八年级上学期数学期中考试试卷及答案
人教版八年级上册数学期中考试试卷带答案
人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
人教版八年级上册数学期中考试试卷含答案
人教版八年级上册数学期中考试试题一、单选题1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A .B .C .D .2.下面各组线段中,能组成三角形的是()A .6,9,14B .8,8,16C .10,5,4D .5,11,63.一个多边形的每个内角均为135°,则这个多边形是()A .五边形B .六边形C .七边形D .八边形4.如图,ABC 中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120∠=︒BEC ;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有()A .①②B .①③C .②③D .①②③5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A .①B .②C .③D .①和②6.如图,在 ACE 中,点D 在AC 边上,点B 在CE 延长线上,连接BD ,若∠A =47°,∠B =55°,∠C =43°,则∠DFE 的度数是()A.125°B.45°C.135°D.145°7.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是()A.①②B.②③C.③④D.①④8.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.189.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是()A.10B.15C.20D.3010.已知:如图,FD∥BE,则()A.∠1+∠2-∠A=180°B.∠2+∠A-∠1=180°C.∠A+∠1-∠2=180°D.∠1-∠2+∠A=180°二、填空题11.如图,在△ABC中,BE和AD分别是边AC和BC上的中线,则△AEF和四边形EFDC 的面积之比为_____.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB ,CD ),这其中的数学原理是__________.13.若一个多边形的内角和为1800°,则这个多边形______边形.14.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.15.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.16.如图,线段AC ,BD 相交于点E ,EB CE =,要使ABE DCE △≌△,只需增加的一个条件是________.(只要填出一个即可)17.如图,在ABC 中,AD BC ⊥于点D ,AE 平分BAC ∠,若30BAE ∠=︒,20CAD ∠=︒,则B ∠=______.18.如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连结DE ,动点P 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动.设点P 的运动时间为t 秒,当t 的值为______________时,ABP △和DCE 全等.三、解答题19.如图,电信部门要在公路m ,n 之间的S 区域修一座电视信号发射塔P.按照设计要求,发射塔P 到区域S 内的两个城镇A,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).20.一个等腰三角形的周长是36厘米.(1)已知腰长是底长的2倍,求各边长.(2)已知其中一边长为8厘米,求其它两边长.21.在一次数学课上,老师在黑板上画出如图所示的图形,并写下四个等式,(1)AB DC =,(2)BD AC =,(3)B C ∠=∠,(4)BDA CAD ∠=∠.要求同学从这四个等式中选出其中的两个或三个作为条件,推出第四个,请你试着完成王老师提出的要求(写出三种)并选择一种说明理由.22.已知BC ED =,AB AE =,B E ∠=∠,F 是CD 的中点,求证:AF CD ⊥.23.如图,三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,求ADE 的周长24.如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=︒,求MCN ∠的度数.25.探究与发现:如图①,在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在底边BC 上,AE=AD ,连接DE .(1)当∠BAD=60°时,求∠CDE 的度数;(2)当点D在BC(点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.参考答案1.D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.A【解析】【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:由6,9,14可得,6+9>14,故能组成三角形;由8,8,16可得,8+8=16,故不能组成三角形;由10,5,4可得,4+5<10,故不能组成三角形;由5,11,6可得,5+6=11,故不能组成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.3.D【解析】【详解】︒-︒=︒,解:正多边形的每个外角都相等,每个外角为18013545多边形的外角和为360︒,︒÷︒=所以边数为:360458故选:D.4.D【解析】【详解】分析:根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠,∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒,∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒,故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG 中,90BFD CGD DF DG BDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒,∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.5.C【解析】【分析】观察每块玻璃形状特征,利用ASA 判定三角形全等可得出答案.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去.故选:C .【点睛】本题属于利用ASA 判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合,解题的关键是熟练掌握全等三角形的判定定理.6.D【解析】【分析】利用三角形内角和定理求出∠AEC,再求出∠EFB可得结论.【详解】解:∵∠A+∠C+∠AEC=180°,∴∠AEC=180°﹣47°﹣43°=90°,∴∠FEB=90°,∴∠EFB=90°﹣∠B=35°,∴∠DFE=180°﹣35°=145°,故选:D.【点睛】本题考查三角形内角和定理,解题的关键是熟练掌握三角形的内角和定理,属于中考常考题型.7.D【解析】【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【详解】解:①全等三角形的对应边相等,正确;②全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;③全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故该选项错误;④全等三角形是指能够完全重合的两个三角形,故正确;故正确的是①④.故选D.8.B【解析】【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.【详解】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .【点睛】本题考查了等腰三角形的性质.9.B【解析】【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,对12BDC S BC DE =⨯ 计算求解即可.【详解】解:如图,过D 作DE ⊥BC 于E ,∵BD 平分ABC∠∴由角平分线的性质可知3DE AD ==∴111031522BDC S BC DE =⨯=⨯⨯= 故选B .【点睛】本题考查了角平分线的性质.解题的关键在于根据角平分线的性质求出BDC 的高.10.A【解析】【详解】∵FD//BE ,∴∠2=∠4,∵∠4+∠5=180°,∴∠5=180°-∠4=180°-∠2,∵∠1+∠3=180°,∴∠3=180°-∠1,∵∠3+∠5+∠A=180°,∴180°-∠1+(180°-∠2)+∠A=180°,∴∠1+∠2-∠A=180°,故选:A.11.1:2【解析】【分析】设△DEF的面积为S,先判断F点为△ABC的重心,根据三角形重心的性质得到AF=2FD,=2S,再利用E点为AC的中点得到S△DAE=S△DCE=则根据三角形面积公式得到S△AEF3S,从而得到△AEF和四边形EFDC的面积之比.【详解】解:设△DEF的面积为S,∵BE和AD分别是边AC和BC上的中线,∴F点为△ABC的重心,∴AF=2FD,=2S,∴S△AEF∵E点为AC的中点,=S△DCE=S+2S=3S,∴S△DAE∴△AEF和四边形EFDC的面积之比为2S:(S+3S)=1:2.故答案为:1:2.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S12=⨯底×高.三角形的中线将三角形分成面积相等的两部分.12.三角形的稳定性【解析】【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.【点睛】本题主要考查了三角形的稳定性,解题的关键在于能够熟知三角形具有稳定性.13.十二【解析】【分析】根据多边形的内角和公式列式求解即可.【详解】解:设这个多边形的边数是n,则()21801800n-⨯︒=︒,解得:12n=.故答案为:十二.【点睛】本题考查了多边形的内角和公式,熟记公式是解题的关键.14.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.15.240°.【解析】【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.16.AE=DE或∠A=∠D或∠B=∠C【解析】【分析】根据全等三角形的判定方法添加条件即可.【详解】解:∵BE=CE,∠AEB=∠DEC,添加AE=DE,可根据SAS证明△ABE≌△DCE,添加∠A=∠D,可根据AAS证明△ABE≌△DCE,添加∠B=∠C,可根据ASA证明△ABE≌△DCE,故答案为:AE=DE或∠A=∠D或∠B=∠C.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.17.50︒【解析】【分析】想办法求出AED∠,再利用三角形的外角的性质求解即可.【详解】解:AE∠,∵平分BAC∴∠=∠=︒,BAE CAE30∴∠=∠-∠=︒-︒=︒,EAD EAC DAC302010,⊥AD BC∴∠=︒,ADE90∴∠=︒-∠=︒,AED EAD9080,∠=∠+∠AED B BAE∴∠=︒-︒=︒,B803050故答案是:50︒.【点睛】本题考查三角形内角和定理,角平分线的性质等知识,解题的关键是熟练掌握三角形内角和定理.18.1或7【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】解:当点P在BC上时,∵AB=CD,∴当△ABP≌△DCE,得到BP=CE,由题意得:BP=2t=2,当P在AD上时,∵AB=CD,∴当△BAP≌△DCE,得到AP=CE,由题意得:AP=6+6-4﹣2t=2,解得t=7.∴当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解.19.作图见解析【解析】【分析】作线段AB的垂直平分线,再作直线m与n的夹角的角平分线,两线的交点就是P点.【详解】解:如图所示.20.(1)365cm,725cm,725cm;(2)14cm,14cm.【解析】【分析】(1)设底边BC=acm,则AC=AB=2acm,代入求出即可;(2)分类讨论,然后根据三角形三边关系定理判断求出的结果是否符合题意.解:如图,(1)设底边BC=acm ,则AC=AB=2acm ,∵三角形的周长是36cm ,∴2a+2a+a=36,∴a=365,2a=725,∴等腰三角形的三边长是365cm ,725cm ,725cm .(2)①当等腰三角形的底边长为8cm 时,腰长=(36-8)÷2=14(cm );则等腰三角形的三边长为8cm 、14cm 、14cm ,能构成三角形;②当等腰三角形的腰长为8cm 时,底边长=36-2×8=20;则等腰三角形的三边长为8cm ,8cm 、20cm ,不能构成三角形.故等腰三角形另外两边的长为14cm ,14cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.见解析【解析】【分析】根据SAS 、ASA 、AAS 进行推理即可得到答案.【详解】解:由①②③可推出④;由②③④可推出①;由①③④可推出②;第一种情况证明:∵AB DC =,BD AC =,B C ∠=∠,∴ABD DCA ∆≅∆(SAS )∴BDA CAD∠=∠第二种情况证明:∵BD AC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(ASA )∴AB DC=第三种情况证明:∵AB DC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(AAS )∴BD AC=22.见解析【分析】连接AC 、AD ,由已知证明ABC AED ∆≅∆,得到AC AD =,又因为点F 是CD 的中点,利用等腰三角形的三线合一或全等三角形可得AF CD ⊥.【详解】解:如图,连接AC 、AD,在ABC ∆和AED ∆中,AB AE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,()ABC AED SAS ∴∆≅∆.AC AD ∴=.ACD ∴∆是等腰三角形.又 点F 是CD 的中点,AF AF CF DF AC AD =⎧⎪∴=⎨⎪=⎩,()ACF ADF SSS ∴∆≅∆,90AFC AFD ∴∠=∠=,AF CD ∴⊥.23.7cm【分析】根据翻折变换的性质可得DE=CD ,BE=BC ,然后求出AE ,再根据三角形的周长列式求解即可.【详解】解:∵BC 沿BD 折叠点C 落在AB 边上的点E 处,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,∴AE=AB-BE=AB-BC=8-6=2cm ,∴△ADE 的周长=AD+DE+AE ,=AD+CD+AE ,=AC+AE ,=5+2,=7cm .24.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒.【解析】(1)根据线段垂直平分线的性质,可得AM CM =,CN NB =,可得△CMN 的周长等于线段AB ;(2)根据三角形内角和定理,列式求出MNF NMF ∠+∠,再求出A B ∠+∠,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,即可求解.【详解】解:(1)∵DM ,EN 分别垂直平分AC 和BC∴AM CM =,CN NB=∵△CMN 的周长为15cm∴15CM CN MN cm++=∴15AM BN MN cm++=∴15AB cm=AB 的长为15cm(2)由(1)得AM CM =,CN NB=∴A ACM ∠=∠,B BCN∠=∠在MNF 中,70MFN ∠=︒∴110FMN FNM ∠+∠=︒根据对顶角的性质可得:FMN AMD ∠=∠,FNM BNE∠=∠在Rt ADM △中,9090A AMD FMN∠=︒-∠=︒-∠在Rt BNE 中,9090B BNE FNM∠=︒-∠=︒-∠∴909070A B FMN FNM ∠+∠=︒-∠+︒-∠=︒∴70MCA NCB ∠+∠=︒在ABC 中,70A B ∠+∠=︒∴110ACB ∠=︒∴()40MCN ACB MCA NCB ∠=∠-∠+∠=︒25.(1)30°(2)∠CDE=12∠BAD(3)∠CDE=12∠BAD 【分析】(1)根据等腰三角形的性质得到∠CAD=∠BAD=60°,由于AD=AE ,于是得到∠ADE=60°,根据三角形的内角和即可得到∠CDE=75°﹣45°=30°;(2)设∠BAD=x ,于是得到∠CAD=90°﹣x ,根据等腰三角形的性质得到∠AED=45°+12x ,于是得到结论;(3)设∠BAD=x ,∠C=y ,根据等腰三角形的性质得到∠BAC=180°﹣2y ,由∠BAD=x ,于是得到∠DAE=y+12x ,即可得到结论.【详解】解:(1)∵AB=AC ,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE ,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+12x,∴∠CDE=12 x;∴∠CDE=12∠BAD(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠DAE=y+12 x,∴12 CDE AED C x ∠=∠-∠=.∴∠CDE=12∠BAD21。
辽宁省大连市金州区2024-2025学年八年级上学期11月期中考试数学试题(含答案)
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
2024-2025学年广东省广州市八年级上学期期中数学试题及答案
2024-2025学年第一学期广东省广州市八年级数学期中复习试卷试卷满分:120分 考试时间:120分钟一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.下列四个图形中,是轴对称图形的是( )A .B .C .D .2.下列各组长度的三条线段能组成三角形的是( )A .1,2,3B .1,1,2C .1,2,2D .1,5,73.将一副三角板按如图所示的方式放置,则α∠的度数为( )A .75°B .85°C .90°D .95°4.已知等腰三角形一边长为2,一边的长为4,则这个等腰三角形的周长为() A .8 B .9 C .10 D .8或105.在平面直角坐标系中,点A (﹣2,m ﹣1)与点B (n +2,3),则m +n 的值是() A .﹣6 B .4 C .5 D .﹣56.如图,在Rt ABC △中,90C ∠=°,30B ∠=°,点D 是AB 的中点,ED AB ⊥于点D ,交BC 于点E ,连接AE ,若2DE =,则BC 的值是( )A .3B .4C .5D .67.如图,在ABC 中,90C ∠=°,30A ∠=°,AB 的垂直平分线交AC 于点D ,交AB 于点E ,3CD =,则AC 等于( )A .5B .6C .8D .98 .如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的A ′处,折痕为DE .如果A α∠=,CEA β∠′=,BDA γ∠′=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=−−9.如图,在ABC 中AB =AC ,BC=4,面积是20,AC 的垂直平分线EF 分别交AC 、AB 边于E 、F 点, 若点D 为BC 边的中点,点M 为线段上一动点,则CDM 周长的最小值为( )A .6B .8C .10D .1210 .如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②PQ AE ∥;③EQ DP =;④60AOB ∠=°;其中恒成立的结论有( )个A .1B .2C .3D .4二、填空题:本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.11.一个n 边形的内角和是720°,则n = .12.如图,D 在BC 边上,△ABC ≌△ADE ,则∠B 的度数为 .13.如图,ABC 中,AB AC =,AB 的垂直平分线交AC 于点D ,交AB 于点E .若30A ∠=°,则DBC ∠= .14.如图,在Rt ABC △中,90C ∠=°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AAAA 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,交边BC 于点D , 若3CD =,12AB =,则ABD △的面积是 .15.若等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数是 .16 .如图,ABC 中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H 交BE 于G .下列结论:①BD CD =;②AD CF BD +=;③12CE BF =;④AE BG =. 其中正确的是 .三、解答题:本大题共9个小题,共72分,解答应写出文字说明、证明过程或演算步骤17.在△ABC 中,∠A =100°,∠C 比∠B 大20°求∠B 、∠C 的度数18.如图,AB DEAB DE BE CF ==∥,,.求证:ABC DEF ≌△△.19.如图,在所给正方形网格图中完成下列各题,ABC 的三个顶点都在格点上(用无刻度的直尺画图).(1)画出ABC 的中线AD ;(2)作出ABC 关于直线l 对称的111A B C △;(3)在直线l 上找到一点Q ,使QB QC +的值最小.20 . 如图,点B. F. C. E 在一条直线上(点F,C 之间不能直接测量),点A,D 在直线l 的异侧,测得AB=DE,AB ∥DE,AC ∥DF.(1)求证:△ABC ≌△DEF ;(2)若BE=13m ,BF=4m ,求FC 的长度.21.如图,在△ABC 中,EF 垂直平分AC ,交BC 于点E ,AD ⊥BC ,连接AE .(1)若∠BAE =44°,求∠C 的度数.(2)若AC =7cm ,DC =5cm ,求△ABC 的周长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB =AE =CE ,求出∠AEB 和∠C =∠EAC ,即可得出答案;(2)根据已知能推出AB +BD =EC +DE =DC ,即可得出答案.22.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求证:△CEF 是等腰三角形;(2)若CD =3,求DF 的长.23.如图,在ABC 中,AB CB =,90ABC ∠=°,F 是AAAA 延长线上一点,点E 在BC 上,且BE BF =.(1)求证:ABE CBF △△≌;(2)若30CAE ∠=°,求AEF ∠和ACF ∠的度数.24.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B(0,n),且|m﹣n﹣3|+(2n﹣6)2=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)OA=________,OB=_________.(2)连接PB,若△POB的面积为3,求t的值;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样点P,使△EOP≌△AOB,若存在,请直接写出t的值;若不存在,请说明理由.25.如图,在△ABC中,AB=AC,点在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△A BE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.参考解答一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.D 2.C . 3.A 4.C . 5.A . 6 .D 7 .D 8 .A 9 .D 10 .D二、填空题:本大题共6个小题.每小题3分,共18分.把答案填在题中横线上. 11.3. 12.70°.13 .45° 14 .18 15.50°或130° 16 .①②③三、解答题:本大题共9个小题,共72分,解答应写出文字说明、证明过程或演算步骤17.解:∵∠C 比∠B 大20°,∴∠C =∠B +20°,根据三角形内角和定理得:∠A +∠B +∠C =180°,∴100°+∠B +∠B +20°=180°,解得:∠B =30°,∠C =30°+20°=50°.18.证明:∵AB DE ∥,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,在ABC 和DEF 中,AB DE B DEF BC EF = ∠=∠ =. ∴()SAS ABC DEF △△≌.19.(1)如图,找出BC 中点D ,然后连接AD ,∴AD 即为所求;(2)如图,利用网格特点和轴对称的性质画出、、A B C 关于l 的对称点111A B C 、、,∴111A B C △即为所求;(3)如图,连接1B C 交l 于Q ,利用1QB QB =得到1QB QC B C +=,则根据两点之间线段最短即可,∴点Q 即为所求.20 . (1)证明:∵AB ∥DE , ∴∠ABC=∠DEF ,∴AC ∥DF ,∴∠ACB=∠DFE ,在△ABC 与△DEF 中, ABC=DEF ACB=DFE AB=DE ∠∠ ∠∠∴△ABC ≌△DEF ;(AAS )(2)∵△ABC ≌△DEF , ∴BC=EF ,∴BF+FC=EC+FC ,∴BF=EC ,∵BE=13m ,BF=4m ,∴FC=BE-BF-EC=13-4-4=5m .21.解:(1)∵AD⊥BC,EF垂直平分AC,∴AE=AB=EC,∴∠CAE=∠C,∵∠BAE=44°,∴,∴.(2)由(1)知:EC=AE=AB,∵DE=BD.∴AB+BD=EC+DE=DC,∴△ABC的周长为AB+BC+AC=AB+BD+DC+AC=2DC+AC=6×5+7=17(cm).答:△ABC的周长为17cm.22.解:(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°∴∠EDC=∠ECD=∠DEC=60°∵EF⊥ED,∴∠DEF=90°∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°∴CE =CF .∴△CEF 为等腰三角形(2)由(1)可知∠EDC =∠ECD =∠DEC =60°∴CE =DC =3又∵CE =CF ,∴CF =3∴DF =DC +CF =3+3=623.(1)证明:90ABC ∠=° , 90CBF ABE ∴∠=∠=°,在ABE 和CBF 中,AB CB ABE CBF BE BF = ∠=∠ =, ∴()SAS ABE CBF ≌△△;(2)解:由1()知:ABE CBF △≌△,∴BE BF =,BCF BAE ∠=∠, 又∵90ABC ∠=°, ∴90EBF ∠=°, ∴45BEF BFE ∠=∠=°, 90AB BC ABC =∠=° ,,45CAB ACB ∴∠=∠=°,又453015BAE CAB CAE ∠=∠−∠=°−°=° ,15BCF BAE ∴∠=∠=°,9075AEB BAE ∠=°−∠=°,∴120AEF BEF AEB ∠=∠+∠=°,451560ACF BCF ACB ∠=∠+∠=°+°=°.24.解:(1)∵|m ﹣n ﹣3|+(2n ﹣6)2=0,|m ﹣n ﹣3|≥0,(2n ﹣6)2≥0,∴|m ﹣n ﹣3|=0,(2n ﹣6)2=0,∴m ﹣n ﹣3=0,2n ﹣6=0,解得,m =6,n =3,∴OA =6,OB =3,故答案为:6;3;(2)当点P 在线段AO 上时,OP =6﹣t , 则12×(6﹣t )×3=3, 解得,t =4,当点P 在线段AO 的延长线上时,OP =t ﹣6, 则12×(t ﹣6)×3=3, 解得,t =8,∴当t =4或8时,△POB 的面积等于3;(3)如图1,当点P 在线段AO 上时,∵△POE ≌△BOA ,∴OP =OB ,即6﹣t =3,解得,t =3,如图2,当点P 在线段AO 的延长线上时,∵△POE ≌△BOA ,∴OP =OB ,即t ﹣6=3,解得,t =9,∴当t =3或9时,△POQ 与△AOB 全等.25.(1)解:BD BC = ,60DBC ∠=°, DBC ∴∆是等边三角形,DB DC ∴=,60BDC DBC DCB ∠=∠=∠=°, 在ADB ∆和ADC ∆中,AB AC AD AD DB DC = = =, ()ADB ADC AAS ∴∆≅∆,ADB ADC ∴∠=∠,1(36060)1502ADB ∴∠=°−°=°. (2)解:结论:ABE ∆是等边三角形.理由:60ABE DBC ∠=∠=° , ABD CBE ∴∠=∠,在ABD ∆和EBC ∆中,150ADB BCE ABD CBE BD BC ∠=∠=° ∠=∠ =, ABD EBC ∴∆≅∆,AB BE ∴=,60ABE ∠=° , ABE ∴∆是等边三角形.(3)解:连接DE . 150BCE ∠=° ,60DCB ∠=°, 90DCE ∴∠=°, 90EDB ∠=° ,60BDC ∠=°, 30EDC ∠=°∴, 142EC DE ∴==, ABD EBC ∆≅∆ , 4AD EC ∴==.。
运城中学2023-2024学年八年级上学期期中考试数学试卷(含解析)
2023-2024学年山西省运城中学八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列根式是最简二次根式的是( )A.B.C.D.解析:解:A、,故此选项不符合题意;B、是最简二次根式,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选:B.2.(3分)下列说法中正确的是( )A.带根号的数都是无理数B.绝对值最小的实数是0C.算术平方根等于本身的数只有1D.负数没有立方根解析:解:=2,它是有理数,则A不符合题意;绝对值最小的实数是0,则B符合题意;算术平方根等于本身的数是0和1,则C不符合题意;任意实数都有立方根,则D不符合题意;故选:B.3.(3分)信息课上,小文同学利用计算机软件绘制了美丽的蝴蝶,如图,在绘图过程中,小文建立平面直角坐标系,先画出一半图形,利用对称性画出另一半.若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为( )A.(3,2)B.(2,3)C.(3,﹣2)D.(﹣3,﹣2)解析:解:若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为(3,2).故选:A.4.(3分)已知△ABC的三边为a,b,c,下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=3:4:5B.b2=(a+c)(a﹣c)C.∠A﹣∠B=∠C D.解析:解:A、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴最大角∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;B、∵b2=(a+c)(a﹣c),∴b2=(a+c)(a﹣c)=a2﹣c2,即b2+c2=a2,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A﹣∠B=∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、∵,设a=x>0,则,,即有b2+a2=c2,∴此三角形是直角三角形,故本选项不符合题意;故选:A.5.(3分)如图,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点B,若该圆柱体的底面周长是8厘米,高是3厘米,则蚂蚁爬行的最短距离为( )A.6厘米B.厘米C.厘米D.5厘米解析:解:圆柱体的侧面展开图如图所示,连接AB,∵圆柱体的底面周长是8厘米,高是3厘米,∴AC=3cm,BC=8=4(cm),∴蚂蚁爬行的最短距离AB==5(cm).故选:D.6.(3分)假期小敏一家自驾游山西,爸爸开车到加油站加油,小敏发现加油机上的数据显示牌(如图)金额随着数量的变化而变化,则下列判断正确的是( )A.金额是自变量B.单价是自变量C.168.8和20是常量D.金额是数量的函数解析:解:单价是常量,金额和数量是变量,金额是数量的函数,故选项D符合题意.故选:D.7.(3分)下列四个选项中,符合直线y=﹣x+2的性质的选项是( )A.经过第一、三、四象限B.y随x的增大而增大C.函数图象必经过点(1,1)D.与y轴交于点(0,﹣2)解析:解:∵直线解析式为y=﹣x+2,﹣1<0,2>0,∴直线经过第一、二、四选项,y随x增大而减小,故A、B不符合题意;当x=1时,y=﹣1+2=1,即函数经过点(1,1),故C符合题意;当x=0时,y=2,即直线与y轴交于点(0,2),故D不符合题意;故选:C.8.(3分)按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )A.B.C.2D.3解析:解:由所给的程序可知,当输入64时,=8,∵8是有理数,∴取其立方根可得到,=2,∵2是有理数,∴取其算术平方根可得到,∵是无理数,∴y=.故选:A.9.(3分)如图,在△ABC中,∠ACB=90°,BC=2,AC=1,BC在数轴上,以点B为圆心,AB的长为半径画弧,交数轴于点D,则点D表示的数是( )A.B.C.D.解析:解:在△ABC中,∠ACB=90°,BC=2,AC=1,则AB===,由题意得BD=AB=,∴CD=﹣2,∵点C表示的数是0,∴点D表示的数是﹣(﹣2),即2﹣,10.(3分)清徐葡萄驰名华夏,是山西的著名传统水果之一.店庆来临之际,某超市对清徐葡萄采取促销方式,购买数量超过5千克后,超过的部分给予优惠,水果的购买数量x(kg)与所需金额y(元)的函数关系如图所示.小丽用120元去购买该种水果,则她购买的数量为( )A.20kg B.21kg C.22kg D.23kg解析:解:设超过部分的函数解析式为y=kx+b,将点(5,30),(15,80)代入得:,解得:,∴超过部分的函数解析式为y=5x+5,当y=120时,即5x+5=120,解得:x=23,∴小丽购买的数量为23kg,故选:D.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)要使代数式有意义,则x可以取的最小整数是 3 .解析:解:要使代数式有意义,那么x﹣3≥0,则x≥3,故x可以取的最小整数是3,故答案为:3.12.(3分)P1(﹣1,y1),P2(3,y2)是一次函数y=2x﹣3图象上的两点,则y1 < y2.(填“>.“=”或“<”)解析:解:∵k=2>0,∴y随x的增大而增大,∴y1<y2.故答案为:<.13.(3分)一个立方体的体积是4,则它的棱长是 .解析:解:设立方体的棱长为a,则a3=4,∴a=,故答案为:.14.(3分)如图,直线y=2x与y=kx+b相交于点P(1,2),则关于x的方程kx+b=2x的解是 x=1 .解析:解:∵直线y=2x与y=kx+b相交于点P(1,2),∴方程kx+b=2x的解,即为直线y=2x与y=kx+b的交点的横坐标的值,∴方程kx+b=2x的解为x=1,故答案为:x=1.15.(3分)如图,在长方形ABCD中,AB=5,BC=4,F是BC边上的一点,将△CDF沿着DF翻折,点C恰好落在AB边上的点E处,则阴影部分的面积为 .解析:解:∵四边形ABCD是矩形,AB=5,BC=4,∴AD=BC=4,CD=AB=5,∠A=∠B=∠C=90°,由折叠得ED=CD=5,EF=CF=4﹣BF,∴AE===3,∴BE=AB﹣AE=5﹣3=2,∵BE2+BF2=EF2,∴22+BF2=(4﹣BF)2,解得BF=,S阴影=S△AED+S△BEF=×4×3+××2=,故答案为:.三、解答题16.(10分)计算:(1);(2).解析:解:(1)=2﹣3﹣=;(2)=3=9+5﹣1=13.17.(7分)定义一种新运算,分别用[x]和(x)表示实数x的整数部分和小数部分.例如:[3.5]=3,(3.5)=0.5;,﹣1.(1)= 3 ,= ﹣3 .(2)如果,,求a+b﹣的平方根.解析:解:(1)∵9<10<16,∴34,∴[]=3,()=﹣3,故答案为:3,﹣3;(2)∵2,6,∴a=()=,b=[]=6,∴a+b﹣==4,∴a+b﹣的平方根是±2.18.(9分)如图,这是某学校的平面示意图,图中小方格都是边长为1个单位长度的正方形,若艺术楼的坐标为(3,a),实验楼的坐标为(b,﹣1).(1)请在图中画出平面直角坐标系.(2)a= 1 ,b= ﹣2 .(3)若图书馆的坐标为(2,3),请在(1)中所画的平面直角坐标系中标出图书馆的位置.解析:解:(1)坐标系如图;(2)艺术楼的坐标为(3,1),实验楼的坐标为(﹣1,﹣1).故答案为:1,﹣1;(3)图书馆的位置如图所示.19.(9分)为进一步改善校园环境和面貌,消除校园安全隐患,提升校园环境品质,完善基础设施建设,某学校利用暑假全力做好教学条件提升改造工程.如图,某教室外部墙面MN上有破损处(看作点A),现维修师傅需借助梯子DE完成维修工作.梯子的长度为4.5m,将其斜靠在这面墙上,测得梯子底部E离墙角N处2.7m,维修师傅爬到梯子顶部使用仪器测量,此时的梯于顶部D面最损处A相距1m.(1)求教室外墙面破损处A距离地面NE的高度.(2)为了方便施工,需要将梯子底部向内移动至离墙角处,求此时梯子顶部距离墙面破损处A 的高度.解析:解:(1)由题意知,DE=4.5m,EN=2.7m,∴DN==3.6(m),∴AN=AD+DN=1+3.6=4.6(m),即教室外墙面破损处A距离地面NE的高度为4.6m;(2)如图,由题意可知,BN=,BD'=DE=4.5m,∴D'N==1.6(m),∴D'D=1.6﹣1=0.6(m),即此时梯子顶部距离墙面破损处A的高度为0.6m.20.(8分)在平面直角坐标系中,已知点M(m﹣2,2m﹣5),点N(5,1).(1)若MN∥x轴,求MN的长.(2)若点M到x轴的距离等于3,求点M的坐标.解析:解:(1)∵MN∥x轴,∴点M与点N的纵坐标相等,∴2m﹣5=1,∴m=3,∴M(﹣1,1),∵N(5,1),∴MN=6.(2)点M(m﹣2,2m﹣5),且点M到x轴的距离等于3,∴|2m﹣5|=3,解得:m=4或m=1,∴M点的坐标为(2,3)或(﹣1,﹣3).21.(7分)阅读与思考材料1:点A(x1,y1),B(x2,y2)的中点坐标为.例如:点(1,5),(3,﹣1)的中点坐标为,即(2,2).材料2:一次函数y=k1x+b1,y=k2x+b2的图象相互垂直,则k1•k2=﹣1.例如:直线l1:y=2x+3与直线l2:y=kx+2互相垂直,于是2k=﹣1,解得.如图,在等腰△AOB中,OB=AB,点A的坐标为(4,2),BC⊥OA,根据以上两则材料的结论,解答以下问题:(1)求点C的坐标.(2)求直线BC的表达式.解析:解:(1)在等腰△AOB中,OB=AB,BC⊥OA,∴OC=AC,∵点A的坐标为(4,2),∴C(2,1);(2)∵点A的坐标为(4,2),∴直线OA的解析式为y=,∵BC⊥OA,∴设直线BC的解析式为y=﹣2x+b,把点C(2,1)代入得,1=﹣4+b,∴b=5,∴直线BC的表达式为y=﹣2x+5.22.(12分)综合与实践勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.如图2,直角三角形的两条直角边分别为a,b,斜边为c.(1)如图3,以直角三角形的三边a,b,c为边,分别向外部作正方形,直接写出S1,S2,S3满足的关系: S1+S2=S3 .(2)如图4,以Rt△ABC的三边为直径,分别向外部作半圆,请判断S1,S2,S3的关系并证明.(3)如图5,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为80,OC=5,直接写出该飞镖状图案的面积.解析:解:(1)S1=a2,S2=b2,S3=c2,由勾股定理得,a2+b2=c2,∴S1+S2=S3,故答案为:S1+S2=S3;(2)S1=π()2=,S2=π()2=,S3=π()2=,由勾股定理得,a2+b2=c2,∴+=,∴S1+S2=S3;(3)由题意知,外围轮廓(实线)的周长为80,且四个直角三角形是全等的,∴AB+AC=20,∵OC=5,∴OB=OC=5,设AC为x,则AB=20﹣x,AO=x+5,在Rt△ABO中,由勾股定理可得,(x+5)2+52=(20﹣x)2,解得:x=7,∴AO=12,△ABO的面积=×5×12=30,∵该飞镖状图案的面积由四个直角三角形面积组成,∴该飞镖状图案的面积=30×4=120.23.(13分)综合与探究如图,直线与x轴,y轴分别相交于A,B两点.(1)点A的坐标为 (﹣8,0) ;点B的坐标为 (0,6) .(2)过点C(﹣3,0)作直线CD∥AB,交y轴于点D,连接BC,求△BCD的面积.(3)在x轴负半轴上是否存在一点P,使得△ABP是以AP为腰的等腰三角形?若存在,求出此时点P 的坐标;若不存在,请说明理由.解析:解:(1)令x=0,y=6,∴B(0,6),令y=0,,∴x=﹣8,∴A(﹣8,0).故答案为:(﹣8,0),(0,6);(2)如图,∵C(﹣3,0),A(﹣8,0),B(0,6);∴OC=3,OA=8,OB=6,∵CD∥AB,∴△OCD∽△OAB,∴,∴,∴OD=,∴BD=OB﹣OD=6﹣=,∴BD•OC==;(3)①P在A的左侧,∵AO=8,OB=6,∴AB==10,∵△ABP是以AP为腰的等腰三角形,∴AB=AP=10,∴PO=18,∴P(﹣18,0).②P在OA之间,AP=BP时,设P(m,0),BP=AP=m+8,在Rt△BOP中,由勾股定理得,OB2+OP2=BP2,即62+m2=(8+m)2,解得m=﹣,∴P点坐标为(﹣,0)综上所述P点坐标为(﹣,0)或(﹣18,0).。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或173.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.360°C.270°D.540°4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°5.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定6.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个7.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为()A.关于x轴成轴对称图形B.关于y轴成轴对称图形C.关于原点成中心对称图形D.无法确定8.如图,将两根钢条AA',BB'的中点O连在一起,使AA',BB'可绕点O自由转动,就△≌△的理由是()做成了一个测量工件,则A B''的长等于内槽宽AB,那么判定OAB OA B''A.边角边B.角边角C.边边边D.角角边9.如图,已知Rt△OAB,∠OAB=50°,∠AOB=90°,O点与坐标系原点重合,若点P在x轴上,且△APB是等腰三角形,则点P的坐标可能有()A.1个B.2个C.3个D.4个10.等腰三角形一腰上的高与另一腰的夹角为30°,则底角的度数为()A.60°B.120°C.60°或120°D.60°或30°二、填空题11.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC ≌△FED .12.在ABC 中,AB =6,AC =10,那么中线AD 边的取值范围是___.13.如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=___.14.如图,在△ABC 中,10AB AC ==,120BAC ∠=︒,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF//AB 交AE 的延长线于点F ,则DF 的长为______________.15.如图,在△ABC 中,AB=AC ,∠BAC=36°,(1)作出AB 边的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连接BD ;(2)下列结论正确的是:①BD 平分∠ABC ;②AD=BD=BC ;③△BDC 的周长等于AB+BC ;④D 点是AC 中点;16.如图,等腰△ABC 中,AB=AC,∠A=20°,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠EBC=__________度.17.如图,AD,BE在AB的同侧,AD=4,BE=4,AB=8,点C为AB的中点,若∠DCE =120°,则DE的最大值是_____.三、解答题18.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AB=DE.19.在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:正多边形边数3456…n正多边形每个内角的度数(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.20.如图,△ABC中,∠BAC=90°,AB=AC,O为BC的中点,点E、D分别为边AB、AC上的点,且满足OE⊥OD,求证:OE=OD.21.如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形.(1)求证:AE=CD;(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论.22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.23.如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.24.如图,''',使它与△ABC关于直线l对称;(1)利用网格线画△A B C'''的面积;(2)若每个小正方形的边长为1,请直接写出△A B C(3)若建立直角坐标系后,点A(m-1,3)与点Q(-2,n+1)关于x轴对称,求m2+n的值.25.如图,AC和BD相交于点E,AB//CD,BE=DE.求证:△ABE≌△CDE.26.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.参考答案1.B2.A3.B4.B5.A6.C7.B8.A9.D10.D11.AC=DF(或∠A=∠F或∠B=∠E)【解析】【详解】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF 时,在△ABC 和△FED 中,12AC DF BC DE ⎧⎪∠∠⎨⎪⎩===∴△ABC ≌△FED (SAS );②当∠A=∠F 时,12A F BC DE ∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC ≌△FED (AAS );③当∠B=∠E 时,12BC DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△FED (ASA )故答案为AC=DF (或∠A=∠F 或∠B=∠E ).12.28AD <<【解析】【分析】延长AD 到点E ,使AD DE =,连接CE ,得出ADB EDC ≌,推出6CE AB ==,再根据三角形三边关系定理即可得出答案.【详解】解:如图,延长AD 到点E ,使AD DE =,连接CE,AD 是ABC 中线,BD CD ∴=,在ADB △和EDC △中,AD DE ADB EDC BD DC =⎧⎪∠=∠⎨⎪=⎩,()ADB EDC SAS ∴△≌△,6AB EC ∴==,∵在ACE 中,AC CE AE AC CE -<<+,∴106106AE -<<+,4216AD ∴<<,28AD ∴<<,故答案为:28AD <<.【点睛】本题考查了三角形三边关系定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.13.2【解析】【分析】过P 点作PE ⊥OB 于E ,如图,根据角平分线的性质得到PE=PD ,再利用平行线的性质得到∠PCE=∠AOB=30°,接着根据含30度的直角三角形三边的关系得到PE=12PC=2,从而得到PD 的长.【详解】解:过P 点作PE ⊥OB 于E,如图,∵∠AOP=∠BOP=15°,∴OP 平分∠AOB ,∠AOB=30°,而PD ⊥OA ,PE ⊥OB ,∴PE=PD ,∵PC ∥OA ,∴∠PCE=∠AOB=30°,∴PE=12PC=12×4=2,∴PD=2.故答案为:2.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了含30度的直角三角形的性质和平行线的性质.14.5【解析】【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,根据等角对等边求出AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=12∠BAD=12×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=12AB=12×10=5,∴DF=5.故答案为:5.【点睛】本题考查的是含30°角的直角三角形的性质,等腰三角形的判定和性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.15.(1)详见解析;(2)①②③.【解析】【分析】根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案,(1)利用线段垂直平分线的作法进而得出即可.(2)由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC,可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,,求得AD=BD=BC,则可求得答案,注意排除法在解选择题中的应用.【详解】(1)(2)∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=72°-36°=36°=∠ABD,∴BD平分∠ABC,故①正确,∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故③正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-∠DBC-∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故②正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故④错误,故答案为:①②③.【点睛】本题主要考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识,解决本题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.16.60°.【解析】【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【详解】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC=180-202=80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC-∠ABE=80°-20°=60°.故填:60°.【点睛】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.17.12【解析】【分析】如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.证明△CMN是等边三角形,再根据DE≤DM+MN+EN,当D,M,N,E 共线时,DE的值最大.【详解】解:如图,作点A关于直线CD的对称点M,作点B关于直线CE的对称点N,连接DM,CM,CN,MN,NE.由题意AD=EB=4,AC=CB=4,DM=CM=CN=EN=4,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=4,∴△CMN是等边三角形,∴MN=4,∵DE≤DM+MN+EN,∴DE≤12,∴当D,M,N,E共线时,DE的值最大,最大值为12,故答案为:12.【点睛】本题考查轴对称的性质,两点之间线段最短,等边三角形的判定和性质等知识,解题的关键是学会利用轴对称解决问题,属于中考填空题中的压轴题.18.见详解【解析】【分析】先根据条件求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【详解】∵FB=CE,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FE ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.19.(1)60°,90°,108°,120°,…(n-2)•180°÷n ;(2)正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)答案见详解.【解析】【分析】(1)利用正多边形一个内角=180°-360n°求解;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍;(3)常见的两种正多边形的密铺组合有:正三角形和正四边形能密铺,正六边形只能和正三角形密铺.所以要从正三角形、正四边形、正六边形中选一种,只能选择正四边形.【详解】解:(1)由正n 边形的内角的性质可分别求得正三角形、正方形、正五边形、正六边形…正n 边形的每一个内角为:60°,90°,108°,120°,…(n-2)•180°÷n ,故答案为60°,90°,108°,120°,…,()2180n n -∙︒;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形;(3)正方形和正八边形(如下图所示),理由:设在一个顶点周围有m个正方形的角,n个正八边形的角,那么m,n应是方程m·90+n·135=360的正整数解,即2m+3n=8的正整数解,只有12mn=⎧⎨=⎩一组,∴符合条件的图形只有一种.【点睛】本题主要考查了多边形内角和的知识点,求正多边形一个内角度数,可先求出这个外角度数,让180减去即可.一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.见解析.【分析】连接AO,证明△BEO≌△ADO即可.【详解】证明:如图,连接AO,∵∠BAC=90°,AB=AC,O为BC的中点,∴AO=BO,∠OAD=∠B=45°,∵AO⊥BO,OE⊥OD,∴∠AOE+∠BOE=∠AOE+∠AOD=90°,∴∠AOD=∠BOE,∴△AOD≌△BOE,∴OE=OD.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .21.(1)证明见解析;(2)△MBN 是等边三角形.【解析】【分析】(1)利用SAS 证明△AOC ≌△BOD ,则有AE =CD ;(2)由△ABE ≌△DBC ,可证△ABM ≌△DBN ,从而得BM =BN ,∠MBN =60°.【详解】(1)证明:∵△ABD 、△BCE 都是等边三角形,∴AB =BD ,BC =BE ,∠ABD =∠CBE =60°,∴∠ABD +∠DBE =∠DBE +∠CBE 即∠ABE =∠DBC ,∴在△ABE 和△DBC 中,AB DBABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩△ABE ≌△DBC(SAS).∴AE =CD .(2)解:△MBN 是等边三角形,理由如下:∵△ABE ≌△DBC ,∴∠BAE =∠BDC .∵AE =CD ,M 、N 分别是AE 、CD 的中点,∴AM =DN ;又∵AB =DB .∴△ABM ≌△DBN .∴BM =BN ,∠ABM =∠DBN .∴∠DBM +∠DBN =∠DBM +∠ABM =∠ABD =60°.∴△MBN 是等边三角形.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)CF ⊥AB ,理由见解析;(3)16【解析】【分析】(1)四边形APCD 正方形,则PD 平分∠APC ,PC=PA ,∠APD=∠CPD=45°,即可求解;(2)由△AEP ≌△CEP ,则∠EAP=∠ECP ,而∠EAP=∠BAP ,则∠BAP=∠FCP ,又∠FCP+∠CMP=90°,则∠AMF+∠PAB=90°即可求解;(3)过点C 作CN ⊥BG ,垂足为N ,证明△PCN ≌△APB (AAS ),则CN=PB=BF ,PN=AB ,即可求解.【详解】(1)证明:∵四边形APCD 为正方形∴PD 平分∠APC ,∠APC=90°,PC=PA∴∠APD=∠CPD=45°在△AEP 和△CEP 中,EP EP EPC EPAPC PA =⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△CEP(SAS)(2)CF ⊥AB .理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP∵∠EAP=∠BAP∴∠BAP=∠FCP∵∠FCP+∠CMP=90°,∠AMF=∠CMP ∴∠AMF+∠PAB=90°∴∠AFM=90°∴CF⊥AB(3)过点C作CN⊥BG,垂足为N∵CF⊥AB,BG⊥AB∴四边形BFCN为矩形,FC∥BN∴∠CPN=∠PCF=∠EAP=∠PAB又AP=CP,∠ABP=∠CNP=90°∴△PCN≌△APB(AAS)∴CN=PB=BF,PN=AB∵△AEP≌△CEP∴AE=CE∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+BF+AF=2AB=16【点睛】本题为四边形综合题,涉及到正方形的性质、三角形全等等知识点,其中(3),证明△PCN ≌△APB (AAS ),是本题的关键.24.(1)见解析;(2)2;(3)-3.【解析】【分析】(1)根据成轴对称图形的性质画出图象即可;(2)用割补法求出三角形的面积;(3)根据点A 与点Q 的对称关系,求出m ,n 的值,再计算最后结果.【详解】(1)如图为所作,略;(2)111232213112222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=△;(3)∵点A(m -1,3)与点Q(-2,n+1)关于x 轴对称∴m -1=-2,n+1=-3解得m=-1,n=-4∴m 2+n 的=(-1)2+(-4)=-3.【点睛】本题考查了轴对称图形的画法及面积计算,坐标计算,熟知轴对称图形的性质是解题的关键.25.见解析【解析】【分析】先观察要证的线段分别在哪两个三角形,再证出全等即可.【详解】证明:∵AB ∥CD ,∴∠B=∠D ,∠A=∠C ,在△ABE 和△CDE 中,∠B=∠D ,∠A=∠C ,BE=DE ,∴△ABE ≌△CDE (AAS ).【点睛】本题考查全等三角形的全等的判定问题,关键掌握全等三角形的证明方法,一般采用证三角形全等来证线段或角相等,这是一种很重要的方法.26.(1)证明见解析;(2)∠APN 的度数为108°.【解析】【分析】(1)利用正五边形的性质得出AB=BC ,∠ABM=∠C ,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN ,进而得出∠CBN+∠ABP=∠APN=∠ABC 即可得出答案.【详解】证明:(1)∵正五边形ABCDE ,∴AB=BC ,∠ABM=∠C ,∴在△ABM 和△BCN 中AB BC ABM C BM CN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△BCN (SAS );(2)∵△ABM ≌△BCN ,∴∠BAM=∠CBN ,∵∠BAM+∠ABP=∠APN ,∴∠CBN+∠ABP=∠APN=∠ABC=()521805-⨯ =108°.即∠APN 的度数为108°.。
江西省赣州市章贡区2023-2024学年八年级上学期期中考试数学试卷(含解析)
2023—2024学年第一学期期中考试八年级数学试题说明:1.本试题卷共有六个大题,23个小题,满分120分,考试时间为120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题6小题,每小题3分,共18分)1. 下列体育图标是轴对称图形的是( )A. B.C. D.答案:A解析:解:A、沿一条直线折叠,直线两旁的部分能够互相重合,故此选项是轴对称图形,符合题意;B、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;C、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;D、沿一条直线折叠,直线两旁的部分不能够互相重合,故此选项不是轴对称图形,不符合题意;故选:A.2. 下列长度的三条线段,能组成三角形的是()A. 1,6,7B. 2,5,8C. 3,4,5D. 5,5,10答案:C解析:解:A、∵,∴不能构成三角形,不符合题意;B、∵,∴不能构成三角形,不符合题意;C、∵,∴能构成三角形,符合题意;D、∵,∴不能构成三角形,不符合题意;故选C.3. 要求画的边AB上的高.下列画法中,正确的是()A. B. C.D.答案:C解析:A中AD是边BC上面的高,故不符合题意;B中不符合三角形高的作图,故不符合题意;C中CD是AB边上的高,故符合题意;D中BD是AC边上的高,故不符合题意;故选C.4. 如图,在中,是高,是中线,若,,则的长为()A. 1B.C. 2D. 4答案:C解析:解:∵,,即,∴∵是中线,即点是的中点,∴,故选:C.5. 已知.下面是“作一个角等于已知角,即作”的尺规作图痕迹.该尺规作图的依据是()A. B. C. D.答案:B解析:解:由题意可知,“作一个角等于已知角,即作”的尺规作图的依据是,故选:B.6. 如图,C为线段上一动点(不与点A,E重合),在同侧分别作正三角形和正三角形,与交于点O,与交于点P,与交于点Q,连接.以下四个结论:①;②;③;④.其中正确的结论个数是()A. 1个B. 2个C. 3个D. 4个答案:D解析:解:①∵等边和和等边,∴,∴,在和中,,∴,∴;故①正确;③∵(已证),∴,∵(已证),∴,∴,在与中,,∴,∴;故③正确;②∵,∴,∴是等边三角形,∴,∴,∴;故②正确;④∵,∴,∵等边,∴,∴,∴,∴.故④正确;综上所述,正确的结论是①②③④.故选:D.二、填空题(本大题6小题,每小题3分,共18分)7. 在平面直角坐标系中,关于x轴对称的点的坐标为______.答案:解析:解:关于x轴对称的点的坐标为,故答案为:.8. 如图,一块三角形玻璃板破裂成①,②,③三块,现需要买另一块同样大小的一块三角形玻璃,为了方便,只需带第______块碎片比较好.答案:③解析:解:由图可知,带③去可以利用“角边角”得到与原三角形全等的三角形.故答案为:③.9. 正五边形的一个外角的大小为__________度.答案:72解析:解:正五边形的一个外角的度数为:,故答案为:72.10. 将一副直角三角板如图放置,使含角的三角板的短直角边和含角的三角板的一条直角边重合,则______度.答案:75解析:解:如图,,∴(对顶角相等),故答案为:75.11. 如图,在中,,是的平分线,于点E,.则的面积为______.答案:9解析:解:如图,过点D作于点F,∵是的平分线,,,∴,∴的面积为.故答案为:912. 若,,,D为坐标平面内不和C重合的一点,且与全等,则D 点坐标为______.答案:或或解析:解:如图,∵,与全等,∴关于x轴对称的点满足条件,∵,,∴D点坐标或也满足条件,故答案为:或或.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)一个多边形的内角和是它的外角和的3倍,求这个多边形的边数.(2)如图,,点B、F、C、E在同一条直线上,若,,求的长.答案:(1)8;(2)4解析:解:(1)设它的边数为n,,解得,答:它的边数为8.解:(2)∵,∴.∴,即.∵,,∴.∴.14. 已知a、b、c为△ABC三边长,且b、c满足+=0,a为方程|a﹣3|=2 的解,求△ABC 的周长.答案:17解析:(b-5)2+=0,∴,解得,∵a为方程|a-3|=2的解,∴a=5或1,当a=1,b=5,c=7时,1+5<7,不能组成三角形,故a=1不合题意;∴a=5,∴△ABC的周长=5+5+7=17,15. 如图,已知,.求证:.答案:证明见解析.解析:证明:在和中,,.16. 在中,,的垂直平分线交于点D,交于点E.(1)求证:是等腰三角形;(2)若,的周长为,求的周长.答案:(1)见解析(2)小问1解析:解:∵的垂直平分线交于点D,∴,∴是等腰三角形;小问2解析:解:∵的垂直平分线交于点D,,∴,∵的周长为,∴,∴的周长.17. 如图,三角形ABC与三角形DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.答案:详见解析.解析:图①中,过点A和BC,EF的交点作直线l;图②中,过BC,EF延长线的交点和AC,DF延长线的交点作直线l.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图所示的正方形网格中,每个小正方形的边长都为1,的顶点都在网格线的交点上,在图中建立平面直角坐标系,使与关于y轴对称,点B的坐标为.(1)在图中画出平面直角坐标系;(2)①写出点B关于x轴的对称点的坐标;②画出关于x轴对称的图形,其中点A的对称点是,点C的对称点是.答案:(1)见解析(2)①.②见解析小问1解析:解:如图.小问2解析:解:①∵点B的坐标为∴;②如图.19. 如图,,于点E,于点F,.(1)求证:;(2)求证:.答案:(1)见解析(2)见解析小问1解析:∵,∴.即,∵,且,∴.小问2解析:∵,∴,∴.20. 如图,在.(1)求证:;(2)分别以点A,C为圆心,长为半径作弧,两弧交于点D(点D在的左侧),连接.求的面积.答案:(1)见解析(2)16小问1解析:在中,∵,∴.∵,∴.∴;小问2解析:过点D作的延长线于点E,由作图得,,∴为等边三角形,∴,∴,∴,在中,∵,,∴,∴的面积.五、解答题(本大题共2小题,每小题9分,共18分)21. 我们定义:如图1,在四边形中,如果,,对角线平分,我们称这种四边形为“分角对补四边形”.(1)特例感知:如图1,在“分角对补四边形” 中,当时,根据教材中一个重要性质直接可得,这个性质是______;(填序号)①垂线段最短:②垂直平分线的性质;③角平分线的性质;④三角形内角和定理(2)猜想论证:如图2,当为任意角时,猜想与的数量关系,并给予证明;(3)探究应用:如图3,在等腰中,,平分,求证:.答案:(1)③(2),见解析(3)见解析小问1解析:解:∵平分,,,∴,∴根据角平分线的性质定理可知,故答案为:③;小问2解析:解:,理由如下:如图2中,作交延长线于点E,于点F,∵平分,,,∴,∵,,∴,∵,∴,∴;小问3解析:证明:如图3,在上截取,连接,∵,,∴,∵平分,∴,∵,∴,即,由(2)结论得,∵,∴,∴,∴,∴.22. 如图,是经过顶点C的一条直线,,E,F分别是直线上两点,且.(1)若直线经过的内部,且E,F在射线CD上.①如图1,若,证明②如图2,若,请添加一个关于α与关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线经过的外部,,请提出关于,三条线段数量关系的合理猜想,并简述理由.答案:(1)①见解析;②时,①中的结论仍然成立,理由见解析(2),理由见解析小问1解析:①∵,∴,∴,在和中,∴,∴;②时,①中的结论仍然成立,理由如下:,∴,∴,在和中∴,∴;小问2解析:解:,证明:∵,∴,∴,在和中,∴,∴,∵,∴.六、解答题(本大题共12分)23. 课本再现:我们知道:三角形三个内角的和等于,利用它我们可以推出结论:三角形的外角等于与它不相邻的两个内角的和.定理证明:(1)为证明此定理,小红同学画好了图形(如图1),写好了“已知”和“求证”,请你完成证明过程经,已知:如图1,是的一个外角.求证:.知识应用:(2)如图2,在中,,点D在BC边上,交AC于点F,,求的度数.(3)如图3,直线与直线相交于点O,夹角为锐角,点B在直线上且在点O右侧,点C在直线上且在直线上方,点A在直线上且在点O左侧运动,点E在射线CO上运动(不与点C、O重合).当时,平分,平分交直线于点G,求的度数.答案:(1)见解析;(2);(3)或解析:解:定理证明:(1)如图1中,∵,,∴.知识应用:(2)如图2中,∵,∴,∵,∴;(3)①当点E在点O的上方时,如图3-1:∵,∴,∵平分,平分,∴,,由三角形外角的性质可得:,,∴,∴,即.②当点E在点O的下方时,如图3-2:由题意知,,,,,,综上所述,或.。
八年级上学期数学期中试卷(解析版)
河北省邯郸市邯山区扬帆初中学校2022--2023学年八年级上学期数学期中试卷一、选择题(本题有14个小题,每题4分,共56分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列交通指示标志中,不是轴对称图形的是()A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,逐项分析判断即可求解.【详解】解:A .是轴对称图形,故该选项不符合题意;B .是轴对称图形,故该选项不符合题意;C .是轴对称图形,故该选项不符合题意;D .不是轴对称图形,故该选项符合题意;故选D【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的定义是解题的关键.2.下列运算中,结果正确的是()A.426a a aB.246()a a C.246a a a D.44(2)8a a 【答案】C 【解析】【分析】直接利用同底数幂的乘法法则,幂的乘方法则,积的乘方法则分别计算进行判断即可.【详解】解:A.42a a 不能合并,故此项错误,不合题意;B .248()a a ,故此项错误,不合题意;C.246a a a 故此项正确,符合题意;D.44(2)16a a 故此项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法运算,幂的乘方运算,积的乘方运算,解题的关键是掌握相关的运算法则.3.如图,在A B C 中,90C ,30B ,6A B .则A C长度是()A.3B.3.5C.2.5D.2【答案】A 【解析】【分析】根据含30度角的直角三角形的性质即可求解.【详解】解:∵在A B C 中,90C ,30B ,6A B .∴132A C A B.故选:A .【点睛】本题考查了含30度角的直角三角形的性质,掌握直角三角形中30度角所对的直角边等于斜边的一半是解题的关键.4.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是()A.AM =BMB.AP =BNC.∠MAP =∠MBPD.∠ANM =∠BNM【答案】B 【解析】【分析】根据直线MN 是四边形AMBN 的对称轴,得到点A 与点B 对应,根据轴对称的性质即可得到结论.【详解】解:∵直线MN 是四边形AMBN 的对称轴,∴点A 与点B 对应,∴AM =BM ,AN =BN ,∠ANM =∠BNM ,∵点P 是直线MN 上的点,∴∠MAP =∠MBP ,∴A ,C ,D 正确,而B 错误,故选:B .【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.5已知102,103x y ,则3210x y 等于()A.36B.72C.108D.24【答案】B 【解析】【分析】利用同底数幂的乘法法则及幂的乘方的法则对所求的式子进行整理,再代入相应的值进行运算.【详解】解:323210(10)(10)x yx y ,当102,103xy时,原式3223 8972 ;故选:B .【点睛】本题主要考查了幂的乘方,同底数幂的乘法,解题的关键是熟练掌握相关的运算法则.6.已知等腰三角形的周长为16,一边长为4,则此等腰三角形的底边长是()A.4B.6C.4或10D.4或6【答案】A 【解析】【分析】分4为腰和底两种情况进行分类讨论即可.【详解】解:当4为等腰三角形的腰时,则底边为16448 ,此时三边分别为4、4、8,不满足三角形的三边关系,则不能构成三角形;当4为等腰三角形的底边时,则腰为(164)26 ,此时三边分别为6、6、4,满足三角形的三边关系,能构成三角形;故选:A .【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系,解题的关键是在题目没有明确已知边长的情况时,需进行分类讨论.7.下列各式,4n x 可以写成()A.4n x xB.3n n x xC.22n x D.4nx x 【答案】C 【解析】【分析】根据同底数幂的乘法以及幂的乘方解决此题.详解】解:A .44n n x x x ,那么A 不符合题意.B .34n n n x x x ,那么B 不符合题意.C .根据幂的乘方,224()n n x x ,那么C 符合题意.D .根据同底数幂的乘法,44n n x x x ,那么D 不符合题意.故选:C .【点睛】本题主要考查同底数幂的乘法、幂的乘方,熟练掌握同底数幂的乘法、幂的乘方解决此题.8.如图,在锐角A B C 中,边AB ,AC 的垂直平分线交于点P .连结BP ,CP .若100B P C ,则A ()A.40B.50C.60D.80【答案】B 【解析】【分析】连结AP 并延长到D ,先根据线段垂直平分线的性质可得P A P B P C ,从而利用等腰三角形的性质可得,A B P B A P C A P A C P,然后利用三角形的外角性质可得2,2B P D B A P C P D C A P ,最后根据已知可得100B P D C P D ,从而可得22100B A PC A P ,进行计算即可解答.【详解】解:连结A P 并延长到D ,∵边,A B A C 的垂直平分线交于点P ,∴P A P B P C ,∴,A B P B A P C A P A C P ,∴2,2B P D B A P A B P B A P C P D C A P A C P C A P ,∵100B P C ,∴100B P D C P D ,∴22100B A P C A P ,∴50B A P C A P ,∴50B A C ,故选:B .【点睛】本题考查了线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.若计算22(321)(3)4x a x x x 的结果中不含有2x 项,则a 的值为()A.23B.0C.2D.32【答案】A 【解析】【分析】利用单项式乘多项式的法则进行求解,再结合不含2x 项,则其2x 项的系数为0,从而求解.【详解】解:22(321)(3)4x a x x x3229634x a x x x 329(64)3x a x x ,结果中不含有2x 项,640a ,解得23a ,故选:A .【点睛】本题主要考查了单项式乘多项式,合并同类项,解题的关机是熟练掌握相应的运算法则.10.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D 【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】解:Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选:D .【点睛】本题主要考查了尺规作图,正确掌握基本作图方法是解题关键.11.若k 为正整数,则34()k 的意义为()A.4个3k 相加B.3个4k 相加C.4个3k 相乘D.7个k 相乘【答案】C【解析】【分析】根据幂的乘方的含义即可解答.【详解】解:根据幂的乘方的含义,可得34k表示4个3k相乘,()故选:C.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方的含义是解题的关键.12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB 中点C,连接PCD.过点P作PC⊥AB,垂足为C【答案】B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A.利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B.过线段外一点作已知线段垂线,不能保证也平分此条线段,不符合题意;C.利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D.利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.,宽为a b 的长方形,需要B类卡13.用如图所示的正方形和长方形卡片若干张,拼成一个长为32a b片()张.A.3B.4C.5D.6【答案】C 【解析】【分析】根据长方形的面积公式22(32)()352S a b a b a ab b 即可得出结果.【详解】解:∵长方形长为32a b ,宽为a b ∴长方形的面积:22(32)()352S a b a b a ab b∴需要B 内卡片5张.故选C .【点睛】本题考查多项式的乘法,灵活运用多项式乘法法则和数形结合思想是解题的关键.14.如图,等边A B C 的边长为8,A D 是B C 边上的中线,F 是A D 边上的动点,E 是A C 边上一点,若4A E ,则当E F C F 取得最小值时,E C F 的度数为()A.22.5B.30C.45D.15【答案】B 【解析】【分析】根据对称性和等边三角形的性质,作B E A C 于点E ,交A D 于点F ,此时B F C F ,E F C F最小,进而求解.【详解】解:如图:过点B 作B EA C于点E ,交A D 于点F ,连接C F ,A B C 是等边三角形,边长为8,若4A E ,4A E E C ,A F F C ,F A C F C A ,A D 是等边ABC 的B C 边上的中线,30B A D C A D ,30E C F .故选:B .【点睛】本题考查了轴对称 最短路线问题、等边三角形的性质,解决本题的关键是准确找到点E 和F 的位置.二、填空题(本大题共3个小题,每空3分,共12分)15.平面直角坐标系中,与点 4,8 关于y 轴对称的点的坐标是_____.【答案】 4,8 【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:点 4,8 关于y 轴对称的点的坐标是 4,8 .故答案为:4,8 【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.16.若350x y ,求28x y _____.【答案】32【解析】【分析】由350xy 得到35x y ,再代入 3332822222yx y x x y x y 中即可求解答案.【详解】解:∵350x y ,∴35x y ,∴ 33352822222232yxyxx yx y ,故答案为:32【点睛】此题主要考查了幂的乘方的逆运算、同底数幂的乘法等知识,熟练掌握运算法则是解题的关键.17.如果一条线段将一个三角形分割成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”;如果两条线段将一个三角形分割成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.(1)如图,在A B C 中,A B A C ,点D 在A C 边上,且A D B D B C ,则A _____度;(2)在A B C 中,33B A D ,和D E 是A B C 的“好好线”,点D 在B C 边上,点E 在A C 边上,且A D B D ,D E C E ,则C 的度数为____________.【答案】①.36②.22 或38 .【解析】【分析】(1)利用等边对等角得到三对角相等,设A A B D x ,表示出B D C 与C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出A 的度数;(2)设C x ,①当A D A E 时,利用三角形外角的性质得到23333x x ,解得22x ,②当A D D E 时,利用三角形内角和定理得到23803313x x ,解得38x .【详解】解:(1)A B A C ,A B C C ,B D BC A D,A AB D ,C BD C ,设A A B D x ,则2B D C x ,1802x C,即18022xx ,解得36x ,则36A ,故答案为:36;(2)设C x ,①当A D A E 时,如图:23333x x ,22x ;②当A D D E 时,如图:23333180x x ,38x ,所以C 的度数为22 或38 ;故答案为:22 或38 .【点睛】此题考查了等腰三角形的性质,三角形外角的性质以及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.三、解答题(本大题共3个小题,共32分.解答应写出文字说明、证明过程或演算步骤)18.计算:(1)已知2528322n n ,求n 的值;(2)已知n 是正整数,且32n x ,求3223(3)(2)n n x x 的值.【答案】(1)3;(2)4.【解析】【分析】(1)由3535812528322(2)(2)22222n n n n n n n ,得到一元一次方程8125n ,即可求解;(2)把3223(3)(2)n n x x 变形为2323(3)8()n n x x ,再把32n x 代入计算即可.【小问1详解】解:35358125)(2)2832222222(2n n n n n n n ,8125n ,解得3n .【小问2详解】解:32233223(3)(2)()8)3(n n n n x x x x ,当32n x 时,原式22(32)82 36324 .【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解题的关键.19.如图,某市有一块长为(3)a b 米,宽为(2)a b 米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)则绿化的面积是多少平方米?(用a ,b 的代数式表示)(2)若a ,b 满足2(1)(3)x x x ax b 时,求该绿化面积.【答案】(1) 253a ab 平方米(2)116平方米【解析】【分析】(1)用长方形的面积减去正方形的面积即可;(2)把等式的左边化简,求出a 和b 的值,代入(1)中结果计算.【小问1详解】解:长方形面积:(3)(2)a b a b ,正方形面积:()()a b a b ,∴绿化面积:(3)(2)()()a b a b a b a b22226322a ab ab b a ab b 22226322a ab ab b a ab b 253a ab答:绿化的面积是 253a ab 平方米.【小问2详解】解:∵2(1)(3)x x x ax b∴2243x x x a x b ,∴4,3a b 时,∴225354343a ab 8036116答:绿化的面积是116平方米,【点睛】本题考查了整式的混合运算,正确列出算式是解答(1)的关键,根据多项式乘以多项式求出a 和b 的值是解(2)的关键.20.如图,在A B C 中,B C ,过B C 的中点D 作D E A B ,D F A C ,垂足分别为点E 、F .(1)求证:D E D F ;(2)若55B D E ,求B A C 的度数.(3)若30B ,2A E ,则A B .【答案】(1)见解析(2)110(3)8【解析】【分析】(1)根据D E A B ,D F A C ,可得90B E D C F D ,由于B C ,D 是B C 的中点,根据全等三角形的判定和性质即可得出结论.(2)根据三角形的内角和定理求出35B ,根据三角形的内角和定理即可求解.(3)由等腰三角形的性质得到90A D B ,30B ,得到2A B A D ,再求得30A D E A D B B D E ,得到30A D E A D B B D E ,即可得到24A D A E ,即可得到答案.【小问1详解】∵D E A B ,D F A C ,∴90B E D C F D ,∵D 是B C 的中点,∴B D C D ,在B E D 与C F D ♀中,B E DC F DB C B D C D,∴B E D C F D A A S ≌(),∴D E D F ;【小问2详解】∵90B E D ,55,B D E ∴18035C B ED B DE ,∴=35B C ,∴1803535110B A C .【小问3详解】连接A D,∵B C ,∴A B C 是等腰三角形,∵D 是B C 的中点,∴A D B C ,∴90A D B ,∵30B ,∴2A B A D ,∵D E A B ,∴90B D E A E D ,∵90B E D ,55,B D E ∴18060B D E B E D B ,∴30A D E A D B B D E ,∴24A D A E ,∴28A B A D ,故答案为:8【点睛】此题主要考查了等腰三角形的判定和性质、全等三角形的判定与性质、直角三角形的性质等知识点的理解和掌握.。
人教版八年级上册数学期中考试试题及答案
人教版八年级上册数学期中考试试卷一、单选题1.以下面各组线段为边,不能构成三角形的是()A.5,6,7B.6,6,6C.8,4,4D.20,30,362.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.若点M(2,a)和点N(a+b,3)关于y轴对称,则a、b的值为()A.a=3,b=-5B.a=-3,b=5C.a=3,b=5D.a=-3,b=1 5.下列运算正确的是()A.-a4·a3=a7B.a4·a3=a12C.(a4)3=a12D.a4+a3=a7 6.如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为()A.30°B.40°C.60°D.80°7.如图,在等边 ABC中,AD是它的角平分线,DE⊥AB于E,若AC=8,则BE=()A .1B .2C .3D .48.如图,用直尺和圆规作已知角的平分线,要证明CAD DAB ∠=∠成立的全等三角形的判定依据是()A .SSSB .SASC .ASAD .AAS9.如图,已知等边 ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;② EDP ≌ GFP ;③∠EDP=60°;④EP=1中,一定正确的个数是()个A .1B .2C .3D .410.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是()A .20°B .35°C .40°D .70°二、填空题11.若()2120a b -+-=,则以a 、b 为边长的等腰三角形的周长为_____.12.若am=3,则(a 3)m =.13.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF=AC ,BC=7,CD=2,则AF 的长为____14.如图,在ABC 中,AB AC =,50A ∠=︒,AB 的垂直平分线MN 交AC 于D 点,连接BD ,则DBC ∠的度数是________.15.如图,撑伞时,把伞“两侧的伞骨”和支架分别看作AB 、AC 和DB 、DC ,始终有AB=AC ,DB=DC ,请大家考虑一下伞杆AD 所在的直线是B 、C 两点的连线BC 的____线.16.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西50°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村村观测A 、B 两村的视角∠ACB 的度数是__.三、解答题17.计算:(1)[(-a)3]4;(2)(-m 2)3·(-m 3)2.(3)[(m-n)2]5(n-m)3(4)(-x 2)5+(-x 5)218.已知在△ABC 中,AB =AC ,且线段BD 为△ABC 的中线,线段BD 将△ABC 的周长分成12和6两部分,求△ABC 三边的长.19.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与 ABC 关于直线l 成轴对称的A B C '''(2)四边形ABCA '的面积为_____;(3)在直线l 上找一点P ,使PA+PB 的长最短.20.如图,AD ⊥BC 于D ,AD=BD ,AC=BE .(1)请说明∠1=∠C ;(2)猜想并说明DE 和DC 有何特殊关系.21.如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点FC.F,交AB于点E.求证:BF=1222.(1)若2x+5y﹣3=0,求4x•32y的值.(2)已知a3m=3,b3n=2.求(a2m)3+(bn)3-a2mbn·a4mb2n的值.23.如图,已知AB=CB,BE=BF,点A,B,C在同一条直线上,∠1=∠2.(1)证明:△ABE≌△CBF;(2)若∠FBE=40°,∠C=45°,求∠E的度数.24.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当 PAB的周长最小时,求∠APB 的度数.25.如图1,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:ABQ CAP ≌△△:(2)当点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 相交于点M ,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】+>,能构成三角形,该项不符合题意;A.567+>,能构成三角形,该项不符合题意;B.666+=,不能构成三角形,该项符合题意C.448+>,能构成三角形,该项不符合题意;D.203036故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.A【解析】【分析】根据三角形的稳定性即可解决问题.【详解】解:根据三角形的稳定性可固定窗户.故选:A.【点睛】本题考查了三角形的稳定性,属于基础题型.3.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.A【解析】【分析】关于y 轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变,据此解出a,b 的值.【详解】解:根据题意,点M(2,a)和点N(a+b ,3)关于y 轴对称,则a+b=-2,a=3,解得b=-5,故选:A .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,掌握相关知识是解题关键.5.C【解析】【分析】由同底数幂相乘,幂的乘方,合并同类项,分别进行判断,即可得到答案.【详解】解:A 、437·a a a -=-,故A 错误;B 、437·a a a =,故B 错误;C 、4312()a a =,故C 正确;D 、43a a +不是同类项,不能合并,故D 错误;故选:C .【点睛】本题考查了幂的乘方,同底数幂相乘,合并同类项,解题的关键是熟练掌握运算法则进行判断.6.C【解析】【分析】先根据三角形外角性质,用∠C 表示出∠AED ,再根据等边对等角和三角形内角和定理,列出等式即可求出∠C 的度数,再求∠DAE .【详解】解:设∠C=x ,∵AB=AC ,∴∠B=∠C=x ,∴∠AED=x+10°∵AD=DE ,∴∠DAE=∠AED=x+10°根据三角形的内角和定理,得x+x+(20°+x+10°)=180°解得x=50°,∴∠DAE=50°+10°=60°故选C .【点睛】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,求出∠C 的度数是解答本题的关键.7.B【解析】【分析】由等边△ABC 的“三线合一”的性质推知142BD BC ==,根据等边三角形三个内角都相等的性质、直角三角形的两个锐角互余推知∠BDE=30°,最后根据“30°角所对的直角边等于斜边的一半”来求BE 即可.【详解】∵ABC 是等边三角形,AD 是它的角平分线,∴118422BD BC ==⨯=,60B ∠=︒.∵DE AB ⊥于E ,∴30BDE ∠=︒,∴122BE BD ==.故选B 【点睛】本题考查了等边三角形的性质及含30°角的直角三角形,解题的关键是熟练掌握以上知识.8.A【解析】【分析】根据全等三角形的判定定理即可解答.【详解】解:∵AF=AE ,FD=ED ,在△AFD 与△AED 中AF AE FD ED AD AD =⎧⎪=⎨⎪=⎩∴△AFD ≌△AED (SSS )∴CAD DAB ∠=∠,因此全等三角形的判定依据是SSS ,故选:A .【点睛】本题考查了角平分线的尺规作图的依据,解题的关键是找到图中的全等三角形,并熟记全等三角形的判定定理.9.C【解析】【分析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE =CG ,DE =FG ,就可以得出△DEP ≌△FGP ,得出∠EDP =∠GFP ,EP =PG ,得出PC +BE =PE ,就可以得出PE =1,从而得出结论.【详解】解:∵△ABC 是等边三角形,∴AB =BC =AC ,∠A =∠B =∠ACB =60°.∵∠ACB =∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB =∠FGC =∠DEP =90°.在△DEB 和△FGC 中,DEB FGC GCF B BD CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEB ≌△FGC (AAS ),∴BE =CG ,DE =FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEP ≌△FGP (AAS ),故②正确;∴PE =PG ,∠EDP =∠GFP≠60°,故③错误;∵PG =PC +CG ,∴PE =PC +BE .∵PE +PC +BE =2,∴PE =1,故④正确.故答案为:C .【点睛】本题考查了等边三角形的性质,全等三角形的判定及性质,解题的关键是证明三角形全等.10.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°.故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.11.5【解析】【分析】根据偶次方和绝对值的非负性,可以得到a -1=0,b -2=0,得到a ,b 的值,根据三角形三边关系求解即可.【详解】解:∵()2120a b -+-=,∴a -1=0,b -2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,∴周长=2+2+1=5.故答案为:5【点睛】本题考查了偶次方和绝对值的非负性,等腰三角形的性质,三角形的三边关系,关键是求出a ,b 的值.12.27【解析】【分析】根据幂的乘方的逆运算可得结果.【详解】解:∵am=3,∴(a 3)m=()333327m m a a ====,故答案为:27.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方以及其逆运算法则是解题的关键.13.3【解析】【详解】∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC ,在△BDF 与△ADC 中,DBF DAC BDF ADC BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ADC(ASA),∴AD=BD=BC−CD=7−2=5,DF=CD=2,∴AF=AD−DF=5−2=3;故答案为3.14.15°【解析】【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD ,根据等边对等角的性质,可得∠ABD=∠A ,然后求∠DBC 的度数即可.【详解】∵AB=AC ,∠A=50∘,∴∠ABC=12(180∘−∠A)=12(180∘−50∘)=65∘,∵MN 垂直平分线AB ,∴AD=BD ,∴∠ABD=∠A=50∘,∴∠DBC=∠ABC−∠ABD=65∘−50∘=15∘.故答案为:15∘.【点睛】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.15.垂直平分【解析】【分析】根据线段的垂直平分线的性质定理的逆定理得出A 、D 都在线段BC 的垂直平分线上,根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线.【详解】解:如图,连接BC 、AD ,∵,AB AC DB DC ==,∴点A 在线段BC 的垂直平分线上,点D 在线段BC 的垂直平分线上,∴根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线,故答案为:垂直平分.【点睛】本题考查了线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的性质.16.80°【解析】【分析】根据三角形的内角和进行计算,即可得到结论.【详解】由题意得:∠BAE=∠ABD=50°,∠CAE=15°,∠DBC=85°,∴∠BAC =50°+15°=65°,∠ABC =85°﹣50°=35°,在△ABC 中,∠ACB =180°﹣∠BAC ﹣∠ABC =180°﹣65°﹣35°=80°.故答案为:80°.【点睛】本题考查的是方向角的概念及三角形内角和定理,解题的关键是熟练掌握三角形的内角和.17.(1)a 12;(2)-m 12;(3)(n-m )13;(4)0【解析】【分析】(1)由题意利用积的乘方和幂的乘方的运算法则进行计算即可;(2)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(3)由题意先利用幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(4)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用合并同类项原则进行计算即可.【详解】解:(1)[(-a)3]412a =;(2)(-m 2)3·(-m 3)26612m m m =-⋅=-;(3)[(m-n)2]5(n-m)310310313()()()()()m n n m n m n m n m =-⋅-=-⋅-=-;(4)(-x 2)5+(-x 5)210100x x =-+=.【点睛】本题考查幂的运算,熟练掌握积的乘方和幂的乘方以及同底数幂的乘法运算法则是解题的关键.18.8,8,2【解析】【分析】设腰长为x ,底边长为y ,分两种情况进行讨论,12为腰长加腰长的一半和6为腰长加腰长的一半,求解即可.解:设腰长为x ,底边长为y ,当12为腰长加腰长的一半时,则:1122162x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得82x y =⎧⎨=⎩此时三角形的三边长为8,8,2,能组成三角形当6为腰长加腰长的一半时,则1621122x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得410x y =⎧⎨=⎩,此时三角形的三边长为4,4,10,不能组成三角形故三角形的三边长为8,8,2【点睛】本题考查了等腰三角形和三角形三边关系的求解,解题的关键是注意分情况讨论,并判断是否组成三角形.19.(1)见解析;(2)172;(3)见解析【解析】【分析】(1)根据题意作出点A ,点B 关于L 的对称点A′、B′,连结CA′,A′B′,B′C 即可;(2)用割补法利用矩形面积减去3个直角三角形面积求解即可得到结论;(3)作出图形,根据勾股定理求得结果即可.【详解】解:(1)作出点A ,点B 关于l 的对称点A′、B′,连结CA′,A′B′,B′C ,如图所示,△A'B'C'即为所求;(2)四边形ABCA'的面积=4×412-⨯2×112-⨯1×412-⨯3×3=16-1-2-92=172;故答案为:172;(3)∵点B 与点B′关于l 对称,连接AB'交直线l 与点P ,∴PA+PB=PA+PB′,则PA+PB长的最短值=AB',∴AB'==;.【点睛】本题考查了轴对称﹣最短路线问题,勾股定理,作图﹣轴对称变换,正确的理解题意是解题的关键.20.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.本题考查了直角三角形全等的判定及性质;三角形全等的判定和性质是中考的热点,斜边与直角边对应相等的两个直角三角形全等.21.见解析【解析】【详解】试题分析:连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出即可.试题解析:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF为AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°-30°=90°,∵∠C=30°,∴AF=12 CF,∵BF=AF,∴BF=12 FC.22.(1)8;(2)-7【解析】【分析】(1)先化为以2为底的幂的形式,再利用同底数幂相乘,底数不变,指数相加,最后采用整体代入思想解题;(2)先利用幂的乘方公式将所要求的式子化简,再代入解题.【详解】解:(1)若2x+5y ﹣3=0,则2x+5y=32525343222228x y x y x y +⋅=⋅===;(2)(a 2m )3+(bn )3-a 2mbn·a 4mb 2n=(a 3m )2+(b 3n )-a 6mb 3n=(a 3m )2+(b 3n )-(a 3m )2b 3n=32+2-32×2=9+2-18=-7.【点睛】本题考查幂的运算,涉及同底数幂的乘法、幂的乘方、整体思想等知识,是重要考点,掌握相关知识是解题关键.23.(1)证明见解析;(2)25°【解析】【分析】(1)根据SAS 即可证明;(2)在△ABE 中,求出∠A ,∠ABE 即可解决问题.【详解】(1)证明:∵∠1=∠2,∴∠1+∠EBF =∠2+∠EBF ,即∠ABE =∠CBF .在△ABE 和△CBF 中,∵AB BC ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBF .(2)∵∠1=∠2,∠FBE =40°,∴∠1=∠2=70°.∵△ABE ≌△CBF ,∴∠A =∠C =45°,∵∠ABE =∠1+∠FBE =70°+40°=110°,∴∠E =180°-∠A -∠ABE =180°-45°-110°=25°.【点睛】本题考查全等三角形的判定和性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常见题.24.(1)①100°;②当90MON ∠=︒时,10GH =;(2)60APB ∠=︒【解析】【分析】(1)①根据对称性可得OG OP OM GP =⊥,,即可得到OM 平分POG ∠,ON 平分∠POH ,进而得出∠GOH 的值;②当90MON ∠=︒时,180GOH ∠=︒,此时G O H ,,在同一直线上,可得=10GH GO HO +=;(2)设点P 关于OM 、ON 对称点分别为P P ''',,当点A 、B 在P P '''上时, PAB 周长的最小,根据轴对称的性质,可求出APB ∠的度数.【详解】解:(1)①P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H ,OG OP OM GP ∴=⊥,,OM ∴平分POG ∠,同理得,ON 平分∠POH ,=2250100GOH MON ∴∠∠=⨯︒=︒,故答案为:100°;②P O=5,5GO HO ∴==当90MON ∠=︒时,180GOH ∠=︒G O H ∴,,在同一直线上,=10GH GO HO ∴+=;(2)如图,分别作点P 关于OM 、ON 的对称点P P ''',,连接OP OP P P P P '''''''''、、,交OM ON 、于点A 、B ,连接PA ,PB ,则AP=AP BP BP '''=,,此时 PAB 周长的最小值等于P P '''的长,由对称性可得,==,OP OP OP P OA POA P OB POB ''''''∠=∠∠=∠,,2260120P OP MON '''∴∠=∠=⨯︒=︒(180120)230OP P OP P ''''''∴∠=∠=︒-︒÷=︒30OPA OP A '∴∠=∠=︒同理可得30BPO OP B ''∠=∠=︒303060APB ∴∠=︒+︒=︒.【点睛】本题考查轴对称——最短路线问题,涉及角平分线性质等知识,是重要考点,掌握相关知识是解题关键.25.(1)证明见解析(2)∠QMC 的大小不变,∠QMC=60°(3)∠QMC 的大小不变,∠QMC =120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ ≌△CAP ;(2)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=60°;(3)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ =∠CAP =60°,AB =CA ,又∵点P 、Q 运动速度相同,∴AP =BQ ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS );(2)解:点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小不变,∠QMC =60°.理由:∵ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠ACP +∠MAC ,∴∠QMC =∠BAQ +∠MAC =∠BAC =60°(3)解:点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠BAQ +∠APM ,∴∠QMC =∠ACP +∠APM =180°-∠PAC =180°-60°=120°.。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、单选题1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.以下列四组线段的长为边,能组成三角形的是()A.1,4,7B.2,5,8C.3,6,9D.6,8,103.下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形4.图中三角形的个数是()A.4个B.6个C.8个D.10个5.下列多边形中,内角和与外角和相等的是()A.三角形B.四边形C.五边形D.六边形6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2B.3C.3D.47.如图,△ABC≌△ADE,点D 在BC 上,且∠B=60°,则∠EDC 的度数等于()A.30°B.45°C.60°D.75°8.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17B.22C.27D.17或229.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:510.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B、C、E 在同一条直线上,AE 与CD 交于点G,AC 与BD 交于点F,连接FG,则下列结论:①AE=BD;②AG =BF;③FG∥BE;④CF=CG.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题11.点A(3,﹣1)关于y 轴对称的点的坐标是___________.12.如图,120ACD ∠= ,20B ∠= ,则A ∠的度数是__________.13.如图,AC DC =,BC EC =,请你添加一个适当的条件:_____,使得ABC DEC△≌△14.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且24cm ABC S =△,则S =阴影_________.15.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.16.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为_________.17.如图,ABC 中,7565A B ∠=︒∠=︒,,将纸片的一角折叠,使点C 落在ABC 内,若120∠=︒,则2∠的度数是_____________.三、解答题18.如图,作∠BAC 的平分线AP (用尺规作图,保留作图痕迹,不写作法)19.如图,在△ABC 中,∠B=40°,∠C=60°,AE、AD 分别是角平分线和高.求∠DAE 的度数.20.如图,四边形ABCD 中,AB AC =,B C ∠=∠,求证:BD CD =.21.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC22.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △;(2)点1A ,1B ,1C 的坐标分别是______,______,______;(3)ABC 的面积为______.23.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠.24.已知:如图,∠A=∠D=90°,点E、F 在线段BC 上,DE 与AF 交于点O,且AB=CD,BE=CF.求证:△OEF 是等腰三角形.25.如图,在Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若点M 从点B 出发以2cm/s 的速度向点A 运动,点N 从点A 出发以1cm/s 的速度向点C 运动,设M,N 分别从点B,A 同时出发,运动的时间为ts.(1)用含t 的式子表示线段AM,AN 的长;(2)当t 为何值时,△AMN 是以MN 为底边的等腰三角形?(3)当t 为何值时,MN∥BC?26.如图,AD 与BC 相交于点O,OA OC =,A C ∠=∠,BE DE =.(1)求证:OE 是BD 的垂直平分线;(2)如图2,若OE 与BD 的交点K 是OE 的中点,写出图中所有的等腰三角形.参考答案1.B【解析】【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后即可得出答案.【详解】解:A、∵1+4=5<7,∴1,4,7不能组成三角形,故本选项错误;B、∵2+5=7<8,∴2,5,8不能组成三角形,故本选项错误;C、∵3+6=9,∴3,6,9不能组成三角形,故本选项错误;D、6+8=14>10∴6,8,10能组成三角形,故本选项正确.故选:D.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.3.A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.故选:A.【点睛】此题考查了三角形的稳定性和四边形的不稳定性.4.C【解析】【分析】根据三角形的定义即可得.【详解】图中的三角形是,,,,,,,ABC ABE ACD BCF BCE BCD BDF CEF ,共8个故选:C.【点睛】本题考查了三角形的定义,掌握理解三角形的概念是解题关键.5.B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n-2)•180°=360°,解得n=4.故选:B.6.A【分析】利用角平分线的性质解答.【详解】解:过点P作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD=2,故选:A.【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等.7.C【解析】【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【详解】解:∵△ABC≌△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=60°.故选:C.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.8.B【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.C【解析】【分析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,根据角平分线的性质:角平分线上的点到角两边的距离相等,可得:OE OF OD ==,依据三角形面积公式求比值即可得.【详解】解:过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是三条角平分线交点,OE OF OD \==,ABO S ∴ :BCO S △:12CAO S AB OE =⋅⋅ :12BC OF ⋅⋅:12AC OD ⋅⋅::2:3:4AB BC AC ==,故选:C.【点睛】题目主要考查角平分线的性质及三角形面积公式,理解角平分线的性质是解题关键.10.A【解析】【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS 判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,证得CF=CG,得到△CFG是等边三角形,易得③④正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠BCD=∠ACE,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)正确的结论为①②③④,故选A.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.11.(-3,-1)【解析】【分析】根据关于y 轴对称点的坐标特点,纵坐标不变,横坐标变为原来的相反数.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,1A -关于y 轴对称的点的坐标是()3,1--,故答案为:()3,1--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键.12.100︒【解析】【分析】根据三角形外角定理求解即可.【详解】∵120ACD B A ∠=∠+∠= ,且20B ∠= ,∴12012020100A B ∠=︒-∠=︒-︒=︒.故答案为:100︒【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.13.AB=DE(答案不唯一).【解析】【详解】解:添加条件是:AB=DE,在△ABC 与△DEC 中,AC DC BC EC AB DE =⎧⎪=⎨⎪=⎩,∴△ABC≌△DEC.故答案为AB=DE.本题答案不唯一.14.21cm 【解析】【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高,所以S△BEF=12S△BEC,同理可求△EBC 的面积是△ABC 面积的一半,据此求解即可.【详解】解:点F 是CE 的中点,∴△BEF 的底是EF,△BEC 的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E 是AD 的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,∵24cm ABC S =△,∴S△BEF=12cm ,即S =阴影12cm ,故答案为:21cm .本题主要考查了三角形中线的性质,三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.15.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.16.50︒或80︒.【解析】【分析】讨论这个50︒的角是顶角或是底角两种情况求解即可.解:若50︒的角是顶角,则底角是18050652°-°=°,成立;若50︒的角是底角,则顶角是18025080︒-⨯︒=︒,成立;顶角为50°或80°.故答案是:50︒或80︒.【点睛】本题考查等腰三角形的性质,三角形内角和,解题的关键是掌握等腰三角形的性质.17.60︒【解析】【分析】根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.【详解】解:∵∠A=75°,∠B=65°,∴∠C=180°-(65°+75°)=40°,∴∠CDE+∠CED=180°-∠C=140°,∴∠2=360°-(∠A+∠B+∠1+∠CED+∠CDE)=360°-300°=60°.故答案为:60°.【点睛】本题通过折叠变换考查三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.18.见解析【解析】按角平分线的画法作图即可.【详解】解:如下图,射线AP为所求作,19.10°.【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=12∠BAC,而∠DAC=90°-∠C,然后利用∠DAE=∠EAC-∠DAC进行计算即可.【详解】在△ABC中,∵∠B=40°,∠C=60°∴∠BAC=180°-∠B-∠C=180°-40°-60°=80°∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=12×80°=40°,∵AD是△ABC的高,∴∠ADC=90°∴在△ADC中,∠DAC=180°-∠ADC-∠C=180°-90°-60°=30°,∴∠DAE=∠EAC-∠DAC=40°-30°=10°.20.见解析连接BC,利用等腰三角形的等边对等角证得A ABC CB =∠∠,进而证得DBC DCB ∠=∠,再根据等腰三角形的等角对等边即可得证.【详解】连接BC ,如图,∵AB AC =,∴A ABC CB =∠∠,又∵ABD ACD ∠=∠,∴DBC DCB ∠=∠,∴BD CD =.21.见解析【分析】连接CD,利用HL 定理得出Rt△ADC≌Rt△BCD 进而得出答案.【详解】证明:如图,连接CD,∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°,在Rt△ADC 和Rt△BCD 中CD CDAC BD =⎧⎨=⎩,∴Rt△ADC≌Rt△BCD(HL),∴AD=BC.22.(1)见解析;(2)(2,4)-;(3,1)-;(2,1)-;(3)172.【分析】(1)首先作出A、B、C 三点关于x 轴的对称点,再顺次连接即可;(2)根据(1)得出对应点位置进而得出答案;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示,(2)点1A ,1B ,1C 的坐标分别是(2,4)-;(3,1)-;(2,1)-;故答案为:(2,4)-;(3,1)-;(2,1)-;(3)S△ABC =5×5-12×4×5-12×1×3-12×2×5=172;故答案为:17 2.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.23.见解析【解析】【分析】由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”,以及到角两边距离相等的点在角的角平分线上进行分析证明.【详解】解:如图,过点M作ME⊥AD于F,∵∠C=90°,DM平分∠ADC,∴ME=MC,∵M是BC的中点,∴BM=CM,∴BM=EM,又∵∠B=90°,∴点M在∠BAD的平分线上,∴AM 平分∠DAB.【点睛】本题考查角平分线性质和角平分线的判定,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.24.见解析【解析】【分析】证明Rt△ABF≌Rt△DCE,根据全等三角形的性质得到∠AFB=∠DEC,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在Rt△ABF 和Rt△DCE 中,AB DC BF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△DCE(HL)∴∠AFB=∠DEC,∴OE=OF,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.25.(1)AM=10-2t,AN=t;(2)t=103;(3)t=2.5【解析】【分析】(1)根据线段的和差即可得到结论;(2)根据等腰三角形的性质得到∴AM=AN,列方程即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)AM=AB-BM=10-2t,AN=t;(2)∵△AMN是以MN为底的等腰三角形,∴AM=AN,即10-2t=t,解得,103 t=∴当103t=时,△AMN是以MN为底边的等腰三角形;(3)当MN⊥AC时,MN∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵MN∥BC,∴∠NMA=30°∴AN=12AM,∴t=12(10-2t),解得t=2.5,∴当t=2.5时,MN∥BC.【点睛】本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.26.(1)见解析;(2)DBO ,DEB ,EBO △,DEO【解析】【分析】(1)先证△ABO 和△CDO 全等,得到BO=OD,结合BE DE =,利用垂直平分线的判定即可得解;(2)结合已知和已证及垂直平分线的性质,由图直接写出即可;【详解】解:(1)在△ABO 和△CDO 中,A C OA OC AOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABO CDO △≌△,∴OB OD =,∴点O 在线段BD 的垂直平分线上,又∵BE DE =,∴点E 在线段BD 的垂直平分线上,∴OE 是BD 的垂直平分线;(2)∵OE 是BD 的垂直平分线;又∵K 是OE 的中点,∴,,OB BE OD DE ==∵BE DE =,∴=OB BE OD DE==故等腰三角形有:DBO ,DEB ,EBO △,DEO。
人教版八年级上册数学期中考试试题及答案
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列结论正确的是()A .有两个锐角相等的两个直角三角形全等B .顶角和底边对应相等的两个等腰三角形全等C .一条斜边对应相等的两个直角三角形全等D .两个等边三角形全等.3.已知一个正多边形的内角是140︒,则这个正多边形的边数是()A .6B .7C .8D .94.如图,把长方形ABCD 沿EF 对折后使两部分重合,若∠AEF =110°,则∠1=()A .50°B .35°C .30°D .40°5.如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠E=35°,则∠BAC 的度数为()A .40°B .45°C .60°D .70°6.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是()A .1对B .2对C .3对D .4对7.如图,在ABC 中,9035C BC BAC ∠=︒=∠,,的平分线AD 交BC 于点.D 若:2:5,DC DB =则点D 到AB 的距离是()A .10B .15C .25D .208.如图,在ABC 中,2,75,60AC BAC ACB =∠=︒∠=︒,高BE 与AD 相交于点从,则DH 的长为()A .4B .3C .2D .19.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为()A .15°B .225°C .30°D .45°10.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是A .CB CD=B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒二、填空题11.一木工师傅现有两根木条,木条的长分别为40cm 和30cm ,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm ,则x 的取值范围是_______.12.如图,在ABC 中,6, 4.5,AB AC BC ===分别以,A B 为圆心,4为半径画弧交于两点,过这两点的直线交AC 于点,连接BD ,则△BCD 的周长是__________.13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.14.如图,△ABC 中,AB=AC ,∠BAC=120°,AC 的垂直平分线交BC 于点D ,垂足为E ,若DE=2cm ,则BD 的长为_______.15.已知点P 的坐标为(-3,4),作出点P 关于x 轴对称的点P 1,称为第1次变换;再作出点P 1关于y 轴对称的点P 2,称为第2次变换;再作点P 2关于x 轴对称的点P 3,称为第3次变换,…,依次类推,则第2019次变换得到的点P 2019的坐标为____________.16.如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠1=40°,∠2=110°,则∠A=_____.三、解答题17.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示)。
上海市黄浦区2024-2025学年八年级上学期11月期中考试数学试题[含答案]
八年级 数学学科(满分100分,考试时间90分钟)一、选择题(本大题共6题,每题3分,满分18分)1)A.B.CD2.下列方程中,是一元二次方程的是( )A .11x x+=B .()211x x x +=-C1=D22=5x x -3( )ABCD4.下列各点中,在正比例函数13y x =的图像上的是( )A .1,62æöç÷èøB .()3,1--C .()0,1-D .()6,35.对所有实数a ,b ,下列等式从左到右一定成立的是( )Aa b =-B=C .(2=a-D=6.如图是某函数的图象,当a x b ££时,若在该函数图象上可以找到n 个不同的点()()()1122,,,,...,,n n x y x y x y ,使得1212n nx xx y y y ==L 恒成立,则n 的值不可能是( )A .2B .5C .6D .7二、填空题(本大题共12题,每题2分,满分24分)7=.8= .9.函数y =的定义域是.10.方程23x x =的解为.11.在实数范围内因式分解:241x x --= .12.已知正比例函数()25y m x =-,y 的值随x 的值的增大而增大,那么m 的取值范围是.13.已知函数()21f x x =+,如果()3f a =,那么a = .14.已知关于y 的一元二次方程221y y k +-=有实数根,则k 的取值范围是 .15.某文具店为迎接“购物节”,提高水笔销量,经过两次降价后(每次降价的百分率相同),由每盒25元降至每盒16元.则降价的百分率为.16.若正比例函数()20y x x =<图像上一点到y 轴的距离是为.17.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如 20x x +=是“差1方程”. 已知关于 x 的方程 ()210x m x m ---=(m 是常数)是“差1方程”,则 m 的值为18.已知p 、q 是实数,有且只有三个不同的x 满足方程23x px q ++=,则q 的最小值是 .三、简答题(本大题共5分,满分20分)19.计算:20.计算:-21.解方程:()22212x x x +=+ 22.用配方法解方程:23620x x -+=四、解答题(本大题共6题,第23、24题每题5分,第25、26、27题每题6分,第28题10分,满分3823.已知x =的值.24.已知方程226250x x m m -+-+=的一个根为2,求另一个根及m 的值.25.已知正比例函数()0y kx k =¹的图像经过一、三象限,且经过()2,43P k k ++(1)求k 的值.(2)当23y =时,求x 的值.26.已知关于x 的方程()22440m m x mx --+=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为整数,且3m <,a 是方程的一个根,求代数式22312212a a a ---+的值.27.同学们开展的综合实践活动中取得了系列丰硕的成果,需要推广宣传.原计划使用一块正方形ABCD 场地布展,后经过研究,发现长与宽之比为32:的长方形AGFE 场地展览效果更好,因此需要把长增加6米,宽增加2米(如图1).(1)直接写出长方形区域AEFG 的宽AG 是_______m ,长AE 是_______m .(2)现计划将长方形区域AEFG 按图2的方式进行划分,展示四各小组的项目成果,在各展区之间留宽度相等的过道.如果各展区的总面积为260m ,求过道的宽度.28.如图,点()1,P a 在直线3y x =上,直线01y kx k =<<()上有一点(),1Q b ;(1)求点P 和点Q 的坐标(其中点Q 坐标用含k 的代数式表示);(2)过点P 作PA x ^轴,过点Q 作QB x ^轴,垂足分别是A 、B .如果APQ △的面积是OPQ △面积的34,请求出k 的值;(3)在(2)的条件下,线段PA 与直线y kx =相交于点G ,直线3y x =上是否存在点D ,使12ODG OPG S S =V V ?如果存在,请直接写出D 的坐标;如果不存在,请说明理由.1.C【分析】本题考查了二次根式的化简,同类二次根式的概念,熟练掌握二次根式的化简是解题的关键.先将各二次根式化简,再根据同类二次根式的概念进行判断即可.【详解】A 、因为=A 不符合题意;B 、因为=,所以B 不符合题意;C 、因为=C 符合题意;D 、因为=D 不符合题意.故选:C .2.D【分析】本题考查的是一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.根据一元二次方程的定义对各选项进行逐一分析即可.【详解】解:A 、11x x+=中含有分式,所以该方程不是一元二次方程,不符合题意;B 、()211x x x +=-化简可得10x +=,未知数的次数是1,不是一元二次方程,不符合题意;C 1=,不是整式方程,所以该方程不是一元二次方程,不符合题意;D 22=5x x -故选:D .3.C【详解】b -,∴故选C.4.B【分析】本题考查了正比例函数的图像.熟练掌握正比例函数的图像是解题的关键.将点横坐标代入,求函数值,然后判断作答即可.【详解】解:当12x =时,111326y =´=,1,62æöç÷èø不在正比例函数13y x =的图像上,故A 不符合要求;当3x =-时,()1313y =´-=-,()3,1--在正比例函数13y x =的图像上,故B 符合要求;当0x =时,1003y =´=,()0,1-不在正比例函数13y x =的图像上,故C 不符合要求;当6x =时,1623y =´=,()6,3不在正比例函数13y x =的图像上,故D 不符合要求;故选:B .5.D【分析】本题考查了二次根式的性质,二次根式的化简,二次根式的乘法法则,熟知上述性质和计算法则是解题的关键.利用二次根式的性质化简,二次根式的乘法法则,逐一判断即可解答.【详解】解:当0a b -³a b =-,当0a b -<a b =-+,故A 不一定成立;当,a b 都小于0B不一定成立;2(a =,故C不成立;D 成立,故选:D .6.D【分析】本题考查了函数图象,学会利用数形结合的思想解决问题是解题关键.设()12120n nx x x k k y y y ===¹L ,则在该函数图象上n 个不同的点,()()()1122,,,,...,,n n x y x y x y ,也都在正比例的图象上,画出函数图象,观察正比例函数y kx =与其交点情况即可求解.【详解】解:设()12120n nx x x k k y y y ===¹L ,则在该函数图象上n 个不同的点,()()()1122,,,,...,,n n x y x y x y ,也都在y kx =,的图象上,画出函数图象观察交点即可求解.如图1正比例函数与该函数图象有2个交点,故A不符合;如图2正比例函数与该函数图象有5个交点,故B不符合;如图3正比例函数与该函数图象有6个交点,故C不符合;故选:D.7.【分析】本题考查了二次根式的性质,二次根式的乘法,逆用二次根式的乘法,根据二次根式的性质化简即可.===故答案为:8.2=2===,故答案为:2.【点睛】本题考查了二次根式的乘法运算;掌握二次根式的运算公式是解决本题的关键.x>9.1【分析】根据二次根式和分式有意义的条件列不等式即可.【详解】解:根据题意可得,1x->0,x>,解得,1x>.故答案为:1【点睛】本题考查了二次根式和分式有意义的条件,解题关键是熟练运用相关性质列不等式,确定自变量的取值范围.10.120,3x x ==【分析】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.将方程移项,提公因式x ,将方程化为两个一元一次方程,即可求解.【详解】解:23x x =230x x -=()30x x -=x =0或30x -=解得:120,3x x ==,故答案为:120,3x x ==.11.(22x x --【分析】本题考查了实数,分解因式,能选择正确的方法分解因式是解此题的关键.注意分解因式要彻底.先拆项,将1-拆成45-,再根据完全平方公式变形,最后根据平方差公式分解即可.【详解】解241x x --2445x x =-+-()225x =--(22x x =-+-.故答案为:(22x x --.12.25m <##0.4m <【分析】本题考查正比例函数的性质,根据正比例函数()0y kx k =¹,当0k >时,y 的值随x 的值的增大而增大;当0k <时,y 的值随x 的值的增大而减小解答即可,【详解】解:∵正比例函数()25y m x =-,y 的值随x 的值的增大而增大,∴250m ->,解得:25m <.故答案为:25m <.13.1【分析】本题考查求函数的值.把x a =代入()21f x x =+求解即可.【详解】解:把x a =代入()21f x x =+得()213f a a =+=,解得1a =.故答案为:1.14.2k ³-【分析】本题考查了一元二次方程根的判别式.熟练掌握一元二次方程根的判别式是解题的关键.依题意得,()22410k D =--+³éùëû,计算求解即可.【详解】解:∵关于y 的一元二次方程221y y k +-=有实数根,∴()2210y y k +-+=∴()22410k D =--+³éùëû,解得,2k ³-,故答案为:2k ³-.15.20%【分析】本题考查了一元二次方程的实际应用,熟练掌握以上知识是解题的关键.设每次降价的百分率为x ,根据原价及现价,即可得出关于x 的一元二次方程,解之取其小于1的值即可得出结论.【详解】解:设每次降价的百分率为x ,根据题意得:()225116x -=,解得:1120%5x ==,29180%5x ==(舍),答:每次降价的百分率为20%.故答案为:20%.16.(--【分析】此题考查了正比例函数,准确求解点的坐标是解题的关键.根题意得到这个点的横坐标为-【详解】解:∵正比例函数()20y x x =<图像上一点到y 轴的距离是,∴这个点的横坐标为-∴将x =-(22y x ==´-=-∴这点的坐标为(--.故答案为:(--.17.2-或0##0或―2【分析】本题考查根与系数的关系.设方程的两个根为()1212,x x x x <,由题意,得:12121,m m x x x x =+-=-,211x x -=,利用完全平方公式的变形式进行计算即可.【详解】解:设方程的两个根为()1212,x x x x <,由题意,得:12121,m m x x x x =+-=-,211x x -=,∴()()()2222112124141x x x x x x m m -=+-=-+=,解得:2m =-或0m =,故答案为:2-或0.18.3-【分析】本题考查了一元二次方程的解以及根的判别式,由23x px q ++=得到230x px q ++-=①,230x px q +++=②,根据根的判别式得到21412p q D =-+,21412p q D =--,依此20D =,124D =,可得24120p q --=,根据题意由根的判别式得到24120p q --=是解题的关键.【详解】解:∵23x px q ++=,∴230x px q ++-=①,230x px q +++=②,∴21412p q D =-+,21412p q D =--,∴12D >D ,∵有且只有三个不同的x 值满足方程23x px q ++=,∴20D =,124D =,∴24120p q --=,∴2134q p =-,当0p =时,q 的最小值3-,故答案为:3-.19【分析】本题主要考查了二次根式混合运算,熟练掌握运算法则,是解题的关键.根据二次=æ=-ççè=20.169-【分析】本题考查二次根式乘除混合运算,涉及二次根式性质化简、二次根式被开方式非负、二次根式乘法运算法则及二次根式除法运算法则等,熟练掌握二次根式性质及乘除运算法则是解决问题的关键.先根据二次根式性质化简,再结合二次根式乘除运算法则求解即可得到答案.æ-ççè14433æ=-××çè=169=-另一种解法:原式æ=ççèæ=ççè169=-21.112x=-,21x=-【分析】本题考查解一元二次方程,熟练掌握用因式分解法求解一元二次方程是解题的关键.先化简,再运用因式分解法求解即可.【详解】解:化简整理,得22310x x++=(21)(1)0x x++=210x+=或10x+=∴112x=-,21x=-.22.12x x=【分析】观察题干,根据配方法,即可得出结论.【详解】解:23620x x-+=移项,得:2362x x-=-,二次项系数化为1,得:2223x x-=-,配方,得:()2113x-=,开方,得:x x,故答案为12x==【点睛】本题考查了解一元二次方程,配方是解题关键,配方法的步骤是移项,二次项系数化为1,配方,开方.23.13x+【分析】本题考查了分母有理化,利用二次根式的性质进行化简,因式分解等知识.熟练掌握分母有理化,利用二次根式的性质进行化简,因式分解是解题的关键.利用二次根式的性质进行化简,进行因式分解可得化简结果,分母有理化可得x 的值,然后代值求解即可.【详解】解:由题意知,2x ==-,=13x =+,将2x =代入得,原式==24.方程的另一个根是4,m 的值是1-或3【分析】根据一元二次方程的判别式,确定m 的取值范围,再根据方程226250x x m m -+-+=的一个根为2,求出m 的值,代入m 的值,即可求解.【详解】解:方程226250x x m m -+-+=,则1a =,6b =-,225c m m =-+,∵方程有两个根,∴2224(6)41(25)0b ac m m D =-=--´´-+³,∴2240m m --£,∴11m ££,∵方程226250x x m m -+-+=的一个根为2,∴2412250m m -+-+=,则11m =-,23m =,当1m =-时,方程226250x x m m -+-+=得,268(2)(4)0x x x x -+=--=,∴12x =,24x =;当3m =时,方程226250x x m m -+-+=得,268(2)(4)0x x x x -+=--=,∴32x =,44x =,∴226250x x m m -+-+=的一个根为2,求另一个根是4,m 的值是1-或3.故答案为:方程的另一个根是4,m 的值是1-或3.【点睛】本题主要考查根的判别式,根据一个根求另有一个根,及参数的值,掌握本的判别式,解一元二次方程的方法,分类讨论的方法是解题的关键.25.(1)3k =(2)29x =【分析】本题主要考查解一元二次方程和正比例函数的性质,(1)根据题意将点代入正比例函数中得到一元二次方程,结合正比例函数的性质即可求得k ,(2)将y 值代入解方程即可.【详解】(1)解:将2x k =+,43y k =+代入y kx =,得()432k k k +=+2230k k --=(31)()k k -+=123,1k k ==-,∵正比例函数图形经过一、三象限∴3k =;(2)解:将23y =代入3y x =233x = ∴29x =.26.(1)0m > 且 1m ¹(2)12【分析】本题考查了一元二次方程根的判别式,一元二次方程的定义,代数式求值,理解根的判别式是解答关键.(1)根据一元二次方程的定义,根的判别式来求解;(2)根据题意先求出m ,进而得到242a a -=-,再代入代数式中进行计算求解.【详解】(1)解:由题意得m m -¹20Q ,∴10m ¹, 21m ¹,()()22=444160m m m m D ---´=>.0m \>,0m \>且1m ¹.(2)解:由题意得:03m <<,且为1m ¹的整数,2m \=.将x a =,2m =代入()22440m m x mx --+=得:242a a -=-,a a a -\--+22312212a a a =--++223122122=a a -+23222()a a =-+213422将242a a -=-代入()a a -+213422中()()a a -+=´-+=2131314222222.27.(1)8,12(2)过道的宽度为 2 米【分析】本题考查了一元二次方程的应用,一元一次方程的应用.熟练掌握一元二次方程的应用,一元一次方程的应用是解题的关键.(1)设正方形ABCD 的边长为x 米,则62AE x AG x =+=+,,依题意得,()()6:23:2x x ++=,计算求解,然后作答即可;(2)设过道的宽度为a 米,依题意得,()()12860a a --=,计算求出满足要求的解即可.【详解】(1)解:设正方形ABCD 的边长为x 米,则62AE x AG x =+=+,,∵长与宽之比为32:,∴()()6:23:2x x ++=,解得,6x =,∴8AG =,12AE =,故答案为:8,12.(2)解:设过道的宽度为a 米,依题意得,()()12860a a --=,解得,2a =或18a =(舍去),∴过道的宽度为2米.28.(1)()1,3P ,11Q k æöç÷èø,(2)13k =(3)存在,13,22æöç÷èø,13,22æö--ç÷èø【分析】本题考查了一次函数解析式,坐标与图形,解分式方程等知识.熟练掌握一次函数解析式,坐标与图形,解分式方程是解题的关键.(1)由点()1,P a 在直线3y x =上,可得3a =,即()1,3P ;由直线01y kx k =<<()上有一点(),1Q b ,可得1bk =,可求1b k =,进而可得1,1Q k æöç÷èø;(2)由题意知,()1,0A ,1,0B k æöç÷èø,则11312APQ S k æö=´´-ç÷èøV ,3122OPQ AOP APQ ABQ BOQ S k S S S S =++-=-V V V V V ,由APQ △的面积是OPQ △面积的34,可得11313312224k k æöæö´´-=-´ç÷ç÷èøèø,计算求出满足要求的解即可;(3)由题意知,设(),3D m m ,当D 在第一象限时,如图,由12ODG OPG S S =V V ,可得12OD OP =,可求D 13,22æöç÷èø;当D 在第三象限时,如图,D ¢,由题意知,OD OD ¢=,则13,22D æö--ç÷èø¢.【详解】(1)解:∵点()1,P a 在直线3y x =上,∴3a =,即()1,3P ;∵直线01y kx k =<<()上有一点(),1Q b ,∴1bk =,解得,1b k=,∴1,1Q k æöç÷èø;(2)解:由题意知,()1,0A ,1,0B k æöç÷èø,∴11312APQ S k æö=´´-ç÷èøV ,∴1111111311331111222222OPQ AOP APQ ABQ BOQ S S S S S k k k k æöæö=++-=´´+´´-+´-´-´´=-ç÷ç÷èøèøV V V V V,∵APQ △的面积是OPQ △面积的34,∴11313312224k k æöæö´´-=-´ç÷ç÷èøèø,解得,13k =,经检验,13k =是原分式方程的解且符合要求;(3)解:设(),3D m m ,当D 在第一象限时,如图,∵12ODG OPG S S =V V ,∴12OD OP =,∴D 13,22æöç÷èø;当D 在第三象限时,如图,D ¢,由题意知,OD OD ¢=,∴13,22D æö--ç÷èø¢,综上所述,存在,D 的坐标13,22æöç÷èø,13,22æö--ç÷èø.。
人教版八年级(上)数学期中试卷(含答案)
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
广东省惠州市2024-2025学年八年级上册期中考试数学试卷及答案
广东省惠州市2024-2025上学期数学期中考试试卷班级:___________ 姓名:___________ 考号:__________ 座位号:__________一、选择题(每题3分,共10题,共30分)1.甲骨文是我国的一种古代文字,下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是( )A .B .C .D .2.下列各组长度的线段能构成三角形的是( ) A .1cm,2cm,4cm B .4cm,4cm,10cm C .3cm,4cm,7cmD .3cm,4cm,5cm3.如图,由AB =AC ,∠B =∠C ,便可证得△BAD ≌ △CAE ,理由是( )A .SASB .SSSC. ASAD .AAS4.如图所示的两个三角形全等,则E ∠的度数为( )A .50°B .60°C.70°D .80°5.如图,三角形被挡住了一部分,小明根据所学知识很快就另外画出了一个与原来完全一样的三角形,这两个三角形全等的依据是( )A .SASB .ASAC .AASD .HL6.如图,AC BE DE BE ⊥⊥,,若ABC BDE △≌△,73AC DE ==,,则CE 等于( ) A .3.5 B .4C.4.5D .57.如图,OC 是AOB ∠的平分线,P 是OC 上一点,PD OA ⊥于点D ,6PD =,则点P 到边OB 的距离为( )A .6B .5C .4D .38.如图,将一副三角尺按图中所示位置摆放, 点F 在AC 上,AB DE ∥,则AFD ∠的度数是( ) A .30° B .25°C .20°D .15°9.如图,ABC CDA △△≌,下列结论:①AB 与AD 是对应边;②AD 与CB 是对应边;③CAB ∠与ACD ∠是对应角;④BAC ∠与DAC ∠是对应角.正确的有( ) A .①③ B .②③C .①④D .②④10.如图,点 E 是BC 的中点,,AB BC DC BC ⊥⊥,AE 平分BAD ∠,下列结论:①90AED ∠=°;②ADE CDE ∠=∠;③四边形ABCD 的面积等于AE DE ×;④AD AB CD =+. 四个结论中成立的是( )A .①②B .①②③C .①②④D .①②③④二、填空题(每题3分,共5题, 共15分) 11.多边形的外角和为°12.如图AD 是△ABC 的中线.△ABD的周长比△ACD 的周长长6cm ,则AB -AC= cm13.如图,在正五边形ABCDE 中,则123∠+∠+∠= °.14. 如图,在正方形网格,点A ,B ,C ,D 均落在格点上,则∠BAC+∠ACD =_____°. 15.三个全等三角形摆成如图所示的形式,则αβγ∠+∠+∠ 的度数为 °.第14题第15题第13题第12题三、解答题一(每题7分,共3题,共21分) 16.如图,在△ACD 和△ABD 中,CD BD =,AC AB = 求证:ACD ABD △≌△17.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是 多少?18.如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AB DE ∥,∠A =∠D .求证:AC =DF .四、解答题二(每题9分,共3题,共27分)19.如图,D 为△ABC 的边BC 上的一点,E 在AD 上,已知∠1=∠2,∠3=∠4.求证:AD ⊥BC .20.如图所示,在四边形ABCD 中,已知90A C ∠=∠=°,BE 平分ABC ∠交CD 于点E ,DF 平分ADC ∠交AB 于点F .(1)求证:180ABC ADC ∠+∠=°; (2)求证:BE DF ∥.21.如图,在△ABE 和△ACF 中,∠E=∠F=90°,AB=AC ,BE=CF . (1)求证:∠1 = ∠3;(2)若AM = 4 cm,求AN 的长度.五、解答题三(22题13分、23题14分)22如图,在△ABC 中,BD,CD 分别是∠ABC,∠ACB 的平分线,BP,CP 分别是∠EBC,∠FCB 的平分线. (1)填空:当∠ABC=62°,∠ACB=68°时,∠D = °,∠P= ° °; (2)请你猜想,当∠A 的大小变化时,求∠D+∠P 的值是否变化? 请说明理由;23.已知,在△ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,且9cm DE =,BDA AEC BAC ∠=∠=∠.(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为 ;(2)如图②,直接写出线段BD ,CE 与DE 的数量关系: ;(3)如图③,若改变题干中的条件,只保持BDA AEC ∠=∠,7cm BD EF ==,9cm DE =,点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,同时,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,它们运动的时间为t (s ).是否存在x ,使得ABD △与EAC 全等?若存在,求出相应的t 的值和x 的值;若不存在,请说明理由.参考答案:题号 1 2 3 4 5 6 7 8 9 10 答案 BDCCB BADBD9.B①AB 与CD 是对应边,故①不符合题意; ②AD 与CB 是对应边,故②符合题意; ③CAB ∠与ACD ∠是对应角,故③符合题意;④BAC ∠与DCA ∠是对应角,BCA ∠与DAC ∠是对应角,故④不符合题意; 故正确的有②③, 10.D【详解】解:如图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠, ∴BE EF =,在Rt AEF 和Rt AEB 中, AE AEBE FE = = ,∴()Rt Rt HL AEF AEB ≌, ∴AB AF =,AEF AEB ∠=∠, ∵点E 是BC 的中点, ∴EC BE =, ∴EC EF =在Rt EFD 和Rt ECD △中,ED EDEF EC = = ,∴()Rt Rt HL EFD ECD ≌,∴DC DF =,ADE CDE ∠=∠,FED CED ∠=∠,故②正确; ∴AD AF FD AB DC =+=+,故④正确;∵180AEB AEF DEF DEC BEC ∠+∠+∠+∠=∠=°, ∴1902AED AEF FED BEC ∠=∠+∠=∠=°,故①正确.∵12ADE S AE DE =⋅ , ∴2ADE ABCD S S AE DE ==⋅ 四边形,故③正确. 综上,四个结论中成立的是①②③④,11.360 12.6 13.216 14.90 15.180 15.解:如图所示:由图形可得:123456540αβγ∠+∠+∠+∠+∠+∠+∠+∠+∠=°, ∵三个三角形全等,∴135180∠+∠+∠=°,又∵246180∠+∠+∠=°,∴180180540αβγ∠+∠+∠+°+°=°, ∴αβγ∠+∠+∠的度数是180°.16.证明:在ACD 和ABD △中, AC AB AD AD CD BD == =,∴ACD ABDSSS ≌()17.解:设多边形的边数是n , 由题意,得:()21803360n −⋅°=×°, 解得:8n =;答:这个多边形的边数是8.18.∵FB =CE , ∴BC =EF , 又∵AB DE ∥, ∴∠B =∠E , 在△ABC 和△DEF 中,A DB E BC EF ∠=∠∠=∠ =,∴△ABC ≌△DEF (AAS ) ∴AC =DF19.证明见解析.【详解】证明:证明:在ABE 和ACE △中,1234AE AE ∠=∠∠=∠ =∴()ABE ACE AAS ≅ , ∴AB AC =,∵ 在ABD △和ACD 中, 12AB AC AD AD =∠=∠ =∴ ()ABD ACD SAS ≅ , ∴ADB ADC ∠=∠ ∵180ADB ADC ∠+∠=°, ∴90ADB ∠=°, ∴ AD BC ⊥. 21.22.(1)∠D = 115 °,∠P= 65 °()23.(1)BD AE=(2)BD CE DE+=(3)存在,2x=,1t=或94x=,289t=.【详解】(1)解:BD AE=,理由如下:AB AC⊥90BAC∴∠=°90BDA AEC BAC∠=∠=∠=°∴90 DBA BAD BAD CAE∴∠+∠=∠+∠=°(2)DBA CAE ∴∠=∠AB AC =BAD ACE ∴ ≌ BD AE ∴=故答案为:BD AE =(2)解:BD CE DE +=,理由如下BDA AEC BAC ∠=∠=∠DBA BAD BAD CAE ∴∠+∠=∠+∠ DBA CAE ∴∠=∠又AB AC = BAD ACE ∴ ≌ BD AE ∴=,=AD CEBD CE AE AD DE ∴+=+=故答案为:BD CE DE +=(3)解:① 点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,9cm DE = 2DA t ∴=,EC xt =,92AE t =−9cm DE =,点A 在线段DE 2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,7cm EF = 29t ∴≤,7xt ≤ 4.5t ∴≤当BDA AEC ≌时,DA CE =,7cm BD AE == 2t xt ∴=,927t −= 2x ∴=,1t =当2x =,1t =,满足29t ≤,7xt ≤ 故2x =,1t =符合题意② 点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,9cm DE =2DA t ∴=,EC xt =,92AE t =−当BDA CEA ≌时,DA EA =,7cm BD CE ==292t t ∴=−,7xt =94x ∴=,289t =9cm DE =,点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,7cm EF = 29t ∴≤,7xt ≤ 4.5t ∴≤当94x =,289t =时,满足29t ≤,7xt ≤ 故94x =,289t =符合题意; 综上,2x =,1t =或94x =,289t =广东省惠州市2024-2025上学期数学期中考试参考答案: 题号1 2 3 4 5 6 7 8 9 10 答案B DC C B B AD B D9.B①AB 与CD 是对应边,故①不符合题意;②AD 与CB 是对应边,故②符合题意;③CAB ∠与ACD ∠是对应角,故③符合题意;④BAC ∠与DCA ∠是对应角,BCA ∠与DAC ∠是对应角,故④不符合题意; 故正确的有②③,10.D【详解】解:如图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠,∴BE EF =, 在Rt AEF 和Rt AEB 中, AE AE BE FE = =, ∴()Rt Rt HL AEF AEB ≌,∴AB AF =,AEF AEB ∠=∠,∵点E 是BC 的中点,∴EC BE =,∴EC EF =在Rt EFD 和Rt ECD △中,ED ED EF EC = =, ∴()Rt Rt HL EFD ECD ≌,∴DC DF =,ADE CDE ∠=∠,FED CED ∠=∠,故②正确; ∴AD AF FD AB DC =+=+,故④正确;∵180AEB AEF DEF DEC BEC ∠+∠+∠+∠=∠=°, ∴1902AED AEF FED BEC ∠=∠+∠=∠=°,故①正确.∵12ADE S AE DE =⋅ , ∴2ADE ABCD S S AE DE ==⋅ 四边形,故③正确.综上,四个结论中成立的是①②③④,11.360 12.6 13.216 14.90 15.180 15.解:如图所示:由图形可得:123456540αβγ∠+∠+∠+∠+∠+∠+∠+∠+∠=°, ∵三个三角形全等,∴135180∠+∠+∠=°,又∵246180∠+∠+∠=°,∴180180540αβγ∠+∠+∠+°+°=°, ∴αβγ∠+∠+∠的度数是180°.16.证明:在ACD 和ABD △中,AC AB AD AD CD BD = = =,∴ACD ABDSSS ≌()17.解:设多边形的边数是n ,由题意,得:()21803360n −⋅°=×°,解得:8n =;答:这个多边形的边数是8.18.∵FB =CE ,∴BC =EF ,又∵AB DE ∥,∴∠B =∠E ,在△ABC 和△DEF 中,A DB E BC EF ∠=∠ ∠=∠ =,∴△ABC ≌△DEF (AAS ) ∴AC =DF19.证明见解析.【详解】证明:证明:在ABE 和ACE △中, 1234AE AE∠=∠ ∠=∠ = ∴()ABE ACE AAS ≅ ,∴AB AC =,∵ 在ABD △和ACD 中,12AB ACAD AD= ∠=∠ = ∴ ()ABD ACD SAS ≅ ,∴ADB ADC ∠=∠∵180ADB ADC ∠+∠=°,∴90ADB ∠=°,∴ AD BC ⊥.21.22.(1)∠D = 115 °,∠P= 65 °()23.(1)BD AE=(2)BD CE DE+=(3)存在,2x=,1t=或94x=,289t=.【详解】(1)解:BD AE=,理由如下:AB AC⊥90BAC∴∠=°90BDA AEC BAC∠=∠=∠=°∴90 DBA BAD BAD CAE∴∠+∠=∠+∠=°(2)DBA CAE ∴∠=∠AB AC =BAD ACE ∴ ≌BD AE ∴=故答案为:BD AE =(2)解:BD CE DE +=,理由如下 BDA AEC BAC ∠=∠=∠DBA BAD BAD CAE ∴∠+∠=∠+∠ DBA CAE ∴∠=∠又AB AC =BAD ACE ∴ ≌BD AE ∴=,=AD CE BD CE AE AD DE ∴+=+= 故答案为:BD CE DE += (3)解:① 点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,9cm DE = 2DA t ∴=,EC xt =,92AE t =− 9cm DE =,点A 在线段DE 2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,7cm EF = 29t ∴≤,7xt ≤4.5t ∴≤当BDA AEC ≌时,DA CE =,7cm BD AE == 2t xt ∴=,927t −=2x ∴=,1t =当2x =,1t =,满足29t ≤,7xt ≤ 故2x =,1t =符合题意 ② 点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,9cm DE =2DA t ∴=,EC xt =,92AE t =− 当BDA CEA ≌时,DA EA =,7cm BD CE ==292t t ∴=−,7xt = 94x ∴=,289t = 9cm DE =,点A 在线段DE 上以2cm/s 的速度由点D 向点E 运动,点C 在线段EF 上以cm /s x 的速度由点E 向点F 运动,7cm EF = 29t ∴≤,7xt ≤ 4.5t ∴≤ 当94x =,289t =时,满足29t ≤,7xt ≤ 故94x =,289t =符合题意;综上,2x =,1t =或94x =,289t =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级第一学期期中考试数学试卷
题 号 一 二 三 四 五 总 分
得 分
一、精心选一选(本大题8小题,每小题3分,共24分)
1.①两角及一边对应相等 ②两边及其夹角对应相等 ③两边及一边所对的角对应相等 ④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )
A .①③
B .②④
C .②③④
D .①②④
2. 如图,已知AB =DC ,AD =BC ,在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°, 则∠BCF= ( )
A. 150° ° ° D. 90°
3.如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( )
对 对 对 对
2题图
O
F E
C B
A
第2题图 第3题图 第4题图 第5题图
4.如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△EAB ≌△EDB ≌△EDC ,则∠C=( ).
A .36°
B .30°
C .25°
D .15°
5.如图,AE =AF ,AB =AC ,EC 与BF 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( ) A .600 B .700 C .750 D .850
6.△ABC 是等边三角形,M 是AC 上一点, N 是BC 上的一点,且AM=BN ,∠MBC =25°,AN 与BM 交
于点O, 则∠MON=( )
° B. 120° ° D. 85°
7.下列说法: ①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④不带根号的数一定是有理数;⑤有理数和数轴上的点一一对应;⑥负数没有立方根。
其中正确的有( )
个 个 个 个
8.如图: ,那么2
()a b a b -++ 的结果是( )
A .-2b
B .2b
C .―2a
D .2a
二、细心填一填(本大题8小题,每小题3分,共24分)
1. 2)4(±的算术平方根是 ,36的平方根是 . 327-=
2. 若52=x ,则=x ;若22)3(-=x ,则=x ;若16)1(2=-x ,=x ;
3. 比较大小:3 ; 23- 2
3-
; 3
9 2 4.已知:如图,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,
(1)若以“SAS ”为依据,还须添加的一个条件为________________. (2)若以“ASA ”为依据,还须添加的一个条件为________________.
A
D
B
C
E
F
A
E
D
O
班级: 姓名: 座号:
(3)若以“AAS ”为依据,还须添加的一个条件为________________.
5.已知△ABC ≌△DEF ,且∠A=90°,AB=6,AC=8,BC=10,△DEF 中最大边长是 , 最大角是 度.
6.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、AC 和AB 的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,则DE 、DF 、DG 的关系是 。
第6题图
7..如图,在△ABC 中,∠ACB=90°,∠B=30°,CD ⊥AB 于点D ,若AD=2,则AC=_____,AB=______. 8.如图,△ABD 、△ACE 都是正三角形,BE 和CD 交于O 点,则∠BOC=__________. 三、专心解一解(本大题5小题,每小题4分,共20分)
1.计算:(1)、2
3
28127(3
+-+- (2) 解方程2
4250x -=
2.一个正数的平方根是23a -与5a -,求这个正数。
3.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC 关于y 轴和x 轴对称的图形.
D
C
A
B
第7题图
第8题图
A
B
C
D
O
E
4. 如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由.
5.如图:AD=EB , BF=DG , BF ∥DG ,点A 、B 、C 、D 、E 在同一直线上。
求证: AF=EG 。
四、联系生活,用心想一想(本大题3小题,共15分)
1.如图所示,有两个长度相等的滑梯,左边滑梯BC 的高AC•与右边滑梯EF 水平方向的长度
DF 相等,两滑梯倾斜角∠ABC 和∠DFE 有什么关系?
2.某地有两所大学和两条相交叉的公路,如图所示(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座图书馆,希望图书馆到两所大学的距离相等,到两条公路的距离也相等. 你能确定图书馆应该建在什么位置吗?在所给的图形中画出你的设计方案。
.
3
4
21
D
C
B
A
G
F E
(图6)
D C
B A
N M O
A
C.
3.茅坪民族中学八⑵班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,站在C 处的学生小明先拿桔子再拿糖果,然后回到C 处,请你在下图帮助他设计一条行走路线,使其所走的总路程最短。
五、挑战你的技能(本大题2小题,8分+9分)一定要细心哟,你也能行的!
1.如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。
求证:△ABC 是等腰三角形。
(过D 作DG ∥AC 交BC 于G )
2. Rt △ABC 中,∠BAC=90°,AB=AC,D 是BC 的中点,AE=BF 求证:△DEF 为等腰直角三角形
D
C
B
A
F
E
A
O
B
E
D
C
A B
F
参考答案
一、D 、D 、B 、B 、B 、C 、A 、A
二、⒈ 4 ±6 -3 ; ⒉±5 ±3 -3或5; ⒊> > >;
⒋ BC=EF ∠A=∠D ∠ACB=∠DFE ; ⒌ 10 90° ⒍ DE=DF=DG ⒎ 4 8 ⒏120°
三、⒈⑴326⑵±2
5
; ⒉49 ⒊略
⒋解:AB=CD ,理由如下: ∵∠1=∠2,,∠3=∠4 ∴∠1+∠3=∠2+∠4 ∴∠ABC =∠DCB 又∵ BC=CB
∴△ABC ≌△DCB (ASA )
⒌证明:∵BF ∥DG , ∴∠FBC =∠GDC , ∴∠FBA =∠GDE , ∵ AD=EB , ∴AB=ED 又BF=DG ,
∴△ABF ≌△EDG (SAS ) ∴AF=EG
四、1
证明:在Rt △ABC 和Rt △DEF 中, BC EF
AC DF
=⎧⎨=⎩
所以Rt △ABC ≌Rt △DEF (HL ) ∴∠ABC=∠DEF 又∵∠DEF+∠DFE=90° ∴∠ABC+∠DFE=90° 即两滑梯的倾斜角∠ABC 与∠DFE 互余. ⒉略 ⒊略 五⒈证明: 过D 作DG//AC 交BC 于G ∵DG//AC ∴∠GDF =∠FEC ,∠DGF =∠ECF 又∵DF =EF ∴△DGF ≌△ECF (AAS ) ∴DG =CE ∵BD =CE ∴DG =BD ∴∠DGB =∠B ∵DG//CE ∴∠DGB =∠ACB ∴∠B =∠ACB ∴AB =AC ∴△ABC 是等腰三角形
⒉(1)连接AD , ∵Rt △ABC 中,∠BAC=90°,AB=AC, ∴∠B=∠C=45° ∵AB=AC ,DB=BC ∴∠DAE=∠BAD =45° ∴∠BAD=∠B=45°∴AD=BD ,∠ADB =90° ∵AE=BF ,∠DAE=∠B=45°,AD=BD ∴△DAE ≌△DBF (SAS ) ∴DE=DF ,∠ADE=∠BDF ∵∠BDF+∠ADF=∠ADB =90° ∴∠ADE+∠ADF= =90° ∴△DEF 为等腰直角三角形。