晶体与非晶体的定义
晶体与非晶体的概念
晶体与非晶体的概念晶体是一种有序排列的分子、原子或离子构成的固体,在三维空间内呈现出规律的重复性结构。
而非晶体则是没有明显规律的无定形物质,其分子、原子或离子的结构没有规律化排列。
本文将围绕晶体与非晶体的概念,从多个方面进行分步骤阐述。
一、晶体的性质与特征晶体是由许多具有周期性结构的“基本单元”构成。
这些基本单元的重复排列是由晶体的晶体结构所决定的。
晶体的各项性质都与其晶体结构密切相关,如硬度、导电性等,这些性质也具有方向性。
晶体的晶体结构可以被划分为14种基本类型,它们被称为布拉维格格子。
由于晶体的结构规律性,使得晶体具有优异的物理化学特性,如各向同性、透明度高等特点。
二、非晶体的性质与特征非晶体也被称为不规则固体或玻璃状物质,因为其分子、原子或离子有序排列的程度并不高,在三维空间内呈现出无定形的结构。
非晶体具有各向同性和无晶体结构的特点,因此其物理性质较为均匀和可塑性强。
例如,非晶体的硬度和力学强度相对较低,因为它的结构是无序排列的。
另外,非晶体还具有较强的机械变形能力,并且非常适合高频应用。
三、晶体与非晶体的区别晶体和非晶体在结构和性质上都存在着较大的区别。
晶体是由具有周期性结构的原子、分子或离子组成,而非晶体由于其不规则的无定形结构,其结构中没有一定的周期性重复,因此也没有显著的“基本单元”。
在物理性质上,晶体通常比非晶体更脆且易折断;非晶体则比较容易塑性变形。
在光学性质上,晶体具有各向异性,能够同时旋转偏振光线的方向;而非晶体则在各向同性下显示出单一的折射率。
总之,晶体与非晶体是两种较为基本的固态物质形态。
晶体具有高度的有序性与规律性,使其在物理、化学、材料等领域中有着广泛的应用;非晶体虽然结构不规则、杂乱无序,但具有各向同性、均匀性、可塑性等优良的特性,因此在锂电池、激光加工、光通信等领域中得到广泛应用。
两者的性质与应用日益深入人心,相信在未来的科技进步中必将会更为广泛地使用和发挥作用。
人教版高中物理选修3-3课件晶体与非晶体
晶体各向异性的微观解释 在物理性质上,晶体具有各向异性,而非晶体则是各向同性 的. 通常所说的物理性质包括弹性、硬度、导热性能、导电性 能、光的折射性能等.晶体的各向异性是指晶体在不同方向 上物理性质不同,也就是沿不同方向去测试晶体的物理性能 时测量结果不同.例如晶体在不同的方向还可以有不同的硬 度、弹性、热膨胀性质、导电性能等. 需要注意的是,晶体具有各向异性,并不是说每一种晶体 都能在各物理性质上表现出各向异性,例如云母、石膏晶体 在导热性上表现出显著的各向异性——沿不同方向传热的快 慢不同;方铅矿晶体在导电性上表现出显著的各向异性—— 沿不同方向电阻率不同;立方形的铜晶体在弹性上表现出显 著的各向异性——沿不同方向的弹性不同;方解石晶体在光 的折射上表现出各向异性——沿不同方向的折射率不同.
雪 花
冰糖
金刚石
石墨
水晶石
思考
什么是晶体?什么是非晶体? 晶体有什么特点和性质? 晶体和非晶体的本质区别是什么?
1.
概念 晶体:晶体是原子、离子或分子按照一定的周 期性,在结晶过程中,在空间排列形成具有一 定规则的几何外形的固体。 非晶体:是内部质点在三维空间不成周期性重 复排列的固体,具有近程有序,但不具有长程 有序。
有的物质有几种晶体,是因为它们
的物质微粒能形成不同的晶体结 构.
天然水晶球里的玛瑙和水晶
玛瑙
水晶
玛瑙和水晶都是SiO2的晶体,不同的是玛瑙是熔融态 SiO2快速冷却形成的,而水晶则是熔融态SiO2缓慢冷 却形成的。
石英玻璃
观察· 思考
请同学们判断下列物质是晶体还是非晶体:
水晶石
2、晶体有三个特征:
(1)晶体有整齐规则的几何外 形; (2)晶体有固定的熔点,在熔 化过程中,温度始终保持不变;
晶体与非晶体的定义
晶体是有固定地熔点和沸点,而非晶体就没有固定地熔点和沸点.它们分子地空间排列一个有规律一个杂乱大家知道,物质有三种聚集态:气体、液体和固体.但是,你知道根据其内部构造特点,固体又可分为几类吗?可分为晶体、非晶体和准晶体三大类. 资料个人收集整理,勿做商业用途晶体在合适地条件下,通常都是面平棱直地规则几何形状,就像有人特意加工出来地一样.其内部原子地排列十分规整严格,比士兵地方阵还要整齐得多.如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样地原子.而玻璃(及其他非晶体如石蜡、沥青、塑料等)内部原子地排列则是杂乱无章地.准晶体是最近发现地一类新物质,其内部原子排列既不同于晶体,也不同于非晶体. 资料个人收集整理,勿做商业用途仅从外观上,用肉眼很难区分晶体、非晶体与准晶体.一块加工过地水晶晶体与同样形状地玻璃(非晶体)外观上几乎看不出任何区别.同样,一层金属薄膜(通常是晶体)与一层准晶体金属膜从外观上也看不出差异.那么,如何才能快速鉴定出它们呢?一种最常用地技术是光技术.光技术诞生以后,很快就被科学家用于固态物质地鉴定.如果利用光技术对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同地三类固体. 资料个人收集整理,勿做商业用途由于物质内部原子排列地明显差异,导致了晶体与非晶体物理化学性质地巨大差别.例如,晶体有固定地熔点(当温度高到某一温度便立即熔化),物理性质(力学、光学、电学及磁学性质等)表现出各向异性(比如光线在水晶中传播方向不同,速度也不一样).而玻璃及其他非晶体(亦称为无定形体)则没有固定地熔点(从软化到熔化是一个较大地温度范围),物理性质方面则表现为各向同性.自然界中地绝大多数矿石都是晶体,就连地上地泥土沙石也是晶体,冬天地冰雪是晶体,日常见到地各种金属制品亦属晶体.可见晶体并不陌生,它就在我们地日常生活中. 资料个人收集整理,勿做商业用途人们通过长期认识世界、改造世界地实践活动,逐渐发现了自然界中各种矿物地形成规律,并研究出了许许多多合成人工晶体地方法和设备.现在,人们既可以从水溶液中获得单晶体,也可以在数千度地高温下培养出各种功能晶体(如半导体晶体、激光晶体等);既可以生产出重达数吨地大块单晶,也可研制出细如发丝地纤维晶体,以及只有几十个原子层厚地薄膜材料.五光十色丰富多彩地人工晶体已悄悄地进入了我们地生活,并在各个高新技术领域大显神通. 资料个人收集整理,勿做商业用途【晶体】具有规则几何形状地固体.其内部结构中地原子、离子或分子都在空间呈有规则地三维重复排列而组成一定型式地晶格.这种排列称为晶体结构.晶体点阵是晶体粒子所在位置地点在空间地排列.相应地在外形上表现为一定形状地几何多面体,这是它地宏观特性.同一种晶体地外形不完全一样,但却有共同地特点.各相应晶面间地夹角恒定不变,这条规律称为晶面角守恒定律,它是晶体学中重要地定律之一,是鉴别各种矿石地依据.晶体地一个基本特性是各向异性,即在各个不同地方向上具有不同地物理性质,如力学性质(硬度、弹性模量等等)、热学性质(热膨胀系数、导热系数等等)、电学性质(介电常数、电阻率等等)光学性质(吸收系数、折射率等等).例如,外力作用在云母地结晶薄片上,沿平行于薄片地平面很容易裂开,但在薄片上裂开则非易事.岩盐则容易裂成立方体.这种易于劈裂地平面称为解理面.在云母片上涂层薄石蜡,用烧热地钢针触云母片地反面,便会以接触点为中心,逐渐化成椭圆形,说明云母在不同方向上导热系数不同.晶体地热膨胀也具各向异性,如石墨加热时沿某些方向膨胀,沿另一些方向收缩.晶体地另一基本特点是有一定地熔点,不同地晶体有它不相同地熔点.且在熔解过程中温度保持不变. 资料个人收集整理,勿做商业用途对晶体微观结构地认识是随生产和科学地发展而逐渐深入地.年就有人设想晶体是由原子规则排列而成地,年劳埃用射线衍射现象证实这一假设.现在已能用电子显微镜对晶体内部结构进行观察和照相,更有力地证明假想地正确性. 资料个人收集整理,勿做商业用途【非晶体】指组成它地原子或离子不是作有规律排列地固态物质.如玻璃、松脂、沥青、橡胶、塑料、人造丝等都是非晶体.从本质上说,非晶体是粘滞性很大地液体.解理面地存在说明晶体在不同方向上具有不同地力学性质,非晶体破碎时因各向同性而没有解理面,例如,玻璃碎片地形状就是任意地.若在玻璃上涂一薄层石蜡,用烧热地钢针触及背面,则以触点为中心,将见到熔化地石蜡成圆形.这说明导热系数相同.非晶体没有固定地熔点,随着温度升高,物质首先变软,然后由稠逐渐变稀,成为流体.具有一定地熔点是一切晶体地宏观特性,也是晶体和非晶体地主要区别. 资料个人收集整理,勿做商业用途晶体和非晶体之间是可以转化地.许多物质存在地形式,可能是晶体,也可能是非晶体.将水晶熔化后使其冷却,即成非晶体地石英玻璃,它地转化过程需要一定地条件. 资料个人收集整理,勿做商业用途。
晶体和非晶体的区别
THANKS
感谢观看
非晶体内部原子或分子的排列是无规律的,因 此其外形通常是不规则的,没有固定的形状。
非晶体具有各向同性
非晶体在不同方向上的物理性质基本相同,没 有明显的方向性差异。
非晶体没有固定的熔点
非晶体在加热时逐渐软化,最终变成液体,没有固定的熔点。
晶体与非晶体物理性质的对比
晶体具有规则的几何外形和非晶体没有规则的几 何外形形成了鲜明的对比。
在实际应用中,晶体和非晶体的差异也很大,如陶瓷、玻璃、塑料等材料中,非晶体材料通常具有较好 的韧性和塑性,而晶体材料则具有较高的硬度和强度。
04
物理性质
晶体物理性质
晶体具有规则的几何外形
晶体具有固定的熔点,且在熔化过程中保持固定的温度不 变。晶体还具有规则的几何外形,这是因为晶体内部原子 或分子的排列是有规律的。
等。
非晶体定义
01 非晶体是指原子、分子或离子的排列不具有长程 有序性和对称性的固体物质。
02 非晶体内部原子、分子或离子的排列是混乱无序 的,导致非晶体没有规则的几何外形。
02 非晶体的物理性质通常表现为各向同性,即在不 同方向上表现出相同的性质。
晶体与非晶体的性质比较
光学性质
晶体具有光学各向异 性,即在不同方向上 表现出不同的光学性 质;非晶体则表现为 光学各向同性。
橡胶制品
非晶体材料如天然橡胶、合成橡胶等 可用于制造各种橡胶制品,如轮胎、
鞋底等。
塑料制品
非晶体材料如聚乙烯、聚丙烯等是塑 料的主要成分,广泛用于制造各种塑 料制品。
晶体跟非晶体的名词解释
晶体跟非晶体的名词解释晶体与非晶体:隐藏在物质世界中的奇妙结构在我们周围的物质世界中,晶体和非晶体这两个名词经常被提及,相信大家对它们都有一定的了解。
本文将从晶体和非晶体的基本概念入手,探讨它们的结构、性质以及在我们日常生活中的重要应用。
一、晶体的奇妙结构与性质晶体是由具有一定的周期性重复排列的粒子组成的固体。
其中,晶体的排列具有规律性,呈现出独特的几何形态和细致的晶格结构。
这种规律性排列导致了晶体的许多独特性质。
1. 晶体的透明性:大部分晶体都具有良好的透明性,因为它们粒子间的周期性排列使得光线可以穿过晶体而不发生散射。
例如,钻石就是一种透明的晶体,因为它的碳原子以六角形的晶格排列。
2. 晶体的硬度:晶体的排列结构赋予它们出色的硬度。
其中,金刚石是最硬的物质,这是由于它在晶格中的碳原子之间形成了非常强大的共价键。
这种硬度使得金刚石成为珠宝和工具制造领域的重要材料。
3. 晶体的熔点:晶体具有明确的熔点,当温度升高到晶体的熔点时,晶体开始熔化成液体。
这是由于晶体内部粒子的排列结构在加热过程中发生了破坏。
4. 晶体的电学性质:晶体可以表现出丰富的电学性质,如导电性、压电效应和光电效应等。
这些性质与晶体内部粒子的排列方式密切相关。
例如,硅晶体由硅原子排列而成,因此被广泛用于制造电子器件。
二、非晶体:无规则中的秩序与晶体相对应的是非晶体,也被称为无定形固体。
它的结构特点是粒子排列的无规则性,缺乏明确的晶格结构。
非晶体的形成往往是由于材料快速冷却或者化学成分的复杂性。
1. 非晶体的弹性:与晶体相比,非晶体的结构比较松散,因此具有较低的硬度。
然而,非晶体材料的弹性却相对较好。
例如,玻璃就是一种非晶体材料,其具有良好的弹性特性,广泛用于制造容器、建筑装饰和光学器件等。
2. 非晶体的导电性:通常情况下,非晶体的导电性较差,因为其中没有规律的结构可以促进电子在材料中的流动。
然而,一些特殊的非晶体材料如氢化非晶硅则具有良好的半导体性质,被广泛应用于光伏和显示技术领域。
矿物岩石之晶体与非晶体概念介绍
04
晶体具有特定 的对称性,而 非晶体则没有。
非晶体的性质
1
2
3
4
无固定熔点:非晶 体在加热过程中逐 渐软化,最后熔化
无固定形状:非晶 体在凝固过程中可
以形成各种形状
光学性质:非晶体 的光学性质不均匀,
无固定折射率
各向同性:非晶体 在不同方向上的物
理性质相同
晶体与非晶体的共性与差异
共性:都是固体物 质,具有一定的物 理性质和化学性质。
01
晶体在电子工业中的应用: 晶体管、集成电路、太阳能 电池等
02
非晶体在光学领域的应用: 玻璃、塑料等光学材料
03
晶体在生物医学领域的应用: X射线晶体学、药物研发等
04
非晶体在材料科学领域的应 用:非晶合金、纳米材料等
05
晶体在能源领域的应用:太 阳能电池、燃料电池等
06
非晶体在环境科学领域的应 用:土壤、水、大气等非晶 体污染物检测
差异:晶体具有规 则的几何形状,而 非晶体没有规则的
几何形状。
晶体具有各向异性, 而非晶体具有各向
同性。
晶体具有特定的对 称性,而非晶体没 有特定的对称性。
晶体具有固定的熔 点,而非晶体没有
固定的熔点。
3
晶体的应用
01
电子设备:晶体管、集成电 路等电子元件
03
太阳能电池:利用晶体的光电 效应进行能量转换
非晶体的应用
非晶体材料广泛应用于 电子、光学、机械、化
工等领域。
非晶体材料具有优良的机 械性能,如高强度、高硬
度、高耐磨性等。
非晶体材料具有优良的 电性能,如高导电性、
晶体与非晶体
不固定
观察图片:构成晶体与非晶体的粒在空间的 排列有何不同?
3.晶体与非晶体的本质差异
自范性 晶体 微观结构
有(能自发呈现多面 体外形)
没有(不能自发呈现 多面体外形)
原子在三维空间里 呈周期性有序排列 原子排列相对无序
非晶体
• 说明:1.晶体自范性的本质:是晶体中粒子微观空间 里呈现周期性的有序排列的宏观表象。 2.晶体自范性的条件之一:生长速率适当。
思考:得到晶体的途径,除了冷却的方法,还有没
有其它途径?你能列举哪些?
4.得到晶体的方法
(1)熔融态物质凝固 (2)气态物质冷却不经液态直接凝固(凝华)
(3)溶质从溶液中析出
许多固体粉末用肉眼看不到晶体外形 ,但在光学显微镜下可观察到规则的晶体 外形。
晶体具有什么特性呢
??
5.晶体的特性:
<1>.有规则的几何外形。 (晶体内部质点和外形质点排列的高度有 序性) <2> .有固定的熔沸点。 <3> .各向异性(强度、导热性、光学性质 等)。
高二化学(选修3)第三章
NaCl
CsCl
金刚石
石墨
单质硫
雪花晶 体
食盐 晶体
明矾 晶体 石墨
金刚石
祖 母 绿
绿宝石
黄水晶
猫眼石
BeAl2O4
紫水晶
第一节
第一课时
• • • • • •
阅读P58-62,思考下列问题: 1、什么是晶体?什么是非晶体? 2、晶体与非晶体有什么本质区别? 3、获得晶体有哪些途径? 4、晶体有哪些特殊的性质? 5、判断晶体有哪些方法?最可靠的 方法是什么?
一、晶体和非晶体
1、定义:晶体——具有规则几何外形的固体。 非晶体——没有规则几何外形的固体 又称玻璃体。
晶体与非晶体
非晶态光学材料的研究
非晶态光学材料在光通信、光电子等领域有重要应用,如发展具有优异 光学性能的非晶态光学材料,可提高光电子器件的性能。
03
非晶态功能材料的研究
非晶态功能材料在传感器、电磁屏蔽等领域有广泛应用,如开发具有高
晶体与非晶体的跨学科应用研究
晶体与非晶体的应用涉及到多个领域,如能源、通信、医疗等,开展跨学科应用研究有助于推动相关领 域的技术进步和创新。
THANKS
晶体生长技术的改进
提高晶体生长质量和效率是晶体发展的重要方向,如采用 先进的溶液法、化学气相沉积法等技术,可实现高质量、 大尺寸晶体的生长。
晶体在新能源领域的应用
随着新能源技术的不断发展,晶体在太阳能、风能等新能 源领域的应用逐渐增多,如晶体硅太阳能电池、晶体光纤 等。
非晶体的发展趋势
01 02
非晶合金的开发
晶体。
天然采集
从自然界中采集已经形成的天然晶 体。
单晶制备
通过特定技术手段,制备单晶材料, 如单晶硅、单晶金刚石等。
05 非晶体的制备与特性
非晶体的制备方法
气相沉积法
通过物理或化学方法将气体中 的物质沉积到基底上,形成非
晶体薄膜。
溅射法
利用高能粒子轰击固体靶材, 将原子或分子溅射出来并沉积 到基底上形成非晶体。
灵敏度、高响应速度的非晶态功能材料,可应用于环境监测、安全防护
等领域。
晶体与非晶体的交叉学科研究
晶体与非晶体的相变研究
晶体与非晶体的相变是材料科学的重要研究领域,通过研究相变机制和相变过程,可深入了解材料的性能和行为,为 新材料的研发提供理论支持。
晶体的结构及性质
晶体的结构及性质基础知识一.晶体和非晶体1.定义:内部粒子(原子、分子或离子)在空间按一定规律做周期性重复排列的固体物质称为晶体。
例如:高锰酸钾、金刚石、干冰、金属铜、石墨等。
绝大多数常见固体都是晶体。
非晶体:内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。
例如:玻璃、沥青、石蜡等。
非晶体又称为无定形体。
2.晶体的重要特征(1)具有规则的几何外形(2)具有各向异性(3)有固定的熔点(4)X—射线衍射实验二.几类晶体的概念1.分子晶体:分子间以分子间作用力形成的晶体。
2.原子晶体:相邻原子间以共价键相结合形成的空间网结构的晶体叫原子晶体。
原子晶体又叫共价晶体。
3.离子晶体:由阴阳离子通过离子键结合而成的晶体叫做离子晶体。
4.金属晶体:金属原子通过金属键形成的晶体称为金属晶体。
金属晶体的成键粒子是金属阳离子和自由电子。
三.离子晶体、原子晶体、分子晶体和金属晶体比较晶体类型离子晶体原子晶体分子晶体组成晶体的粒子阳离子和阴离子原子分子组成晶体粒子间的相互作用离子键共价键范德华力(有的还有氢键)典型实例NaCl 金刚石、晶体硅、SiO2、SiC冰(H2O)、干冰(CO2)晶体的物理特性熔点、沸点熔点较高、沸点高熔、沸点高熔、沸点低导热性不良不良不良导电性固态不导电,熔化或溶于水能导电差差机械加工性能不良不良不良硬度略硬而脆高硬度硬度较小四.几种常见的晶体结构1.氯化钠晶体(离子晶体)在氯化钠晶体中:(1)与每个Na等距紧邻的Cl-有6个(2)与每个+Na等距紧邻的+Na有12个(3)每个氯化钠晶胞中含有4个NaCl。
(4)+Na周围与每个+Na等距紧邻的6个Cl-围成的空间构型为正八面体。
2.氯化铯晶体(离子晶体)在氯化铯晶体中:(1)与每个Cs+等距紧邻的Cl-有8个(2)与每个Cs+等距紧邻的Cs+有6个(3)每个氯化钠晶胞中含有1个CsCl。
3.干冰(分子晶体)在干冰的晶体中:(1)与每个CO2分子等距紧邻的CO2分子有12个。
晶体与非晶体的定义
晶体拥有固定的熔点,在熔化过程中,温度始终保持不变 。
晶体与非晶体的定义
晶体的定义
物质在熔解和凝固过程中,固态和液态并存时,温度 保持不变,这类固态物质叫做晶体。
晶体是原子、离子或分子按照一定的周期性在空间排 列形成在结晶过程中形成具有一定规则的几何外形的固体, 如食盐呈立方体,冰呈六角棱柱体,明矾呈八面体等。
晶体一般具有规则的几何形状、有一定的熔点,性能呈 各向异性。
单晶体有各向异性的特点。
晶体可以使X光发生有规律的衍射。
非晶体的特点 非晶体内部不具格子构造。 非晶体熔化时没有一定的熔化温度。 不能自发地形成多面体外形。
Thank you !
非晶体的定义
物质在熔解和凝固过程中,其温度不断变化,没有明 显的熔点和凝固点,这类固态物质叫做非晶体。
非晶体,也叫无定形体,是其中的原子不按照一定空 间顺序排列的固体,与晶体相对应,常见的非晶体包括玻 璃和松香等。
非晶体一般没有规则的几何形状和一定的熔点,性能呈 各向同性。
晶体与非晶体的本质区别
晶体的概念非晶体的概念
晶体的概念非晶体的概念晶体是由原子、分子或离子经过排列而组成的具有规则、有序结构的固体物质。
晶体的排列方式可以通过X射线衍射等方法进行研究和描述。
晶体具有明确的晶格结构,具有特定的几何形状,能够形成平滑的晶体表面。
晶体的基本结构由周期性的晶格构成,晶格是一种由原子、分子或离子组成的周期性数组,其中原子、分子或离子以一定的方式进行排列。
晶体的晶格结构具有周期性,可以通过一组重复单元来描述。
重复单元是晶格中最小的具有完整信息的单元,它可以在三个相互垂直的方向上无限重复。
晶格中的每个点被称为格点,可以用坐标表示。
晶体可以根据其晶体结构的性质进行分类。
根据晶体结构的连续性和周期性,晶体可以分为晶体态和非晶体态。
晶体态具有明确的晶格结构和周期性,可以通过X射线衍射等方法进行分析和研究。
晶体态可以进一步分为单晶体和多晶体。
单晶体是指晶体结构中没有晶粒界限的完整晶体,具有完整的晶体结构;而多晶体是由多个晶粒组成的晶体,晶粒之间具有晶粒界限。
非晶体是指由原子、分子或离子构成的固体物质,其排列方式没有明确的晶格结构和周期性。
非晶体的原子或分子在空间中没有明确的有序排列方式,因此不具备明确的晶体形状和表面。
非晶体通常具有非晶态固体的特性,具有无定形的外观和随机性的排列方式。
非晶体也可以被称为无定形固体。
非晶体和晶体在性质上有一些显著的差异。
晶体由于具有明确的晶格结构和周期性,具有较高的对称性和有序性。
这些特性使得晶体具备一些独特的物理和化学性质,例如特定的光学性质和电学行为。
非晶体由于没有明确的晶格结构和周期性,具有较低的对称性和有序性。
非晶体的性质通常更加随机和无规则,难以用简单的定律和规律描述。
总结起来,晶体是由具有明确的晶格结构和周期性的原子、分子或离子组成的固体物质,具有特定的几何形状和平滑的晶体表面;而非晶体是没有明确晶格结构和周期性的固体物质,具有无定形的外观和随机的排列方式。
晶体和非晶体在性质和行为上具有显著的差异,这使得他们在材料科学和应用领域有着不同的应用和用途。
简述晶体和非晶体的异同
简述晶体和非晶体的异同一、引言晶体和非晶体是材料科学中的两个重要概念,它们在物理性质、化学性质、制备方法等方面都有很大的差异。
本文将从晶体和非晶体的定义、结构、性质等方面进行详细的分析和比较。
二、晶体和非晶体的定义1. 晶体晶体是由一定数量原子或分子按照一定规律排列而成的固态物质,具有长程有序性。
其表现为具有明显的晶格结构,可以通过X射线衍射等方法确定其结构。
常见的晶体有金刚石、石英等。
2. 非晶体非晶体是由原子或分子无序排列而成的固态物质,缺乏长程有序性。
其表现为没有明显的晶格结构,不能通过X射线衍射确定其结构。
常见的非晶体有玻璃、塑料等。
三、晶体和非晶体的结构1. 晶体结构晶体具有长程有序性,其原子或分子按照一定规律排列形成了明显的周期性结构。
不同种类的元素或化合物形成不同类型的结构,如金刚石属于立方晶系,石英属于三斜晶系等。
晶体结构可以通过X射线衍射等方法确定。
2. 非晶体结构非晶体缺乏长程有序性,其原子或分子无序排列。
虽然没有明显的周期性结构,但是非晶体中存在类似于局部有序的区域,称为“偏序区域”。
这些偏序区域的大小和形状不规则,并且相互之间没有规律可言。
非晶体结构不能通过X射线衍射确定。
四、晶体和非晶体的物理性质1. 晶体物理性质由于晶体具有长程有序性,其物理性质表现为各向同性或各向异性。
例如,金刚石是一种各向同性材料,在所有方向上都具有相同的硬度;而云母则是一种各向异性材料,在不同方向上具有不同的物理特性。
2. 非晶体物理性质由于非晶体缺乏长程有序性,其物理特性表现为均匀或均匀随机分布。
例如玻璃是一种均匀材料,在所有方向上都具有相同的物理特性。
五、晶体和非晶体的化学性质1. 晶体化学性质由于晶体具有长程有序性,其化学性质表现为具有一定的化学反应性。
例如金刚石可以在高温和高压下转变为石墨。
2. 非晶体化学性质由于非晶体缺乏长程有序性,其化学反应性表现为均匀或均匀随机分布。
例如玻璃具有较好的耐腐蚀性能。
晶体和非晶体的区别有哪些?
晶体和非晶体的区分有哪些?晶体和非晶体的区分有:1.晶体和非晶体的定义不同;2.晶体和非晶体两者常见的类型不同,晶体主要以冰,水晶,石英,金刚石等为主,非晶体以玻璃,沥青等为主;3.晶体和非晶体的特性不同。
1晶体和非晶体的区分1、自范性(本质区分)晶体:有非晶体:无自范性指在适当的条件下可以自发地形成几何多面体的性质。
2、是否均一晶体:均一非晶体:不均一均一性是指晶体整体内部质点的周期性重复排列而形成的宏观意义上的各局部性质违反,如水晶各个部位的相对密度、膨胀系数、热导率都违反。
3、固定熔、沸点晶体:熔化时具有确定的熔化温度。
非晶体:熔化时没有确定的熔化温度。
4、某些物理性质的各向异性晶体:有非晶体:无各向异性在晶体格子构造中,除对称缘由外,往往不同方向上质点的排列是不一样的,因此晶体的性质也会随方向的不同而有所差异,如不同方向上硬度和解理的差异等都是晶体异向性的表现。
5、能否发生X-射线衍射(最科学的区分方法)晶体:能非晶体:不能(能发生散射)2晶体和非晶体的特点晶体特点:〔1〕晶体有整齐规章的几何外形;〔2〕晶体有固定的熔点,在熔化过程中,温度始终保持不变;〔3〕晶体有各向异性的特点。
非晶体是指组成物质的分子〔或原子、离子〕不呈空间有规章周期性排列的固体.它没有确定规章的外形,如玻璃、松香、石蜡等。
它的物理性质在各个方向上是违反的,叫"各向同性'。
它没有固定的熔点,所以有人把非晶体叫做"过冷液体'或"流淌性很小的液体'。
:高考物理学问点汇总丁达尔效应是什么现象有哪些应用最新高考资讯、高考政策、考前预备、志愿填报、录用分数线等高考时间线的全部重要节点尽在高考网微信公众号。
晶体和非晶体的区别八年级物理
晶体和非晶体的区别八年级物理在八年级物理的学习中,我们开始接触到固体材料的分类,其中晶体和非晶体是两种重要的结构类型。
下面,我们将详细探讨晶体和非晶体的区别。
一、定义及特点1.晶体:晶体是一种具有规则排列的固体结构,其原子、离子或分子按照一定的几何图形周期性地排列。
晶体的特点如下:- 有固定的熔点:晶体在加热过程中,温度逐渐升高,到达一定温度时,晶体开始熔化。
- 各向异性:晶体的物理性质(如导电性、导热性等)在不同方向上具有不同的表现。
- 有明显的几何形状:晶体在自然条件下生长,呈现出特定的几何形状。
2.非晶体:非晶体是一种没有规则排列的固体结构,其原子、离子或分子呈现出无序分布。
非晶体的特点如下:- 无固定的熔点:非晶体在加热过程中,温度逐渐升高,材料逐渐软化,没有明显的熔点。
- 各向同性:非晶体的物理性质在各个方向上基本相同。
- 没有明显的几何形状:非晶体在自然条件下生长,没有特定的几何形状。
二、晶体和非晶体的区别1.结构排列:晶体:具有规则、有序的原子、离子或分子排列。
非晶体:具有无序、不规则的原子、离子或分子排列。
2.熔点:晶体:具有固定的熔点。
非晶体:没有固定的熔点。
3.物理性质:晶体:具有各向异性。
非晶体:具有各向同性。
4.几何形状:晶体:具有明显的几何形状。
非晶体:没有明显的几何形状。
三、实例分析1.晶体实例:石英、食盐(氯化钠)、雪花等。
2.非晶体实例:玻璃、塑料、橡胶等。
总结:晶体和非晶体在结构、熔点、物理性质和几何形状等方面存在明显的区别。
矿物岩石课件:晶体与非晶体的概念
晶体与非晶体的概念
晶体与非晶体的概念
晶体与非晶体的概念
目录
Content
一、什么是晶体? 二、什么是非晶体?
一、什么是晶体?
晶体的分布十分广泛,可以毫不夸张地说,人类就是生活在晶体 的世界之中,自然界的固体物质,绝大多数都是晶体。
我们日常吃的食盐、食糖,用的金属、陶瓷、水泥,一直到组成 生命有机体的蛋白质等,莫不都是晶体。Biblioteka 二、什么是非晶质体蛋白石
玻璃
沥青
松香
二、什么是非晶质体
晶体与非晶体在一定条件下是可以互相转化的。 由非晶态转化为晶态,这一过程称为晶化(如蛋白石——玉髓——
石英)。 晶体也可因内部质点的规则排列遭到破坏而转化为非晶态,这个过程
称为非晶化。
二、什么是非晶质体
蛋白石
石英
二、什么是非晶质体
➢ 将这种局部的有序称为: 近程规律;而在整个结构范围的有序称 为:远程规律。
一、什么是晶体?
➢ 所以规则几何多面体的外形并不是晶体的本质,而只是晶体在一定 条件下的外在表现。
➢ 晶体的本质必须从它的内部去寻找。
一、什么是晶体?
石盐
一、什么是晶体?
1912年德国物理学家劳埃用X射线研究晶体, 证实晶体的根本特性是: 晶体内部质点(原子、离子或分子)在三维空间周 期性地重复排列。这种质点在三维空间周期性地重 复排列也称格子构造。
显然,晶体既有近程规律也有远程规律,非晶体则只有近程规律。
二、什么是非晶质体
水晶
玻璃
二、什么是非晶质体
液体的结构与非晶态结构相似,也只有近程规律;在气体中无近 程规律,也无远程规律。
谢谢观看
石盐晶体结构
晶体与非晶体
晶体与非晶体晶体与非晶体是材料科学中常用的两个概念,它们具有不同的结构和性质。
本文将介绍晶体和非晶体的特点、分类以及应用领域。
一、晶体的特点晶体是由原子、分子或离子按照一定的规则有序排列而成的固体。
晶体具有以下特点:1. 高度有序排列:晶体中的原子、分子或离子按照特定的空间周期性排列,组成有规则的三维晶体结构。
2. 清晰的晶面与晶角:晶体的有序结构使得晶体表面呈现出清晰可见的晶面和晶角,有利于晶体的表征和研究。
3. 明确的晶格参数:晶体的空间排列有序,可以通过晶格参数(如晶胞体积和晶胞边长)来描述晶体的结构。
4. 具有各向异性:晶体在不同晶向上的物理性质(如光学各向异性和热导率)表现出差异,这是晶格结构的结果。
二、非晶体的特点非晶体是由原子、分子或离子以无序、非周期性的方式排列而成的固体。
非晶体具有以下特点:1. 无序排列:非晶体中的原子、分子或离子没有规则的排列方式,缺乏明确的周期性结构。
2. 无明显晶面与晶角:非晶体表面呈现出无规则、不清晰的外貌,没有明显的晶面和晶角。
3. 随机的局部密度:非晶体中的原子密度和局部排列方式随机分布,没有明确的晶格参数。
4. 具有各向同性:非晶体在各个方向上的物理性质基本相同,不像晶体那样表现出各向异性。
三、晶体与非晶体的分类根据晶体和非晶体的结构特点,可以将它们进一步分类:1. 晶体分类:晶体可以根据其晶胞的对称性和晶体结构进行分类,常见的晶体包括立方晶系、六角晶系、正交晶系等。
2. 非晶体分类:非晶体可以根据其制备方法和固化方式进行分类,例如金属非晶体、无定形陶瓷等。
四、晶体与非晶体的应用领域晶体和非晶体在不同领域有着广泛的应用,下面列举其中的几个领域:1. 光学与电子学:晶体具有优良的光学特性,可应用于激光器、光纤通信等领域。
而非晶体在电子器件中有较好的应用,如非晶硅太阳能电池。
2. 材料工程:晶体和非晶体在材料工程中被广泛应用,用于改善材料的强度、硬度和耐磨性等性能。
【知识解析】晶体与非晶体
实验结论
从氯化钠饱和溶液 中可获得其晶体
区别晶体和非晶体的方法
(1)最可靠的科学方法:对固体进行X射线衍射实验。 (2)常用的间接方法:测定固体的熔点。有固定熔点的固体是晶体,没有固定熔点 的固体是非晶体。
典例详析
例2-3(2020江苏南通检测) 下列关于晶体的说法正确的是( B ) A.固体都是晶体 B.不同的晶体可能有不同的几何外形 C.有规则几何外形的固体就是晶体 D.研碎后的晶体即变为非晶体
典例详析
例2-8 晶体是一类非常重要的材料,在很多领域都有广泛的应用。我国现已能够拉制出直径 为300毫米、重量达81千克的大直径单晶硅,晶体硅大量用于电子产业。下列对晶体 硅的叙述正确的是( C ) A.形成晶体硅时速率越快越好 B.晶体硅没有固定的熔点 C.可用X射线衍射实验来区别晶体硅和玻璃 D.晶体硅的形成与晶体的自范性有关,而与各向异性无关
注意:晶体熔化过程中温度保持恒定,而非晶体熔化过程中温度发生变化。如对普 通玻璃加热,温度升高到一定程度后开始软化、流动性增强,最后变成液体,整个 过程温度不断上升。
(4)X射线衍射
晶体能使X射线产生衍射,而非晶体对X射线只能产生散射。
晶体的特性
教材延伸 晶体的其他基本性质
晶体的基本性质是由晶体内质点呈周期性排列的结构决定的。 1.均一性:晶体中各部分的化学组成、密度等都是相同的。 2.对称性:晶体的外形和内部结构都具有特有的对称性。在外形上,常有相等 的晶面、晶棱和顶角重复出现。这种相同的性质在不同的方向或位置上存在有规 律的重复,就是对称性。
晶体与非晶体
)
(1)晶体
晶体和非晶体的概念
把内部微粒(原子、离子或分子)在三维空间里呈周期性有序排列的固体物质称为晶 体。常见的晶体有食盐、冰、铁、铜等。
《晶体和非晶体》课件
晶体是由有序排列的原子或分子组成的固体,具有明确的形状和结构。非晶 体是由无序排列的原子或分子组成的固体,没有明确的形状和结构。
晶体的定义和特点
1 晶体的定义
晶体是由高度有序排列的原子或分子组成的固体。
2 晶体的结构和形态
晶体具有明确的结构和形状,在结晶过程中形成。
3 晶体的物理性质
晶体具有特定的物理性质,如透明度、折射率和硬度。
总结晶体和非晶体的定义、特点、比较和应用。
2 学生提问
鼓励学生提问,并回答他们关于晶体和非晶体的问题。
ቤተ መጻሕፍቲ ባይዱ
晶体和非晶体的应用
1 晶体的应用
晶体广泛应用于电子器件、光学仪器和化学领域。
2 非晶体的应用
非晶体常用于材料制备、包装和隔热等领域。
实验和展示
1 晶体和非晶体实验
通过实验展示晶体和非晶体的形成过程和特 点。
2 晶体和非晶体展示
展示各种晶体和非晶体的形态、性质和应用。
总结和提问
1 总结本节课内容
非晶体的定义和特点
1 非晶体的定义
非晶体是由无序排列的原子或分子组成的固体。
2 非晶体的结构和形态
非晶体没有明确的结构和形状,呈现非晶态。
3 非晶体的物理性质
非晶体具有特定的物理性质,如不透明度和变形性。
晶体和非晶体的比较
1 相似之处
晶体和非晶体都是固体,具有一定的物理性质。
2 不同之处
晶体具有有序排列的结构和形状,而非晶体没有明确的结构和形状。
晶体与非晶体的区别
晶体与非晶体的区别物质的存在状态一般有三种情况:固态、液态和气态。
固体又分为两种存在形式:晶体和非晶体。
所谓晶体就是指物质在熔化和凝固过程中,固态和液态并存时,温度保持不变,这类物质叫做晶体。
例:海波、萘、石英、云母、明矾、食盐、硫酸铜、糖、味精、水晶、钻石、冰、干冰、霜、雪、冰雹、雪糕、各种金属。
而非晶体是指物质在熔化和凝固过程中,其温度不断的变化,没有固定的熔点和凝固点。
例:玻璃、蜡、松香、沥青、橡胶、塑料、布。
(1) 从外形上观察:晶体都有自己独特的、呈对称性的形状。
如食盐呈立方体;冰呈六角棱柱体;明矾呈八面体等。
非晶体的外形则是不规则的。
如沥青、玻璃、松香、石蜡等。
(2)从温度上测量:晶体在熔化(或凝固)过程中温度保持不变,即有确定的熔点(或凝固点)。
如冰(或水)的熔点(或凝固点)是0℃、海波的熔点(或凝固点)是48℃。
非晶体在熔化(或凝固)过程中温度持续上升(或下降),没有确定的熔点(或凝固点)。
在给物质加热过程中,我们可以借助实验温度计,在物质熔化时,测量其温度是否发生变化,如果温度不变的就是晶体,温度上升的就是非晶体。
(3)从物质的状态上观察:晶体在熔化(或凝固)过程中呈固液共存态。
如冰熔化时,先是有一部分冰化成水,然后,随着熔化的进行,冰越来越少,水越来越多,只到最后冰全部化成水。
非晶体在熔化(或凝固)过程中先是整体变软(或变硬),然后流动性越来越大(或越小),最后变成液态(或固态)。
如我们看到的蜡烛点燃时就是这样,靠近火焰的地方先变软再变成液态的蜡油。
不像冰熔化时,尽管有一部分冰已经化成了水,而其它部分的冰仍然是很坚硬的固体。
(4)从图像上看:根据晶体熔化(或凝固)时的温度不变这一特征,所以在晶体熔化和凝固图像上就表现为在它的变化曲线有一段是平滑的或者说是有一段图像曲线是与时间轴是平行的。
而非晶体熔化(或凝固)时的温度变化曲线中则没有这一段。
材料科学基础名词解释
阵点:点阵中的各个点,称为阵点。
晶胞:晶胞 能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元。
晶向指数、晶面指数:为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶
向指数与晶面指数。
晶向族:原子排列情况相同在空间位向不同(即不平行)的晶向统称为晶向族。
不对称倾斜晶界:如果倾斜晶界的界面绕x轴转了一角度φ,则此时两晶粒之间的位向差仍为θ角,但此时晶界的界面对于两个晶粒是 倾斜晶界不对称的,故称不对称倾斜晶界(unsymmetrical tilt boundary)。
扭转晶界:扭转晶界(twist boundary)是小角度晶界的一种类型。它可看成是两部分晶体绕某一轴在一个共同的晶面上相对扭转一个θ角所构成的,扭转轴垂直于这一共同的晶面。该晶界的结构可看成是由互相交叉的螺型位错所组成 。
柯肯达尔效应(kirkendall effect):原来是指两种扩散速率不同的金属在扩散过程中会形成缺陷,现已成为中空纳米颗粒的一种制备方法。可以作为固态物质中一种扩散现象的描述。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时,就会发生表面扩散。
粘流态:当温度高于粘流化温度Tf并继续升高时,高聚物得到的能量足够使整个分子链都可以自由运动,从而成为能流动的粘液,其粘度比液态低分子化物的粘度要大得多,所以称为粘流态。
弹性形变:弹性形变是指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。
弹性模量:材料在弹性变形阶段内,正应力和对应的正应变的比值。
晶面族:立方晶系中,由于原子的排列具有高度的对称性,往往存在有许多原子排列完全相同但在空间位向不同(即不平行)的晶面,这些晶面总称为晶面族。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最佳答案
晶体是有固定的熔点和沸点,而非晶体就没有固定的熔点和沸点。
它们分子的空间排列一个有规律一个杂乱
大家知道,物质有三种聚集态:气体、液体和固体。
但是,你知道根据其内部构造特点,固体又可分为几类吗?可分为晶体、非晶体和准晶体三大类。
晶体在合适的条件下,通常都是面平棱直的规则几何形状,就像有人特意加工出来的一样。
其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。
如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。
而玻璃(及其他非晶体如石蜡、沥青、塑料等)内部原子的排列则是杂乱无章的。
准晶体是最近发现的一类新物质,其内部原子排列既不同于晶体,也不同于非晶体。
仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。
一块加工过的水晶晶体与同样形状的玻璃(非晶体)外观上几乎看不出任何区别。
同样,一层金属薄膜(通常是晶体)与一层准晶体金属膜从外观上也看不出差异。
那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。
X光技术诞生以后,很快就被科学家用于固态物质的鉴定。
如果利用X光技术对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。
由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差别。
例如,晶体有固定的熔点(当温度高到某一温度便立即熔化),物理性质(力学、光学、电学及磁学性质等)表现出各向异性(比如光线在水晶中传播方向不同,速度也不一样)。
而玻璃及其他非晶体(亦称为无定形体)则没有固定的熔点(从软化到熔化是一个较大的温度范围),物理性质方面则表现为各向同性。
自然界中的绝大多数矿石都是晶体,就连地上的泥土沙石也是晶体,冬天的冰雪是晶体,日常见到的各种金属制品亦属晶体。
可见晶体并不陌生,它就在我们的日常生活中。
人们通过长期认识世界、改造世界的实践活动,逐渐发现了自然界中各种矿物的形成规律,并研究出了许许多多合成人工晶体的方法和设备。
现在,人们既可以从水溶液中获得单晶体,也可以在数千度的高温下培养出各种功能晶体(如半导体晶体、激光晶体等);既可以生产出重达数吨的大块单晶,也可研制出细如发丝的纤维晶体,以及只有几十个原子层厚的薄膜材料。
五光十色丰富多彩的人工晶体已悄悄地进入了我们的生活,并在各个高新技术领域大显神通。
【晶体】具有规则几何形状的固体。
其内部结构中的原子、离子或分子都在空间呈有规则的三维重复排列而组成一定型式的晶格。
这种排列称为晶体结构。
晶体点阵是晶体粒子所在位置的点在空间的排列。
相应地在外形上表现为一定形状的几何多面体,这是它的宏观特性。
同一种晶体的外形不完全一样,但却有共同的特点。
各相应晶面间的夹角恒定不变,这条规律称为晶面角守恒定律,它是晶体学中重要的定律之一,是鉴别各种矿石的依据。
晶体的一个基本特性是各向异性,即在各个不同的方向上具有不同的物理性质,如力学性质(硬度、弹性模量等等)、热学性质(热膨胀系数、导热系数等等)、电学性质(介电常数、电阻率等等)光学性质(吸收系数、折射率等等)。
例如,外力作用在云母的结晶薄片上,沿平行于薄片的平面很容易裂开,但在薄片上裂开则非易事。
岩盐则容易裂成立方体。
这种易于劈裂的平面称为解理面。
在云母片上涂层薄石蜡,用烧热的钢针触云母片的反面,便会以接触点为中心,逐渐化成椭圆形,说明云母在不同方向上导热系数不同。
晶体的热膨胀也具各向异性,如石墨加热时沿某些方向膨胀,沿另一些方向收缩。
晶体的另一基本特点是有一定的熔点,不同的晶体有它不相同的熔点。
且在熔解过程中温度保持不变。
对晶体微观结构的认识是随生产和科学的发展而逐渐深入的。
1860年就有人设想晶体是由原子规则排列而成的,1912年劳埃用X射线衍射现象证实这一假设。
现在已能用电子显微镜对晶体内部结构进行观察和照相,更有力地证明假想的正确性。
【非晶体】指组成它的原子或离子不是作有规律排列的固态物质。
如玻璃、松脂、沥青、橡胶、塑料、人造丝等都是非晶体。
从本质上说,非晶体是粘滞性很大的液体。
解理面的存在说明晶体在不同方向上具有不同的力学性质,非晶体破碎时因各向同性而没有解理面,例如,玻璃碎片的形状就是任意的。
若在玻璃上涂一薄层石蜡,用烧热的钢针触及背面,则以触点为中心,将见到熔化的石蜡成圆形。
这说明导热系数相同。
非晶体没有固定的熔点,随着温度升高,物质首先变软,然后由稠逐渐变稀,成为流体。
具有一定的熔点是一切晶体的宏观特性,也是晶体和非晶体的主要区别。
晶体和非晶体之间是可以转化的。
许多物质存在的形式,可能是晶体,也可能是非晶体。
将水晶熔化后使其冷却,即成非晶体的石英玻璃,它的转化过程需要一定的条件。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。