快获得励磁系统顶值电压。
3 对于从同步电机电压和电流(假如有)取得电源的励磁系统,电力系统扰动性质与同步电机及励磁系统特定设计参数影响励磁系统输出,对这种系统,确定励磁系统标称响应要考虑到适当的电压降落与电流(假如有)的增长。
4 对于使用旋转励磁机的励磁系统,在额定转速下确定励磁系统的标称响应。
3 励磁机种类3.1 旋转励磁机 rotating exciter一台从轴上取得机械功率的旋转电机,该转轴可由同步电机或其他机械拖动。
3.1.1 直流励磁机 D.C.exciter一台使用换向器与电刷提供直流电流的旋转励磁机。
3.1.2 交流励磁机 A.C.exciter一台使用整流器提供直流电流的旋转励磁机。