一、晶体常识1.晶体与非晶体(1)晶体与非晶体的区别

合集下载

晶体与非晶体的区别

晶体与非晶体的区别

JISHOU UNIVERSITY《固体物理》期末考核报告晶体与非晶体的区别摘要:自然界中的固体物质可以分为晶体和非晶体两大类。

其中,晶体是指那些内部质点(原子、离子或分子)在三维空间周期性地重复排列构成的固体物质。

与此相反,内部质点在三维空间无规律地排列的固体物质为非晶体或非晶态。

非晶体的各种物理性质,在各个方向上都是相同的,即各向同性。

非晶体没有固定的熔点,在熔化过程中,随着温度的升高,它首先变软,然后逐渐由稠变稀,经历一个软化过程。

这些特征和晶体是不同的。

晶体可对X射线发生,非晶体不可对X射线发生衍射。

非晶态内能高、不稳定,而晶态内能低、稳定。

关键词:晶体非晶体区别一、定义晶体:内部微粒(原子、离子或分子)在空间按一定规律做周期性重复排列构成的固体物质。

如石英、云母、食盐、明矾等。

非晶体:内部原子或分子的排列呈现杂乱无章的分布状态的固体物质。

如玻璃、橡胶、松香、沥青等。

一些物质又有晶体和非晶体不同形态,如天然水晶和石英玻璃都有二氧化硅成分,但前者是晶体,后者是非晶体。

二、晶体与非晶体的区别晶体非晶体性质自范性(本质区别)有无各向异性有无固定熔沸点有无能不能(能发生散射)能否发生X 射线衍射(最科学的区分方法)内能小而最稳定大而不稳定(一)外形1、区别晶体都具有规则的几何形状,而非晶体没有一定的几何外形。

晶体自范性的本质:晶体中粒子微观空间里是呈现周期性的有序排列的。

晶体内部质点排列有序,外形规则。

例如。

在氯化钠晶体内部,无论任何方向上CI 一和Na+都是相间排列的,如图1,●代表Na离子,○代表Cl离子,其外形是非常规则的立方形,从盐场生产的粗大盐粒到实验室用的基准氯化钠微粒,无论大小都是立方形的。

图1 NaCl晶体结构17世纪中叶,丹麦矿物学家斯迪诺在研究石英晶体断面时发现,石英晶面的大小和形状尽管千变万化,但相应晶面问的夹角却是相等的。

如图2所示,无论哪种形状的石英晶体,其晶面a,b,C相互间的夹角均保持相等。

第三章第一节 晶体的常识

第三章第一节 晶体的常识

第一节晶体的常识1、认识晶体和非晶体的本质差异,明白晶体的特征和性质。

2、了解获得晶体的途径。

3、明白晶胞的概念,学会晶胞中微粒数的计算方法(均摊法),能依照晶胞的结构确定晶体的化学式。

晶体与非晶体[学生用书P35]1、晶体与非晶体的本质差异23、晶体的特点(1)自范性①定义:晶体能自发地呈现多面体外形的性质。

②形成条件之一:晶体生长速率适当。

③本质原因:晶体中粒子在微观空间里呈现周期性的有序排列。

(2)各向异性:许多物理性质(强度、导热性、光学性质等)常常会表现出各向异性。

(3)有序性:外形和内部质点排列的高度有序、(4)熔点:有固定的熔点。

1、判断正误(正确的打“√”,错误的打“×")。

(1)晶体有自范性但其微粒排列无序、()(2)晶体具有各向同性,非晶体具有各向异性。

()(3)晶体有固定的熔点、()(4)熔融态物质快速冷却即可得到晶体。

( )(5)熔融的硝酸钾冷却可得晶体,故液态玻璃冷却也能得到晶体。

( )(6)粉末状的固体也有估计是晶体。

( )答案:(1)×(2)× (3)√(4)× (5)× (6)√2、下列物质中属于晶体的是________。

A、橡胶B、玻璃C、食盐ﻩD、水晶E、塑料ﻩF、胆矾解析:固体有晶体和非晶体之分,晶体是内部微粒(原子、离子或分子)在空间按一定规律呈周期性有序排列构成的具有规则几何外形的固体,如食盐、冰、金属、水晶、大部分矿石等都是晶体;非晶体中内部粒子的排列则相对无序,如玻璃、橡胶等都是非晶体。

答案:CDF1、晶体与非晶体的区别(1)依据是否具有自范性晶体具有自范性,能自发地呈现多面体的外形,而非晶体不具有自范性。

(2)依据是否具有各向异性晶体具有各向异性,在不同方向上质点排列一般是不一样的,而非晶体不具有各向异性。

(3)依据是否具有固定的熔、沸点晶体具有固定的熔、沸点,给晶体加热时,当温度升高到某温度时便马上熔化或汽化,在熔化过程中,温度始终保持不变,而非晶体没有固定的熔、沸点。

晶体和非晶体的区别

晶体和非晶体的区别
晶体通常具有较高的硬度和稳定性,适用于对精 度和稳定性要求较高的场合,而非晶体具有较好 的柔韧性和加工性能,适用于对柔韧性和加工性 能要求较高的场合。
THANKS
感谢观看
非晶体内部原子或分子的排列是无规律的,因 此其外形通常是不规则的,没有固定的形状。
非晶体具有各向同性
非晶体在不同方向上的物理性质基本相同,没 有明显的方向性差异。
非晶体没有固定的熔点
非晶体在加热时逐渐软化,最终变成液体,没有固定的熔点。
晶体与非晶体物理性质的对比
晶体具有规则的几何外形和非晶体没有规则的几 何外形形成了鲜明的对比。
在实际应用中,晶体和非晶体的差异也很大,如陶瓷、玻璃、塑料等材料中,非晶体材料通常具有较好 的韧性和塑性,而晶体材料则具有较高的硬度和强度。
04
物理性质
晶体物理性质
晶体具有规则的几何外形
晶体具有固定的熔点,且在熔化过程中保持固定的温度不 变。晶体还具有规则的几何外形,这是因为晶体内部原子 或分子的排列是有规律的。
等。
非晶体定义
01 非晶体是指原子、分子或离子的排列不具有长程 有序性和对称性的固体物质。
02 非晶体内部原子、分子或离子的排列是混乱无序 的,导致非晶体没有规则的几何外形。
02 非晶体的物理性质通常表现为各向同性,即在不 同方向上表现出相同的性质。
晶体与非晶体的性质比较
光学性质
晶体具有光学各向异 性,即在不同方向上 表现出不同的光学性 质;非晶体则表现为 光学各向同性。
橡胶制品
非晶体材料如天然橡胶、合成橡胶等 可用于制造各种橡胶制品,如轮胎、
鞋底等。
塑料制品
非晶体材料如聚乙烯、聚丙烯等是塑 料的主要成分,广泛用于制造各种塑 料制品。

高中化学选修三——晶体结构与性质

高中化学选修三——晶体结构与性质

晶体结构与性质一、晶体的常识 1.晶体与非晶体得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元,即晶体中无限重复的部分一个晶胞平均占有的原子数=18×晶胞顶角上的原子数+14×晶胞棱上的原子+12×晶胞面上的粒子数+1×晶胞体心内的原子数思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图,它们分别平均含几个原子?eg :1.晶体具有各向异性。

如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。

晶体的各向异性主要表现在( )①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( )A.晶体一定比非晶体的熔点高B.晶体一定是无色透明的固体C.非晶体无自范性而且排列无序D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图,其中有多少个原子? 二、分子晶体与原子晶体1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中,分子内的原子间以共价键结合,相邻分子间以分子间作用力结合 ①物理性质a.较低的熔、沸点b.较小的硬度c.一般都是绝缘体,熔融状态也不导电d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂,极性分子一般能溶于极性溶剂②典型的分子晶体a.非金属氢化物:H 2O 、H 2S 、NH 3、CH 4、HX 等b.酸:H 2SO 4 、HNO 3、H 3PO 4等c.部分非金属单质::X 2、O 2、H 2、S 8、P 4、C 60d.部分非金属氧化物:CO 2、SO 2、NO 2、N 2O 4、P 4O 6、P 4O 10等 f.大多数有机物:乙醇,冰醋酸,蔗糖等③结构特征a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子)CO2晶体结构图b.有分子间氢键--分子的非密堆积以冰的结构为例,可说明氢键具有方向性④笼状化合物--天然气水合物2.原子晶体--相邻原子间以共价键相结合而形成空间立体网状结构的晶体注意:a.构成原子晶体的粒子是原子 b.原子间以较强的共价键相结合①物理性质a.熔点和沸点高b.硬度大c.一般不导电d.且难溶于一些常见的溶剂②常见的原子晶体a.某些非金属单质:金刚石(C)、晶体硅(Si)、晶体硼(B)、晶体锗(Ge)等b.某些非金属化合物:碳化硅(SiC)晶体、氮化硼(BN)晶体c.某些氧化物:二氧化硅( SiO2)晶体、Al2O3金刚石的晶体结构示意图二氧化硅的晶体结构示意图思考:1.怎样从原子结构角度理解金刚石、硅和锗的熔点和硬度依次下降2.“具有共价键的晶体叫做原子晶体”,这种说法对吗?eg:1.在解释下列物质性质的变化规律与物质结构间的因果关系时,与键能无关的变化规律是()、HCI、HBr、HI的热稳定性依次减弱B.金刚石、硅和锗的熔点和硬度依次下降、C12、Br2、I2的熔、沸点逐渐升高可用做保护气2.氮化硼是一种新合成的无机材料,它是一种超硬耐磨、耐高温、抗腐蚀的物质。

一、晶体常识1.晶体与非晶体(1)晶体与非晶体的区别.

一、晶体常识1.晶体与非晶体(1)晶体与非晶体的区别.
汞、铯等熔、沸点很低. (2)原子晶体 由共价键形成的原子晶体中,原子半径小的键长短,键能 大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅.
(3)离子晶体
一般地说,阴阳离子的电荷数越多,离子半径越小,则离
子间的作用力就越强,相应的晶格能大,其晶体的熔、沸 点就越高,如熔点:MgO>MgCl2,NaCl>CsCl. (4)分子晶体 ①分子间作用力越大,物质的熔、沸点越高;具有氢键的
分子晶体熔、沸点反常的高,如H2O>H2Te>H2Se>H2S.
②组成和结构相似的分子晶体,相对分子质量越大,熔、 沸点越高,如SnH4>GeH4>SiH4>CH4.
③组成和结构不相似的物质(相对分子质量接近),分子的极
性越大,其熔、沸点越高,如CO>N2,CH3OH>CH3CH3. ④同分异构体,支链越多,熔、沸点越低,如 CH3—CH2—CH2—CH2—CH3>
类型 比较
分子晶体
原子晶体
金属晶 体
离子晶体
大多数非金属单质
(如P4、Cl2)、气态
一部分非
金属单质 金属单 质与合
金属氧化物
(如K2O、 Na2O)、强
氢化物、酸(如HCl、 (如金刚石、
物质类别 H2SO4)、非金属氧
SiO2除外)、绝
硅、晶体
及举例 化物(如SO2、CO2, 硼),一部 分非金属

属 晶 体
钾型
典型代表Na、K、Fe,空间
利用率68%,配位数为8 典型代表Mg、Zn、Ti,空 间利用率74%,配位数为12 典型代表Cu、Ag、Au,空 间利用率74%,配位数为12
镁型
铜型
[例1]如图,直线交点处的圆圈为NaCl晶体中Na+或Cl-所

晶体与非晶体的区别

晶体与非晶体的区别

晶体与非晶体区别晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。

组成晶体的微粒——原子是对称排列的,形成很规则的几何空间点阵。

空间点阵排列成不同的形状,就在宏观上呈现为晶体不同的独特几何形状。

组成点阵的各个原子之间,都相互作用着,它们的作用主要是静电力。

对每一个原子来说,其他原子对它作用的总效果,使它们都处在势能最低的状态,因此很稳定,宏观上就表现为形状固定,且不易改变。

晶体内部原子有规则的排列,引起了晶体各向不同的物理性质。

例如原子的规则排列可以使晶体内部出现若干个晶面,立方体的食盐就有三组与其边面平行的平面。

如果外力沿平行晶面的方向作用,则晶体就很容易滑动(变形),这种变形还不易恢复,称为晶体的范性。

从这里可以看出沿晶面的方向,其弹性限度小,只要稍加力,就超出了其弹性限度,使其不能复原;而沿其他方向则弹性限度很大,能承受较大的压力、拉力而仍满足虎克定律。

当晶体吸收热量时,由于不同方向原子排列疏密不同,间距不同,吸收的热量多少也不同,于是表现为有不同的传热系数和膨胀系数。

石英、云母、明矾、食盐、硫酸铜、糖、味精等就是常见的晶体。

非晶体的内部组成是原子无规则的均匀排列,没有一个方向比另一个方向特殊,如同液体内的分子排列一样,形不成空间点阵,故表现为各向同性。

当晶体从外界吸收热量时,其内部分子、原子的平均动能增大,温度也开始升高,但并不破坏其空间点阵,仍保持有规则排列。

继续吸热达到一定的温度——熔点时,其分子、原子运动的剧烈程度可以破坏其有规则的排列,空间点阵也开始解体,于是晶体开始变成液体。

在晶体从固体向液体的转化过程中,吸收的热量用来一部分一部分地破坏晶体的空间点阵,所以固液混合物的温度并不升高。

当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。

而非晶体由于分子、原子的排列不规则,吸收热量后不需要破坏其空间点阵,只用来提高平均动能,所以当从外界吸收热量时,便由硬变软,最后变成液体。

区别晶体与非晶体最科学的方法

区别晶体与非晶体最科学的方法

区别晶体与非晶体最科学的方法晶体和非晶体是材料科学中的两个基本概念,它们的区别对于材料的性质和应用有着重要的影响。

那么,如何科学地区分晶体和非晶体呢?晶体和非晶体的最显著的区别在于它们的结构。

晶体是有序排列的,其原子、离子或分子按照一定的规律排列成周期性的结构,这种结构被称为晶体结构。

晶体结构可以通过X射线衍射等方法进行表征,因为晶体的结构是高度有序的,所以晶体会产生衍射图案,而这种图案的特征可以用来确定晶体的结构类型和晶胞参数等信息。

相反,非晶体的结构是无序的,其原子、离子或分子没有任何规律地排列,因此非晶体没有固定的晶体结构,也不会产生X射线衍射图案。

晶体和非晶体的物理性质也有所不同。

晶体具有各向同性的物理性质,即在不同方向上的物理性质是相同的,例如光的折射、电阻率等。

而非晶体由于其无序性质,物理性质通常是各向异性的,即在不同方向上的物理性质是不同的。

例如,非晶体的磁性通常会随着制备方法的不同而发生改变,而晶体的磁性则只与其结构有关。

晶体和非晶体的制备方法也不同。

晶体的制备通常需要一定的条件,例如高温、高压或者溶剂蒸发等,可以通过晶体生长等方法来制备。

而非晶体的制备则通常是通过快速冷却等方法来实现的,例如快速凝固、溅射等。

晶体和非晶体的应用也有所不同。

晶体的应用范围非常广泛,例如晶体管、晶体振荡器、晶体管等,这些应用都是基于晶体的周期性结构和各向同性的物理性质而实现的。

相反,非晶体的应用则通常涉及到其各向异性的物理性质,例如非晶合金、非晶硅等。

晶体和非晶体的区别主要在于其结构、物理性质、制备方法和应用等方面。

科学地区分晶体和非晶体对于材料科学的研究和应用具有重要的意义。

晶体常识-晶体与非晶体晶体与非晶体的区别

晶体常识-晶体与非晶体晶体与非晶体的区别

晶体
NaCl (型) 离 子 晶 体 CsCl (型)
晶体结构
晶体详解 (1)每个Na+(Cl-)周围等距且紧 邻的Cl-(Na+)有6个.每个Na+ 周围等距且紧邻的Na+有12个 (2)每个晶胞中含4个Na+和4个 Cl- (1)每个Cs+周围等距且紧邻的 Cl-有8个,每个Cs+(Cl-)周围 等距且紧邻的Cs+(Cl-)有6个 (2)如图为8个晶胞,每个晶胞中 含1个Cs+、1个Cl-
晶体详解
(1)每个Si与4个O以共价键结
合,形成正四面体结构
(2)每个正四面体占有1个Si,4
个“ 1 2
O”, (Si)∶n(O)=
1∶2
(3)最小环上有12个原子,即6
个O,6个Si
晶体 分子
干冰 晶体
晶体结构
晶体详解
(1)8个CO2分子构成立 方体且在6个面心又各 占据1个CO2分子 (2)每个CO2分子周围 等距紧邻的CO2分子 有12个
三、几种典型的晶体模型
晶体
晶体结构
原 金
子 刚
晶 石

晶体详解 (1)每个碳与4个碳以共价键 结合,形成正四面体结构(2) 键角均为109°28(3)最小碳环 由6个C组成且六原子不在 同一平面内(4)每个C参与4 条C—C键的形成,C原子 数与C—C键之比为1∶2
晶体
原 子 晶 SiO2 体
晶体结构
一、晶体常识
1.晶体与非晶体 (1)晶体与非晶体的区别
晶体
非晶体
结构特征
结构微粒周期性 结构微粒无序排
有序排列

自范性
性质 特征
熔点
异同表现
二者 间接方法
区别 方法
科学方法

晶体结构与性质知识点

晶体结构与性质知识点

第三章晶体结构与性质第一节晶体的常识【知识点梳理】一、晶体与非晶体1、晶体与非晶体①晶体:是内部微粒(原子、离子或分子)在空间按一定规律做周期性重复排列构成的物质。

②非晶体:是内部的原子或分子的排列呈杂乱无章的分布状态的物质。

2、晶体的特征(1)晶体的基本性质晶体的基本性质是由晶体的周期性结构决定的。

①自范性:a.晶体的自范性即晶体能自发的呈现多面体外形的性质。

b.“自发”过程的实现,需要一定的条件。

晶体呈现自范性的条件之一是晶体生长的速率适当。

②均一性:指晶体的化学组成、密度等性质在晶体中各部分都是相同的。

③各向异性:同一晶体构造中,在不同方向上质点排列一般是不一样的,因此,晶体的性质也随方向的不同而有所差异。

④对称性:晶体的外形和内部结构都具有特有的对称性。

在外形上,常有相等的对称性。

这种相同的性质在不同的方向或位置上做有规律的重复,这就是对称性。

晶体的格子构造本身就是质点重复规律的体现。

⑤最小内能:在相同的热力学条件下,晶体与同种物质非晶体固体、液体、气体相比较,其内能最小。

⑥稳定性:晶体由于有最小内能,因而结晶状态是一个相对稳定的状态。

⑦有确定的熔点:给晶体加热,当温度升高到某温度便立即熔化。

⑧能使X射线产生衍射:当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。

X射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅,它能使X射线产生衍射。

利用这种性质人们建立了测定晶体结构的重要试验方法。

非晶体物质没有周期性结构,不能使X射线产生衍射,只有散射效应。

(2)晶体SiO2与非晶体SiO2的区别①晶体SiO2有规则的几何外形,而非晶体SiO2无规则的几何外形。

②晶体SiO2的外形和内部质点的排列高度有序,而非晶体SiO2内部质点排列无序。

③晶体SiO2具有固定的熔沸点,而非晶体SiO2无固定的熔沸点。

④晶体SiO2能使X射线产生衍射,而非晶体SiO2没有周期性结构,不能使X射线产生衍射,只有散射效应。

高中化学晶体与非晶体的区别知识点总结

高中化学晶体与非晶体的区别知识点总结

高中化学晶体与非晶体的区别知识点总结一、晶体与非晶体晶体是具有规则的几何外形的固体,而非晶体则没有规则的几何外形。

晶体与非晶体的本质差异自范性微观结构晶体有( 能自发呈现多面体外形)原子在三维空间里呈周期性有序排列非晶体没有( 不能自发呈现多面体外形)原子排列相对无序晶体的特点:(1 )有固定的几何外形;(2 )有固定的熔点;(3 )有各向异性。

晶体形成的一段途径:(1 )熔融态物质凝固;(2 )溶质从溶液中析出;(3 )气态物质冷却不经液态直接凝固(凝华)。

说明:1 、晶体可以认为是内部粒子(原子、离子、分子)在空间按一定规律周期性重复排列构成的固体物质,如食盐、干冰、金刚石等;而非晶体则是内部原子或分子的排列呈杂乱无章的分布状态的固体物质,如:橡胶、玻璃、松香等。

2 、晶体的自范性是指:在适宜的条件下,晶体能够自发地呈现封闭的规则和凸面体外形的性质。

晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。

晶体自范性的条件是:生长速率适当。

3 、由于晶体各个方向排列的质点的距离不同,而导致晶体各个方向的性质也不一样。

对于晶体来说, 许多物理性质:如硬度、导热性、光学性质等,因研究角度不同而产生差异,即为各向异性。

4 、加热晶体,温度达到晶体熔点时即开始熔化,在没有完全熔化之前,继续加热,温度不会升高,完全熔化后,温度才会升高,即晶体具有固定的熔点;加热非晶体,温度达到一定程度后开始软化,流动性很强,最后变为液体,从软化到熔化,中间经过一段很长的温度范围,即非晶体没有固定的熔点。

5 、当单一波长的X -射线通过晶体时,可发生衍射,会在记录仪上看到分立的斑点或谱线。

说明晶体可使X -射线产生衍射,而X -射线通过非晶体时只能产生散射。

因此,利用晶体的这一性质,来鉴别晶体与非晶体。

6 、熔融态物质凝固以及溶质从溶液中析出时,在适宜的生长速率下可以形成晶体,但如果生长速率不当,则形成的晶体外形很不规则。

人教版高二化学选修物质结构与性质第三章晶体

人教版高二化学选修物质结构与性质第三章晶体
3、有哪单些个物分质子可存以在形;成化分学子式晶就体是?分子式。 熔沸点较低,硬度较小;熔融态不导电。 溶解性:“相似相溶原理”
卤素、氧气、氢气等多数非金属单质、稀有气体、非金属氢化物、多数非金属氧化物等。
分子间作用力与熔、沸点的关系
温度/℃
200
I2 沸
150

熔点
100
I2
50
Br2
100 150

2. 在SiO2 晶体中,每个硅原子形成 个共价键2;每个氧原子形成 3. 在SiO2 晶体中,最小环为 元环。
个共价键; 1:2
4 2
12
4.每个十二元环中平均含有硅原子
=6×1/1 硅原子个数与Si-O 共价键个数之是
=12×1/6=2 ;氧原子个数与Si-O 共价键个数之比是 1:。4
熔沸点很高,硬度很大,难溶于一般溶剂。
金刚石、单晶硅、碳化硅、二氧化硅等。
4、 原子晶体的特点
①、晶体中
单个分子存在;没化有学式只代表

原子个数之比
②、熔、沸点
;硬度 ; 很溶高于一般溶剂; 导电。 很 大


5、 影响原子晶体熔沸点、硬度大小的因素: 共价键的强弱 键长的大小
一般形成共价键的两原子半径越小键长越小,键能越 ,原子晶体的熔沸点越 ,硬度越 。 大
1.金属键
(1)定义: 金属离子和自由电子之间的强烈的相互作用。
(2)形成 成键微粒: 金属阳离子和自由电子 存 在: 金属单质和合金中
(3)方向性: 无方向性
三、金属晶体的结构与金属性质的内在联系
1、金属晶体结构与金属导电性的关系
【讨论1】 金属为什么易导电? 在金属晶体中,存在着许多自由电子,这些自由电子的运动是没有一定方向的,但在外加电场的条件下

晶体和非晶体的区别八年级物理

晶体和非晶体的区别八年级物理

晶体和非晶体的区别八年级物理在八年级物理的学习中,我们开始接触到固体材料的分类,其中晶体和非晶体是两种重要的结构类型。

下面,我们将详细探讨晶体和非晶体的区别。

一、定义及特点1.晶体:晶体是一种具有规则排列的固体结构,其原子、离子或分子按照一定的几何图形周期性地排列。

晶体的特点如下:- 有固定的熔点:晶体在加热过程中,温度逐渐升高,到达一定温度时,晶体开始熔化。

- 各向异性:晶体的物理性质(如导电性、导热性等)在不同方向上具有不同的表现。

- 有明显的几何形状:晶体在自然条件下生长,呈现出特定的几何形状。

2.非晶体:非晶体是一种没有规则排列的固体结构,其原子、离子或分子呈现出无序分布。

非晶体的特点如下:- 无固定的熔点:非晶体在加热过程中,温度逐渐升高,材料逐渐软化,没有明显的熔点。

- 各向同性:非晶体的物理性质在各个方向上基本相同。

- 没有明显的几何形状:非晶体在自然条件下生长,没有特定的几何形状。

二、晶体和非晶体的区别1.结构排列:晶体:具有规则、有序的原子、离子或分子排列。

非晶体:具有无序、不规则的原子、离子或分子排列。

2.熔点:晶体:具有固定的熔点。

非晶体:没有固定的熔点。

3.物理性质:晶体:具有各向异性。

非晶体:具有各向同性。

4.几何形状:晶体:具有明显的几何形状。

非晶体:没有明显的几何形状。

三、实例分析1.晶体实例:石英、食盐(氯化钠)、雪花等。

2.非晶体实例:玻璃、塑料、橡胶等。

总结:晶体和非晶体在结构、熔点、物理性质和几何形状等方面存在明显的区别。

晶体的常识、分子晶体与原子晶体

晶体的常识、分子晶体与原子晶体

晶体的常识、分子晶体与原子晶体一、晶体和非晶体1.晶体与非晶体结构特征晶体结构微粒周期性有序排列非晶体结构微粒无序排列性质特征自范性熔点异同表现有(能自发呈现多面体外形)固定各向异性无(不能自发呈现多面体外形)不固定各向同性二者区别方法间接方法科学方法看是否有固定的熔点对固体进行X-射线衍射实验注意:(1)、晶体与非晶体的本质差异表现在有无自范性和微观结构特征上。

本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性的有序排列的宏观表象;相反,非晶体中粒子的排列相对无序,因而无自范性。

(2)、晶体的特点并不仅限于外形和内部质点排列的高度有序性,它们的许多物理性质,如强度、导热性、光学性质等,常常会表现出各向异性。

2.得到晶体的途径熔融态物质凝固;气态物质冷却不经液态直接凝固(凝华);溶质从溶液中析出。

如:从熔融态结晶出来的硫晶体;凝华得到碘;从硫酸铜饱和溶液中析出的硫酸铜晶体。

二、晶胞1.晶胞:描述晶体结构的基本单元叫晶胞。

2.晶体中晶胞的排列——无隙并置①无隙:相邻晶胞之间没有任何间隙。

②并置:所有晶胞都是平行排列的,取向相同。

晶胞计算是晶体考查的重要知识点之一,也是考查学生分析问题、解决问题能力的较好素材。

晶体结构的计算常常涉及如下数据:晶体密度、N A、M、晶体体积、微粒间距离、微粒半径、夹角等,密度的表达式往往是列等式的依据。

1.“均摊法”原理原子 金属键特别提醒 ①在使用均摊法计算晶胞中微粒个数时,要注意晶胞的形状,不同形状的晶胞,应先分析任意位置上的一个粒子被几个晶胞所共有,如六棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被 6、3、4、2 个晶胞所共有。

三棱柱晶胞中,顶点、侧棱、底面上的棱、面心依次被 12、6、4、2 个晶胞所共有。

②在计算晶胞中粒子个数的过程中,不是任何晶胞都可用均摊法。

2.晶体微粒与 M 、ρ之间的关系若 1 个晶胞中含有 x 个微粒,则 1 mol 晶胞中含有 x mol 微粒,其质量为 xM g(M 为微粒的相对“分子”质量);1 个晶胞的质量为 ρa 3 g(a 3 为晶胞的体积,ρ 为晶胞的密度),则 1 mol 晶胞的质量为 ρa 3N A g ,因此有 xM =ρa 3N A 。

第一节:晶体常识

第一节:晶体常识

微粒数为:8×1/8 + 1 = 2 长方体晶胞中不同位置的粒子对晶胞的贡献: 顶 ----1/8 棱----1/4 面----1/2 心----1
练习1: 下面几种晶胞中分别含有几个原子?
各1/2个
各4个 绿色:8× 1/8+6×1/2 = 4 灰色:12× ¼+1=4
练习一:
石墨晶体的层状结构, 层内为平面正六边形结构 (如图),试回答下列问题: (1)图中平均每个正六边 形占有C原子数为____个、 占有的碳碳键数为2____个。 碳原子数目与碳碳化3学键数 目之比为_______。
4)该晶胞中,若Na+和Cl-间的最近距离为
0.5ax10-10m, 则晶体的密度ⅾ= 389/a3 (g/cm3)
31
42
a10-8cm
解法1:
每个晶胞中所含的Na+和Cl-的个 数均为4个,即含4个“NaCl”。
每个晶胞的质量为:
∴ 每个晶胞的体积为:
58.5
×4g
6.02×1023
(a×10-8)3㎝3
4. 晶体和晶胞的关系:晶体可以看作是数量
巨大的晶胞“无隙并置”而成.(蜂巢和蜂室的 关系教材63页图3-7)
“并置”:所有晶胞都是平行排列、取向相同
5.晶胞中原子个数的计算
分摊法:晶胞任意位置上的一个原子如果是 被x个晶胞所共有,那么,每个晶胞对这个 原子分得的份额就是1/x
体心:1 面心:1/2 棱边:1/4 顶点:1/8
MgB2Biblioteka 练习4:钛酸钡的热稳定性好,
介电常数高,在小型变
Ba
压器、话筒和扩音器
中都有应用。其晶体
Ti
的结构示意图如右图

认识晶体与非晶体的结构差异

认识晶体与非晶体的结构差异

认识晶体与非晶体的结构差异晶体和非晶体是固体材料中两种常见的结构形态,它们在原子排列和性质上存在着明显的差异。

下面将介绍晶体和非晶体的结构特点及其差异。

晶体结构特点晶体是由具有一定周期性排列的原子、离子或分子组成的固体结构。

晶体结构具有以下特点:周期性排列:晶体中的原子或离子以规则的周期性方式排列。

具有晶体面:晶体结构中存在着明确的晶体面和晶体轴。

具有长程有序性:晶体结构在空间中具有长程的有序性。

具有短程无序性:晶体结构中存在一定的短程无序性,即局部结构的无序性。

非晶体结构特点非晶体是指原子、离子或分子的排列是无序的固体结构,缺乏长程有序性。

非晶体结构具有以下特点:无明显的周期性:非晶体结构中原子或分子的排列无规则周期性。

无晶体面和晶体轴:非晶体结构缺乏明确的晶体面和晶体轴。

具有短程有序性:非晶体结构中存在局部的短程有序性。

缺乏长程有序性:非晶体结构在空间中缺乏长程的有序性。

晶体与非晶体的结构差异晶体和非晶体之间的结构差异主要体现在以下几个方面:有序性差异:晶体具有长程有序性,而非晶体缺乏长程有序性。

周期性差异:晶体具有明显的周期性排列,而非晶体的排列无规则周期性。

性质差异:晶体通常具有明确的熔点和结晶过程,而非晶体的熔点较模糊,没有明显的结晶过程。

机械性能差异:晶体通常具有规则的断裂面,而非晶体常表现出无规则的断裂面。

晶体和非晶体在结构上存在明显差异,晶体具有长程有序性和周期性排列,而非晶体则缺乏长程有序性和周期性排列。

了解晶体和非晶体的结构差异有助于我们更好地理解固体材料的特性和性能表现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的晶体
构的晶体
成的晶体 形成的晶体
构成粒
分子


粒子间

分子间的作
的相互
用力
作用力
原子 共价键
金属阳离子、 阴、阳离子
自由电子
金属键
离子键
类型 分子晶体 原子晶体 金属晶体 比较
密度 较小
较大
有的很大,有 的很小
硬度 较小
有的很大,有
很大
的很小
熔、沸 较低
很高 有的很高,有
性 质
点 溶解性
相似相溶
2.晶胞 (1)晶胞与晶体的关系
①晶胞是描述晶体结构的基本单元. ②数量巨大的晶胞“无隙并置”构成晶体. (2)晶胞中粒子数目的计算方法
二、四种晶体的比较
1.晶体的基本类型和性质比较
类型 分子晶体
比较
原子晶体
金属晶体
离子晶体
分子间靠分 原子之间以共价 金属阳离子和 阳离子和阴
概念
子间作用力 键结合而形成的 自由电子以金 离子通过离 结合而形成 具有空间网状结 属键结合而形 子键结合而
(如K2O、
物质类别 H2SO4)、非金属氧
质与合 硅、晶体
Na2O)、强
金(如Na、 碱(如KOH、
及举例 化物(如SO2、CO2, 硼),一部 Al、Fe、 NaOH)、绝
SiO2除外)、绝
分非金属 青铜) 大部分盐(如
大多数有机物(如 化合物(如
NaCl)
CH4,有机盐除外) SiC、SiO2)
难溶于任 何溶剂
的很低 难溶于常见溶

一般不导
导电、 电,溶于 一般不具 电和热的良导
传热性 水后有的 有导电性

导电
延展性 无

良好
离子晶体
较大
较大
较高 大多易溶于水等
极性溶剂 晶体不导电,水 溶液或熔融态导
电 无
类型 比较
分子晶体
金属晶 原子晶体

离子晶体
大多数非金属单质 一部分非
金属氧化物
(如P4、Cl2)、气态 金属单质 金属单 氢化物、酸(如HCl、(如金刚石、
2.晶体熔、沸点高低的比较方法 (1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子
晶体>分子晶体. 金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高, 汞、铯等熔、沸点很低. (2)原子晶体 由共价键形成的原子晶体中,原子半径小的键长短,键能 大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅.
一、晶体常识
1.晶体与非晶体 (1)晶体与非晶体的区别
晶体
非晶体
结构特征
结构微粒周期性 结构微粒无序排
有序排列

自范性
性质 特征
熔点
异同表现
有 较固定 各向异性
无 不固定 各向同性
二者 间接方法
区别 方法
科学方法
看是否有固定的熔点 对固体进行X 射线衍射实验
(2)获得晶体的三条途径 ①熔融态物质凝固. ②气态物质冷却不经液态直接凝固(凝华). ③溶质从溶液中析出.
晶体
NaCl (型) 离 子 晶 体 CsCl (型)
晶体结构
晶体详解 (1)每个Na+(Cl-)周围等距且紧 邻的Cl-(Na+)有6个.每个Na+ 周围等距且紧邻的Na+有12个 (2)每个晶胞中含4个Na+和4个 Cl- (1)每个Cs+周围等距且紧邻的 Cl-有8个,每个Cs+(Cl-)周围 等距且紧邻的Cs+(Cl-)有6个 (2)如图为8个晶胞,每个晶胞中 含1个Cs+、1个Cl-
(3)离子晶体 一般地说,阴阳离子的电荷数越多,离子半径越小,则离 子间的作用力就越强,相应的晶格能大,其晶体的熔、沸 点就越高,如熔点:MgO>MgCl2,NaCl>CsCl.
(4)分子晶体 ①分子间作用力越大,物质的熔、沸点越高;具有氢键的 分子晶体熔、沸点反常的高,如H2O>H2Te>H2Se>H2S. ②组成和结构相似的分子晶体,相对分子质量越大,熔、 沸点越高,如SnH4>GeH4>SiH4>CH4.
晶体详解
(1)每个Si与4个O以共价键结
合,形成正四面体结构
(2)每个正四面体占有1个Si,4
个“ 1 2
O”, (Si)∶n(O)=
1∶2
(3)最小环上有12个原子,即6
个O,6个Si
晶体 分子
干冰 晶体
晶体结构
晶体详解
(1)8个CO2分子构成立 方体且在6个面心又各 占据1个CO2分子 (2)每个CO2分子周围 等距紧邻的CO2分子 有12个
三、几种典型的晶体模型
晶体
晶体结构
原 金
子 刚
晶 石

晶体详解 (1)每个碳与4个碳以共价键 结合,形成正四面体结构(2) 键角均为109°28(3)最小碳环 由6个C组成且六原子不在 同一平面内(4)每个C参与4 条C—C键的形成,C原子 数与C—C键之比为1∶2
晶体
原 子 晶 SiO2 体
晶体结构
晶体 简单 立方
金 钾型
属 晶
镁型 体
铜型
晶体结构
晶体详解 典型代表Po,空间利用率 52%,配位数为6 典型代表Na、K、Fe,空间 利用率68%,配位数为8 典型代表Mg、Zn、Ti,空 间利用率74%,配位数为12 典型代表Cu、Ag、Au,空 间利用率74%,配位数为12
[例1]如图,直线交点处的圆圈为NaCl晶体中Na+或Cl-所 处的位置.这两种离子在空间三个互相垂直的方向上都 是等距离排列的.
③组成和结构不相似的物质(相对分子质量接近),分子的极 性越大,其熔、沸点越高,如CO>N2,CH3OH>CH3CH3. ④同分异构体,支链越多,熔、沸点越低,如
CH3—CH2—CH2—CH2—CH3>
(5)金属晶体 金属离子半径沸点就越高,如Na<Mg<Al.
(4)设NaCl的摩尔质量为Mr g·mol-1,食盐晶体的密度为ρ g·cm -3,阿伏加德罗常数的值为NA.食盐晶体中两个距离最近的钠离 子中心间的距离为________ cm.
[名师精析] (1)如图所示.
(2)从体心Na+看,与它最接近的且距离相等的Na+共有12个. (3)根据离子晶体的晶胞,求阴、阳离子个数比的方法是均摊法. 由此可知,如图NaCl晶胞中,含Na+:8×18+6×12=4个;含 Cl-:12×14+1=4个.
(1)请将其中代表Na+的圆圈涂黑(不必考虑体积大小),以完成 NaCl晶体结构示意图.
(2)晶体中,在每个Na+的周围与它最接近的且距离相等的Na +共有________个.
(3)在NaCl晶胞中正六面体的顶点上、面上、棱上的Na+或Cl- 为该晶胞与其相邻的晶胞所共有,一个晶胞中Cl-的个数等于 ________,即________(填计算式);Na+的个数等于________, 即________(填计算式).
相关文档
最新文档