数字开关电源基础凌特资料)

合集下载

凌特电源

凌特电源

1
LTC4411
ABSOLUTE
(Note 1)
AXI U RATI GS
PACKAGE/ORDER I FOR ATIO
ORDER PART NUMBER
TOP VIEW IN 1 GND 2 CTL 3 4 STAT 5 OUT
IN, OUT, STAT, CTL Voltage .......................... –0.3 to 6V Operating Ambient Temperature Range (Note 2) ...............................................–40°C to 85°C Operating Junction Temperature (Note 3) .............................................–40°C to 125°C Storage Temperature Range ..................–65°C to 125°C Lead Temperature (Soldering, 10 sec).................. 300°C
TO LOAD VCC 4.7µF 470k
IMAX
IOC
LTC4411 SLOPE 1/RON CONSTANT RON
CURRENT (A)
STATUS OUTPUT IS LOW WHEN WALL ADAPTER IS SUPPLYING LOAD CURRENT
4411 F01
IFWD
Figure 1. Automatic Switchover of Load Between a Battery and a Wall Adapter

开关电源的基础知识学习资料共50页文档

开关电源的基础知识学习资料共50页文档
Thank you开关电源的基础知 Nhomakorabea学习资料
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿

开关电源培训资料

开关电源培训资料

控制芯片
根据采样电路提供的信号,控 制开关管的通断,实现电源的
稳压、稳流输出。
03
开关电源的调试与测试
开关电源的调试方法
调试步骤
调试过程中,逐步增加输入电压,并观察电源输出是 否稳定,是否达到预期的输出电压和电流。
检查电源输入是否正确,确保电源连接正确,不会出 现短路等情况。
在调试过程中,注意观察开关电源的发热情况,确保 不会出现过热导致损坏。
工作效率
开关电源的转换效率较高,一般在 80% 以上,而线性电源的效率相对较低,一般在 50%-70% 之间。
输出电压稳定性
开关电源的输出电压稳定性较高,受负载影响较小,而线性电源的输出电压稳定性相对较 差,受负载影响较大。
开关电源的安规要求
01
电磁兼容性(EMC)
开关电源在工作中会产生一定的电磁干扰(EMI),为了确保其对外
开关电源的常见故障案例分析
• 案例一:输入异常导致开关电源无法正常工作。 • 问题描述:开关电源在工作时突然停止工作,检查发现输入电压异常。 • 解决方法:调整输入电压至正常范围,开关电源恢复正常工作。 • 案例二:输出异常导致负载设备无法正常工作。 • 问题描述:开关电源输出电流异常,导致负载设备无法正常工作。 • 解决方法:调整开关电源的输出电流至正常范围,负载设备恢复正常工作。 • 案例三:温升过高导致开关电源内部元器件损坏。 • 问题描述:开关电源在工作时突然冒烟,检查发现温升过高。 • 解决方法:加强散热设计,选用导热性能好的材料,降低温升,避免类似故障再次发生。 • 案例四:噪声过大导致电磁干扰过大。 • 问题描述:开关电源在工作时产生大量电磁干扰,影响周围设备的正常工作。 • 解决方法:加强EMI滤波设计,选用低噪声元件,降低噪声,避免类似故障再次发生。

数字开关电源基础(凌特资料)

数字开关电源基础(凌特资料)
in 71
BOOST
同步BOOST变换器
1 输出二极管换为功率MOSFET 2 应用于高功率输出大电流 3 高效率
多相BOOST变换器
1 低的输出电压纹波 2 小的电感和小的电容 3 高效率
72
BOOST
元件选取
①功率MOSFET VDDS > Vo, IDmax > Io/(1-D)+ΔI/2 ②续流二极管或同步MOSFET VRRM > Vo, IF(AV) > Io ③电感 L >VINDMAX / f ΔI , ΔI = 0.2~0.4 IIN , 饱和电流Isat > IIN+ΔI/2 ④PCB:输入地回路电流连续,输入地为干净地
4
LDO
3)NPN准LDO调节器利用一个非达林 顿结构的NPN作为主要传输晶体管 ,由PNP提供驱动。由于单独NPN的 电流增益通常要高于PNP,因此该 调节器的电流增益要比传统的PNP LDO要高,且负载调节更佳、接地 引脚电流更低,但还是稍逊于标准 的NPN达林顿调节器。由于在传输 器件中只用一个NPN而非达林顿, 因此准LDO的压降仅为VCESAT与VBE 的和(约1~1.5伏)。
LTC1628/1629
CLK
1:1 Gain Diff Op-Amp
电流检测比较 ITH电压环补偿
40
BUCK
峰值电流模式控制BUCK变换器 优点: 1 内在固有的精确/快速脉冲限流,可靠性高 2 真正的电感电流软起始 3系统是一阶,稳定的余量大稳定性好,对于所有陶冶电容 容易设计补偿环路 4 易实现多个相位/多个变换器并联操作得到更大输出电流 5 精确/快速的电流均流 6 输出电压与输入电压无关,允许大的输入电压纹波, 减小输入滤波电容从而提高了输入的功率因素 缺点 需要精密的电流检测电阻,影响效率和成本

开关电源基础知识学习资料PPT课件

开关电源基础知识学习资料PPT课件
2020/11/13
开关电源最常用的三种拓朴电路1—BUCK Converter 工作原理 降压电路(Buck)其主要原件为:开关管SW、续流流二级管D、
电感L、电容C和负载电阻RL。
ON-Stage:当SW导通时,电流经S、L到负载,能量同时储存在电感中,输出平均 直流电压Vo;
2020/11/13
➢ 保护功能及附属功能: 1、OCP,OVP,OTP,欠压保护,限功率; 2、 绝缘电阻、绝缘电压、漏电流。
➢ 结构要求: 1、外形尺寸,2、外包装,3、安装条件,4、冷却方式,5、接口方式,6、 重量,7、名牌。
➢ 安规标准及EMC标准: 1、认证标志,3C,UL,GS,PSE,2、EMI测试标准。
分类方法多种多样。分为AC/DC和DC/DC两大类,DC/DC变换器现已实 现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到 用户的认可。但AC/DC的模块化,因其自身的特性使得在模块化的进程中, 遇到较为复杂的技术和工艺制造问题。又可分为离线式非离线式,反激式、 正激式、半桥式全桥式, Adaptor/内置式开关电源open open frame等。
开关电源中应用的电力电子器件主要为快速恢复二极管、肖特基二极管和 MOSFET,SCR在开关电源输入整流电路及软启动电路中有少量应用。 开关电源的三大特征
1、开关:电力电子器件工作在开关接近工频的低频;
3、直流:开关电源输出的是直流而不是交流。 开关电源的种类
开关电源: 优点:体积小重量轻(线性电源的20~30%);效率高70~95%,易满足 各国的能效要求;输入输出电压范围宽,模块化。 缺点:电路复杂、开发、制程难度较大,由于工作在高频 (50K~300K),干扰大、EMC难解决。
总而言之,开关电源正逐渐取代线性电源,应用领域越来越广泛。

开关电源培训资料

开关电源培训资料

开关电源在新能源领域的应用实例
太阳能发电系统
太阳能发电系统中,开关电源用于控制太阳能电池板的充电和放 电过程,提高系统效率和稳定性。
风能发电系统
风能发电系统中,开关电源用于控制风力发电机的并网和电力输出 ,保证电力系统的稳定运行。
电动汽车
电动汽车中,开关电源用于直流/直流转换,将电池输出的高压直 流电转换为低压直流电,为车辆电器和电机提供电力。
实现高效的功率转换。
热设计
进行适当的热设计,以确保功率 转换器在运行时的散热需求得到
满足。
输出滤波器的设计
滤波器类型
选择适当的输出滤波器类型,如LC滤波器、π型滤 波器等,以减小输出电压和电流的噪声。
元器件选择
选择适当的电子元器件,如电容、电感和电阻等 ,以实现输出滤波器的功能。
性能测试
进行性能测试,以验证输出滤波器的效果是否满 足要求。
3. 实施定期维护和检查
对开关电源进行定期维护和检查,及时发现并解决潜在问 题。
1. 选择高质量的元器件
采用高品质的元器件,降低故障率。
4. 采用备份和冗余设计
在关键系统中使用备份和冗余电源设计,以确保系统的正 常运行。
06
CATALOGUE
开关电源应用实例
开关电源在电子产品中的应用实例
1 2 3
02
用于控制开关管的导通时间,从而控制输出功率。
保护电路
03
用于检测开关电源的状态,如过压、欠压、过流和过温等异常
情况,并采取相应的保护措施。
03
CATALOGUE
开关电源设计与优化
开关电源的参数设计
01
02
03
04
输入电压范围

开关电源的基本知识介绍

开关电源的基本知识介绍

三.開關電源的原理介紹
PFC(Power Factor Correction)之意義
二端網絡的功率(單相電路) 視在功率 S=V*I (伏安VA) 有功功率 P=VR*I=V*Cosφ *I=S *Cosφ (瓦W) 實部 無功功率 Q=VX*I=V*Sinφ *I=S *Sinφ (乏Var) 虛部 Q>0時﹐電路呈感性﹐ Q<0時﹐電路呈容性。 功率因數 λ =PF= Cosφ, φ角為功率因數角﹐S2=P2+Q2 φ角為功率因數角, 是電 壓與電流的相位差,開關電 源中容性負載重,Q<0﹐電 路呈容性,電壓V落後於電 流I.所以可串聯電感以中 和容性,減小φ角,以提高功 率因數 PF.
三.開關電源的原理介紹
主變換電路
高頻開關變壓器同樣是整個 電路中的核心部件,高頻開關 變壓器能夠提供我們所需要 的幾組直流電壓。驅動變壓 器將PWM積體電路輸出的 控制信號進行放大以驅動開 關管進行工作,同時還可以 將開關管工作的高壓區和積 體電路工作的低壓區進行物 理隔離 。待機電源是一套獨 立的小型開關電源,這就是 我們所說的待機電路,其輸 出的電壓為電源的主電路供 電,同時通過+5VSB端輸出 到主板來實現喚醒功能。
保险丝能在电源功率太大或元 件出现短路时熔断以保护电源 内部的元件, 而限流熱敏電阻 含有金属氧化物成分,能限制 瞬间的大电流,减少电源对内 部元件的电流冲击。
三.開關電源的原理介紹
輸入電網濾波電路圖
1. 2. 3. 4. 5. 6.
R1為470千毆(1/2W),當AC拔掉時,AC電須1秒內歸0 (安規要求) Lx為differential mode noise 專抑制低頻部份 FL2,FL1為common mode noise 專抑制高頻部份 CX1~CX3之電容是來抑制低頻noise,設計值約(0.1uf~1uf) CY1~CY6之電容是來抑制高頻noise,設計值約(4700PF~1000PF) CY1~CY6 電容加大會增leakage current,在安規里有一定洩漏 電流值.

开关电源基本知识培训讲议共55页PPT资料

开关电源基本知识培训讲议共55页PPT资料
整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流 电压。若C5容量变小,输出的交流纹波将增大。
2.DC 输入滤波电路(PFC)原理:
① 输入滤波电路:C1、L1、C2组成的双π型滤波 网络主要是对输入大功率开关电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止大 功率开关电源本身产生的高频杂波对电网干扰。C3、 C4 为安规电容,L2、L3为差模电感。
2. 大功率开关电源反激式整流电路: T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、 C1为削尖峰电路。L1为续流电 感,R2为假负载,C4、L2、C5组成π型 滤波器。
3、大功率开关电 源同步整流电路: 工作原理:当变压器次级上端为正时,电流经 C2、R5、R6、R7使
Q2导通,电路构成回路,Q2 为整流管。Q1栅极由于处于反偏而截止。 当变压器次级下端为正时,电流经C3、R4、R2使 Q1导通,Q1为续流 管。Q2栅极由于处于反偏而截止。L2为续流电感,C6、L1、C7组成π 型滤波器。R1、C1、R9、C4为削尖峰电路。
第二部分 例 4-16V,40A输出大功率开关电源电路设 计
摘要:介绍一种采用半桥电路的开 关 电源,其输入电压为交流220V±20%, 输出电压为直流4~16V,最大电流40A, 工作频率50kHz。重点介绍了该电源的设
3、基本工作原理及原理框图 该电源的原理框图如图所示。此开关电源已成功地作为实验室电源、通信基 站电源使用。其效率≥85%,纹波优于30mVP-P,产品可靠性高、成本低,具 有一定的市场 竞争力。 220V交流电压经过EMI滤波及整流滤波后,得到约300V的直流电压加到半桥 变换器上,用脉宽调制电路产生的双列脉冲信号去驱动功率MOS 管,通过功率 变压器的耦合和隔离作用在次级得到准方波电压,经整流滤波反馈控制后可得到 稳定的直流输出电压。

开关电源基础知识学习资料

开关电源基础知识学习资料

T = tON + tOFF
volatge, vL(t)
Buck的两个基本的公式
在电感电流连续模式CCM下: Vo=(Ton/T)×Vin=D × Vin
L=((Vபைடு நூலகம்n-Vout)*Vout) /(ΔI*f*Vin),这里的ΔI一般 取输出电流的10~30%。
2024/8/31
tON
VIN - VO
➢ 保护功能及附属功能: 1、OCP,OVP,OTP,欠压保护,限功率; 2、 绝缘电阻、绝缘电压、漏电流。
➢ 结构要求: 1、外形尺寸,2、外包装,3、安装条件,4、冷却方式,5、接口方式,6、 重量,7、名牌。
➢ 安规标准及EMC标准: 1、认证标志,3C,UL,GS,PSE,2、EMI测试标准。
工作原理: 通市电,经起动电阻R32 R33 R34给电容C8充电到15V-UVLO(OFF)。IC 开始工作, 输出PWM 脉冲,驱动MOSFET Q2导通,由于输出整流二极管D5、D6反偏截止,能 量存储在变压器T2原边电感。当变压器原边电流上升到输出反馈的设定值,无输出脉 冲,MOSFET Q2关断,D5、D6导通,进入反激阶段,能量从变压器原边传递到变压 器次级,经整流滤波给客户负载供电。如此周而复始,直至关机或保护。
开关电源基本概念3--主要技术指标
➢ 输入要求; 1、输入电压范围,2、输入电压频率,3、额定输入电流,4、输入电压跌落 及瞬间停电,5、浪涌冲击电流,6、静态功耗效率,能效标准,7、输入单 相或三相制,单相分两线制或三线制(classⅠ,classⅡ),8、保险管。
➢ 输出要求: 1、额定输出电压,2、额定输出电流,3、稳压精度:电压调整率,负载调整 率,纹波及噪声;4、瞬态特性:启动时间,保持时间,输出电压的上升时间、 下降时间、过冲、欠冲。

《数字式开关电源》课件

《数字式开关电源》课件

开关信号生成
通过高频开关器件产生高频开关 信号。
数字控制技术
利用数字控制器精确调节开关周 期、占空比等参数。
高效能量转换
通过开关器件的精确控制,实现 高效的电能转换。
优势和应用领域
数字式开关电源具有许多优点,使其在众多领域得到广泛应用。本节将介绍其优势以及在不同领域的应 用案例。
1
高效节能
数字式开关电源具有高效能量转换效率,能够节省能源并减少能源浪费。
通信领域
数字式开关电源在通信设备中的 应用案例分析。
工业控制领域
数字式开关电源在工业控制系统 中的应用案例分析。
医疗仪器领域
数字式开关电源在医疗仪器中的 应用案例分析。
总结和展望
本次课程通过对数字式开关电源的介绍和分析,我们对这一领域有了更深入的了解。未来,数字式开关电源将 会在更多领域发挥重要作用。
2
稳定可靠
通过数字控制技术,可以精确控制电压、电流等参数,提供稳定可靠的电源供应。
3
广泛应用
数字式开关电源在通信、计算机、工业控制、医疗仪器等领域得到广泛应用。
设计要点
设计一个高效可靠的数字式开关电源需要考虑多个因素,本节将介绍一些重要的设计要点。
1 电源拓扑
选择适合的电源拓扑结构,如半桥、全桥、 降压、升压等。
基本概念
数字式开关电源是一种利用 数字控制技术实现高效、稳 定、可靠的电源供应的新型 设备。
特点
数字式开关电源具有高效率、 小尺寸、低噪音等特点,广 泛应用于通信、工业控制、 医疗仪器等领域。
工作原理
数字式开关电源通过将电源转换为高频的开关信号,并通过数字控制技术精确控制开关周期、占空比等参数, 实现高效的电能转换。

开关电源基础培训资料

开关电源基础培训资料

关键元器件的功能介绍
1.三极管 13003
三极管13003在我们充电器来说,叫开关管,也叫功率管,因为在开关电源中,它扮演了重要的角色,它在充电器的整个使用过程中处于导通与截止,就类似于开关一样,在不断的进行开跟关,为什么叫开关电源呢,顾名思义也就是这个原因。

衡量三极管13003的有这样几个重要的指标:集电极电流 Ic, 集电极跟发射极的耐压值Vce,放大倍数 Hfe。

2.变压器
变压器在充电器中是最关键与最重要的元件,就类似于人的心脏,设计出一个好的变压器然后生产出一个好品质的变压器,可以使我们的充电器更上一个档次。

衡量变压器有这样几个重要的指标:感量,耐压值,相位,漏感
3.IC
IC 在充电器中一般提供一个脉冲调宽信号,就是决定开关管的一个导通时间是多少,截止时间是多少,目前很多小功率的IC都把开关管集成在IC内部,一个好的IC是充电器稳定的前提。

4.Y1电容
Y1电容也叫安规电容,安规电容可以说是在电容器失效后,不会导致电击,不危及人身安全. 对于Y1电容来说,额定电压250Vac,但是峰值电压能耐到8KVdc。

在充电器Y1在EMC中起到至关重要的作用, 衡量Y1电容有这样两个重要的指标:容量,耐压
5.光耦
光耦也叫光电耦合器,在充电器扮演的是反馈信号的作用,何为反馈呢,就是检测输出电压是否异常,然后将输出的异常信号传递给开关管进行处理,从而调整输出,
衡量光耦有这样几个重要的指标:耐压,放大倍数
6.保险丝
保险丝顾名思义就是起到保护的作用,在安规认证中会测试不同的项目,该要求保险丝要断是一定要断,不能镕断的,就一定不能断,而且镕断时,不能发出爆炸的响声。

衡量保险丝有这样几个重要的指标:电压,电流。

开关电源基础知识简介

开关电源基础知识简介

1、输出纹波噪声的测量及输出电路的处理PWM 开关电源的输出的纹波噪声与开产频率有关。

其纹波噪声分为两大部分:纹波(包括开关频率的纹波和周期及随机性漂移和噪声(开关过程中产生。

周期及随机性漂移在纹波与噪声的测量过程中,如果不使用正确的测量方法将无法正确地测量出真出的输出纹波噪声。

下面是推荐的测量方法:平行线测量法 :输出管脚接平行线后接电容 , 在电容两端使用 20MHz C 为瓷片电容,负载与模块之间的距离在 51mm 和 76mm(2in.和 3in 之间。

在大多数电路中 , 2、多路输出的交互调节及其应用交互调节的优点。

图中 lo1路负载电流、 Vo2为辅助路输出电压。

由图可见, 20%100% Io2在主路负载从 20%~100%变化时,辅助路输出电压随辅助路负载电流的变化曲线中,辅助路输出电压始终在 ±4%范围之内。

即使在最坏的情况,即主路空载、辅助路江载,主路满载、辅助路空载时其输出电压也能保证在标称电压的 ±10%范围之内。

由此,对于输出稳压精度要求不太高的情况下,这种不稳压的辅助输出不仅能够满足供电的条件, 而且相对成本低、器件少、可靠性高。

建议用户首先考虑不稳压的辅助输出的电源模块。

开关电源基础知识简介3、容性负载能力与电源输出保护建议用户对电源模块的阻性负载取大于 10%额定负载,这样模块工作比较稳定。

电容作为电源去耦及抗干扰的手段,在现代电子线路中必不可少,本公司的电源模块考虑此因素,都有相当的容性负载能力。

但由于考虑到电源的综合保护能力,尤其是输出过载保护, 容性负载能力不可能太大,否则保护特性将变差。

因此用户在使用过程中负载电容总量不应超过最大容性负载能力。

Vo输出电流保护一般有四种方式:●恒流式:当到达电流保护点时,输出电流随负载的进一步的加重,略有增加,输出电压不断下降。

●回折式:当到达电流保护点时,输出电流随负载的的加重,输出电压不断下降,同时输出电流也不断下降。

开关电源的基础知识 ppt课件

开关电源的基础知识 ppt课件

(2).开关管V的截止期内,储能电感中 电流的最大变化量为
ILma1xUi LUO•tON
ILm
a2x
UO L
•tOFF
(3).开关管V导通期与截止期能量转换的条件:
Ui LUO•tONU LO•tOFF 即 U OtOt N O tO NF •U FiD •U itT O• N U i
另一种并联独立输出型开关电源
开关由一个功率场效应管构成(兼脉冲发生),也称为单端型。
脉宽调制等由集成电路UC3842 完成。
开关管导通时储能,开关截止时,储能释放给负载,称为单端型反激式。 开关管导通时间长,传输电能多,变压器次级绕组输出电压高、电流大。 用PWM控制功率开关管, 就可以改变次级绕组输出的电压和电流,同时, 使用闭环反馈可以稳定电压、电流或限制功率。
1.1开关电源组成及开关电源实例
3、并联独立输出型:通过续流电感的电磁耦合,实现隔离输出。 (电源输入端不使用变压器、实现多种电压输出)
*应用最多的一种电路形式
*三极管V可使用功率场效应管 *脉冲调宽、脉冲发生及误差信号的产生等可集成化例如TOP221TOP227
1.1开关电源组成及开关电源实例
(1).串联调整式线性性稳压器 (2).并联调整式线性性稳压器 (3).开关式稳压器
1.2 稳压电源的分类 二、开关电源的分类 1. 按激励方式分类
1.2 稳压电源的分类 二、开关电源的分类 2. 按控制原理(调制方式)分类
(1)脉宽调制型(PDM)开关电源
(2)脉频调制型(PFM)开关电源 (3)混合型开关电源 (4)脉冲密度调制型(PDM)开关电源
2. 开关稳压电源的缺点
(1)电压调整率和负载调整率较差 (2)存在较严重的开关噪声和干扰 (3)电路复杂,不便于维修

《开关电源培训资料》课件

《开关电源培训资料》课件

通过适当的控制策略,实现开关管的零电 压或零电流开通和关断,减小开关损耗。
提高电源的功率因数,减小无功功率,从 而提高电源效率。
开关电源的可靠性设计
冗余设计
通过并联或备份设计,提高电源的可靠性,确保 电源在故障情况下仍能提供稳定的输出。
防雷击和过电压保护
在电源输入端加入防雷击和过电压保护电路,减 小雷击和过电压对电源的损坏。
按控制方式
可分为脉宽调制(PWM)和 脉频调制(PFM)开关电源

按电路结构
可分为串联型、并联型和升压 型开关电源。
开关电源的选型原则
匹配性
所选开关电源应与负载设备相 匹配,避免出现过载或欠载情
况。
效率与节能
优先选择效率高、节能效果好 的开关电源,以降低能源消耗 和运营成本。
可靠性
选择具有高可靠性、长寿命和 低故障率的开关电源,以确保 设备稳定运行。
PART 06
开关电源的发展趋势与展 望
开关电源的技术发展趋势
高效能
模块化
随着电力电子技术的进步,开关电源 的效率不断提升,有助于减少能源浪 费和降低散热需求。
为了便于生产和维护,开关电源的模 块化设计越来越受到重视,可以降低 成本和提高生产效率。
智能化
随着物联网和人工智能的发展,开关 电源的智能化水平不断提高,可以实 现远程监控、故障诊断和自动调整等 功能。
03
02
纹波测试
测量开关电源的输出纹波,评估其 性能。
电磁兼容性测试
确保开关电源符合相关国家和地区 的电磁兼容性标准。
04
开关电源的故障诊断与排除
无输出故障
检查输入电压、开关管、变压器等关键元件 ,找出故障原因。

开关电源培训资料(PPT52页)

开关电源培训资料(PPT52页)

11
1.3.3.1串联式开关电源的工作原理
• 下图是串联式开关电源输出电压的波形,由图中看出,
控制开关K输出电压Uo是一个脉冲调制方波,脉冲幅度 Up等于输入电压Ui,脉冲宽度等于控制开关K的接通时 间Ton,由此可求得串联式开关电源输出电压Uo的平均 值Ua为:
12
1.3.3.1串联式开关电源特点
测试条件
a、输入电压分别为范围下限,额定值、范围上限。
b、负载条件为各路的小载及满载的正交。
测试方框图




V
可调
供电
电源
V
被测
电源
V




测试方法 a、先如图连接好测试电路,对于每一路输出都应准备小载、满载。如果负载调整率、
稳压精度的限值用百分比表示,则应进行额定输入电压下的全部半载测量。 b、对于各种正交情况,应统一汇制成一张记录表格。 c、对于每一种情况都进行测试并记录数据。 d、此交调测试记录数据作为计算输出电压范围,电压调整率、负载调整率,稳压精度
提高近一倍 占空比:
在一串理想的脉冲周期序列中,正脉冲的持续时间与脉冲总周期 的比值。方波的占空比为50%,占空比为0.5,说明正电平所占时间为0.5 个周期。占空比是电源适应负载大小的结果,负载大,占空比就高。
4
1.2 开关电源基本原理
开关电源的基本工作原理是:用一个半导体功率器件(功率晶 体管或功率场效应管)作为开关,该器件不断地重复开启和关 断,使得输入的直流电压在通过这个开关器件后变成了方波, 该方波经过电感、电容等组成的滤波器滤波之后便得到了另一 个直流电压。
测试方法 针对电源输入电压的高低而使用不同的测试工装,测试方框图如上图1、2, 测试方法如下: 一、电源输入高电压(Vin>75V) a、先如上图1接好测试电路。 b 、 先 把 数 字 示 波 器 调 到 自 动 触 发 捕 获 状 态 ( 一 般 : v/div : 1 或 2V ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
● PASSIGN <? PCAL,否则重新选取MOSFET
29
功耗考虑
被动元 件损耗
开关管的 导通损耗
开关管的 开关损耗
BUCK
Vds Id
DCRxI2 ESRxI2 RdsonxI2
VfxI
P∝fs CV2/2
30
BUCK
元件选取
②续流二极管或BOT同步MOSFET VRRM 或 VDDS > Vinmax , IF(AV) 或 IDmax > Io(1-D) 导通损耗:
LDO
1
LDO
线性电源LDO ①低效率,短电池寿命,效率 = Vo/Vin 压差 = Vin- Vo ②小尺寸,低输出电流,成本低,容易设计 ③输出干净 ④只能降压
工作在线性区 相当于一个可变电阻
2
LDO
3
LDO
1) NPN达林顿调节器利用一个由 PNP驱动的NPN达林顿传输晶体管 作为其传输器件。它需要来自误 差放大器的非常小的驱动电流来 处理大载荷电流,但它要求的输 入-输出的最小压降值最高(2~ 2.5V)。由于传输晶体管的基电 流“贡献”给载荷电流,因此接 地电流非常低;这是第一个三端 可调调节器(其负载额定电流为 几安培)设计通过的关键因素。 NPN调节器的回路带宽接近或超过 1MHz。
方法2: 积累电荷
ΔQ = 1 ΔI Lpk Ts 22 2
ΔU o1
=
ΔQ Cout
=
(1− D)Vo 8L f Cout fS 2
考虑ESR:
ΔU o2
=
ESR • ΔI Lpk
=
(1 −
D)Vo • ESR Lf fS
27
BUCK
临界工作模式(介于DCM和CCM边界)
Io
=
1 2
I L max
L
Rsense
d
Vin
PWM
rc
Ki
R
Vo
vo
C
d slope comp
iL feedback
Kref(s) R2
C2
EAIN
比较器
vc
ITH
igm gm veainR1
C1
Rth 补偿网络
Cth
Cthp
Ro
Vref
误差放大器
39
峰值电流模式控制图
CLK
BUCK
LTC1628/1629
1:1 Gain Diff Op-Amp
6
LDO
P沟道CMOS 低压差调节器(P-FET CMOS LDO)与PNP LDO非常类似, 但是P-PET并不需要大量的接地引 脚电流。该设计的缺陷在于最小 VIN的范围受到P-PET的限制,且需 要注意大量门电容,以保持回路稳 定。P-FET LDO调节器的回路带宽 通常在数百KHz。
7
LDO
N-FET LDO使用标准的控制结构,其中,输入电 压通过电阻分压器采样后反馈到误差放大器 。唯一重要区别在于内部偏压电源由外部5V 电压源提供,这使得误差放大器的输出驱动 能够摇摆到足够高以全面增强N-FET。假使 5V电压幅值能降低至4.5V,而且FET需要大 约3V的门驱动器以全面导通,这将使该器件 的最大输出电压被限制在1.5V。
BUCK
CCM CCM有最小输出负载电流要求
DCM
26
BUCK
输出电容纹波:
注意: iL>Io时Cout 充电
方法1: 在充电时间积分
∫ ∫ ΔUo1
=
1 C
Ton Ton
2
iC
dt
+
1 C
Ton + Toff
Ton 2 iC dt
=
(1− D)Vo 8L f Cout fS 2
最恶劣情况: ΔU = ΔUO1 + ΔUO2
续流二极管功耗死区时间
下管选取主要考虑RDSON
31
元件选取:电感
BUCK
L >VODMIN/f ΔI
ΔI = 0.2~0.4 Io
饱和电流Isat > Io+ΔI/2,注意工作温度
功率电感提供商
1 Pulse 2 TDK 3 Panasonic 4 Sumida 5 Murata 6 Delta
21
BUCK
22
BUCK
23
BUCK
CCM连续电流模式
在重负载电流时
IAVE > ½ IRipple
电感的电流总是由正方向流动
电流不会降到0
PWM控制,恒定开关频率工作
改变占空式调节输出
由于开关频率固定,噪声频谱 固定,噪声频谱相对窄,使用 简单滤波技术就可以极大程度 的减小峰峰电压纹波。
DCM
= (V in − V o ) D 2L f fS
Io
<
1 2
I
L
max
=
(Vin − Vo )D 2Lf fS
Toff
= D'TS
=
(Vin
−Vo )D Vo
TS
< (1− D)TS
Vo = D Vin D + D'
1 伏秒值平衡
Io
=
1 2
I
Lmax
Ton
+Toff TS
=
D2 2LfS
Vin
以MOSFET的S极为单点地
73
BUCKBOOST升降压负变换器
74
BUCKBOOST
BuckBoost 变换器
升降压负调节器
75
BUCKBOOST
开关导通,电感激磁,电感线性上升
5
LDO
2)PNP低压差(PNP LDO)调节器的 传输晶体管更为简单,包括一个由 二级低电流NPN驱动的PNP。其压差 就是PNP晶体管饱和电压,根据负 载电流和晶体管特性,其值从50mV 到800mV不等。但是,它需要一个 较高的接地引脚电流(等于负载电 流除以PNP的β值)。接地引脚电 流高(导致功率损耗)是PNP-LDO 设计的一个重要缺陷。PNP-LDO调 节器的回路带宽通常在数百KHz
= Vin
− Vo
ΔI pk
=
(Vin −Vo )D Lf S
开关管关断,电感去磁, 电流线性下降
− L diL dt
= Vo
ΔI pk
= Vo (1 − D) Lf S
18
BUCK
N ΔBAe = V Δt
伏秒值平衡:
V Δ t =恒定
toff: 去磁
ton: 激磁 ΔB
Vo ⋅ toff = (Vin – Vo) ⋅ ton Vo = D ⋅ Vin
72
BOOST
元件选取
①功率MOSFET VDDS > Vo, IDmax > Io/(1-D)+ΔI/2 ②续流二极管或同步MOSFET
VRRM > Vo, IF(AV) > Io ③电感
L >VINDMAX / f ΔI , ΔI = 0.2~0.4 IIN , 饱和电流Isat > IIN+ΔI/2 ④PCB:输入地回路电流连续,输入地为干净地
CCM CCM有最小输出负载电流要求
DCM
70
BOOST
输出电容纹波:
注意: iD>Io时Cout 充电
方法1: 在充电时间积分
∫ ΔU o
=
1 C
Ton
0 iodt
= DIo Cout fS
最恶劣情况: ΔU = ΔUO1 + ΔUO2
方法2: 积累电荷
ΔQ = DIoTs
ΔU o
=
ΔQ Cout
8
LDO
9
LDO
10
LDO
11
热设计LDO及开关电源
功耗计算
LDO
主功率损耗:输入电压和输出电压(压降),输出电流 器件静态功耗
开关电源控制器
驱动损耗 器件静态功耗
开关电源单芯片
驱动损耗 器件静态功耗 开关管开关损耗和导通损耗 输入电压,输出电压,输入电流,输出电流
12
LDO
13
开关电源
14
开关电源
开关电源 ①高效率,长电池寿命,大电流 ②大尺寸,成本高 ③输出噪声,降压/升压/负压
BUCK
SEPIC
BOOST
CUK
BUCKBOOST
15
BUCK降压变换器
16
BUCK
Buck变换器
降压调节器
17
BUCK
开关管导通,电感激磁,电流线性上升
L diL dt
效率最低 强迫CCM模式具有最好轻载调整率,其次跳脉冲模式, 突发模式轻
载调整率最差
35
BUCK
电压模式控制BUCK变换器
d
Vin
PWM
L rc C
R Vo
VC
slope
d slope
Comparator vc 功率级:控制对输出
Comp.
R2 VFB
R1
Vref
d·Ts Ts
d=k·Vc
误差放大器补偿
6 输出电压与输入电压无关,允许大的输入电压纹波, 减小输入滤波电容从而提高了输入的功率因素
缺点 需要精密的电流检测电阻,影响效率和成本
41
42
43
44
45
46
47
4
55
56
57
58
59
60
61
62
63
64
65
BOOST升压变换器
66
BOOST
相关文档
最新文档