2019年八年级数学期末数学试卷
2019-2020年十堰市丹江口市八年级上册期末数学试题(有答案)-精选
湖北省十堰市丹江口市八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)下列图形是四种运动品牌的商标,其中是轴对称图形的是()A.B.C.D.2.(3分)如果分式的值为0,则的值是()A.1 B.0 C.﹣1 D.±13.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.4.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.m(﹣y)=m﹣my B.2+2+1=(+2)+1C.a2+1=a(a+) D.152﹣3=3(5﹣1)5.(3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a66.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°7.(3分)下列分式与分式相等的是()A.B.C.D.﹣8.(3分)如图,平行四边形ABCD中,BE平分∠ABC交AD于E点,已知AB=5,AD=6,则DE长为()A.1 B.1.5 C.2 D.2.59.(3分)关于的分式方程+3=无解,m的值为()A.7 B.﹣7 C.1 D.﹣110.(3分)如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC 于D,OH⊥BC于H,若∠BAC=60°,OH=3cm,OA长为()cm.A.6 B.5 C.4 D.3二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.12.(3分)计算:﹣= .13.(3分)若2+(m﹣3)+16是完全平方式,则m= .14.(3分)如图,△ACD与△BCE中,AC=BC,AD=BE,CD=CE,若∠ACE=80°,∠BCD=160°,AD与BE相交于P点,则∠ACB的度数为,∠APB的度数为.15.(3分)如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为.16.(3分)如图,两个正方形的边长分别为a 和b ,如果a ﹣b=﹣,ab=2,那么阴影部分的面积是 .三、解答题:共9小题,共72分.17.(8分)(1)计算:(﹣)﹣(+);(2)因式分解:2﹣3﹣18.18.(7分)先化简,再求值:(﹣)÷,其中=2. 19.(7分)如图,AD ∥BC ,AD=CB ,AE=CF ,求证:BE ∥DF .20.(6分)如图,已知A (﹣2,4),B (4,2),C (2,﹣1)(1)作△ABC 关于轴的对称图形△A 1B 1C 1,写出点C 关于轴的对称点C 1的坐标;(2)P 为轴上一点,请在图中画出使△PAB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).21.(7分)观察下列各式:①=2,②=3;③=4,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.22.(8分)(1)已知a﹣b=3,b+c=﹣5,求代数式ac﹣bc+a2﹣ab的值;(2)若a=(2+),b=(2﹣),求a2b+ab2的值.23.(8分)如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE ⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.24.(9分)为改善农村交通条件,促进农业发展,某镇决定对一段公路进行改造,经调查得知,单独完成这项工程乙工程队比甲工程队多一半时间;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求两工程队单独完成这项工程分别需多少天?(2)甲工程队施工一天,需付工程款1.8万元,乙工程队施工一天需付工程款1万元,若该工程计划在50天内完成,在不超过计划天数的前提下,怎样施工最省钱?25.(12分)如图①,已知A(,0)在负半轴上,B(0,y)在y正半轴上,且、y满足+y2﹣2my+m2=0,m>0.(1)判断△AOB的形状;(2)如图②过OA上一点作CD⊥AB于C点,E是BD的中点,连接CE、OE,试判断CE 与OE的数量关系与位置关系,并说明理由;(提示:可延长OE至F,使OE=EF,连接CF、DF、OC)(3)将(2)中的△ACD绕A旋转至D落在AB上(如图③),其它条件不变,(2)中结论是否成立?请证明你的结论.湖北省十堰市丹江口市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)下列图形是四种运动品牌的商标,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如果分式的值为0,则的值是()A.1 B.0 C.﹣1 D.±1【解答】解:由分式的值为0,得||﹣1=0且2+2≠0.解得=1,故选:A.3.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.【解答】解:A、被开方数含开得尽的因数,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.4.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.m(﹣y)=m﹣my B.2+2+1=(+2)+1C.a2+1=a(a+) D.152﹣3=3(5﹣1)【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.5.(3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a6【解答】解:A、原式不能合并,故A错误;B、原式=a2÷a=a,故B正确;C、原式=﹣a3•a2=﹣a5,故C错误;D、原式=8a6,故D错误.故选:B.6.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.7.(3分)下列分式与分式相等的是()A.B.C.D.﹣【解答】解:(A)已是最简分式,故A与不相等;(B)原式=,故B与相等;(C)已是最简分式,故C与不相等;(D)原式=﹣,故D与不相等;故选(B)8.(3分)如图,平行四边形ABCD中,BE平分∠ABC交AD于E点,已知AB=5,AD=6,则DE长为()A.1 B.1.5 C.2 D.2.5【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=5,∴DE=AD﹣AE=6﹣5=1;故选:A.9.(3分)关于的分式方程+3=无解,m的值为()A.7 B.﹣7 C.1 D.﹣1【解答】解:两边都乘以(﹣1),得7+3(﹣1)=m,m=3+4,分式方程的增根是=1,将=1代入,得m=3×1+4=7.故选:A.10.(3分)如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC 于D,OH⊥BC于H,若∠BAC=60°,OH=3cm,OA长为()cm.A.6 B.5 C.4 D.3【解答】解:作OE⊥AB交AB于E,∵OB平分∠ABC,OH⊥BC,∴OE=OH=3cm,∵∠ABC,∠ACB的角平分线交于点O,∴AO平分∠BAC,∵∠BAC=60°,∴∠BAO=30°,∴AO=2OE=6cm,故选A.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.12.(3分)计算:﹣= 3 .【解答】解:原式===3,故答案为:3;13.(3分)若2+(m﹣3)+16是完全平方式,则m= 11或﹣5 .【解答】解:∵2+(m﹣3)+16是完全平方式,∴m﹣3=±8,解得:m=11或m=﹣5,故答案为:11或﹣514.(3分)如图,△ACD与△BCE中,AC=BC,AD=BE,CD=CE,若∠ACE=80°,∠BCD=160°,AD与BE相交于P点,则∠ACB的度数为40°,∠APB的度数为40°.【解答】解:(1)在△ACD和△BCE中∴△ACD≌△BCE(SSS),∴∠ACD=∠BCE,∠A=∠B,∴∠BCA+∠ACE=∠ACE+∠ECD,∴∠ACB=∠ECD=(∠BCD﹣∠ACE)=×(160°﹣80°)=40°;(2)∵∠B+∠ACB=∠A+∠APB,∴∠APB=∠ACB=40°,∴∠BPD=180°﹣40°=140°,∴∠APB=180°﹣140°=40°,故答案为:40°,40°.15.(3分)如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为(6,6).【解答】解:如图,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCE在△ACE和△BCF中,,∴△ACE≌△BCF,∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),故答案为:(6,6);16.(3分)如图,两个正方形的边长分别为a和b,如果a﹣b=﹣,ab=2,那么阴影部分的面积是4﹣.【解答】解:∵a+b=17,ab=60,∴S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF=a2+b2﹣a2﹣(a+b)•b=a2+b2﹣a2﹣ab﹣b2=a2+b2﹣ab=(a2+b2﹣ab)=[(a﹣b)2+ab]=×[(﹣)2+2]=×[6﹣4+2+2]=4﹣.故答案为:4﹣.三、解答题:共9小题,共72分.17.(8分)(1)计算:(﹣)﹣(+);(2)因式分解:2﹣3﹣18.【解答】解:(1)原式=2﹣﹣2﹣=﹣3;(2)原式=(+3)(﹣6).18.(7分)先化简,再求值:(﹣)÷,其中=2.【解答】解:原式=•=当=2时,原式=.19.(7分)如图,AD∥BC,AD=CB,AE=CF,求证:BE∥DF.【解答】19.证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AF=AE+EF=CF+EF=CE,在△ADF 和△CBE 中,∴△ADF ≌△CBE ,∴∠AFD=∠CEB ,∴BE ∥DF .20.(6分)如图,已知A (﹣2,4),B (4,2),C (2,﹣1)(1)作△ABC 关于轴的对称图形△A 1B 1C 1,写出点C 关于轴的对称点C 1的坐标;(2)P 为轴上一点,请在图中画出使△PAB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).【解答】解:(1)如图1所示:∵点C 与点C 1关于轴对称,∴C 1(2,1).(2)如图2所示:根据图形可知点P 的坐标为(2,0).21.(7分)观察下列各式:①=2,②=3;③=4,…(1)请观察规律,并写出第④个等式: =5 ;(2)请用含n (n ≥1)的式子写出你猜想的规律:=(n+1) ; (3)请证明(2)中的结论.【解答】解:(1)=5;(2)=(n+1);(3)====(n+1).故答案为:(1)=5;(2))=(n+1).22.(8分)(1)已知a﹣b=3,b+c=﹣5,求代数式ac﹣bc+a2﹣ab的值;(2)若a=(2+),b=(2﹣),求a2b+ab2的值.【解答】解:(1)由a﹣b=3,b+c=﹣5,得a+c=﹣2,ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b),=(a﹣b)(c+a)=3×(﹣2)=﹣6;(2)由a=2+,b=2﹣得,ab=(2+)×(2﹣)=6,a+b=4a 2b+ab2=ab(a+b)=6×4=24.23.(8分)如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE ⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.【解答】(1)证明:∵BE⊥AD,∴∠AFE=∠AFB=90°,又∵AD平分∠BAC,∴∠EAF=∠BAF,又∵在△AEF和△ABF中∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°∴∠AEF=∠ABF,∴AE=AB,∴△ABE为等腰三角形;(2)解:连接DE,∵AE=AB,AD平分∠BAC,∴AD垂直平分BE,∴BD=ED,∴∠DEF=∠DBF,∵∠AEF=∠ABF,∴∠AED=∠ABD,又∵∠ABC=2∠C,∴∠AED=2∠C,又∵△CED中,∠AED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴CE=BD.∴BD=CE=AC﹣AE=AC﹣AB=11﹣6=5.24.(9分)为改善农村交通条件,促进农业发展,某镇决定对一段公路进行改造,经调查得知,单独完成这项工程乙工程队比甲工程队多一半时间;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求两工程队单独完成这项工程分别需多少天?(2)甲工程队施工一天,需付工程款1.8万元,乙工程队施工一天需付工程款1万元,若该工程计划在50天内完成,在不超过计划天数的前提下,怎样施工最省钱?【解答】解:(1)设甲、乙工程队单独完成这项工程分别需要天,1.5天,根据题意得:+20(+)=1,解得:=40,经检验,=40是原方程的解,乙工程队单独完成这项工程需要1.5=1.5×40=60(天).答:甲、乙两工程队单独完成这项工程分别需要40天和60天;(2)设两工程队合做完成这项工程所需的天数为y 天,根据题意得:(+)y=1, 解得:y=24.①甲单独完成需付工程款为40×1.8=72(万元).②乙单独完成超过计划天数,不符合题意,③甲、乙合作,甲做天,乙做50天,需付工程款1.8×+50×1=62(万元).答:在不超过计划天数的前提下,由甲、乙合作,甲做天,乙做50天最省钱.25.(12分)如图①,已知A (,0)在负半轴上,B (0,y )在y 正半轴上,且、y 满足+y 2﹣2my+m 2=0,m >0.(1)判断△AOB 的形状; (2)如图②过OA 上一点作CD ⊥AB 于C 点,E 是BD 的中点,连接CE 、OE ,试判断CE 与OE 的数量关系与位置关系,并说明理由;(提示:可延长OE 至F ,使OE=EF ,连接CF 、DF 、OC )(3)将(2)中的△ACD 绕A 旋转至D 落在AB 上(如图③),其它条件不变,(2)中结论是否成立?请证明你的结论.【解答】解:(1)△AOB是等腰直角三角形,理由如下:∵A(,0)在负半轴上,B(0,y)在y正半轴上,且、y满足+y2﹣2my+m2=0,m>0,∴+(y﹣m)2=0,<0,y>0,又∵+m≥0,y﹣m≥0,∴+m=0,y﹣m=0,∴=﹣m,y=m,∴OA=OB,又∵∠AOB=90°,∴△AOB是等腰直角三角形;(2)CE=OE,CE⊥OE.理由如下:延长OE至F,使OE=EF,连接CF、DF、OC,如图②所示:∵E是BD的中点,∴DE=BE,在△FDE和△OBE中,,∴△DEF≌△BEO(SAS),∴BO=DF,∠FDB=∠OBD,∴FD∥OB,∴FD⊥AO,∵∠BAO=45°,CD⊥AB∴∠CDA=45°=∠CAO=∠CDF,∴CA=CD,∵OA=OB,∴OA=FD,在△OCA和△FCD中,∴△OCA≌△FCD(SAS),∴OC=OF,∠OCA=∠FCD∴∠OCF=∠DCA=90°,∴∠COF=45°,又∵OE=EF,∴∠OCE=∠OCF=45°,∴∠COE=∠ECO=45°,∠CEO=90°,∴CE=OE,CE⊥OE;(3)(2)中的结论仍然成立.理由如下:延长OE至F,使OE=EF,连接CF、DF、OC,如图③所示:同(1)得:△DEF≌△BEO,∴BO=DF,∠FDB=∠OBD∴OA=FD,FD∥OB,∴FD⊥AO,∵∠BAO=45°,CD⊥AC,∠CDA=45°=∠CAD,∴∠CAO=∠DCA=90°=∠FDC,CA=CD,在△OCA和△FCD中,,∴△OCA≌△FCD(SAS),∴OC=OF,∠OCA=∠FCD,∴∠OCF=∠DCA=90°,∴∠COF=45°,又∵OE=EF,∴∠OCE=∠OCF=45°∴∠COE=∠ECO=45°,∠CEO=90°,∴CE=OE,CE⊥OE;。
2019-2020年八年级下学期期末考试数学试题(解析版)
2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。
人教版初中数学八年级上册期末测试题(2019-2020学年山东省临沂市河东区
2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠03.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+14.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C 6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab8.(3分)化简的结果是()A.x﹣2B.C.D.x+29.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±1010.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b212.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x元,则所列方程正确的是()A.B.C.D.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=.16.(3分)分式的计算结果是.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为cm.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y221.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.22.先化简,再求值:﹣,其中x=﹣2.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠0【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0.3.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.4.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.【点评】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C【分析】根据角平分线得出∠CAB=∠DAB,隐含条件AB=AB,根据全等三角形的判定定理判断即可.【解答】解:∵AB平分∠DAC,∴∠CAB=∠DAB,A、根据DB=CB,BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;B、根据BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;C、∵在△CAB和△DAB中,∴△CAB≌△DAB(SAS),故本选项正确;D、根据BA=BA,∠CAB=∠DAB,∠D=∠C,根据AAS可证△CAB≌△DAB,根据本选项错误;故选:C.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A =∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.8.(3分)化简的结果是()A.x﹣2B.C.D.x+2【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+2.故选:D.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.【点评】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对【分析】根据题意表示出A、B的正确坐标,再根据坐标的关系确定A,B两点原来的位置关系.【解答】解:∵小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),∴A点的正确坐标为(b,a),∵另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a),∴B点的正确坐标为(b,﹣a),∴A,B两点原来的位置关系是关于x轴对称,故选:A.【点评】此题主要考查了关于x轴、y轴对称的点的坐标,关键是掌握:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般.12.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x 元,则所列方程正确的是()A.B.C.D.【分析】设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,根据第二批所购数量是第一批购进数量的2倍,列出方程即可.【解答】解:设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,依题意有:2×=.故选:A.【点评】本题考查了分式方程的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.【点评】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)【分析】利用两点间的距离公式可得结果.【解答】解:设在x轴有一点P(x,0),则有(x﹣2)2+32=(x﹣4)2+1,解得,x=1,∴P(1,0);设在y轴有一点P(0,y),则有22+(y﹣3)2=42+(y﹣1)2解得,y=﹣1,∴P(0,﹣1)故选:A.【点评】本题主要考查了两点间的距离公式,熟记公式和坐标轴上点的特点是解答此题的关键.二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=3.【分析】本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查了整数指数幂、零指数幂的考点,负整数指数幂:a﹣p=(a≠0,p 为正整数);零指数幂:a0=1(a≠0).16.(3分)分式的计算结果是.【分析】先通分,再把分子相加减即可.【解答】解:原式=+==.故答案为:.【点评】本题考查的是分式的加减法,在解答此类问题时要注意通分及约分的灵活应用.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是1.【分析】先设=y,得出﹣2=,再去分母x﹣2﹣2(x﹣3)=y,最后根据此方程无解时x=3,再代入计算即可.【解答】解:设=y,则原方程可变形为:﹣2=,去分母得:x﹣2﹣2(x﹣3)=y,∵此方程无解,∴x=3,∴3﹣2﹣2×(3﹣3)=y,∴y=1;∴处的数应是1.故答案为:1.【点评】此题考查了分式方程的解,关键是求出分式方程无解时x的值,用到的知识点是解分式方程的步骤,是一道基础题.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为12cm.【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.【解答】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点动点P和E重合时则△ACP的周长最小值,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=12cm,故答案为:12.【点评】本题考查了轴对称﹣最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是①②④.【分析】根据等腰三角形的性质,等边三角形的性质,直角三角形的性质判断.【解答】解:∵当AP⊥CE,∠C=60°,∴∠P AC=30°,∵B是线段AC的中点,∴AB=PB,∴∠APB=∠P AC=30°,故①正确;当CP=AC时,∠C=60°,∴三角形APC为等边三角形,∵B是线段AC的中点,∴∠APB=∠CPB=30°,故②正确;在射线CE上,使△APC为直角三角形的点P有2个,一个是∠APC=90°,另一个是∠P AC=90°时;故③错误;在射线CE上,使△APC为等腰三角形的点P有1个,使AC=PC=AP,故④正确;故答案为①②④.【点评】本题考查了等腰三角形的性质,等边三角形的性质,直角三角形的性质,解题的关键是熟练掌握它们的性质.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【分析】(1)首先计算乘法,然后再合并同类项即可;(2)先算完全平方和乘法,再去括号合并同类项即可.【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.【点评】此题主要考查了整式的混合运算,关键是掌握计算法则和计算顺序.21.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.【分析】根据因式分解点的方法即可求出答案.【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.22.先化简,再求值:﹣,其中x=﹣2.【分析】根据分式的减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:﹣===,当x=﹣2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接即可;(2)根据对称的性质写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(2)作出点C关于y轴的对称点,然后连接AC1,与y轴的交点即为点P.【解答】解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法及性质是解答此题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?【分析】设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,利用购买笔记本电脑和购买台式电脑的台数和列方程+=120,然后解分式方程即可.【解答】解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,根据题意得+=120,解得x=2400,经检验x=2400是原方程的解,当x=2400时,1.5x=3600.答:笔记本电脑和台式电脑的单价分别为3600元和2400元.【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3))①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可;②求出∠BED=∠AEC,证出△BED≌△AEC,推出∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可.【解答】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°.【点评】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.。
2019-2020学年上海市徐汇区八年级(下)期末数学试卷 解析版
2019-2020学年上海市徐汇区八年级(下)期末数学试卷一.选择题(共6小题)1.下列方程中,有实数解的是()A.x6+1=0B.=2C.+3=0D.2.若一次函数y=kx+b(k≠0)的图象不经过第三象限,则k、b的取值范围是()A.k<0,b≥0B.k>0,b>0C.k<0,b>0D.k>0,b<0 3.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的()A.这个图形是中心对称图形B.这个图形既是中心对称图形又是轴对称图形C.这个图形是轴对称图形D.这个图形既不是中心对称图形又不是轴对称图形4.在梯形ABCD中,AD∥BC,AB=CD,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量5.下列命题中:①有两个内角相等的梯形是等腰梯形;②顺次联结矩形的各边中点所成四边形是菱形;③两条对角线相等的梯形是等腰梯形;④对角线互相平分且相等的四边形是矩形.其中真命题有()A.1个B.2个C.3个D.4个6.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH 等于()A.1:1B.1:2C.2:1D.3:2二.填空题(共12小题)7.若关于x的一次函数y=(2﹣k)x+1(k为常数)中,y随x的增大而减小,则k的取值范围是.8.用换元法解方程=3时,如果设=y时,那么得到关于y的整式方程为.9.方程(x+3)=0的解是.10.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是.11.袋中有两个黄球、四个白球、三个绿球,它们除颜色外其它都一样,现从中任意摸出一个球,摸出绿球的概率是.12.化简:=.13.已知一个多边形的每个外角都是72°,这个多边形是边形.14.已知菱形的周长是48cm,一条较小的对角线的长是12cm,则该菱形较大的内角是度.15.梯形的中位线长8cm,高10cm,则该梯形的面积为cm2.16.如图,矩形ABCD中,O是两对角线交点,AE⊥BD于点E.若OE:OD=1:2,AE =3cm,则BE=cm.17.函数y=和y=﹣(k≠0)的图象关于y轴对称,我们把函数y=和y=﹣(k ≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关y轴对称,那么我们把函数y=f(x)和y=h(x)叫做互为“镜子”函数.则函数y=2x﹣4的“镜子”函数是.18.一次函数y=2x+4的能像与x、y轴分别用交于点A和点B,点C在直线x=4上,点D 是直角坐标平面内一点,若四边形ABCD是菱形,则点D的坐标为.三.解答题(共8小题)19.解方程:=1.20.解方程组.21.解方程:+x=7.22.某工厂储存了30吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,且储存的煤比原计划多用20天,原计划每天烧煤多少吨?23.如图,已知在梯形ABCD中,AB∥CD.(1)若AD=BC,且AC⊥BD,AC=6,求梯形ABCD的面积;(2)若CD=3,M、N分别是对角线AC、BD的中点,联结MN,MN=2,求AB的长.24.如图,已知在四边形ABCD中,AB∥CD,点O是对角线AC的中点,联结DO并延长与AB边交于点E,联结CE,设=,=,.(1)试用向量,表示下列向量:=,=.(2)求作:.(保留作图痕迹,写出结果,不要求写作法)25.如图,直线AB经过点A(﹣3,0),B(0,2),经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C.(1)求直线AB的表达式;(2)在x轴的正半轴上是否存在一点P,使得△OCP为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.26.已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上.(1)若BE=DF,①求证:∠BAE=∠DAF;②联结AC交EF于点O,过点F作FM∥AE,交AC的延长线于M,联结EM,求证:四边形AEMF是菱形.(2)联结BD,交AE、AF于点P、Q.若∠EAF=45°,AB=1,设BP=x,DQ=y,求y关于x的函数关系及定义域.2019-2020学年上海市徐汇区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共6小题)1.下列方程中,有实数解的是()A.x6+1=0B.=2C.+3=0D.【分析】利用乘方的意义可对A进行判断;通过解无理方程可对B进行判断;利用二次根式的性质可对C进行判断;通过解分式方程可对D进行判断.【解答】解:A、x6≥0,x6+1>0,方程x6+1=0没有实数解;B、两边平方得2﹣x=4,解得x=﹣2,经检验x=﹣2为原方程的解;C、≥0,则+3=0没有实数解;D、去分母得x=2,经检验原方程无解.故选:B.2.若一次函数y=kx+b(k≠0)的图象不经过第三象限,则k、b的取值范围是()A.k<0,b≥0B.k>0,b>0C.k<0,b>0D.k>0,b<0【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象不经过第三象限,∴直线y=kx+b经过第一、二、四象限或第二、四象限,∴k<0,b≥0.故选:A.3.在平行四边形、矩形、菱形、等腰梯形中任选一个图形,那么下列事件中为不可能事件的()A.这个图形是中心对称图形B.这个图形既是中心对称图形又是轴对称图形C.这个图形是轴对称图形D.这个图形既不是中心对称图形又不是轴对称图形【分析】根据“不可能事件”的意义,结合平行四边形、矩形、菱形、等腰梯形的性质进行判断即可.【解答】解:平行四边形是中心对称图形,不是轴对称图形,矩形既是轴对称图形,又是中心对称图形,菱形既是轴对称图形,又是中心对称图形,等腰梯形是轴对称图形,不是中心对称图形,因此选项D是不可能事件,故选:D.4.在梯形ABCD中,AD∥BC,AB=CD,那么下列结论中正确的是()A.与是相等向量B.与是相等向量C.与是相反向量D.与是平行向量【分析】根据等腰梯形的性质,即可得AC=BD,然后根据相等向量与相反向量,以及平行向量的定义,即可求得答案.【解答】解:A、∵AB=CD,但AB不平行于CD,≠,故本选项错误;B、∵AD∥BC,AB=CD,∴AC=BD,但AC不平行于BD,∴≠,故本选项错误;C、∵AD≠BC,∴与不是相反向量,故本选项错误;D、∵AD∥BC,∴与是平行向量,故本选项正确.故选:D.5.下列命题中:①有两个内角相等的梯形是等腰梯形;②顺次联结矩形的各边中点所成四边形是菱形;③两条对角线相等的梯形是等腰梯形;④对角线互相平分且相等的四边形是矩形.其中真命题有()A.1个B.2个C.3个D.4个【分析】根据梯形、菱形和矩形的判定判断即可.【解答】解:①有两个内角相等的梯形不一定是等腰梯形,原命题是假命题;②顺次联结矩形的各边中点所成四边形是菱形,是真命题;③两条对角线相等的梯形是等腰梯形,是真命题;④对角线互相平分且相等的四边形是矩形,是真命题.故选:C.6.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH 等于()A.1:1B.1:2C.2:1D.3:2【分析】由DE是△ABC的中位线,即可得DE∥BC,DE=BC,AE=EC,然后由平行线分线段成比例定理,即可求得答案,注意比例变形.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,AE=EC,∵F是DE的中点,∴EF=DE=BC,∴,∴,∴.故选B.或:过D作DG平行于AC交BF于G,∵△DGF≌△EHF,∴DG=HE.而D为AB中点,∴DG=AH.于是HE:AH=1:2.二.填空题(共12小题)7.若关于x的一次函数y=(2﹣k)x+1(k为常数)中,y随x的增大而减小,则k的取值范围是k>2.【分析】根据一次函数的增减性可求得k的取值范围.【解答】解:∵一次函数y=(2﹣k)x+1(k是常数)中y随x的增大而减小,∴2﹣k<0,解得k>2,故答案为:k>2.8.用换元法解方程=3时,如果设=y时,那么得到关于y的整式方程为y2﹣3y+1=0.【分析】可根据方程特点设设=y,则原方程可化为y+=3,再去分母化为整式方程即可.【解答】解:设=y,则原方程可化为:y+=3,去分母,可得y2+1=3y,即y2﹣3y+1=0,故答案为:y2﹣3y+1=0.9.方程(x+3)=0的解是x=2.【分析】因为(x+3)=0可以得出x+3=0,x﹣2=0且x﹣2≥0,由此求得原方程的解即可.【解答】解:∵(x+3)=0,∴x+3=0,x﹣2=0且x﹣2≥0,解得x=﹣3,x=2且x≥2,∴x=2.故答案为:x=2.10.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是x<5.【分析】首先利用图象可找到图象在x轴下方时x<5,进而得到关于x的不等式kx+b<0的解集是x<5.【解答】解:由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故答案为:x<5.11.袋中有两个黄球、四个白球、三个绿球,它们除颜色外其它都一样,现从中任意摸出一个球,摸出绿球的概率是.【分析】因为球的总数为9个,即n=9,又因为有三个绿球,即m=3,利用公式p=,可求出摸出绿球的概率.【解答】解:∵n=9,m=3,∴P(摸出绿球)==,=.故答案为:.12.化简:=.【分析】利用三角形法则化简即可.【解答】解:∵=﹣=+=.故答案为.13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.已知菱形的周长是48cm,一条较小的对角线的长是12cm,则该菱形较大的内角是120度.【分析】先根据菱形的性质求出菱形的边长,然后根据对角线长为12cm,可判断出菱形一个角的度数,继而可求得该菱形较大的内角度数.【解答】解:∵菱形的周长为48cm,∴菱形的边长为:48÷4=12cm,∵一条对角线的长是12cm,∴这条对角线跟相邻的两边组成的三角形为等边三角形,则菱形的较小的内角为60°,则较大内角为180°﹣60°=120°.故答案为:120°.15.梯形的中位线长8cm,高10cm,则该梯形的面积为80cm2.【分析】根据梯形中位线定理求出梯形的上底+下底,根据梯形的面积公式计算,得到答案.【解答】解:∵梯形的中位线长8,∴梯形的上底+下底=16,∴该梯形的面积=×16×10=80(cm2),故答案为:80.16.如图,矩形ABCD中,O是两对角线交点,AE⊥BD于点E.若OE:OD=1:2,AE =3cm,则BE=3cm.【分析】由矩形的性质可得AO=BO,由线段的垂直平分线的性质可得AO=AB,可证△ABO是等边三角形,∠ABO=60°,由直角三角形的性质可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,AC=BD,∴AO=BO,∵OE:OD=1:2,∴OE=OB,∴BE=OE,又∵AE⊥BD,∴AO=AB,∴AO=AB=BO,∴△ABO是等边三角形,∴∠ABO=60°,∴∠BAE=30°,∴AE=BE=3cm,∴BE=cm,故答案为:3.17.函数y=和y=﹣(k≠0)的图象关于y轴对称,我们把函数y=和y=﹣(k ≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关y轴对称,那么我们把函数y=f(x)和y=h(x)叫做互为“镜子”函数.则函数y=2x﹣4的“镜子”函数是y=﹣2x﹣4.【分析】根据题目中的新定义,可以直接写出函数y=2x﹣4的“镜子”函数.【解答】解:由题意可得,函数y=2x﹣4的“镜子”函数是y=﹣2x﹣4,故答案为:y=﹣2x﹣4.18.一次函数y=2x+4的能像与x、y轴分别用交于点A和点B,点C在直线x=4上,点D 是直角坐标平面内一点,若四边形ABCD是菱形,则点D的坐标为(2,2)或(2,﹣2).【分析】根据菱形的性质找出点C的坐标即可得出D点的坐标.【解答】解:∵一次函数解析式为线y=2x+4,∴B(0,4),A(﹣2,0),∴AB==2,如图∵四边形ABCD是菱形,∴AB=BC,设C(4,n),∴=2,解得n=6或2,∴C1(4,6),C2(4,2),∴D(2,2)或(2,﹣2),故答案为(2,2)或(2,﹣2).三.解答题(共8小题)19.解方程:=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.20.解方程组.【分析】由于组中的两个高次方程都能分解为两个一次方程,所以先分解组中的两个二元二次方程,得到四个一元一次方程,重新组合成二元一次方程组,求出的四个二元一次方程组的解就是原方程的解.【解答】解:由①,得(x﹣y)2=16,所以x﹣y=4或x﹣y=﹣4.由②,得(x+3y)(x﹣3y)=0,即x+3y=0或x﹣3y=0所以原方程组可化为:,,,解这些方程组,得,,,.所以原方程组的解为:,,,.21.解方程:+x=7.【分析】先移项得到=7﹣x,两边平方把无理方程化为整式方程,解整式方程,然后进行检验确定无理方程的解.【解答】解:=7﹣x,两边平方得x﹣1=(7﹣x)2,整理得x2﹣15x+50=0,解得x1=5,x2=10,经检验,原方程的解为x=5.22.某工厂储存了30吨煤,由于改进炉灶和烧煤技术,每天能节约2吨煤,且储存的煤比原计划多用20天,原计划每天烧煤多少吨?【分析】设原计划每天烧煤x吨,由“储存的煤比原计划多用20天”,列出方程,即可求解.【解答】解:设原计划每天烧煤x吨,由题意可得:,解得:x1=3,x2=﹣1(不合题意舍去),经检验:x=3是原方程的解,答:原计划每天烧煤3吨.23.如图,已知在梯形ABCD中,AB∥CD.(1)若AD=BC,且AC⊥BD,AC=6,求梯形ABCD的面积;(2)若CD=3,M、N分别是对角线AC、BD的中点,联结MN,MN=2,求AB的长.【分析】(1)如图1,过C作CE∥BD,交AB的延长线于E,根据平行四边形的性质得到CE=BD,CD=BE,求得AC=BD,推出△ACE是等腰直角三角形,得到AC=CE=6,求得CH=AE=3,根据梯形的面积公式即可得到结论;(2)如图2,延长NM交AD于G,连接DM并延长交AB于H,根据平行线的性质得到∠DCM=∠HAM,根据线段中点的定义得到AM=CM,根据全等三角形的性质得到DM=HM,求得DN=BN,得到AG=DG,根据三角形的中位线定理即可得到结论.【解答】解:(1)如图1,过C作CE∥BD,交AB的延长线于E,∵AB∥CD,∴四边形DBEC是平行四边形,∴CE=BD,CD=BE,∵AC⊥BD,∴AC⊥CE,∵AD=BC,AB∥CD,∴AC=BD,∴AC=CE,∴△ACE是等腰直角三角形,∴AC=CE=6,∴AE=AC=6,∴CH=AE=3,∴梯形ABCD的面积=×6×3=18;(2)如图2,延长NM交AD于G,连接DM并延长交AB于H,∵CD∥AB,∴∠DCM=∠HAM,∵M是对角线AC的中点,∴AM=CM,∵∠CMD=∠AMH,∴△AMH≌△CMD(ASA),∴DM=HM,∵N是对角线BD的中点,∴DN=BN,∴MN∥AB∥CD,∴AG=DG,∴GM=CD=,∵MN=2,∴GN=,∴AB=2GN=7.24.如图,已知在四边形ABCD中,AB∥CD,点O是对角线AC的中点,联结DO并延长与AB边交于点E,联结CE,设=,=,.(1)试用向量,表示下列向量:=﹣,=﹣.(2)求作:.(保留作图痕迹,写出结果,不要求写作法)【分析】(1)首先证明四边形AECD是平行四边形,利用三角形法则求出,即可.(2)如图,过点C作CT∥DE交AE于T.即为所求.【解答】解:(1)∵CD∥AE,∴∠OCD=∠OAE,∵∠DOC=∠AOE,OC=OA,∴△DOC≌△EOA(AAS),∴CD=AE,∵CD∥AE,∴四边形ADCE是平行四边形,∴AD=CE,AD∥EC,∵=+,=,=,∴==﹣,∵=+,,∴=﹣+=﹣,故答案为﹣,﹣.(2)如图,过点C作CT∥DE交AE于T.即为所求.25.如图,直线AB经过点A(﹣3,0),B(0,2),经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C.(1)求直线AB的表达式;(2)在x轴的正半轴上是否存在一点P,使得△OCP为等腰三角形,若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由待定系数法求出直线AB的表达式为:y=x+2;(2)求出点C的坐标为(3,4),由勾股定理求出OC=5,分三种情况,由等腰三角形的性质和勾股定理进行解答即可.【解答】解:(1)设直线AB的表达式为:y=kx+b,把A(﹣3,0)、B(0,2)代入表达式得:,解得:,∴直线AB的表达式为:y=x+2;(2)∵经过点D(0,4)并且与y轴垂直的直线CD与直线AB交于第一象限内点C,∴点C的纵坐标为:4,∴4=x+2,解得:x=3,∴点C的坐标为:(3,4),∴OC==5,分三种情况:如图,①当OP=PC时,设点P的坐标为:(a,0),则OP2=PC2,即a2=(a﹣3)2+42,解得:a=,∴点P的坐标为:(,0);②当OC=OP=5时,点P的坐标为:(5,0);③当OC=CP时,由点C的横坐标为3,可得点P的横坐标为6,∴点P的坐标为:(6,0);综上所述,△OCP为等腰三角形,点P的坐标为(,0)或(5,0)或(6,0).26.已知:如图,在正方形ABCD中,点E、F分别在边BC和CD上.(1)若BE=DF,①求证:∠BAE=∠DAF;②联结AC交EF于点O,过点F作FM∥AE,交AC的延长线于M,联结EM,求证:四边形AEMF是菱形.(2)联结BD,交AE、AF于点P、Q.若∠EAF=45°,AB=1,设BP=x,DQ=y,求y关于x的函数关系及定义域.【分析】(1)①证明△ABE≌△ADF(SAS),即可推出∠BAE=∠DAF.②证明△FOM≌△EOA(ASA),推出AE=FM,由FM∥AE,可得四边形AEMF是平行四边形,再根据AE=AF可得结论.(2)如图2中,将△ADQ绕点A顺时针旋转90°得到△ABT,连接PT.证明△APQ≌△APT(SAS),推出PQ=PT,由题意BD==,推出PQ=PT=﹣x﹣y,在Rt△TBP中,根据PT2=BT2+PB2,构建关系式即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是正方形,∴∠B=∠D=90°,AB=AD,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.②证明:如图1中,∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°,∵∠BAE=∠DAF,∴∠EAO=∠F AO,∵△BAE≌△DAF,∴AE=AF,∴AC⊥EF,OE=OF,∵FM∥AE,∴∠OFM=∠OEA,∵∠FOM=∠EOA,∴△FOM≌△EOA(ASA),∴AE=FM,∵FM∥AE,∴四边形AEMF是平行四边形,∵AE=AF,∴四边形AEMF是菱形.(2)解:如图2中,将△ADQ绕点A顺时针旋转90°得到△ABT,连接PT.∵△ADQ≌△ABP,∴AQ=AT,∠ADQ=∠ABT=45°,∠DAQ=∠BAT,∵∠ABD=45°,∴∠TBP=90°,∵∠EAF=45°,∠BAD=90°,∴∠DAQ+∠BAP=∠BAT+∠BAP=45°,∴∠P AT=∠P AQ=45°,∵P A=P A,AT=AQ,∴△APQ≌△APT(SAS),∴PQ=PT,∵AB=AD=1,∠BAD=90°,∴BD==,∴PQ=PT=﹣x﹣y,在Rt△TBP中,∵PT2=BT2+PB2,∴(﹣x﹣y)2=x2+y2,∴y=(0≤x≤).。
2019-2020学年山西省临汾市襄汾县八年级下学期期末考试数学试题(含部分答案)
2019-2020学年山西省临汾市襄汾县八年级第二学期期末数学试卷一、选择题(共10小题).1.若分式的值为零,则x的值为()A.0B.1C.﹣1D.±1m,用科学记数法表示为()×10﹣6m×10﹣7m C.125×10﹣8m D.125×10﹣9m 3.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件不能使平行四边形ABCD变为矩形的是()A.OA=OC B.AC=BD C.DA⊥AB D.∠OAB=∠OBA 4.在参加一次舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10位学生的参赛成绩,下列说法错误的是()A.众数是90B.中位数是90C.平均数是90D.方差是195.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别交CD、AB于点E、F,连接CF.若△BCF的周长为3,则平行四边形ABCD的周长为()A.15B.12C.9D.66.化简的结果为()A.x﹣y B.x+y C.D.7.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A、B,连接OA、OB,若△OAB的面积为3,则k1﹣k2的值为()A.B.3C.6D.98.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(3k+2)x+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在平行四边形ABCD中,E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则下列结论:①∠B=60°,②AC=BC,③∠AED=∠ACD,④△ABC≌△EAD.其中正确的个数是()A.1个B.2个C.3个D.4个10.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图,则该班学生这天用于体育锻炼的平均时间为______小时.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…,则三角形⑩的直角顶点的坐标为.14.已知三点P1(x1,y1)、P2(x2,y2)、P3(x3,y3)都在反比例函数y=﹣的图象上,且x1<0<x2<x3,则y1、y2、y3的大小关系是.15.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE沿BE折叠后得到△A'BE延长BA'交CD于点F,则DF的长为.三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(1)计算:()﹣2﹣(﹣π)0+﹣14;(2)解方程:﹣1=.17.先化简再求值:(1﹣)÷,其中x=﹣3.18.某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表(单位:分)周次一二三四五六组别甲组121516141413乙组91410171618平均数中位数方差甲组14乙组14(2)根据综合评价得分统计表中的数据,请在如图中画出乙组综合评价得分的折线统计图.(3)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.19.今年新冠肺炎疫情在全球肆虐,为降低病亡率,某工厂平均每天比原计划多生产5台呼吸机,现在生产60台呼吸机的时间与原计划生产45台呼吸机所需时间相同.求该工厂原来平均每天生产多少台呼吸机?20.如图,在平行四边形ABCD中,对角线AC与BD相交于点0,点E、F分别为OB、OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF.(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.21.有这样一个问题:探究函数y=的图象与性质.小慧根据学习函数的经验对函数y=的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:(1)函数y=的自变量x的取值范围是.(2)如下表所示,列出y与x的几组对应值.请直接写出m的值,m=;x…﹣3﹣201m4567y…346﹣201…(3)请在平面直角坐标系xOy中,描出上表中以各对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出该函数的两条性质.22.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.(1)求反比例函数与一次函数的表达式;(2)连接OC、OD,求S△OCD;(3)直接写出不等式kx+b>的解集.23.阅读下列材料:如图①,在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称为筝形.(1)写出筝形的两个性质(定义除外):①;②.(2)如图②,在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(3)如图③,在筝形ABCD中,AB=AD=15,BC=DC=13,AC=14,求筝形ABCD 的面积.参考答案一、选择题1.AC;2.AB;3.A;4.AC;5.AD;6.AB;7.AC;8.A;9.AC;10.AC;二、填空题(每小题3分,共15分)11.;12.;13.;14.;15.;三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.;17.;18.;;;19.;20.;21.;;22.;23.;;。
2019-2020学年广东省揭阳市普宁市八年级下学期期末数学试卷 (解析版)
2019-2020学年广东揭阳市普宁市八年级第二学期期末数学试卷一、选择题(共10小题).1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.45.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④8.下列各分式中,最简分式是()A.B.C.D.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.510.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+二、填空题(共7小题.)11.分解因式:2x3﹣18x=.12.分式方程+=1的解为.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于度.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.19.先化简,再求值:•﹣(+1),其中x=﹣6.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.2.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)【分析】根据因式分解的意义:把一个多项式化成几个整式积的形式,左边是一个多项式,右边是整式的积的形式,进行判断即可.解:根据因式分解的意义:把一个多项式化成几个整式积的形式,A、右边不是积的形式,故本选项错误;B、右边最后不是积的形式,故本选项错误;C、右边是(a﹣2b)(a﹣2b),故本选项正确;D、结果是a(x+y+1),故本选项错误.故选:C.3.不等式﹣2x+6>0的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式﹣2x+6>0的解集是x<3,小于应向左画,且不包括3时,应用空心圆表示,不能用实心的原点表示3这一点,据此可求得不等式的解以及解集再数轴上的表示.解:不等式移项,得﹣2x>﹣6,系数化1,得x<3;∵不包括3时,应用圈表示,不能用实心的原点表示3这一点答案;故选:B.4.如图,在△ABC中,AB=3,BC=6,AC=4,点D,E分别是边AB,CB的中点,那么DE的长为()A.1.5B.2C.3D.4【分析】根据三角形中位线定理解答即可.解:∵点D,E分别是边AB,CB的中点,∴DE=AC=2,故选:B.5.如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C地,分别连接AB、AC、BC,形成一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.△ABC三条中线的交点处B.△ABC三条高所在直线的交点处C.△ABC三条角平分线的交点处D.△ABC三边的垂直平分线的交点处【分析】根据题意和线段垂直平分线的性质,可以解答本题.解:∵到A、B、C三地的距离相等,∴中转仓的位置应选在△ABC三边的垂直平分线的交点处,故选:D.6.如图,▱ABCD中,点O为对角线AC、BD的交点,下列结论错误的是()A.AC=BD B.AB∥DC C.BO=DO D.∠ABC=∠CDA 【分析】根据平行四边形的性质即可判断.解:∵四边形ABCD是平行四边形,∴AB∥CD,OB=OD,∠ABC=∠ADC,∴B、C、D正确,故选:A.7.对于实数a、b、c中,给出下列命题:①若a<b,则a﹣c<b﹣c;②若ab>c,则a>;③若﹣3a>2a,则a<0;④若a>b,则ac2>bc2.其中真命题有()A.①②B.①③C.②④D.③④【分析】根据不等式的性质对各命题的真假进行判断.解:若a<b,则a﹣c<b﹣c,所以①为真命题;若ab>c,当b>0时,则a>,所以②为假命题;若﹣3a>2a,则a<0,所以③为真命题;若a>b,当c≠0时,则ac2>bc2.所以④为假命题.故选:B.8.下列各分式中,最简分式是()A.B.C.D.【分析】最简分式是指分子和分母没有公因式.解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选:C.9.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.10.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.3B.+C.+2D.2+【分析】如图.过点D作DF⊥AC于F.首先证明DE=DF=1,解直角三角形分别求出BD,DC即可解决问题.解:如图.过点D作DF⊥AC于F.∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=1,在Rt△BED中,∵∠BED=90°,∠B=30°,∴BD=2DE=2,在Rt△DFC中,∵∠DFC=90°,∠C=45°,∴CD=DF=,∴BC=BD+CD=2+,故选:D.二、填空题(本大题共7小题,每小题4分,共28分.)11.分解因式:2x3﹣18x=2x(x+3)(x﹣3).【分析】先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解:原式=2x(x2﹣9)=2x(x+3)(x﹣3),故答案为:2x(x+3)(x﹣3).12.分式方程+=1的解为x=1.【分析】根据解分式方程的步骤,即可解答.解:方程两边都乘以x﹣2,得:3﹣2x﹣2=x﹣2,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1,故答案为:x=1.13.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.解:多边形的边数:360°÷30°=12,正多边形的内角和:(12﹣2)•180°=1800°.14.用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明“三角形的三个内角中,至少有一个大于或等于60°”时,应先假设三角形的三个内角都小于60°.15.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分面积为2,则BB1=.【分析】重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴×x×2x=2,解得x=(舍去负值),∴B1C=2,∴BB1=BC﹣B1C=.故答案为.16.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是x≥﹣1.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.17.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为(8076,0).【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2020除以3,根据商为673余数为1,可知第20,20个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2020÷3=673…1,∴△2020的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).三、解答题(一)(本大题3小题,每小题6分,共18分.)18.解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:19.先化简,再求值:•﹣(+1),其中x=﹣6.【分析】根据分式的加减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:•﹣(+1)===,当x=﹣6时,原式==.20.在△ABC中,AB=AC,∠BAC=120°,AB边的垂直平分线交AB于D,交BC于E,求证:BE=CE.【分析】先根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段垂直平分线性质和等腰三角形性质求出∠BAD=30°,根据含30度角的直角三角形性质解答即可.【解答】证明:∵AB=AC,∠BAC=120°∴∠B=∠C=30°,又∵DE垂直平分AB∴EA=EB∴∠EAB=∠B=30°∴∠CAE=120°﹣30°=90°,∴在Rt△AEC中∵∠C=30°,∴AE=CE∴BE=CE.四、解答题(二)(本大题3小题,每小题8分,共24分.)21.已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.【分析】(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠4.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠4,据此可得出结论.解:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.22.某学习平台为提高学生的积极性,推出学习积分,所得积分可兑换礼品.某品牌的圆珠笔每支需要40积分,笔芯每支需要10积分.现积分超市推出以下两种活动:活动一:按兑换物品所需的积分打八折扣积分;活动二:兑换一支圆珠笔送两支笔芯.王叔叔有1000积分,想兑换这种圆珠笔10支,笔芯x支(x≥20).(1)请你分别写出活动一、活动二兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)若只能选择一种兑换活动,请你帮助王叔叔判断选择哪种活动更优惠.【分析】(1)根据题意可以得到两种活动下兑换所需的积分y1,y2与笔芯x(支)之间的函数关系式;(2)再利用分类讨论的方法即可得到王叔叔选择哪种活动更优惠.解:由题意可得,y1=(40×10+10x)×0.8=8x+320,y2=40×10+10(x﹣10×2)=10x+200;(2)当y1=y2时,8x+320=10x+200,得x=60,当y1<y2时,8x+320<10x+200,得x>60,当y1>y2时,8x+320>10x+200,得x<60,当y1=1000时,8x+320=1000,得x=85,当y2=1000时,10x+200=1000,得x=80,∴当x=60时,选择活动一和活动二一样优惠,当60<x≤85时,选择活动一更优惠,当20≤x<60时,选择活动二更优惠.23.如图,等边△ABC中,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求∠F的度数.【分析】(1)直接利用三角形中位线定理得出四边形DCFE是平行四边形即可;(2)由平行四边形的性质得出CD∥FE,则∠F=∠BCD,由等边三角形的性质得出∠BCD=30°,即可得出∠F=30°.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC,∵CF=BC,∴DE=CF,∵DE∥CF,∴四边形DCFE是平行四边形,(2)解:由(1)得:四边形DCFE是平行四边形,∴CD∥FE,∴∠F=∠BCD,∵△ABC是等边三角形,D是AB的中点,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=30°,∴∠F=30°.五、解答题(三)(本大题2小题,每小题10分,共20分.)24.为防控“新型冠状病毒”,某超市分别用1600元、6000元购进两批防护口罩,第二批防护口罩每个进货价格比第一批贵2元,购进的数量是第一批的3倍.(1)第一批口罩进货单价多少元?(2)若这两次购进防护口罩过程中所产生其他费用不少于600元,那么该超市这两批防护口罩的平均购进单价至少为多少元?【分析】(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,根据数量=总价÷单价结合第二批购进的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一批购进的数量,结合第二批购进的数量是第一批的3倍可求出第二批购进的数量,设该超市这两批防护口罩的平均购进单价为y元,根据总价=单价×数量结合这两次购进防护口罩过程中所产生其他费用不少于600元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设第一批口罩进货单价为x元,则第二批口罩进货单价为(x+2)元,依题意,得:=3×,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批口罩进货单价为8元.(2)第一批购进数量为1600÷8=200(个),第二批购进数量为200×3=600(个).设该超市这两批防护口罩的平均购进单价为y元,依题意,得:(200+600)y≥1600+6000+600,解得:y≥10.25.答:该超市这两批防护口罩的平均购进单价至少为10.25元.25.将▱OABC放在平面直角坐标系中,O为原点,点C(﹣6,0),点A在第一象限,OA =2,∠A=60°,AB与y轴交于点N.(1)如图①,求点A的坐标;(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA′B′C',当点A的对应点A′落在y轴正半轴上时,求旋转角及点B的对应点B′的坐标;(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.【分析】(1)利用含30度角的直角三角形的性质求出AN,ON即可得出结论;(2)先求出A'B'=6,∠OA'B'=60°,进而利用含30度角的直角三角形的性质求出B'E,AE即可得出结论;(3)分顺时针旋转和逆时针旋转两种情况,由旋转的性质可求解.解:(1)如图①,在Rt△AON中,∠A=60°,∴∠AON=30°,∵OA=2,∴AN=1,ON=,∴A(1,);(2)如图②,过点B'作B'E⊥y轴于E,∵C(﹣6,0),∴OC=6,∵四边形ABCO是平行四边形,∴AB=OC=6,当点A的对应点A′落在y轴正半轴上时,旋转角为∠AOA'=30°,由旋转知,A'B'=AB=6,OA'=OA=2,∠OA'B=∠A=60°,∴∠A'B'E=30°,∴A'E=3,B'E=3,∴OE=A'E﹣OA'=3﹣2=1,∴B'(﹣3,﹣1);(3)如图3,①当顺时针旋转时,∠BAE=120°,∵将平行四边形OABC绕点A旋转得到平行四边形DAEF,∴AB=AE,∵四边形ABCO是平行四边形,∴BC=OA,∴OE=OA+AE=BC+AB;①当逆时针旋转时,∠BAE'=60°,∵将平行四边形OABC绕点A旋转得到平行四边形DAE'F',∴AB=AE',∵四边形ABCO是平行四边形,∴BC=OA,∴OE=AE'﹣AO=AB﹣BC;综上所述:OE=BC+AB或OE=AB﹣BC.。
2019-2020学年山西省太原市八年级(上)期末数学试卷
2019-2020学年山西省太原市八年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入相应位置.1.(3分)(2019秋•太原期末)﹣8的立方根是()A.﹣2B.2C.±2D.42.(3分)(2019秋•太原期末)如图,直线a,b被直线c所截,下列条件一定能判定直线a∥b的是()A.∠1=∠3B.∠1=∠4C.∠2=∠3D.∠2+∠4=180°3.(3分)(2019秋•太原期末)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是s甲2=0.63,s乙2=20.58,s丙2=0.49,s丁2=0.46,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁4.(3分)(2019秋•太原期末)满足下列条件的△ABC中,不是直角三角形的是()A.∠A:∠B:∠C=1:2:3B.AC=1,BC=2,C.AC=6,BC=8,AB=10D.,,5.(3分)(2019秋•太原期末)下列运算正确的是()A.B.C.D.6.(3分)(2019秋•太原期末)下列命题中,假命题是()A.对顶角相等B.平行于同一直线的两条直线互相平行C.若a>b,则a2>b2D.三角形的一个外角大于任何一个和它不相邻的内角7.(3分)(2019秋•太原期末)自从太原市实施“煤改气”“煤改电”清洁供暖改造工程以来,空气质量明显好转.下表是2019年12月1日太原市各空气质量监测点空气质量指数的统计结果:这一天空气质量指数的中位数是()监测点尖草坪金胜巨轮南寨上兰村桃园坞城小店空气质量指数AQI4548231928276139等级优优优优优优良优A.27B.33.5C.28D.27.58.(3分)(2019秋•太原期末)如图,已知直角三角板中∠C=90°,∠ABC=30°,顶点A,B分别在直线m,n上,边BC交线m于点D.若m∥n,且∠CAD=25°,则∠α的度数为()A.105°B.115°C.125°D.135°9.(3分)(2019秋•太原期末)一次函数y=kx+b的x与y的部分对应值如下表所示,根据表中数值分析.下列结论正确的是()x…﹣1012…y…52﹣1﹣4…A.y随x的增大而增大B.x=2是方程kx+b=0的解C.一次函数y=kx+b的图象经过第一、二、四象限D.一次函数y=kx+b的图象与x轴交于点10.(3分)(2019秋•太原期末)《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.B.C.D.二、填空题(本大题含5个小题,每小题2分,共10分)将答案写在题中横线上.11.(2分)(2019秋•太原期末)计算的结果为.12.(2分)(2019秋•太原期末)小明用加减消元法解二元一次方程组.由①﹣②得到的方程是.13.(2分)(2019秋•太原期末)如图,一次函数y=kx+b和的图象交于点M.则关于x,y的二元一次方程组的解是.14.(2分)(2019秋•太原期末)如图,已知点D,F分别在∠BAC边AB和AC上,点E 在∠BAC的内部,DF平分∠ADE.若∠BAC=∠BDE=70°,则∠AFD的度数为.15.(2分)(2019秋•太原期末)如图(1),在△ABC中,AB=AC.动点P从△ABC的顶点A出发,以2cm/s的速度沿A→B→C→A匀速运动回到点A.图2是点P运动过程中,线段AP的长度y(cm)随时间t(s)变化的图象.其中点Q为曲线部分的最低点.请从下面A、B两题中任选一题作答,我选择题.A.△ABC的面积是.B.图2中m的值是.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明演步骤或推理过程.16.(7分)(2019秋•太原期末)计算:(1);(2).17.(7分)(2019秋•太原期末)解方程组:.18.(7分)(2019秋•太原期末)如图,在△ABC中,∠B=40°,∠C=60°,点D,E分的度数.别在边BC,AC上,且DE∥AB.若∠CAD=40°.求∠ADE19.(7分)(2019秋•太原期末)太原市积极开展“举全市之力,创建文明城市”活动,为2020年进人全国文明城市行列奠定基础.某小区物业对面积为3600平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化200平方米,乙园林队每天绿化160平方米,两队共用21天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.20.(7分)(2019秋•太原期末)2019年12月13日是我国第六个南京大屠杀死难者公祭日,某校决定开展铭记历史珍爱和平”主题演讲比赛,其中八(1)班要从甲、乙两名参赛选手中择优推荐一人参加校级决赛,他们预赛阶段的各项得分如下表:项目演讲内容演讲技巧仪表形象选手甲959085乙889293(1)如果根据三项成绩的平均分确定推荐人选,请通过计算说明甲、乙两人谁会被推荐.(2)如果根据演讲内容、演讲技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两人谁会被推荐,并对另外一位同学提出合理的建议.21.(7分)(2019秋•太原期末)一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水.在随后的8分钟内既进水又出水,直到容器内的水量达到36L.如图,坐标系中的折线段OA﹣AB表示这一过程中容器内的水量y(单位:L)与时间x(单位:分)之间的关系.(1)单独开进水管,每分钟可进水L;(2)求进水管与出水管同时打开时容器内的水量y与时间x的函数关系式(4≤x≤12);(3)当容器内的水量达到36L时,立刻关闭进水管,直至容器内的水全部放完.请在同一坐标系中画出表示放水过程中容器内的水量y与时间x关系的线段BC,并直接写出点C的坐标.22.(8分)(2019秋•太原期末)阅读下面内容,并解答问题.在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线与∠DFE 的平分线交于点G.求证:.(1)请补充要求证的结论,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择题.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,则∠EMF的度数为.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,则∠EOF与∠EPF满足的数量关系为.23.(10分)(2019秋•太原期末)如图1,平面直角坐标系中,直线与x轴、y轴分别交于点A,B,直线y=﹣x+b经过点A,并与y轴交于点C.(1)求A,B两点的坐标及b的值;(2)如图2,动点P从原点O出发,以每秒1个单位长度的速度沿x轴正方向运动.过点P作x轴的垂线,分别交直线AC,AB于点D,E.设点P运动的时间为t.①点D的坐标为.点E的坐标为;(均用含t的式子表示)②请从下面A、B两题中任选一题作答我选择题.A.当点P在线段OA上时,探究是否存在某一时刻,使DE=OB?若存在,求出此时△ADE的面积;若不存在说明理由.B.点Q是线段OA上一点.当点P在射线OA上时,探究是否存在某一时刻使?若存在、求出此时t的值,并直接写出此时△DEQ为等腰三角形时点Q的坐标;若不存在,说明理由.2019-2020学年山西省太原市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题含10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入相应位置.1.(3分)(2019秋•太原期末)﹣8的立方根是()A.﹣2B.2C.±2D.4【考点】立方根.【分析】根据(﹣2)3=﹣8,继而可得出﹣8的立方根.【解答】解:=﹣2,故选:A.2.(3分)(2019秋•太原期末)如图,直线a,b被直线c所截,下列条件一定能判定直线a∥b的是()A.∠1=∠3B.∠1=∠4C.∠2=∠3D.∠2+∠4=180°【考点】平行线的判定.【分析】根据平行线的判定方法,对选项一一分析,排除错误答案.【解答】解:A、∠1=∠3,无法判断直线a∥b;B、∠1=∠4,无法判断直线a∥b;C、∵∠3=∠4(对顶角相等),又∵∠2=∠3,∴∠2=∠4,∴a∥b(同位角相等,两直线平行);D、∠2+∠4=180°,无法判断直线a∥b.故选:C.3.(3分)(2019秋•太原期末)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是s甲2=0.63,s乙2=20.58,s丙2=0.49,s丁2=0.46,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的射箭成绩最稳定.【解答】解:∵甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是s甲2=0.63,s乙2=20.58,s丙2=0.49,s丁2=0.46,丁的方差最小,∴射箭成绩最稳定的是丁.故选:D.4.(3分)(2019秋•太原期末)满足下列条件的△ABC中,不是直角三角形的是()A.∠A:∠B:∠C=1:2:3B.AC=1,BC=2,C.AC=6,BC=8,AB=10D.,,【考点】勾股定理的逆定理;三角形内角和定理.【分析】利用勾股定理逆定理和三角形内角和定理进行计算即可.【解答】解:A、设∠A=x°,∠B=2x°,∠C=3x°,x+2x+3x=180,解得:x=30,则∠C=90°,∴△ABC是直角三角形,故此选项不合题意;B、12+22=()2,则△ABC是直角三角形,故此选项不合题意;C、62+82=102,△ABC是直角三角形,故此选项不合题意;D、()2+()2≠()2,△ABC不是直角三角形,故此选项符合题意;故选:D.5.(3分)(2019秋•太原期末)下列运算正确的是()A.B.C.D.【考点】二次根式的乘除法;二次根式的性质与化简.【分析】根据二次根式的运算法则即可求出答案.【解答】解:(A)原式=3,故A错误.(B)原式=12,故B错误.(C)原式=4,故C错误.故选:D.6.(3分)(2019秋•太原期末)下列命题中,假命题是()A.对顶角相等B.平行于同一直线的两条直线互相平行C.若a>b,则a2>b2D.三角形的一个外角大于任何一个和它不相邻的内角【考点】命题与定理.【分析】根据对顶角、平行线的判定、不等式的性质和三角形外角性质判断即可.【解答】解:A、对顶角相等,是真命题;B、平行于同一直线的两条直线互相平行,是真命题;C、当a=﹣3,b=﹣4时,满足a>b,但不能满足a2>b2,是假命题;D、三角形的一个外角大于任何一个和它不相邻的内角,是真命题;故选:C.7.(3分)(2019秋•太原期末)自从太原市实施“煤改气”“煤改电”清洁供暖改造工程以来,空气质量明显好转.下表是2019年12月1日太原市各空气质量监测点空气质量指数的统计结果:这一天空气质量指数的中位数是()监测点尖草坪金胜巨轮南寨上兰村桃园坞城小店空气质量指数AQI4548231928276139等级优优优优优优良优A.27B.33.5C.28D.27.5【考点】中位数.【分析】根据中位数的定义直接求解即可.【解答】解:把这些数从小到大排列,最中间的数是第4、第5个数的平均数,则=33.5,则这一天空气质量指数的中位数,33.5;故选:B.8.(3分)(2019秋•太原期末)如图,已知直角三角板中∠C=90°,∠ABC=30°,顶点A,B分别在直线m,n上,边BC交线m于点D.若m∥n,且∠CAD=25°,则∠α的度数为()A.105°B.115°C.125°D.135°【考点】平行线的性质.【分析】根据平行线的性质解答即可.【解答】解:∵∠C=90°,∠ABC=30°,∴∠CAB=60°,∵∠CAD=25°,∴∠DAB=35°,∵m∥n,∴∠ABE=35°,∴∠α=180°﹣30°﹣35°=115°,故选:B.9.(3分)(2019秋•太原期末)一次函数y=kx+b的x与y的部分对应值如下表所示,根据表中数值分析.下列结论正确的是()x…﹣1012…y…52﹣1﹣4…A.y随x的增大而增大B.x=2是方程kx+b=0的解C.一次函数y=kx+b的图象经过第一、二、四象限D .一次函数y =kx +b 的图象与x 轴交于点【考点】一次函数与一元一次方程;一次函数的性质.【分析】根据待定系数法求得解析式,然后根据一次函数的特点进行选择即可.【解答】解:由题意得,当x =1时,y =﹣1,当x =0时,y =2,则,解得:,函数解析式为:y =﹣3x +2,A 、∵k =﹣3<0,∴y 随x 的增大而减小,故错误;B 、当x =2时,y =﹣3×2+2=﹣4,∴x =2是方程kx +b =4的解,故错误;C 、∵k =﹣3<0,b =2>0,∴一次函数y =kx +b 的图象经过第一、二、四象限,故正确;D 、令y =0,则﹣3x +2=0,解得x =,∴一次函数y =kx +b 的图象与x 轴交于点为(,0),故错误;故选:C .10.(3分)(2019秋•太原期末)《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则列方程组为()A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】设甲的钱数为x,乙的钱数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.二、填空题(本大题含5个小题,每小题2分,共10分)将答案写在题中横线上.11.(2分)(2019秋•太原期末)计算的结果为.【考点】二次根式的混合运算.【分析】利用平方差公式计算.【解答】解:原式=()2﹣()2=8﹣2=6.故答案为6.12.(2分)(2019秋•太原期末)小明用加减消元法解二元一次方程组.由①﹣②得到的方程是.【考点】解二元一次方程组.【分析】方程组两方程左右两边相减即可求出所求.【解答】解:小明用加减消元法解二元一次方程组.由①﹣②得到的方程是(2x+3y)﹣(2x﹣2y)=6﹣3,即5y=3.故答案为:5y=3.13.(2分)(2019秋•太原期末)如图,一次函数y=kx+b和的图象交于点M.则关于x,y的二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】先利用确定M点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【解答】解:把y=1代入得=1,解得x=﹣2,所以M点坐标为(﹣2,1),所以关于x,y的二元一次方程组的解是.故答案为.14.(2分)(2019秋•太原期末)如图,已知点D,F分别在∠BAC边AB和AC上,点E 在∠BAC的内部,DF平分∠ADE.若∠BAC=∠BDE=70°,则∠AFD的度数为.【考点】平行线的判定与性质.【分析】先根据平行线的判定可得DE∥AC,再根据平行线的性质可得∠BAC+∠ADE=180°,求出∠ADE后由角平分线的定义即可得到答案.【解答】解:因为∠BAC=∠BDE,所以DE∥AC,所以∠BAC+∠ADE=180°,因为∠BAC=70°,所以∠ADE=180°﹣∠BAC=180°﹣70°=110°,因为DF平分∠ADE,所以∠AFD=∠ADE=×110°=55°.故答案为:55°.15.(2分)(2019秋•太原期末)如图(1),在△ABC中,AB=AC.动点P从△ABC的顶点A出发,以2cm/s的速度沿A→B→C→A匀速运动回到点A.图2是点P运动过程中,线段AP的长度y(cm)随时间t(s)变化的图象.其中点Q为曲线部分的最低点.请从下面A、B两题中任选一题作答,我选择题.A.△ABC的面积是.B.图2中m的值是.【考点】动点问题的函数图象.【分析】从图(2)看,AB=3×2=6=AC,AP的最小值为4,即AH=4;在Rt△AHB 中,AB2=AH2+BH2,则BH==2,进而求解.【解答】解:过点A作AH⊥BC于点H,∵AB=AC,故BH=CH=BC,从图(2)看,当t=3时,点P在点B处,即AB=3×2=6=AC,从图(2)看,点Q为曲线部分的最低点,即AP的最小值为4,即AH=4,在Rt△AHB中,AB2=AH2+BH2,则BH==2,故BC=4;△ABC的周长为6+6+4=12+4,则m=(12+4)=6+2,△ABC的面积=BC×AH=4×4=8,故答案为8,.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明演步骤或推理过程.16.(7分)(2019秋•太原期末)计算:(1);(2).【考点】二次根式的混合运算.【分析】(1)先利用二次根式的除法法则运算,然后化简后合并即可;(2)利用二次根式的乘法法则和完全平方公式计算.【解答】解:(1)原式=+﹣4=2+3﹣4=1;(2)原式=+4﹣4+3=3+4﹣4+3=7﹣.17.(7分)(2019秋•太原期末)解方程组:.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可【解答】解:由①得:y=4x﹣6③,将③代入②得:x+2(4x﹣6)=3,去括号得:x+8x﹣12=﹣3,移项合并得:9x=9,解得:x=1,将x=1代入③得y=4×1﹣6=﹣2,∴原方程组得解是.18.(7分)(2019秋•太原期末)如图,在△ABC中,∠B=40°,∠C=60°,点D,E分别在边BC,AC上,且DE∥AB.若∠CAD=40°.求∠ADE的度数.【考点】三角形内角和定理;平行线的性质.【分析】利用平行线的性质以及三角形的内角和定理解决问题即可.【解答】解:在△ABC中,∠BAC+∠B+∠C=180°.∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣60°=80°,∵∠BAD=∠BAC﹣∠CAD,∠CAD=40°,∴∠BAD=80°﹣40°=40°,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=40°.19.(7分)(2019秋•太原期末)太原市积极开展“举全市之力,创建文明城市”活动,为2020年进人全国文明城市行列奠定基础.某小区物业对面积为3600平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化200平方米,乙园林队每天绿化160平方米,两队共用21天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.【考点】二元一次方程组的应用.【分析】设甲园林队工作了x天,乙园林队工作了y天,根据两队接力21天对面积为3600平方米的区域进行了绿化,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设甲园林队工作了x天,乙园林队工作了y天,依题意,得:,解得:.答:甲园林队工作了6天,乙园林队工作了15天.20.(7分)(2019秋•太原期末)2019年12月13日是我国第六个南京大屠杀死难者公祭日,某校决定开展铭记历史珍爱和平”主题演讲比赛,其中八(1)班要从甲、乙两名参赛选手中择优推荐一人参加校级决赛,他们预赛阶段的各项得分如下表:项目选手演讲内容演讲技巧仪表形象甲959085乙889293(1)如果根据三项成绩的平均分确定推荐人选,请通过计算说明甲、乙两人谁会被推荐.(2)如果根据演讲内容、演讲技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两人谁会被推荐,并对另外一位同学提出合理的建议.【考点】加权平均数.【分析】(1)代入求平均数公式即可求出甲、乙两人的平均成绩,比较得出结果;(2)将甲、乙两人的总成绩按比例求出测试成绩,比较得出结果.【解答】解:(1)(分),(分),∵90<91,∴乙将被推荐参加校级决赛.(2)(分),(分),∵92>90.1,∴甲将被推荐参加校级决赛.建议:由于演讲内容的权较大,乙这项得成绩较低,应改进演讲内容,争取更好得成绩.答案不唯一,只要合理都可.21.(7分)(2019秋•太原期末)一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水.在随后的8分钟内既进水又出水,直到容器内的水量达到36L .如图,坐标系中的折线段OA﹣AB表示这一过程中容器内的水量y(单位:L)与时间x(单位:分)之间的关系.(1)单独开进水管,每分钟可进水L;(2)求进水管与出水管同时打开时容器内的水量y与时间x的函数关系式(4≤x≤12);(3)当容器内的水量达到36L时,立刻关闭进水管,直至容器内的水全部放完.请在同一坐标系中画出表示放水过程中容器内的水量y与时间x关系的线段BC,并直接写出点C的坐标.【考点】一次函数的应用.【分析】(1)利用每分钟进水量=总进水量÷进水时间,即可求出结论;(2)根据图中点的坐标特征,利用待定系数法即可求出结论;(3)利用出水管每分钟的出水量=进水管每分钟的进水量﹣同时打开进水管与出水管的进水量可求出出水管每分钟的出水量,结合容器内的水量即可求出将容器内的水全部放完所需时间,画出函数图象,找出点C的坐标即可得出结论.【解答】解:(1)20÷4=5(L).故答案为:5.(2)设y与x之间的函数关系式为y=kx+b(k≠0),将A(4,20),B(12,36)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=2x+12(4≤x≤12).(3)出水管每分钟的出水量为5﹣(36﹣20)÷(12﹣4)=3(L),将容器内的水全部放完所需时间为36÷3=12(分钟),12+12=24(分钟).如图,线段BC即为所求,点C的坐标为(24,0).22.(8分)(2019秋•太原期末)阅读下面内容,并解答问题.在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,CD于点E,F.∠BEF的平分线与∠DFE 的平分线交于点G.求证:.(1)请补充要求证的结论,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择题.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,则∠EMF的度数为.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,则∠EOF与∠EPF满足的数量关系为.【考点】命题与定理.【分析】(1)利用平行线的性质以及三角形的内角和定理解决问题即可.(2)A、利用基本结论,∠M=∠BEM+∠DFM求解即可.B、利用基本结论∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP求解即可.【解答】解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴,,∴.在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为EG⊥GF.(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=(∠BEG+∠DFG)=45°,∴∠M=∠BEM+∠MFD=45°,B.如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为A或B,45°,∠EOF=2∠EPF.23.(10分)(2019秋•太原期末)如图1,平面直角坐标系中,直线与x轴、y轴分别交于点A,B,直线y=﹣x+b经过点A,并与y轴交于点C.(1)求A,B两点的坐标及b的值;(2)如图2,动点P从原点O出发,以每秒1个单位长度的速度沿x轴正方向运动.过点P作x轴的垂线,分别交直线AC,AB于点D,E.设点P运动的时间为t.①点D的坐标为.点E的坐标为;(均用含t的式子表示)②请从下面A、B两题中任选一题作答我选择A或B题.A.当点P在线段OA上时,探究是否存在某一时刻,使DE=OB?若存在,求出此时△ADE的面积;若不存在说明理由.B.点Q是线段OA上一点.当点P在射线OA上时,探究是否存在某一时刻使?若存在、求出此时t的值,并直接写出此时△DEQ为等腰三角形时点Q的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)将y=0代入,得,求出点A的坐标为(4,0),同理求出点B的坐标为(0,﹣2);将A(4,0)代入y=﹣x+b,求出b的值;(2)①由(1)知,直线的表达式为y=﹣x+4,因为点P(t,0),故当x=t时,y=﹣x+4=﹣t+4,即D(t,﹣t+4);同理可得:;②A.求出B(0,﹣2),利用DE=OB,求出,进而求出AP的值,即可求解;B.分点P在线段OA、点P在线段OA的延长线上两种情况,分别求解即可.【解答】解:(1)将y=0代入得,解得:x=4,∴点A的坐标为(4,0).将x=0代入,并解得:y=﹣2,∴点B的坐标为(0,﹣2).将A(4,0)代入y=﹣x+b,得0=﹣4+b,解得b=4;(2)①由(1)知,直线的表达式为y=﹣x+4,∵点P(t,0),∴当x=t时,y=﹣x+4=﹣t+4,即D(t,﹣t+4);同理可得:,故答案为(t,﹣t+4)、(t,t﹣2);②A.存在,理由:由①得D(t,﹣t+4),,∵点P在线段OA上,∴,∵B(0,﹣2),∴OB=2.∵DE=OB,∴,解得:.∴,∴;B.存在,理由:由①得D(t,﹣t+4),.∵OP=t,.当点P在线段OA上时,,∴,解得t=3,故点D、E的坐标分别为(3,1)、(3,﹣),设点Q(m,0),则DE2=,DQ2=(m﹣3)2+1,QE2=(m﹣3)2+,当DE=DQ时,即=(m﹣3)2+1,解得m=3±(舍去3+);当DE=QE时,同理可得:m=3(舍去3+);点Q的坐标为或.当点P在线段OA的延长线上时,,∴,解得t=6,同理可得:点Q的坐标为或;综上所述,点Q的坐标为或或或.。
2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷含答案
2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)分式有意义的条件是()A.x≠1B.x=1C.x≠0D.x=02.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.3.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体,石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001科学记数法表示是()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×1064.(3分)式子+有意义的条件是()A.x≥0B.x≤0C.x≠﹣2D.x≤0且x≠﹣2 5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=6.(3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13B.17C.22D.17或227.(3分)下列运算正确的是()A.(x2)4=x6B.(﹣2x)2÷x=4xC.(x+y)2=x2+y2D.+=18.(3分)如图,△ABC中,点D,E分别在边AB,AC上,将∠A沿着DE所在直线折叠,A与A′重合,若∠1+∠2=140°,则∠A的度数是()A.70°B.75°C.80°D.85°9.(3分)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE 沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…请你猜想(a+b)9的展开式中所有系数的和是()A.2018B.512C.128D.64二、填空题:本大题共5小题,每小题3分,共15分11.(3分)因式分解:x2﹣3x=.12.(3分)求点P(x,y)关于x轴对称的点的坐标时,一位学生看成了求关于y轴对称的点的坐标,求得结果是(2,3),那么正确的结果应该是.13.(3分)若关于x的二次三项式x2+kx+64是一个完全平方式,则k=.14.(3分)(a+6)2+=0,则2b2﹣4b﹣a的值是.15.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,Q点从B向D运动,每分钟走2m,P点从B向A运动,P,Q两点同时出发,P点每分钟走m时△CAP与△PQB全等.三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程16.(8分)(1)(x+y)2﹣(2y﹣x)(2y+x);(2)(x+2﹣)÷.17.(4分)解分式方程:﹣=.18.(7分)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离相等,到两条高速公路m和n的距离也必须相等.发射塔修建在什么位置?在图上标出它的位置.要求:(1)尺规作图,保留作图痕迹,不写作法;(2)写出作图的理由.19.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?20.(8分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F,D是BC边上的中点,连结AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.21.(9分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展应用】(2)利用(1)中的等式计算:已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.22.(11分)将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE =DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.(1)填空:AB与EF的位置关系是;(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC 的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)分式有意义的条件是()A.x≠1B.x=1C.x≠0D.x=0【解答】解:分式有意义的条件是:x≠0.故选:C.2.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.3.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体,石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001科学记数法表示是()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×106【解答】解:0.000001=1×10﹣6,故选:A.4.(3分)式子+有意义的条件是()A.x≥0B.x≤0C.x≠﹣2D.x≤0且x≠﹣2【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13B.17C.22D.17或22【解答】解:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:C.7.(3分)下列运算正确的是()A.(x2)4=x6B.(﹣2x)2÷x=4xC.(x+y)2=x2+y2D.+=1【解答】解:A.(x2)4=x8,此选项计算错误;B.(﹣2x)2÷x=4x,此选项计算正确;C.(x+y)2=x2+2xy+y2,此选项计算错误;D.+==﹣1,此选项计算错误;故选:B.8.(3分)如图,△ABC中,点D,E分别在边AB,AC上,将∠A沿着DE所在直线折叠,A与A′重合,若∠1+∠2=140°,则∠A的度数是()A.70°B.75°C.80°D.85°【解答】解:连接AA',如图所示:∵∠1是△AA'E的外角,∴∠1=∠EAA'+∠EA'A,同理可得,∠2=∠DAA'+∠DA'A,由折叠可得,∠EAD=∠EA'D,∴∠1+∠2=∠EAA'+∠EA'A+∠DAA'+∠DA'A=2∠EAD=140°,∴∠EAD=70°;故选:A.9.(3分)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE 沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④【解答】解:连接EC,∵BD=CD,AD⊥BC,∴AD垂直平分BC,∴BE=EC,且BE=BC,∴BE=EC=BC,∴△BEC是等边三角形,且ED⊥BC,∴∠EBC=∠BEC=∠BCE=60°,∠BED=∠CED=30°,故①符合题意,∴∠AEB=150°,∵将△ABE沿BE所在直线折叠,点A落在点A′位置上,∴∠AEB=∠BEA'=150°,AE=A'E,∠BAD=∠BA'E,∴∠AEA'=60°,∴△AEA'是等边三角形,∴∠EA'A=60°,故③符合题意,∵AB=AC,BE=EC,AE=AE,∴△ABE≌△ACE(SSS)∴∠BAD=∠DAC=∠BA'E,∵∠AEA'=∠EOA'+∠EA'O=60°,∴∠EOA'+∠CAD=∠BFC=60°,故②符合题意,∵∠A'HA=∠AF A'+∠BA'E>60°,∴故④不符合题意,故选:C.10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…请你猜想(a+b)9的展开式中所有系数的和是()A.2018B.512C.128D.64【解答】解:展开式共有n+1项,系数和为2n.∴(a+b)9的展开式中所有系数的和是:29=512故选:B.二、填空题:本大题共5小题,每小题3分,共15分11.(3分)因式分解:x2﹣3x=x(x﹣3).【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)12.(3分)求点P(x,y)关于x轴对称的点的坐标时,一位学生看成了求关于y轴对称的点的坐标,求得结果是(2,3),那么正确的结果应该是(﹣2,﹣3).【解答】解:∵点P(x,y)关于y轴对称的点的坐标为:(2,3),∴点P(﹣2,3),∴点P(x,y)关于x轴对称的点的坐标为:(﹣2,﹣3).故答案为:(﹣2,﹣3).13.(3分)若关于x的二次三项式x2+kx+64是一个完全平方式,则k=±16.【解答】解:∵x2+kx+64是一个完全平方式,∴k=±(8×2),解得k=±16.故答案为:±1614.(3分)(a+6)2+=0,则2b2﹣4b﹣a的值是0.【解答】解:由题意得,a+6=0,b2﹣2b+3=0,解得a=﹣6,b2﹣2b=﹣3,所以,2b2﹣4b﹣a=2(b2﹣2b)﹣a=2×(﹣3)﹣(﹣6)=﹣6+6=0.故答案为:0.15.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,Q点从B向D运动,每分钟走2m,P点从B向A运动,P,Q两点同时出发,P点每分钟走1或3m 时△CAP与△PQB全等.【解答】解:设P点每分钟走xm.①若BP=AC=4,此时AP=BQ=8,△CAP≌△PBQ,∴t==4,∴x==1.②若BP=AP=6,AC=BQ=4,△ACP≌△BQP,∴t==2,∴x==3,故答案为1或3.三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程16.(8分)(1)(x+y)2﹣(2y﹣x)(2y+x);(2)(x+2﹣)÷.【解答】解:(1)原式=x2+2xy+y2﹣4y2+x2=2x2+2xy﹣3y2;(2)原式=•=•=3x(x+3)=3x2+9x.17.(4分)解分式方程:﹣=.【解答】解:去分母得:9x﹣3﹣2=﹣5,解得:x=0,经检验x=0是分式方程的解.18.(7分)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离相等,到两条高速公路m和n的距离也必须相等.发射塔修建在什么位置?在图上标出它的位置.要求:(1)尺规作图,保留作图痕迹,不写作法;(2)写出作图的理由.【解答】解:(1)如图所示:点P即为发射塔修建的位置.(2)作线段AB的垂直平分线,因为线段垂直平分线上的点到线段的两个端点距离相等所以P A=PB,因为角平分线上的点到角的两边距离相等,所以点P到两条公路m和n的距离相等,所以发射塔修建在点P的位置.19.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.20.(8分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F,D是BC边上的中点,连结AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∵∠BAD=55°,∴∠C=∠ABC=90°﹣55°=35°.(2)FB=FE,证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.21.(9分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展应用】(2)利用(1)中的等式计算:已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.【解答】解:(1)由题意得:x2+y2=(x+y)2﹣2xy(2)①由题意得:ab=把a2+b2=10,a+b=6代入上式得,ab==13答:ab的值是13.②由题意得:(2021﹣a)2+(a﹣2019)2=(2021﹣a+a﹣2019)2﹣2(2021﹣a)(a﹣2019)=22﹣2×2020=﹣403622.(11分)将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE =DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.(1)填空:AB与EF的位置关系是平行;(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC 的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.【解答】解:(1)AB与EF的位置关系是平行,∵AB=AC,∠BAC=90°,DE=DF,∠EDF=90°,∴∠F=∠ABD=90°,∴AB∥EF;故答案为:平行;(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠EDF=90°,∴∠BDP+∠CDQ=90°,∴∠BPD+∠DQC=360°﹣∠B﹣∠C﹣∠BDP﹣∠CDQ=180°;(3)S1=2S2,理由:连接AD,∵AB=AC,AD⊥BC,∴BD=CD=AD=BC,∠B=∠CAD=45°,∵∠BDP+∠ADP=∠ADP+∠ADQ=90°,∴∠BDP=∠ADQ,∴△BDP≌△ADQ(ASA),∵S△ABD=S2,∵S△ADB=S1,∴S1=2S2.。
洛阳市2019-2020学年八年级上期末数学试卷含答案解析.doc
洛阳市 2019-2020 学年八年级上期末数学试卷含答案解析一、选择题(共8 小题,每小题 3 分,满分24 分)1.计算( a2)3的结果是 ( )A . a 5B. a6C. a8D. 3a22.把 x 3﹣ 2x2y+xy2分解因式,结果正确的是( )A . x(x+y )( x﹣ y) B. x( x 2﹣ 2xy+y2)C. x( x+y)2D. x( x﹣ y)23.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x﹣ 1)B. 2﹣ x+2=3 ( x﹣ 1) C. 2﹣( x+2) =3(1﹣ x)D. 2﹣( x+2 )=3( x﹣ 1)4.如图,△ ABC 和△DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明△ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A . 85°B . 80°C. 75°D. 70°6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSSxy x﹣2y的值为 ( )7.若 3 =4 ,9 =7,则 3A .B.C.﹣ 3 D .8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个二、填空题(共 7 小题,每小题 3 分,满分 21 分) 9.计算:+ =__________ .10.若 ab=2,a ﹣ b=﹣1,则代数式a 2b ﹣ ab 2的值等于 __________ .11.如图,点 D 在 △ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则 ∠ACE 的大小是 __________度.12.已知一个等腰三角形的一边长 4,一边长 5,则这个三角形的周长为 __________ .13.如图: △ ABC 中, DE 是 AC 的垂直平分线, AE=3cm , △ ABD 的周长为 13cm ,则 △ABC 的周长为 __________.14.如图,∠ AOE= ∠ BOE=15 °,EF ∥OB ,EC ⊥ OB ,若 EC=2 ,则 EF=__________ .15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 __________cm 2.三、解答题(共8 小题,满分75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式 __________ ;(2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.2 017.先化简,再求值:( x+y )( x﹣ y) +( x﹣ y) +2xy ,其中 x= ( 3﹣π). y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图, AD , AE 分别是△ ABC 的高和角平分线.(1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;(2)设∠ B= α,∠ C=β(α<β).请直接写出用α、β表示∠ DAE的关系式__________.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△ EFD.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为1220km .高铁平均时速是普快平均时速的 2.5 倍.(1 )求高铁列车的平均时速;(2 )某日王先生要从甲市去距离大约780km 的丙市参加14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?23.如图,等腰 Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1 )如图①,若点 C 的横坐标为 5,直接写出点 B 的坐标 __________ ;(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2 )如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求 PB 的取值范围.-学年八年级(上)期末数学试卷一、选择题(共 8 小题,每小题 3 分,满分 24 分)231.计算( a ) 的结果是 ( )【考点】 幂的乘方与积的乘方.【分析】 根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.236故选: B .【点评】 本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把 x 3﹣ 2x 2y+xy 2分解因式,结果正确的是 ()2 222C . x ( x+y ) A . x (x+y )( x ﹣ y ) B . x ( x ﹣ 2xy+y )D . x ( x ﹣ y ) 【考点】 提公因式法与公式法的综合运用. 【分析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有 3 项,可采用完全平方公式继续分解.【解答】 解: x 3﹣ 2x 2 y+xy 2,22=x ( x ﹣ 2xy+y ),故选 D .【点评】 本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x ﹣ 1)B . 2﹣ x+2=3 ( x ﹣ 1)C . 2﹣( x+2) =3(1﹣ x )D . 2﹣( x+2 )=3( x ﹣ 1)【考点】 解分式方程.【分析】 本题考查对一个分式确定最简公分母,去分母得能力.观察式子 x ﹣ 1 和 1﹣ x 互 为相反数,可得 1﹣x= ﹣( x ﹣ 1),所以可得最简公分母为 x ﹣ 1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母. 【解答】 解:方程两边都乘以 x ﹣ 1, 得: 2﹣( x+2) =3 ( x ﹣ 1). 故选 D .【点评】 考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘, 这正是本题考查点所在.切忌避免出现去分母后: 2﹣( x+2) =3 形式的出现. 4.如图, △ ABC 和 △DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明 △ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F 【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵ AC=DF ,∠ B= ∠DEF ,∴添加 AC ∥DF,得出∠ ACB= ∠ F,即可证明△ ABC ≌△ DEF,故 A 、 D 都正确;当添加∠ A= ∠ D 时,根据 AAS ,也可证明△ ABC ≌△ DEF ,故 B 正确;但添加 AB=DE 时,没有 SSA 定理,不能证明△ ABC ≌△ DEF,故 C 不正确;故选: C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS, SAS,ASA , AAS ,还有直角三角形全等的HL 定理.5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A. 85°B . 80°C. 75°D. 70°【考点】三角形内角和定理.【分析】先根据∠ A=50 °,∠ ABC=70 °得出∠ C 的度数,再由 BD 平分∠ ABC 求出∠ ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ ABC=70 °, BD 平分∠ ABC ,∴∠ ABD=70 °× =35°,∴∠ BDC=50 °+35 °=85 °,故选: A .【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSS【考点】全等三角形的应用.【分析】在△ ADC 和△ ABC 中,由于 AC 为公共边, AB=AD , BC=DC ,利用 SSS定理可判定△ ADC ≌△ ABC ,进而得到∠ DAC= ∠BAC ,即∠ QAE= ∠ PAE.【解答】解:在△ ADC 和△ ABC 中,,∴△ ADC ≌△ ABC ( SSS ), ∴∠ DAC= ∠ BAC , 即∠ QAE= ∠ PAE . 故选: D .【点评】 本题考查了全等三角形的应用;这种设计,用 SSS 判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.x y x ﹣2y的值为 ()7.若 3 =4 ,9 =7,则 3A .B .C .﹣ 3D .【考点】 同底数幂的除法;幂的乘方与积的乘方.【分析】 由 3 x yx ﹣2yx 2y x 2 y,代入即可求得答案.=4 , 9 =7 与3=3÷3 =3 ÷( 3 )【解答】 解:∵3x =4, 9y =7,∴3 x ﹣ 2yx 2yx2 y.=3 ÷3 =3 ÷( 3 ) =4÷7=故选 A .3x ﹣2y 变【点评】 此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将形为 3x ÷( 32) y是解此题的关键.8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个 【考点】 全等三角形的判定.【分析】 根据全等三角形的判定得出点P 的位置即可.【解答】 解:要使 △ABP 与 △ ABC 全等,点 P 到 AB 的距离应该等于点 C 到 AB 的距离,即 3 个单位长度,故点 P 的位置可以是 P 1, P 3, P 4 三个,故选 C【点评】 此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点 P 的位置.二、填空题(共 7 小题,每小题 3 分,满分 21 分)9.计算:+ =2 .【考点】 分式的加减法. 【专题】 计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式 == =2,故答案为: 2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.2 210.若 ab=2,a﹣ b=﹣1,则代数式 a b﹣ ab 的值等于﹣ 2.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ ab=2,a﹣ b= ﹣ 1,∴a 2b﹣ ab2=ab(a﹣ b) =2×(﹣ 1) =﹣ 2.故答案为:﹣ 2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点 D 在△ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则∠ACE 的大小是60 度.【考点】三角形的外角性质.【分析】由∠ A=80 °,∠ B=40 °,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ ACD= ∠ B+∠ A ,然后利用角平分线的定义计算即可.【解答】解:∵∠ ACD= ∠ B+∠ A ,而∠ A=80 °,∠ B=40 °,∴∠ ACD=80 °+40 °=120 °.∵CE 平分∠ ACD ,∴∠ ACE=60 °,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13 或 14.【考点】等腰三角形的性质;三角形三边关系.【分析】分 4 是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4 是腰长,则三角形的三边分别为4、 4、 5,能组成三角形,周长 =4+4+5=13 ,②若 4 是底边,则三角形的三边分别为4、5、 5,能组成三角形,周长 =4+5+5=14 ,综上所述,这个三角形周长为13 或 14.故答案为: 13 或 14 .【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ ABC 中, DE 是 AC 的垂直平分线,AE=3cm ,△ ABD 的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD , AC=2AE ,结合周长,进行线段的等量代换可得答案.【解答】解:∵ DE 是 AC 的垂直平分线,∴AD=CD , AC=2AE=6cm ,又∵△ ABD 的周长 =AB+BD+AD=13cm,∴A B+BD+CD=13cm ,即 AB+BC=13cm ,∴△ ABC 的周长 =AB+BC+AC=13+6=19cm .故答案为 19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠ AOE= ∠ BOE=15 °,EF∥OB ,EC⊥ OB,若 EC=2 ,则 EF=4 .【考点】含 30 度角的直角三角形;角平分线的性质.【分析】作 EG⊥ OA 于 F,根据角平分线的性质得到EG 的长度,再根据平行线的性质得到∠ OEF=∠ COE=15 °,然后利用三角形的外角和内角的关系求出∠ EFG=30 °,利用 30°角所对的直角边是斜边的一半解题.【解答】解:作 EG⊥ OA 于 G,如图所示:∵EF ∥OB,∠ AOE= ∠ BOE=15 °∴∠ OEF=∠ COE=15 °, EG=CE=2 ,∵∠ AOE=15 °,∴∠ EFG=15 °+15°=30 °,∴∴EF=2EG=4 .故答案为: 4.【点评】本题考查了角平分线的性质、平行线的性质、含 30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠ EFG=30 °是解决问题的关键.15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 18cm 2.【考点】 翻折变换(折叠问题).【分析】 当 AC ⊥ AB 时,重叠三角形面积最小,此时 △ABC 是等腰直角三角形,利用三角形面积公式即可求解.【解答】 解:如图,当 AC ⊥ AB 时,三角形面积最小, ∵∠ BAC=90 °∠ ACB=45 ° ∴ A B=AC=4cm ,∴S △ABC = ×6×6=18cm 2. 故答案是: 18.【点评】 本题考查了折叠的性质,发现当 AC ⊥ AB 时,重叠三角形的面积最小是解决问题的关键.三、解答题(共 8 小题,满分 75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.( 1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式( a+b ) 2=a 2+2ab+b 2;( 2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.【考点】 完全平方公式的几何背景.a+b ,大正方形的面积就为( a+b ) 2,2 【分析】 (1)图中可以得出,大正方形的边长为个矩形的边长相同,且长为 a ,宽为 b ,则 2 个矩形的面积为 2ab ,空白的是两个正方形,较大的正方形的边长为a ,面积等于 a 2,小的正方形边长为b ,面积等于 b 2,大正方形面 积减去 2 个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b ,大正方形的面积就为( a+b ) 2,4 个矩形的 边长相同,且长为 a ,宽为 b ,则 4 个矩形的面积为 4ab ,中间空心的正方形的边长为a ﹣b ,面积等于( a ﹣ b )2,大正方形面积减去 4 个阴影矩形的面积就等于中间空白部分的面 积. 【解答】 解:( 1)∵阴影部分都是全等的矩形,且长为 a ,宽为 b ,∴ 2 个矩形的面积为 2ab ,∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴空白正方形的面积为a 2 和b 2,∴( a+b ) 2=a 2 +2ab+b 2.222.故答案为( a+b ) =a +2ab+b (2)∵四周阴影部分都是全等的矩形,且长为 a ,宽为 b , ∴四个矩形的面积为 4ab , ∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴中间小正方形的面积为( a+b )2﹣ 4ab ,∵中间小正方形的面积也可表示为:(a ﹣ b ) 2,∴( a ﹣ b )2=( a+b ) 2﹣4ab . 【点评】 本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关 键.17.先化简,再求值:( x+y )( x ﹣ y ) +( x ﹣ y ) 2+2xy ,其中 x= ( 3﹣ π) 0. y=2. 【考点】 整式的混合运算 —化简求值;零指数幂. 【专题】 计算题;整式.【分析】 原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x 与 y 的值代入计算即可求出值.【解答】 解:原式 =x 2﹣ y 2+x 2﹣ 2xy+y 2+2xy=2x 2,当 x= ( 3﹣π) 0=1 时,原式 =2. 【点评】 此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简: ÷( ﹣ ),再从﹣ 2< x < 3 的范围内选取一个你最喜欢的值代入,求值.【考点】 分式的化简求值. 【专题】 计算题.【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把 x 的值代入计算即可求出值.【解答】 解:原式 =÷ = ? = ,当 x=2 时,原式 =4 .【点评】 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 19.如图, AD , AE 分别是 △ ABC 的高和角平分线.( 1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;( 2)设∠ B= α,∠ C=β( α< β).请直接写出用 α、 β表示∠ DAE 的关系式 ( β﹣ α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAE ,根据直角三角形两锐角互余求出∠BAD ,然后求解即可.(2)同( 1)即可得出结果.【解答】解:( 1)∵∠ B=40 °,∠ C=60°,∴∠ BAC=180 °﹣∠ B﹣∠ C=180°﹣ 40°﹣ 60°=80 °,∵AE 是角平分线,∴∠ BAE=∠ BAC=×80°=40°,∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣ 40°=50 °,∴∠ DAE= ∠ BAD ﹣∠ BAE=50 °﹣ 40°=10°;(2)∵∠ B= α,∠ C=β(α<β),∴∠ BAC=180 °﹣(α+β),∵AE 是角平分线,∴∠ BAE=∠ BAC=90°﹣(α+β),∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣α,∴∠ DAE= ∠ BAD ﹣∠ BAE=90 °﹣α﹣ [90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是∠B= ∠ F 或 AB ∥ EF 或 AC=ED ;(2)添加了条件后,证明△ABC≌△ EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC ≌△ EFD ,已知 BC=DF , AB=EF ,具备了两组边对应相等,故添加∠ B= ∠ F 或 AB ∥EF 或 AC=ED 后可分别根据 SAS、 AAS 、 SSS 来判定其全等;(2)因为 AB=EF ,∠ B=∠ F,BC=FD ,可根据 SAS 判定△ ABC ≌△ EFD .【解答】解:( 1)∠ B= ∠F 或 AB ∥ EF 或 AC=ED ;(2)证明:当∠ B=∠ F 时在△ ABC 和△ EFD 中∴△ ABC ≌△ EFD ( SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠ EDC= ∠B=60 °,根据三角形内角和定理即可求解;(2)易证△ EDC 是等边三角形,再根据直角三角形的性质即可求解.【解答】解:( 1)∵△ ABC 是等边三角形,∴∠ B=60 °,∵DE ∥ AB ,∴∠ EDC= ∠B=60 °,∵EF ⊥DE,∴∠ DEF=90 °,∴∠ F=90°﹣∠ EDC=30 °;(2)∵∠ ACB=60 °,∠ EDC=60 °,∴△ EDC 是等边三角形.∴ED=DC=3 ,∵∠ DEF=90 °,∠ F=30 °,∴DF=2DE=6 .【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30 度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为 1220km .高铁平均时速是普快平均时速的 2.5 倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km 的丙市参加 14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x 千米 / 小时,高铁列车的平均时速为 2.5x 千米 /小时,根据题意可得,高铁走(1220﹣ 90)千米比普快走1220 千米时间减少了8 小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:( 1)设普快的平均时速为x 千米 /小时,高铁列车的平均时速为 2.5x 千米 /小时,由题意得,﹣=8 ,解得: x=96,经检验, x=96 是原分式方程的解,且符合题意,则2.5x=240 ,答:高铁列车的平均时速为240 千米 /小时;(2) 780÷240=3.25 ,则坐车共需要 3.25+1=4.25 (小时),从 9: 20 到下午 1: 40,共计 4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1)如图①,若点 C 的横坐标为5,直接写出点 B 的坐标( 0, 2);(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2)如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求PB 的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作 CD ⊥BO ,易证△ABO ≌△ BCD ,根据全等三角形对应边相等的性质即可解题;(2)作 EG⊥y 轴,易证△ BAO ≌△ EBG 和△EGP≌△ FBP,可得 BG=AO 和 PB=PG ,即可求得 PB=AO ,即可解题.【解答】解:( 1)如图 1,作 CD⊥ BO 于 D,∵∠ CBD+ ∠ ABO=90 °,∠ ABO+ ∠ BAO=90 °,∴∠ CBD= ∠ BAO ,在△ ABO 和△ BCD 中,,∴△ ABO ≌△ BCD ( AAS ),∴C D=BO=2 ,∴B 点坐标( O, 2);故答案为:( 0, 2);(2)如图 3,作 EG⊥ y 轴于 G,∵∠ BAO+ ∠ OBA=90 °,∠ OBA+ ∠ EBG=90 °,∴∠ BAO= ∠ EBG,在△ BAO 和△ EBG 中,,∴△ BAO ≌△ EBG ( AAS ),∴BG=AO , EG=OB ,∵O B=BF ,∴BF=EG ,在△ EGP 和△ FBP 中,,∴△ EGP≌△ FBP( AAS ),∴PB=PG ,∴PB= BG= AO=3 .【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
山东省日照市2019-2020年八年级(上)期末数学试卷 解析版
2019-2020学年八年级(上)期末数学试卷一.选择题(共12小题)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°4.下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6 5.下列各式是完全平方式的是()A.x2﹣x+B.1+x2C.x+xy+1 D.x2+2x﹣16.已知是正数,那么x的取值范围是()A.x>0 B.x>﹣4 C.x≠0 D.x>﹣4且x≠0 7.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm28.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10.若关于x的方程=有正数根,则k的取值范围是()A.k<2 B.k≠3 C.﹣3<k<﹣2 D.k<2且k≠﹣3 11.已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=3,AB边上求作点P,则PC+PD的最小值为()A.4 B.6 C.8 D.1012.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A2019B2019A2020的边长是()A.4038 B.4036 C.22018D.22019二.填空题(共5小题)13.已知等腰三角形的一个角为80°,则顶角为.14.当x=1时,分式无意义;当x=2时,分式的值为零,则a+b=.15.若x2+(m﹣3)x+16是完全平方式,则m=.16.若5x﹣3y﹣2=0,则105x÷103y=.17.如图,边长为10的等边△ABC中,一动点P沿AB从A向B移动,动点Q以同样的速度从C出发沿BC的延长线运动,连PQ交AC边于D,作PE⊥AC于E,则DE的长为.三.解答题(共6小题)18.先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.19.(1)解方程:﹣1=(2)先化简后求值•÷,其中a满足a2﹣a=020.已知:从n边形的一个顶点出发共有4条对角线;从m边形的一个顶点出发的所有对角线把m边形分成6个三角形;正t边形的边长为7,周长为63.求(n﹣m)t的值.21.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请和两种不同的方法求图②中阴影部分的面积.方法1:方法2:(2)观察图②请你写出下列三个代数式;(m+n)2,(m﹣n)2,mn之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=3,ab=﹣2,求:(a+b)2的值;②已知:a﹣=1,求:a+的值.23.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D 逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.参考答案与试题解析一.选择题(共12小题)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【解答】解:线段BE是△ABC的高的图是选项C.故选:C.3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC ≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.4.下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6【分析】根据合并同类项,可判断A;根据同底数幂的除法,可判断B;根据同底数幂的乘法,可判断C;根据积的乘方,可判断D.【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.5.下列各式是完全平方式的是()A.x2﹣x+B.1+x2C.x+xy+1 D.x2+2x﹣1【分析】完全平方公式:(a±b)2=a2±2ab+b2.最后一项为乘积项除以2,除以第一个底数的结果的平方.【解答】解:A、x2﹣x+是完全平方式;B、缺少中间项±2x,不是完全平方式;C、不符合完全平方式的特点,不是完全平方式;D、不符合完全平方式的特点,不是完全平方式.故选:A.6.已知是正数,那么x的取值范围是()A.x>0 B.x>﹣4 C.x≠0 D.x>﹣4且x≠0 【分析】若的值是正数,只有在分子分母同号下才能成立,即x+4>0,且x≠0,因而能求出x的取值范围.【解答】解:∵>0,∴x+4>0,x≠0,∴x>﹣4且x≠0.故选:D.7.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm2【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【解答】解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°,在△APB和△EPB中∴△APB≌△EPB(ASA),∴S△APB =S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC =S△PCE,∴S△PBC =S△PBE+S△PCE=S△ABC=0.5cm2,故选:B.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D.9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.10.若关于x的方程=有正数根,则k的取值范围是()A.k<2 B.k≠3 C.﹣3<k<﹣2 D.k<2且k≠﹣3 【分析】分式方程去分母转化为整式方程,表示出x,根据方程有正数根列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:去分母得:2x+6=3x+3k,解得:x=6﹣3k,根据题意得:6﹣3k>0,且6﹣3k≠﹣3,解得:k<2且k≠3.故选:A.11.已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=3,AB边上求作点P,则PC+PD的最小值为()A.4 B.6 C.8 D.10【分析】作D点关于AB的对称点D′,连接CD′交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D′E⊥BC于E,则EB=D′A=AD,先根据等边对等角得出∠DCD′=∠DD′C,然后根据平行线的性质得出∠D′CE=∠DD′C,从而求得∠D′CE=∠DCD′,得出∠D′CE=30°,根据30°角的直角三角形的性质求得D′C=2D′E=2AB,即可求得PC+PD的最小值.【解答】解:作D点关于AB的对称点D′,连接CD′交AB于P,P即为所求,此时PC+PD =PC+PD′=CD′,根据两点之间线段最短可知此时PC+PD最小.作D′E⊥BC于E,则EB=D′A=AD,∵CD=2AD,∴DD′=CD,∴∠DCD′=∠DD′C,∵∠DAB=∠ABC=90°,∴四边形ABED′是矩形,∴DD′∥EC,D′E=AB=3,∴∠D′CE=∠DD′C,∴∠D′CE=∠DCD′,∵∠DCB=60°,∴∠D′CE=30°,∴D′C=2D′E=2AB=2×3=6;∴PC+PD的最小值为6.故选:B.12.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A2019B2019A2020的边长是()A.4038 B.4036 C.22018D.22019【分析】利用等边三角形的性质得到∠B1A1A2=60°,A1B1=A1A2,则可计算出∠A1B1O=30°,所以A1B1=A1A2=OA1,利用同样的方法得到A2B2=A2A3=OA2=2OA1,A3B3=A3A4=22•OA1,A4B4=A4A5=23•OA1,利用此规律得到A2019B2019=A2019A2020=22018•OA1.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,∴∠A1B1O=30°,∴A1B1=OA1,∴A1B1=A1A2=OA1,同理可得A2B2=A2A3=OA2=2OA1,∴A3B3=A3A4=OA3=2OA2=22•OA1,A 4B4=A4A5=OA4=2OA3=23•OA1,…∴A2019B2019=A2019A2020=OA2019=22018•OA1=22019.故选:D.二.填空题(共5小题)13.已知等腰三角形的一个角为80°,则顶角为80°或20°.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当80°角为顶角时,其顶角为80°(2)当80°为底角时,得顶角=180°﹣2×80°=20°;故填80°或20°.14.当x=1时,分式无意义;当x=2时,分式的值为零,则a+b= 3 .【分析】根据分式无意义的条件可得1+a=0,再解可得a的值,然后根据分式值为零的条件可得2×2﹣b=0,且3×2+a≠0,解可得b的值,进而得到答案.【解答】解:∵当x=1时,分式无意义,∴1+a=0,解得a=﹣1;∵当x=2时,分式的值为零,∴2×2﹣b=0,且3×2+a≠0,解得:b=4,∴a+b=3,故答案为:3.15.若x2+(m﹣3)x+16是完全平方式,则m=11或﹣5 .【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+(m﹣3)x+16是完全平方式,∴m﹣3=±8,解得:m=11或m=﹣5,故答案为:11或﹣516.若5x﹣3y﹣2=0,则105x÷103y=100 .【分析】根据同底数幂的除法法则,可将所求代数式化为:105x﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.17.如图,边长为10的等边△ABC中,一动点P沿AB从A向B移动,动点Q以同样的速度从C出发沿BC的延长线运动,连PQ交AC边于D,作PE⊥AC于E,则DE的长为 5 .【分析】作PF∥BC,易证△APF为等边三角形,可得AE=EF,易证∠Q=∠DPF,即可证明△DPF≌△DQC,可得CD=DF,即可求得DE=AC,即可解题.【解答】解:作PF∥BC,∵PF∥BC,∴△APF为等边三角形,∠Q=∠DPF,∴PF=AP,∴PF=CQ,∵PE⊥AD,∴AE=EF,在△DPF和△DQC中,,∴△DPF≌△DQC(AAS)∴CD=DF,∴DE=DF+EF=AE+CD=AC=5,故答案为5.三.解答题(共6小题)18.先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.【分析】先去括号,再合并,最后把a、b的值代入计算即可.【解答】解:原式=b2﹣2ab+4a2﹣b2=2a(2a﹣b),当a=2,b=1时,原式=2×2×(2×2﹣1)=12.19.(1)解方程:﹣1=(2)先化简后求值•÷,其中a满足a2﹣a=0【分析】(1)根据解分式方程的步骤依此计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再整体代入计算可得.【解答】解:(1)两边都乘以(x+2)(x﹣2),得:x(x+2)﹣(x+2)(x﹣2)=8,解得x=2,当x=2时,(x+2)(x﹣2)=0,所以原分式方程无解;(2)原式=••(a+1)(a﹣1)=(a﹣2)(a+1)=a2﹣a﹣2,当a2﹣a=0时,原式=﹣2.20.已知:从n边形的一个顶点出发共有4条对角线;从m边形的一个顶点出发的所有对角线把m边形分成6个三角形;正t边形的边长为7,周长为63.求(n﹣m)t的值.【分析】根据题意,由多边形的性质,分析可得答案.【解答】解:依题意有n=4+3=7,m=6+2=8,t=63÷7=9则(n﹣m)t=(7﹣8)9=﹣1.21.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.22.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请和两种不同的方法求图②中阴影部分的面积.方法1:(m+n)2﹣4mn方法2:(m﹣n)2(2)观察图②请你写出下列三个代数式;(m+n)2,(m﹣n)2,mn之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:a﹣b=3,ab=﹣2,求:(a+b)2的值;②已知:a﹣=1,求:a+的值.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分(小正方形)的面积;(2)由面积关系容易得出结论;(3)①根据(2)所得出的关系式,容易求出结果;②先求出(a+)2,即可得出结果.【解答】解:(1)方法1:(m+n)2﹣4mn,方法2:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2;(3)(a+b)2=(a﹣b)2+4ab=32+4×(﹣2)=1;②∵(a+)2=(a﹣)2+4×a×=12+8=9,∴a+=±3.23.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D 逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8 ;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.。
【精品初二期末试卷】2019年哈尔城八年级下学期期末考试数学学科试卷+答案
2019学年黑龙江省哈尔滨市八年级(下)期末数学试卷一、选择题(每小题3分,共计30分)1.下列方程是一元二次方程的是()A.+x2=0 B.3x2﹣2xy=0 C.x2+x﹣1=0 D.ax2﹣bx=02.由下列三条线段组成的三角形是直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,143.一次函数y=2x﹣3的图象与y轴的交点坐标是()A.(﹣3,0)B.(0,﹣3)C.(,0)D.(0,)4.在▱ABCD中,∠A=2∠D,则∠C的度数为()A.30°B.60°C.90°D.120°5.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则实数k的取值范围是()A.k≥﹣1 B.k>﹣1 C.k≥﹣1且k≠0 D.k≠06.下列命题中,假命题的是()A.四个角都相等的四边形是矩形B.对角线互相平分且垂直的四边形是菱形C.对角线互相垂直且相等的四边形是正方形D.对角线相等的平行四边形是矩形7.三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为()A.2 B.5 C.7 D.5或78.如图,在▱ABCD中,对角线AC和BD相交于点O,AC⊥BC,若AB=10,AC=6,S△AOD=()A.48 B.24 C.12 D.89.对于一次函数y=x+2,下列结论中正确的是()A.函数的图象与x轴交点坐标是(0,﹣2)B.函数值随自变量的增大而减小C.函数的图象向上平移2个单位长度得到函数y=x的图象D.函数的图象不经过第四象限10.甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了9小时,乙车间在中途停工一段时间维修设备,修好后马上按停工前的工作效率继续加工,直到与甲车间同时完成这批零件的加工任务为止,设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),y与x之间的函数图象如图所示,下列说法其中正确的个数为()①这批零件的总个数为1260个;②甲车间每小时加工零件个数为80个;③乙车间维修设备后,乙车间加工零件数量y与x之间的函数关系式y=60x﹣120;④乙车间维修设备用了2个小时A.1个B.2个C.3个D.4个二、填空题(每小题3分,共计30分)11.在函数y=中,自变量x的取值范围是.12.已知一元二次方程kx2﹣9x+8=0的一个根为1,则k的值为.13.如图,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,点A(2,0),则关于x的不等式kx+b<0的解集是.14.若a是方程x2﹣x﹣2017=0的根,则代数式a+(1﹣a)2=.15.两边长分别为3和4的直角三角形,则直角三角形斜边上中线的长是.16.在“低碳生活,绿色出行”的倡导下,自行车正逐渐成为人们喜爱的交通工具,运动商城自2018年起自行车的销售量逐月增加.据统计,商城一月份销售自行车64辆,三月份销售了100辆,则运动商城的自行车销量的月平均增长率为.17.一个菱形两条对角线长的和是10,菱形的面积是12,则菱形的边长为.18.四边形ABCD的对角线AC、BD的长分别为10厘米、6厘米,且AC与BD互相垂直,顺次连接四边形ABCD四边的中点E、F、G、H得四边形EFGH,则四边形EFGH的面积为平方厘米.19.已知:在矩形ABCD中,AB=4,AD=10,点P是BC上的一点,若∠APD=90°,则AP =.20.如图,在▱ABCD中,对角线AC和BD相交于点O,在AB上有一点E,连接CE,过点B 作BC的垂线和CE的延长线交于点F,连接AF,∠ABF=∠FCB,FC=AB,若FB=1,AF=,则BD=.三、解答题(其中21、22题各7分,23、24题各8分,25~27题各10分,共计60分)21.(1)用公式法解方程:x2﹣5x+3=0;(2)用因式分解法解方程:3(x﹣3)2=2x﹣622.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为.23.一块矩形场地,场地的长是宽的2倍.计划在矩形场地上修建宽都为2米的两条互相垂直的小路,如图,余下的四块小矩形场地建成草坪.四块小矩形草坪的面积之和为364平方米,求这个矩形场地的长和宽各是多少米?24.已知:在四边形ABCD中,∠ABC=∠DCB=90°,点P在BC边上,连接AP和PD,点E 在DC边上,连接BE与DP和AP分别交于点F和点G,若AB=PC,BP=DC,∠DFE=45°(1)如图1,求证:四边形ABED为平行四边形;(2)如图2,把△PFG沿FG翻折,得到△QFG(点P与点Q为对应点),点Q在AD上,在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形(不包括平行四边形ABED,但包括特殊的平行四边形).25.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值.(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?26.在菱形ABCD中,点Q为AB边上一点,点F为BC边上一点连接DQ、DF和QF.(1)如图1,若∠ADQ=∠FDQ,∠FQD=90°,求证:AQ=BQ;(2)如图2,在(1)的条件下,∠BAD=120°,对角线AC、BD相交于点P,以点P为顶点作∠MPN=60°,PM与AB交于点M,PN与AD交于点N,求证:DN+QM=AB;(3)如图3,在(1)(2)的条件下,延长NP交BC于点E,延长CN到点K,使CK=CA,连接AK并延长和CD的延长线交于点T,若AM:DN=1:5,S四边形MBEP=12,求线段DT 的长.27.在平面直角坐标系中,点O为坐标原点,点B和点C分别是x轴的正半轴和y轴的正半轴上的两点,且OB:BC=1:,直线BC的解析式为y=﹣kx+6k(k≠0).(1)如图1,求点C的坐标;(2)如图2,点D为OB中点,点E为OC中点,点F在y轴的负半轴上,点A是射线FD 上的第一象限的点,连接AE、ED,若FD=DA,且S△AED=,求点A的坐标;(3)如图3,在(2)的条件下,点P在线段OB上,点Q在线段OC的延长线上,CQ=BP,连接PQ与BC交于点M,连接AM并延长AM到点N,连接QN、AP、AB和NP,若∠QPA ﹣∠NQO=∠NQP﹣∠PAB,NP=2,求直线PQ的解析式.2019学年黑龙江省哈尔滨市八年级(下)期末数学试卷一、选择题(每小题3分,共计30分)1.下列方程是一元二次方程的是()A.+x2=0 B.3x2﹣2xy=0 C.x2+x﹣1=0 D.ax2﹣bx=0 【解答】解:A、+x2=0是分式方程;B、3x2﹣2xy=0是二元二次方程;C、x2+x﹣1=0是一元二次方程;D、ax2﹣bx=0当a、b均为常数、且a≠0时,才是一元二次方程;故选:C.2.由下列三条线段组成的三角形是直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,14 【解答】解:A、42+52≠62,不能构成直角三角形,故错误;B、12+12=()2,能构成直角三角形,故正确;C、62+82≠112,不能构成直角三角形,故错误;D、52+122≠142,不能构成直角三角形,故错误.故选:B.3.一次函数y=2x﹣3的图象与y轴的交点坐标是()A.(﹣3,0)B.(0,﹣3)C.(,0)D.(0,)【解答】解:∵y=2x﹣3,∴当x=0时,y=﹣3,∴一次函数y=2x﹣3的图象与y轴的交点坐标是(0,﹣3),故选:B.4.在▱ABCD中,∠A=2∠D,则∠C的度数为()A.30°B.60°C.90°D.120°【解答】解:画出图形如下所示:∵四边形ABCD是平行四边形,∴∠A+∠D=180°,又∠A=2∠D,∴∠A=120°,∠D=60°∴∠C=∠A=120°,故选:D.5.若关于x的一元二次方程kx2+2x﹣1=0有实数根,则实数k的取值范围是()A.k≥﹣1 B.k>﹣1 C.k≥﹣1且k≠0 D.k≠0【解答】解:∵关于x的一元二次方程kx2+2x﹣1=0有实数根,∴△=b2﹣4ac≥0,即:4+4k≥0,解得:k≥﹣1,∵关于x的一元二次方程kx2﹣2x+1=0中k≠0,故选:C.6.下列命题中,假命题的是()A.四个角都相等的四边形是矩形B.对角线互相平分且垂直的四边形是菱形C.对角线互相垂直且相等的四边形是正方形D.对角线相等的平行四边形是矩形【解答】解:A、四个角都相等的四边形是矩形,是真命题;B、对角线互相平分且垂直的四边形是菱形,是真命题;C、对角线平分、互相垂直且相等的四边形是正方形,是假命题;D、对角线相等的平行四边形是矩形,是真命题;故选:C.7.三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为()A.2 B.5 C.7 D.5或7【解答】解:x2﹣12x+35=0(x﹣5)(x﹣7)=0,解得:x1=5,x2=7,∵三角形两边的长是2和5,∴第三边长小于7,∴第三边的长为:5.故选:B.8.如图,在▱ABCD中,对角线AC和BD相交于点O,AC⊥BC,若AB=10,AC=6,S△AOD=()A.48 B.24 C.12 D.8【解答】解:∵AC⊥BC,∴∠ACB=90°,∴BC===8,∵四边形ABCD是平行四边形,∴AD=BC=8,OA=OC=3,AD∥BC,∴∠DAC=∠BCA=90°,∴OA⊥AD,∴S△AOD=•AD•OA=×8×3=12,故选:C.9.对于一次函数y=x+2,下列结论中正确的是()A.函数的图象与x轴交点坐标是(0,﹣2)B.函数值随自变量的增大而减小C.函数的图象向上平移2个单位长度得到函数y=x的图象D.函数的图象不经过第四象限【解答】解:A、函数的图象与x轴交点坐标是(0,2),错误;B、函数值随自变量的增大而增大,错误;C、函数的图象向下平移2个单位长度得到函数y=x的图象,错误;D、函数的图象经过第一、二、三象限,所以不经过第四象限,正确;故选:D.10.甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了9小时,乙车间在中途停工一段时间维修设备,修好后马上按停工前的工作效率继续加工,直到与甲车间同时完成这批零件的加工任务为止,设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),y与x之间的函数图象如图所示,下列说法其中正确的个数为()①这批零件的总个数为1260个;②甲车间每小时加工零件个数为80个;③乙车间维修设备后,乙车间加工零件数量y与x之间的函数关系式y=60x﹣120;④乙车间维修设备用了2个小时A.1个B.2个C.3个D.4个【解答】解:由题意总零件个数为720+420=1140,则①错误;由图象甲车间每小时加工零件个数为720÷9=80个,则②正确;乙车间生产速度为120÷2=60个/时,则乙复工后生产时间为小时,则开始复工时间为第4小时,则乙车间加工零件数量y与x之间的函数关系式y=120+60(x﹣4)=60x﹣120,则③正确;由③乙车间维修设备时间为4﹣2=2小时,则④正确.故选:C.二、填空题(每小题3分,共计30分)11.在函数y=中,自变量x的取值范围是x≠.【解答】解:由题意,得4x﹣2≠0,解得x≠,故答案为:x≠.12.已知一元二次方程kx2﹣9x+8=0的一个根为1,则k的值为 1 .【解答】解:把x=1代入方程kx2﹣9x+8=0得k﹣9+8=0,解得k=1.故答案为1.13.如图,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,点A(2,0),则关于x的不等式kx+b<0的解集是x<2 .【解答】解:由一次函数的图象可知,此函数是增函数,即y随x的增大而增大,∵一次函数y=kx+b的图象与x轴交于A(2,0),∴不等式组kx+b<0的解集是x<2.故答案为x<214.若a是方程x2﹣x﹣2017=0的根,则代数式a+(1﹣a)2=2018 .【解答】解:把x=a代入方程x2﹣x﹣2017=0,得a2﹣a﹣2017=0,即a2﹣a=2017,则a+(1﹣a)2=a2﹣a+1=2017+1=2018.故答案为2018.15.两边长分别为3和4的直角三角形,则直角三角形斜边上中线的长是 2.5或2 .【解答】解:4是斜边时,此直角三角形斜边上的中线长=×4=2,4是直角边时,斜边==5,此直角三角形斜边上的中线长=×5=2.5,综上所述,此直角三角形斜边上的中线长为2.5或2.故答案为:2.5或2.16.在“低碳生活,绿色出行”的倡导下,自行车正逐渐成为人们喜爱的交通工具,运动商城自2018年起自行车的销售量逐月增加.据统计,商城一月份销售自行车64辆,三月份销售了100辆,则运动商城的自行车销量的月平均增长率为25% .【解答】解:设运动商城的自行车销量的月平均增长率为x,根据题意得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(舍去).故答案为:25%.17.一个菱形两条对角线长的和是10,菱形的面积是12,则菱形的边长为.【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BC,OA=OC=AC,OB=OD=BD,∴∠AOB=90°,菱形ABCD的面积=AC•BD=12,∴AC•BD=24①,AB2=OA2+OB2=(AC2+BD2),∵菱形两条对角线长的和是10,∴AC+BD=10②,由②2﹣2×①得:AC2+BD2=56,∴(AC2+BD2)=13,∴AB2=13,AB=;故答案为.18.四边形ABCD的对角线AC、BD的长分别为10厘米、6厘米,且AC与BD互相垂直,顺次连接四边形ABCD四边的中点E、F、G、H得四边形EFGH,则四边形EFGH的面积为15 平方厘米.【解答】解:在△ABC中,F、G分别是AB、BC的中点,故可得:FG=AC,同理EH=AC=5,GH=BD,EF=BD=3,在四边形ABCD中,AC=BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形.在△ABD中,E、H分别是AD、CD的中点,则EH∥AC,同理GH∥BD,又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH是矩形,∴四边形EFGH的面积=EH×EF=3×5=15平方厘米.故答案为:1519.已知:在矩形ABCD中,AB=4,AD=10,点P是BC上的一点,若∠APD=90°,则AP =2或4.【解答】解:∵矩形ABCD,∴∠B=∠C=90°,又∵∠APD=90°,在直角△APD中,AD2=AP2+DP2,同理,AP2=AB2+BP2,PD2=PC2+CD2=PC2+AB2,∴AD2=AP2+DP2=AB2+BP2+PC2+DC2=BP2+(BC﹣BP)2+2AB2=BP2+(10﹣BP)2+32,即100=2BP2﹣20BP+100+32,解得BP=2或8,当BP=2时,AP==2,当BP=8时,AP==4,故答案为:2或4.20.如图,在▱ABCD中,对角线AC和BD相交于点O,在AB上有一点E,连接CE,过点B 作BC的垂线和CE的延长线交于点F,连接AF,∠ABF=∠FCB,FC=AB,若FB=1,AF =,则BD= 5 .【解答】解:延长BF、DA交于点G,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠GAB=∠ABC,∵BF⊥BC,∴∠FBC=∠FBA+∠ABC=90°,∴∠FBA+∠GAB=90°,∴∠G=90°,在△AGB和△FBC中,∵,∴△AGB≌△FBC,∴AG=BF=1,BC=BG,Rt△AGF中,∵AF=,∴FG==2,∴BC=BG=AD=2+1=3,∴GD=1+3=4,Rt△DGB中,BD===5,故答案为:5.三、解答题(其中21、22题各7分,23、24题各8分,25~27题各10分,共计60分)21.(1)用公式法解方程:x2﹣5x+3=0;(2)用因式分解法解方程:3(x﹣3)2=2x﹣6【解答】解:(1)x2﹣5x+3=0这里a=1,b=﹣5,c=3△=b2﹣4ac=(﹣5)2﹣4×1×3=13>0∴x==∴x1=,x2=(2)3(x﹣3)2=2x﹣6移项,得3(x﹣3)2﹣2(x﹣3)=0提公因式,得(x﹣3)[3(x﹣3)﹣2]=0即(x﹣3)(3x﹣11)=0∴x1=3,x2=22.图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);(2)图2中所画的平行四边形的面积为 6 .(2)利用割补法,即可得到图2中平行四边形的面积.【解答】解:(1)如图所示,四边形ABCD和四边形EFGH均为平行四边形;(2)图2中所画的平行四边形的面积=×6×(1+1)=6,故答案为:6.23.一块矩形场地,场地的长是宽的2倍.计划在矩形场地上修建宽都为2米的两条互相垂直的小路,如图,余下的四块小矩形场地建成草坪.四块小矩形草坪的面积之和为364平方米,求这个矩形场地的长和宽各是多少米?【解答】解:设这个矩形场地的宽为x米,长为2x米,根据题意可得:(2x﹣2)(x﹣2)=364,则x2﹣3x﹣180=0,(x﹣15)(x+12)=0,解得:x1=15,x2=﹣12(舍去),2x=30(m),答:这个矩形场地的宽为15米,长为30米.24.已知:在四边形ABCD中,∠ABC=∠DCB=90°,点P在BC边上,连接AP和PD,点E 在DC边上,连接BE与DP和AP分别交于点F和点G,若AB=PC,BP=DC,∠DFE=45°(1)如图1,求证:四边形ABED为平行四边形;(2)如图2,把△PFG沿FG翻折,得到△QFG(点P与点Q为对应点),点Q在AD上,在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形(不包括平行四边形ABED,但包括特殊的平行四边形).【解答】解:(1)∵∠ABC=∠DCB=90°,∴,∠ABC+∠DCB=180°,∴AB∥CD,∵AB=PC,BP=DC,∴△ABP≌△PCD,∴PA=PD,∠APD=∠PDC,∵∠PDC+∠DPC=90°,∴∠APB+∠DPC=90°,∴∠APD=90°,∴△APD是等腰直角三角形,∴∠ADP=45°,∵∠DFE=45°,∴∠ADP=∠DFE,∴AD∥BE,∴四边形ABED是平行四边形.(2)∵∠PGF=∠PAD=45°,∠PFG=∠ADP=45°,∴△PFG,△FGQ都是等腰直角三角形,∴四边形PFQG是正方形,∵∠AGF=135°,∠QFG=∠PFG=45°,∴∠AGF+∠QFG=180°,∴AG∥QF,∵AQ∥FG,∴四边形AGFQ是平行四边形,同法可证,四边形QGFD是平行四边形,25.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值.(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?【解答】解:(1)根据题意得:=,解得:a=150,经检验,a是原分式方程的解.答:表中a的值为150.(2)设购进餐桌x张,则购进餐椅(5x+20)张,根据题意得:x+5x+20≤200,解得:x≤30.设销售利润为y元,根据题意得:y=[500﹣150﹣4×(150﹣110)]×x+(270﹣150)×x+[70﹣(150﹣110)]×(5x+20﹣4×x)=245x+600.∵k=245>0,∴当x=30时,y取最大值,最大值为7950.答:当购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.26.在菱形ABCD中,点Q为AB边上一点,点F为BC边上一点连接DQ、DF和QF.(1)如图1,若∠ADQ=∠FDQ,∠FQD=90°,求证:AQ=BQ;(2)如图2,在(1)的条件下,∠BAD=120°,对角线AC、BD相交于点P,以点P为顶点作∠MPN=60°,PM与AB交于点M,PN与AD交于点N,求证:DN+QM=AB;(3)如图3,在(1)(2)的条件下,延长NP交BC于点E,延长CN到点K,使CK=CA,连接AK并延长和CD的延长线交于点T,若AM:DN=1:5,S四边形MBEP=12,求线段DT 的长.【解答】证明:(1)如图1,分别延长FQ、DA交于L,∵∠ADQ=∠FDQ,DQ=DQ,∠FQD=∠LQD=90°,∴△FQD≌△LQD(ASA),∴FQ=LQ,(1分)∵菱形ABCD,∴LD∥BF,∴∠ALQ=∠BFQ,∠LAQ=∠FBQ,(2分)∴△ALQ≌△BFQ,∴AQ=BQ;(2)如图2,连接QP,∵菱形ABCD,∴∠BAP=∠DAP,PA=PC,AC⊥BD,(4分)∴∠APB=∠APD=90°,∵∠BAD=120°,∴∠BAP=∠DAP=60°,∴∠ABP=30°,∴PA=AB,∵AQ=BQ,∴PQ=AB,∴PA=PQ,(5分)∴△APQ是等边三角形,∴∠APQ=∠PQA=60°,∵∠MPN=60°,∴∠APQ=∠MPN=60°,∴∠QPM=∠APN,∵∠PQM=∠PAN=60°,∴△PQM≌△PAN(ASA),∴QM=AN,∵AB=AD=DN+AN,∴AB=DN+QM;(6分)(3)解:如图3,过点M作MG⊥AC于G,过点E作EH⊥AC于H,设AM=a,∵AM:DN=1:5,∴DN=5a,由(2)知:AB=DN+QM,∵AQ=AB,QM=AQ﹣AM,∴5a+AB﹣a=AB,AB=8a,∵菱形ABCD,∴AD∥BC,∴∠ABC+∠BAD=180°,∵∠BAD=120°,∴∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=8a,∴AN=3a,∵∠APN=∠CPE,AP=CP,∠DAC=∠BCA=60°,∴△PCE≌△PAN(ASA),∴CE=AN=3a,Rt△BPC中,∠CBP=30°,BC=8a,∴BP=4a,同理MG=a,EH=a,∵S四边形MBEP=S△ABC﹣S△APM﹣S△CPE,∴﹣﹣=12,∴a2=1,a=1(a=﹣1舍去),∴AM=1,AN=3,DN=5,CD=8,过C作CI⊥AD于I,∴ID==,∴NI=ND﹣ID=5﹣4=1,在Rt△CID中,CD2=DI2+CI2,∴CI2=CD2﹣ID2=82﹣42=48,在Rt△ICN中,CN2=NI2+CI2,∴CN2=1+48=49,∴CN=7,(9分)在CD上截取CS,使CS=DN=5,连接AS,∴AN=SD=3,∵∠ACS=∠CDN=60°,AC=CD,∴△ACS≌△CDN(SAS),∴∠CAS=∠DCN,SA=NC=7,∵CA=CK,∴∠CAK=∠CKA,∴∠SAK=∠KTC,∴SA=ST=7,∴DT=7﹣3=4.27.在平面直角坐标系中,点O为坐标原点,点B和点C分别是x轴的正半轴和y轴的正半轴上的两点,且OB:BC=1:,直线BC的解析式为y=﹣kx+6k(k≠0).(1)如图1,求点C的坐标;(2)如图2,点D为OB中点,点E为OC中点,点F在y轴的负半轴上,点A是射线FD 上的第一象限的点,连接AE、ED,若FD=DA,且S△AED=,求点A的坐标;(3)如图3,在(2)的条件下,点P在线段OB上,点Q在线段OC的延长线上,CQ=BP,连接PQ与BC交于点M,连接AM并延长AM到点N,连接QN、AP、AB和NP,若∠QPA ﹣∠NQO=∠NQP﹣∠PAB,NP=2,求直线PQ的解析式.【解答】解:(1)令y=0,则﹣kx+6k=0,∵k≠0,∴x=6,∴B(6,0),∴OB=6,∵OB:BC=1:,∴BC=6,在Rt△BOC中,OB2+OC2=BC2,∴OC=6,∴C(0,6);(2)如图2,连接AB,过点A作AH⊥y轴于H,∵FD=DA,OD=BD,∠ODF=∠BDA,∴△FDO≌△ADB,∴∠FOD=∠ABD=90°,OF=AB,∴AB⊥x轴,∴点A的横坐标为6,∴S△AED=S△AEF﹣S△DEF=•AH﹣EF•OD=EF(AH﹣OD)=EF•BD,∵S△AED=,BD=3,∴EF=9,∵EO=3,∴OF=6,∴BA=6,∴A(6,6);(3)如图3,过点P作PT∥y轴,交BC于T,连接AQ,AC,∴∠MPT=∠MQC,∵AB∥OC,AB=OC,∴四边形ACOB是平行四边形,∵∠COB=90°,OB=OC,∴平行四边形ACOB是正方形,∴∠ACO=90°,∴∠ACQ=90°,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠PBT=∠PTB=45°,∴PT=PB=CQ,∵∠PMT=∠QMC,∴△PTM≌△QCM,∴PM=QM,∵BA∥y轴,PT∥y轴,∴AB∥PT,∴∠BAP=∠TPA,∵∠QPA﹣∠NQO=∠NQP﹣∠PAB,∴∠QPT+∠TPA﹣∠NQO=∠NQO+∠OQP﹣∠PAB,∴∠TPA=∠NQO,∴∠NQP=∠APQ,∵∠NMQ=∠AMP,∴△NMQ≌△AMP,∴NM=AM,∵MQ=MP,∴四边形QNPA是平行四边形,∵AC=AB,∠QCA=∠PBA=90°,CQ=BP,∴△QCA≌△PBA,∴AQ=AP,∠QAC=∠PAB,∴∠QAP=∠CAB=90°,∴▱QNPA是正方形,∴NP=AP=2,在Rt△ABP中,AP2=AB2+PB2,∴PB=2,∴OP=OB﹣PB=4,OQ=OC+QC=8,∴P(4,0),Q(0,8),∴直线PQ的解析式y=﹣2x+8.。
2019-2020学年江苏省无锡市八年级(下)期末数学试卷 (解析版)
2019-2020学年江苏省无锡市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥52.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为.13.(3分)若1<x<3,则化简+|x﹣3|=.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.20.(8分)(1)计算:+;(2)解方程:﹣5=.21.(6分)先化简,再求值:,其中a=﹣2,b=1.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为;(3)请将条形统计图补充完整.24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.2019-2020学年江苏省无锡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵二次根式有意义,∴x﹣5≥0,解得:x≥5.故选:D.2.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、射击一次,中靶,属于随机事件,不合题意;B、明天会下雨,属于随机事件,不合题意;C、太阳从东边升起,属于必然事件,符合题意;D、公鸡下蛋,属于不可能事件,不合题意;故选:C.3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义判断即可.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意;故选:A.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行【分析】根据平行四边形的性质和菱形的性质对各选项进行判断即可.【解答】解:A、菱形、平行四边形的对角线互相平分,故A选项不符合题意;B、菱形、平行四边形的两组对角分别相等,故B选项不符合题意;C、菱形的对角线互相垂直平分,平行四边形的对角线互相平分,故C选项符合题意;D、菱形、平行四边形的两组对边分别平行,故D选项不符合题意;故选:C.5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据函数的解析式和反比例函数的性质得出函数y=﹣的图象,在每个象限内,y随x的增大而增大,再比较即可.【解答】解:∵y=﹣中年k=﹣3<0,∴函数y=﹣的图象,在每个象限内,y随x的增大而增大,∵点(2,y1)(4,y2)都在函数y=﹣的图象上,2<4,∴y1<y2,故选:B.6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B、其中的每名八年级学生每天做家庭作业所用的时间是个体,故B符合题意;C、从中抽取的1000名学生每天做家庭作业所用的时间是总体的一个样本,故C不符合题意;D、样本容量是1000,故D不符合题意;故选:B.7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.【分析】分k>0及k<0两种情况考虑,根据一次函数图象与系数的关系、反比例函数的图象对照四个选项即可得出结论.【解答】解:当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴A、C、D不符合题意,B符合题意;故选:B.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,进而可得出OA,OB 的长,由四边形ABCD为矩形可得出∠ABC=90°,结合同角的余角相等可得出∠OBC =∠OAB,结合∠BOC=∠AOB=90°可得出△BOC∽△AOB,利用相似三角形的性质可求出OC的长,进而可得出点C的坐标,再利用矩形的性质(对角线互相平分),即可求出点D的坐标.【解答】解:当x=0时,y=﹣×0+3=3,∴点B的坐标为(0,3),OB=3;当y=0时,﹣x+3=0,解得:x=4,∴点A的坐标为(4,0),OA=4.∵四边形ABCD为矩形,∴∠ABC=90°.∵∠OAB+∠OBA=90°,∠OBA+∠OBC=90°,∴∠OBC=∠OAB,又∵∠BOC=∠AOB=90°,∴△BOC∽△AOB,∴=,即=,∴OC=,∴点C的坐标为(﹣,0).又∵四边形ABCD为矩形,A(4,0),B(0,3),C(﹣,0),∴点D的坐标为(4﹣﹣0,0+0﹣3),即(,﹣3).故选:D.10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2【分析】设P(0,m),则OP=m,通过证得△AOP≌△PMQ求得Q的坐标,然后根据勾股定理得到BQ=,即可求得当m=1时,BQ有最小值3.【解答】解:∵A(2,0),∴OA=2,设P(0,m),则OP=m,作QM⊥y轴于M,∵∠APQ=90°,∴∠OAP+∠APO=∠APO+∠QPM,∴∠OAP=∠QPM,∵∠AOP=∠PMQ=90°,P A=PQ,∴△AOP≌△PMQ(AAS),∴MQ=OP=m,PM=OA=2,∴Q(m,m+2),∵B(4,0),∴BQ==,∴当m=1时,BQ有最小值3,故选:A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为0.2.【分析】首先计算出第4组的频数,然后再计算出第4组的频率即可.【解答】解:第4组的频数为:40﹣6﹣12﹣14=8,频率为:=0.2,故答案为:0.2.13.(3分)若1<x<3,则化简+|x﹣3|=2.【分析】直接利用二次根式的性质结合绝对值的性质化简得出答案.【解答】解:∵1<x<3,∴+|x﹣3|=x﹣1+3﹣x=2.故答案为:2.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为2.5.【分析】连接BD,由矩形的性质得CD=AB=3,BC=AD=4,∠C=90°,由勾股定理得BD=5,证MN是△BCD的中位线,由三角形中位线定理即可得出答案.【解答】解:连接BD,如图:∵四边形ABCD是矩形,∴CD=AB=3,BC=AD=4,∠C=90°,∴BD===5,∵M、N分别为BC、CD的中点,∴MN是△BCD的中位线,∴MN=BD=2.5;故答案为:2.5.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为4.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE=.故答案为:4.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为70°.【分析】直接利用等腰三角形的性质结合旋转的性质得出∠BAD=∠CBE=20°,进而利用三角形的外角得出答案.【解答】解:∵AB=AC,∠C═50°,∴∠ABC=∠C=50°,∠BAC=80°,∵将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,DE恰好经过点A,∴BD=AB,∴∠D=∠BAD=∠BAC=80°,∴∠BAD=∠CBE=20°,∴∠AFB=∠CBF+∠C=20°+50°=70°.故答案为:70°.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是x<0或1<x<5.【分析】根据k1x+b﹣<0,则反比例函数大于一次函数,进而结合图象得出答案.【解答】解:如图所示:关于x的不等式k1x+b﹣<0的解集是:x<0或1<x<5.故答案为:x<0或1<x<5.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为15.【分析】过M点作MN⊥BE,交BC于点N,设BC=x,根据折叠的性质,结合矩形的性质,通过证明△EMD≌△NEC可表示AM=x﹣3,BM=x﹣2,再根据勾股定理列式计算即可求解.【解答】解:过M点作MN⊥BE,交BC于点N,由折叠可知:△MNE和△BMN均为等腰三角形,∴BM=BN,ME=NE,∵∠MEB=45°,∴∠MEN=90°,∴∠MED+∠NEC=90°,在矩形ABCD中,∠D=∠C=90°,CD=AB=5,∴∠MED+∠EMD=90°,∴∠EMD=∠NEC,∴△EMD≌△NEC,∴DE=CN,MD=EC,∵DE=2,∴CN=2,MD=EC=3,设BC=x,则AD=x,∴AM=x﹣3,BM=BN=x﹣2,在Rt△ABM中,AB2+AM2=BM2,即52+(x﹣3)2=(x﹣2)2,解得x=15,故BC的长为15.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式进而计算得出答案.【解答】解:(1)原式=5﹣3+=2+2=4;(2)原式=(2)2﹣()2﹣2=8﹣3﹣2=3.20.(8分)(1)计算:+;(2)解方程:﹣5=.【分析】(1)先通分,再因式分解,约分后即可求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=+==;(2)﹣5=,去分母得:4+x﹣5﹣(x﹣1)=2x,解得:x=,经检验,x=是分式方程的解.21.(6分)先化简,再求值:,其中a=﹣2,b=1.【分析】首先算括号里面的加法(通分),再算除法,把除法变成乘法(除以一个数等于乘以它的倒数)再把分式的分子、分母分解因式约分,化成最简分式即可.【解答】解:,=,=,=,当a=﹣2,b=1时,原式=.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.【分析】(1)根据已知条件推出四边形ABCD是平行四边形,求得AO=AC,BO=BD,等量代换得到AC=BD,于是得到四边形ABCD是矩形;(2)连接OE,设EC与BD交于F,根据垂直的定义得到∠CFD=90°,根据平行四边形的性质得到AE∥BO,根据直角三角形的性质得到EO=AO,推出△AEO是等边三角形,于是得到结论.【解答】(1)证明:∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)解:连接OE,设EC与BD交于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了580名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为108°;(3)请将条形统计图补充完整.【分析】(1)由“优秀”的人数及其所占百分比可得调查的总人数;(2)由360°乘以学习效果“良好”的学生人数所占的比例即可;(3)求出“一般”的学生人数为82名,从而补全条形统计图.【解答】解:(1)这次活动共抽查的学生人数为232÷40%=580(名);故答案为:580;(2)在扇形统计图中,“良好”所对应的圆心角的度数为360°×=108°;故答案为:108°;(3)“一般”的学生人数为580﹣92﹣174﹣232=82(名),将条形统计图补充完整如图:24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?【分析】(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得等量关系:第一次购进大浮杨梅数量×3=第二次购进大浮杨梅数量,根据等量关系,列出方程,再解即可;(2)首先计算出两次购进大浮杨梅的数量,然后再计算卖完后的总收入,然后再减去两次的总进价即可.【解答】解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.【分析】(1)把点A坐标代入反比例函数y=求得k的值,将点B坐标代入反比例函数的解析式求出a的值即可;(2)由题意得点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE ⊥EF,BF⊥EF,则E(2,m),F(2,2),由S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD得出方程,解方程即可.【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴k=2×4=8,∵B(4,a)在反比例函数y=的图象上,∴a==2;(2)∵A(2,4),B(4,2),点C的横坐标为8,∴点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE⊥EF,BF⊥EF,如图所示:则E(2,m),F(2,2),∵▱ABCD的面积为10,∴S△ABD=×10=5,∵S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD,或S梯形DEFB+S△DEA﹣S△AFB=S△ABD,∴(2+4)(m﹣2)﹣×4×(m﹣4)﹣×2×2=5,或(2+4)(m﹣2)+×4×(4﹣m)﹣×2×2=5,解得:m=5,∴点D的坐标为:(6,5).26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=5时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.【分析】(1)根据当∠B'PC=90°时,∠BPB'=90°,即可得到△BEP为等腰直角三角形,进而得到BP=BE=5cm,再根据点P从点B出发以每秒1cm的速度沿射线BC方向运动,即可得到t的值;(2)过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,进而得出四边形ABNM是矩形,四边形AEHM是矩形.再分两种情况进行讨论:①如图1,若点B'在AD下方;②如图2,若点B'在AD上方,分别根据Rt△PB'N中,B'P2=PN2+B'N2,即可得到t的值为秒或15秒.【解答】解:(1)∵正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,∴BE=5cm,当∠B'PC=90°时,∠BPB'=90°,∴由折叠可得,∠BPE=∠BPB'=45°,又∵∠B=90°,∴∠BEP=45°,∴BP=BE=5cm,∵点P从点B出发以每秒1cm的速度沿射线BC方向运动,∴t=5÷1=5(秒),故答案为:5;(2)存在,过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,∵AD∥BC,MN∥AB,∴四边形ABNM是平行四边形,又∵∠A=90°,∴四边形ABNM是矩形,同理可得:四边形AEHM是矩形.①如图1,若点B'在AD下方,则B'M=3cm,B'N=3cm,∵MH=AE=1cm,∴B'H=2cm,由折叠可得,EB'=EB=5cm,∴Rt△EB'H中,EH==(cm),∴BN=AM=EH=cm,∵BP=t,∴PB'=t,PN=﹣t,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(﹣t)2+32,解得t=.②如图2,若点B'在AD上方,则B'M=3cm,B'N=9cm,同理可得,EH=3cm,∵BP=t,∴B'P=t,PN=t﹣3,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(t﹣3)2+92,解得t=15.综上所述,t的值为秒或15秒.。
2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)
2019-2020学年安徽六安市霍邱县八年级第二学期期末数学试卷一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣22.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3 6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.57.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,78.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=120009.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是.12.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于.三、解答题(本大题共有9小题,共计90分)15.计算:.16.解方程:x2﹣6x﹣4=0.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为,BC的长为.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明其正确性.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.参考答案一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】二次根式有意义,被开方数是非负数.解:依题意,得x﹣2≥0,解得,x≥2.故选:A.2.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.9【分析】根据多边形的内角和公式及外角的特征计算.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.5.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3【分析】求出三角形的各个内角,利用直角三角形30度角的性质解决问题即可.解:设△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,设BC=a,则AB=2a,AC=a,∴BC:AC:AB=1::2,故选:C.6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.5【分析】由矩形的性质得出OA=OB=4,证明△AOB是等边三角形,得出AB=OA即可.解:∵四边形ABCD是矩形,∴OA=AC=5,OB=OD,AC=BD=10,∴OA=OB=5,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=5;故选:A.7.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.8.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.9.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选:D.10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.解:.故答案为:312.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是4.【分析】根据方程的系数结合两根之和等于3,即可得出关于m的一元一次方程,解之即可得出m的值.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是【分析】根据30°角所对的直角边等于斜边的一半,可知平行四边形的高等于矩形的宽的一半,由于底不变,所以平行四边形A'B'C'D'的面积是矩形面积的一半.解:由题意可知,平行四边形A'B'C'D'的底边A'D'与矩形的长AD相等,平行四边形A'B'C'D'的高变为矩形的宽的一半,所以平行四边形A'B'C'D'的面积是矩形面积的一半.所以平行四边形A'B'C'D'的面积是.故答案为:.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于5或.【分析】先利用勾股定理求出AB的长,再分①AD=AB;②AD=BD两种情况进行讨论即可得出结论.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB===13.∵△ABD是以AD为其中一腰的等腰三角形,∴分两种情况:①当AD=AB时,∵AC⊥BD,∴DC=BC=5;②当AD=BD时,设DC=x,则AD=BD=5+x.∵Rt△ADC中,∠ACD=90°,∴DC2+AC2=AD2,即x2+122=(5+x)2,解得x=.综上所述,线段DC的长等于5或.故答案为:5或.三、解答题(本大题共有9小题,共计90分)15.计算:.【分析】首先利用乘法分配律计算乘法,然后化简,再算加减即可.解:原式=+﹣4=2+﹣4=﹣2+.16.解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.【分析】首先利用根的判别式确定m的取值范围,再化简二次根式,利用绝对值的性质计算即可.解:∵x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,∴△=4(m﹣1)2﹣4(m2+5)≥0,即﹣8m﹣16≥0,解得:m<﹣2,则=|1﹣m|+|m+2|=1﹣m﹣m﹣2=﹣2m﹣1.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为5,BC的长为2.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.(3)利用勾股定理的逆定理证明解:(1)由题意,AB==5,BC==2,故答案为5,.(2)如图所示.(3)由勾股定理得,又∵AB=5,,∴AC2+BC2=AB2,∴∠ACB=90°,由勾股定理逆定理得△ACB为以AC和BC为直角边的直角三角形,∵,又∵所作的平行四边形的面积为△ACB面积的两倍,∴S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:5+1;(2)写出你猜想的第n个等式:(+1)(n+1﹣)=n+1(用含n的等式表示),并证明其正确性.【分析】(1)根据所给等式可得答案;(2)首先写出第n个等式,然后再利用二次根式的乘法进行计算即可.【解答】(1)解:(+1)(6﹣)=5+1,故答案为:5+1;(2)(+1)(n+1﹣)=n+1,证明:∵=∴,故答案为:(+1)(n+1﹣)=n+1.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.【分析】(1)优秀率等于100分以上(含100分)的人数除以总人数;(2)按大小顺序排列,中间一个数或两个数的平均数为中位数;(3)由方差的公式进行计算即可;(4)根据比赛成绩的优秀率高,中位数大,方差小,综合评定,则甲班踢毽子水平较好.解:(1)甲班的优秀率为:3÷5=0.6=60%,乙班的优秀率为:2÷5=0.4=40%;(2)甲班5名学生比赛成绩的中位数是100个乙班5名学生比赛成绩的中位数是97个;(3)甲班的平均分为,乙班的平均分为==100,甲班在这次比赛中的方差为:,乙班在这次比赛中的方差为:∴S甲2<S乙2;(4)甲班定为冠军.因为甲班5名学生的比赛成绩的优秀率比乙班高,中位数比乙班大,方差比乙班小,综合评定甲班踢毽子水平较好.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.【分析】(1)由该商品的售价结合售价每降低1元就会多售出3件,即可得出每天售出该工艺品的件数;(2)①根据总利润=每件工艺品的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;②根据每天通过销售该工艺品面捐款的数额=0.5×每天销售的数量,即可得出结论.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品面捐款的数额为45元.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是②(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.【分析】(1)由矩形的性质可求解;(2)由三角形中位线定理可得EH=BD=FG,EF=AC=GH,由“对等四边形”的性质可得AC=BD,可得EH=FG=EF=GH,可得结论;(3)先证四边形EFGH是正方形,边长为,可得EF⊥FG,EF=FG=,由三角形中位线定理解得BD⊥AC,BD=AC=,可求解.解:(1)∵矩形的对角线相等,∴矩形一定是“对等四边形”,故答案为:②;(2)证明:连接AC、BD,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=GH,∵四边形ABCD是“对等四边形”,∴AC=BD,∴EH=FG=EF=GH,∴四边形EFGH是菱形;(3)连接EG,HF,∵四边形EFGH是菱形,∴GE与HF互相垂直平分,又∵四边形EFGH是“对等四边形”,且对角线长为2,∴GE=HF=2,∴四边形EFGH是正方形,边长为,∴EF⊥FG,EF=FG=,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴FG∥BD,FG=BD,EF∥AC,EF=AC,∴BD⊥AC,BD=AC=,∴四边形ABCD的面积等于AC×BD=4.。
江苏省扬州市仪征市2019-2020学年八年级上学期期末数学试题(解析版)
2019-2020 年度第一学期期末调研试题八年级数学一、选择题1.下列大学的校徽图案是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.在下列各数中,无理数是( )B. 3πC. 227 【答案】B【解析】【分析】根据无理数的定义进行判断即可.,2273π是无理数,故选B.【点睛】本题主要考查无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.3.下列四组线段中,可以构成直角三角形的是()A. 2,3,4B. 3,4,5C. 4,5,6D. 1,,3【答案】B【解析】【分析】根据勾股定理逆定理进行分析.【详解】A. 22+32≠42,,,构成直角三角形;B. 32+42=52 ,可以构成直角三角形;C. 42+52≠62,,,构成直角三角形;D. 122≠32,,,构成直角三角形.故选B【点睛】本题考核知识点:勾股定理逆定理.解题关键点:熟记勾股定理逆定理.4.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C .【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.5.在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为( )A. 1B. 1-C. ±1D. 无法确定【答案】A【解析】【分析】 先根据正比例函数的定义列出关于k 的方程组,求出k 的值即可.【详解】Q 函数()2y k 1x k 1=++-是正比例函数, 210k 10k +≠⎧∴⎨-=⎩, 解得k 1=,故选A .【点睛】本题考查的是正比例函数的定义,正确把握“形如(0)=y kx k =≠的函数叫正比例函数”是解题的关键.6.已知等腰三角形的周长为 17cm ,一边长为 5cm ,则它的腰长为( )A. 5cmB. 6cmC. 5.5cm 或 5cmD. 5cm 或 6cm【答案】D【解析】【分析】分为两种情况:5cm 是等腰三角形的底边或5cm 是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(17-5)÷2=6(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17-5×2=7(cm),能够组成三角形.故该等腰三角形的腰长为:6cm或5cm.故选:D.【点睛】本题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.7.已知:点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)2019的值为()A. 0B. 1C. ﹣1D. 32019【答案】B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案.【详解】解:∵点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,∴m﹣1=2,n﹣1=﹣3,∴m=3,n=﹣2,∵(m+n)2019=1,故选:B.【点睛】本题考查坐标对称点的特性,熟记知识点是解题关键.8.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组3243x y ax y a-=-⎧⎨+=-+⎩的解(a 为任意实数),则当a 变化时,点P 一定不会经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】首先用消元法消去a,得到y与x的函数关系式,然后根据一次函数的图象及性质即可得出结论.【详解】解:3243x y a x y a -=-⎧⎨+=-+⎩①②用②×2+①,得52x y +=∴52y x =-+∵50,20-<>∴52y x =-+过一、二、四象限,不过第三象限∴点P 一定不会经过第三象限,故选:C .【点睛】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a ,求出y 与x 的函数关系式.二、填空题9.将数字 1657900 精确到万位且用科学记数法表示的结果为__________.【答案】1.66×106【解析】【分析】用科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,再对千位数的数字进行四舍五入即可.【详解】解:1657900=1.6579×106≈1.66×106.故答案为:1.66×106.【点睛】本题考查了科学记数法表示较大的数的方法,准确确定a 与n 值是关键.10.在平面直角坐标系中,把直线 y =-2x +3 沿 y 轴向上平移 3 个单位长度后,得到的直线函数关系式为__________.【答案】y=-2x+6【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+3=-2x+6.故答案为:y=-2x+6.【点睛】本题考查了一次函数图形的平移变换和函数解析式之间的关系,掌握一次函数的规律:左加右减,上加下减是解决此题的关键.11.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O 为圆心,长方形的对角线OB 长为半径作弧,交数轴正半轴于点A ,则点A 表示的实数是_______.【解析】【分析】根据勾股定理求出OB ,根据实数与数轴的关系解答.【详解】在Rt △OAB 中,,∴点A,【点睛】本题考查的是勾股定理,实数与数轴,掌握如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.12.与0.5_____0.5.(填“,”,“=”,“,”, 【答案】>【解析】10.52-==20>0>0.5> ,故答案为>. 13.如图,直线y =x +1与直线y =mx -n 相交于点M (1,b ),则关于x ,y 的方程组1x y mx y n +⎧⎨-⎩==的解为:________.【答案】12x y ==⎧⎨⎩【解析】【分析】首先利用待定系数法求出b的值,进而得到M点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】∵直线y=x+1经过点M(1,b),∴b=1+1,解得b=2,∴M(1,2),∴关于x的方程组1x ymx y n+⎧⎨-⎩==的解为12xy==⎧⎨⎩,故答案为12 xy==⎧⎨⎩.【点睛】此题考查二元一次方程组与一次函数的关系,解题关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.【答案】3【解析】【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×12ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【点睛】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.15.如图,在△ABC 中,AB=AC=12,BC=8,BE 是高,且点D、F 分别是边AB、BC 的中点,则△DEF 的周长等于_____________________.【答案】16【解析】【分析】根据三角形中位线定理分别求出DF,再根据直角三角形斜边的中线等于斜边的一半计算出DE、EF即可.【详解】解:点D、F分别是边AB、BC的中点,∴DF=12AC=6∵BE 是高∴∠BEC=∠BEA=90°∴DE=12AB=6,EF=12BC=4∴△DEF的周长=DE+DF+EF=16故答案为:16.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半和三角形中位线的性质是解题的关键.16.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________【答案】80°【解析】【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的度数.【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.17.如图,已知ABC V中,AB AC 16cm ==,B C ∠∠=,BC 10cm =,点D 为AB 的中点,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若当BPDV 与CQP V全等时,则点Q 运动速度可能为____厘米/秒.【答案】2或3.2【解析】【分析】B C ∠∠=,表示出BD 、BP 、PC 、CQ ,再根据全等三角形对应边相等,分①BD 、PC 是对应边,②BD 与CQ 是对应边两种情况讨论求解即可.【详解】AB 16cm =Q ,BC 10cm =,点D 为AB 的中点,1BD 168cm 2∴=⨯=, 设点P 、Q 的运动时间为t ,则BP 2t =,()PC 102t cm =-①当BD PC =时,102t 8-=,解得:t 1=,则BP CQ 2==,故点Q 的运动速度为:212(÷=厘米/秒);②当BP PC =时,BC 10cm =Q ,BP PC 5cm ∴==,t 52 2.5(∴=÷=秒).故点Q 的运动速度为8 2.5 3.2(÷=厘米/秒).故答案为2或3.2厘米/秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.18.已知函数 y 1=x +2,y 2=4x -4,y 3=-12x +1,若无论 x 取何值,y 总取 y 1,y 2,y 3 中的最大值,则 y 的最小值是__________. 【答案】23【解析】分析】利用两直线相交的问题,分别求出三条直线两两相交的交点,然后观察函数图象,利用一次函数的性质易得:当x≤-23时,y 3最大;当-23≤x ≤2时,y 1最大;当x≥2时,y 2最大,于是可得满足条件的y 的最小值. 【详解】解:y 1=x +2,y 2=4x -4,y 3=-12x +1,如下图所示:令y 1=y 2, 得x+2=4x -4解得:x=2,代入解得y=4∴直线y 1=x+2与直线y 2=4x -4的交点坐标为(2,4),令y 2= y 3,得4x -4=-12x +1 解得:x=109 代入解得: y=49∴直线y 2=4x -4与直线y 3=-12x +1的交点坐标为(104,99), 令y 1=y 3,得x+2=-12x +1 解得:x=23- 代入解得: y=23 ∴直线y 1=x+2与直线y 3=-12x +1的交点坐标为(2233-,), 由图可知:①当x≤-23时,y 3最大 ∴此时y= y 3,而此时y 3的最小值为23,即此时y 的最小值为23; ②当-23≤x ≤2时,y 1最大 ∴此时y= y 1,而此时y 1的最小值为23,即此时y 的最小值为23; ③当x≥2时,y 2最大,,∴此时y= y2,而此时y2的最小值为4,即此时y的最小值为4综上所述:y的最小值为23.故答案为:23.【点睛】本题考查了一次函数的交点问题和利用一次函数的图象解决问题,掌握一次函数的交点求法和学会观察一次函数的图象是解决此题的关键.三、解答题19.计算:(1)计算:(-1)2020 3-+(2)求x 的值:4x2-25=0【答案】(1)0;(2)x1=52,x2=-52.【解析】【分析】(1)先化简乘方、根式和绝对值,再利用实数的运算顺序求解即可;(2)利用直接开平方法求解即可.【详解】解:(1)(-1)2020 3-+=1+4-3-2=0;(2)∵4x2-25=0∴4x2=25,∴x2=25 4,∴x=±5 2 ,∴x1=52,x2=-52.【点睛】本题考查了实数是混合运算和解含平方的方程,熟练掌握运算法则及平方根的定义是解题的关键.20.如图,已知点B、F、C、E 在一条直线上,BF = CE,AC = DF,且AC∥DF.求证:∠B =∠E.【答案】见解析【解析】【分析】先证出BC=EF ,∠ACB=∠DFE ,再证明△ACB ≌△DFE ,得出对应角相等即可.【详解】证明:∵BF=CE ,∴BC=EF ,∵AC ∥DF ,∴∠ACB=∠DFE ,在△ACB 和△DFE 中,BC EF ACB DFE AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DFE (SAS ),∴∠B=∠E .【点睛】本题考查了全等三角形的判定与性质、平行线的性质,熟练掌握全等三角形的判定方法,证出三角形全等是解题的关键.21.已知 2x -1 的算术平方根是 3,12y+3 的立方根是-1,求代数式 2x+y 的平方根 【答案】【解析】【分析】 利用算术平方根、立方根定义求出x 与y 的值,进而求出2x+y 的值,即可求出平方根.【详解】解:∵2x -1的算术平方根为3,∴2x -1=9,解得:x=5,,∵12y+3 的立方根是-1,∴12y+3=-1,解得:y=-8,∴2x+y=2×5-8=2,∴2x+y的平方根是【点睛】本题考查了立方根,算术平方根,以及平方根,熟练掌握各自的性质是解题的关键.22.已知y 与x﹣2 成正比例,且当x =﹣4 时,y =﹣3.(1)求y 与x 的函数关系式;(2)若点M(5.1,m)、N(﹣3.9,n)在此函数图像上,判断m 与n 的大小关系.【答案】(1)y=12x-1;(2)m>n.【解析】【分析】(1)首先根据题意设出关系式:y=k(x-2),再利用待定系数法把x=-4,y=-3代入,可得到k的值,再把k 的值代入所设的关系式中,可得到答案;(2)利用一次函数图象上点的坐标特征可求出m,n的值,比较后即可得出结论.【详解】解:∵y与x-2成正比例,∴关系式设为:y=k(x-2),∵x=-4时,y=-3,∴-3=k(-4-2),解得:k=12,∴y与x的函数关系式为:y=12(x-2)=12x-1.故答案为:y=12x-1;(2)∵点M(5.1,m)、N(﹣3.9,n)是一次函数y=12x-1图象上的两个点,∴m=12×5.1-1=1.55,n=12×(-3.9)-1=-2.95.∵1.55>-2.95,∴m>n.【点睛】本题考查了待定系数法求一次函数关系式和一次函数图象上点的坐标特征,关键是设出关系式,代入x,y的值求k是解题的关键.23.如图,在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1).(1)请在如图所示的网格内画出平面直角坐标系,并写出C 点坐标;(2)先将△ABC 沿x 轴翻折,再沿x 轴向右平移4 个单位长度后得到△A1B1C1,请在网格内画出△A1B1C1;(3)在(2)的条件下,△ABC 的边AC 上一点M(a,b)的对应点M1的坐标是.(友情提醒:画图结果确定后请用黑色签字笔加黑)【答案】(1)图见解析; C(-1,3);(2)图见解析;(3) (a+4,-b).【解析】【分析】(1)根据A、B的坐标即可画出平面直角坐标系,进而得出点C的坐标;(2)依据轴对称的性质,即可得到△ABC关于x轴对称的图形,然后利用平移的性质得到△A1B1C1;(3)利用关于x轴对称的两点坐标关系和平移规律即可求出点M1的坐标.【详解】(1)根据点A(-3,5),故将A向右移动3个单位、向下移动5个单位,即可得到原点的位置,建立坐标系,如图所示平面直角坐标系即为所求,此时点C(-1,3);(2)根据题意,翻折和平移后得到△A1B1C1,如图所示△A1B1C1即为所求:(3)点M(a,b)关于x轴对称点为(a,-b),然后向右平移4个单位后的坐标为(a+4,-b)M1的坐标为(a+4,-b).【点睛】本题考查了轴对称和平移变换,熟练掌握轴对称和平移变换的性质是解题的关键.24.如图,将长方形ABCD 沿EF 折叠,使点D 与点B 重合.(1)若∠AEB=40°,求∠BFE 的度数;(2)若AB=6,AD=18,求CF 的长.【答案】(1)70°;(2)8.【解析】【分析】(1)依据平行线的性质可求得∠BFE=∠FED,然后依据翻折的性质可求得∠BEF=∠DEF,最后根据平角的定义可求得∠BFE的度数;(2)先依据翻折的性质得到CF=GF,AB=DC=BG=6,然后设CF=GF=x,然后在RT△BGF中,依据勾股定理列出关于x的方程求解即可.【详解】解:(1)∵AD∥BC,∴∠BFE=∠FED,由翻折的性质可知:∠BEF=∠DEF,∴∠BFE=∠FED=∠BEF∵∠FED+∠BEF+∠AEB=180°∴2∠BFE =180°-40°=140°,∴∠BFE=70°;(2)由翻折的性质可知CF=GF,AB=DC=BG=6,设CF=GF=x,则BF=18-x,在Rt△BGF中,依据勾股定理可知:BF2=BG2+GF2,即(18-x)2=62+x2,解得:x=8即CF=8【点睛】本题考查了翻折的性质及勾股定理,熟练掌握翻折的性质和利用勾股定理解直角三角形是解题的关键.25.某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(千克)的一次函数,且部分对应关系如下表所示.(1)求y 关于x 的函数关系式;(2)求旅客最多可免费携带行李的质量;(3)当行李费为3≤y≤10 时,可携带行李的质量x 的取值范围是.【答案】(1)y=15x-2;(2)10千克;(3)25≤x≤60.【解析】【分析】(1)利用待定系数法求一次函数解析式即可解答;(2)令y=0时求出x的值即可;(3)分别求出y=3时,x的值和y=10时,x的值,再利用一次函数的增减性即可求出x的取值范围.【详解】解:(1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=15,y=1;x=20,y=2分别代入y=kx+b,得1=15220k b k b+⎧⎨=+⎩, 解得:152k b ⎧=⎪⎨⎪=-⎩,∴函数表达式为y=15x -2, (2)将y=0代入y=15x -2,得0=15x -2, ∴x=10,答:旅客最多可免费携带行李的质量为10千克.(3)把y=3代入解析式,可得:x=25,把y=10代入解析式,可得:x=60, ∵15>0 ∴y 随x 的增大而增大所以可携带行李的质量x (kg )的取值范围是25≤x≤60,故答案为:25≤x≤60.【点睛】本题考查了一次函数的应用,掌握利用了待定系数法求一次函数解析式和已知函数值的取值范围求自变量的取值范围是解决此题的关键.26.请你用学习 “一次函数”时积累的经验和方法研究函数 y =1x +的图像和性质,并 解决问题. (1)按照下列步骤,画出函数 y =1x +的图像;①列表;②描点;③连线.(友情提醒:画图结果确定后请用黑色签字笔加黑)(2)观察图像,填空;①当 x 时,y 随 x 的增大而减小; 当 x 时,y 随 x 的增大而增大;②此函数有最 值(填“大”或“小”),其值是 ;(3)根据图像,不等式1x +> 12x +72的解集为 . 【答案】(1)见解析;(2)①<-1,> -1;②小,0;(3)x>5或x<-3.【解析】【分析】(1)描点画出图象解答即可;(2)根据函数的图象解答即可;(3)先画出两个函数的图象,再根据函数图象解答即可.【详解】(1)画函数图象如图:(2)由图象可得:①当x<-1时,y 随 x 的增大而减小; 当x>-1时,y 随 x 的增大而增大故答案为: <-1,> -1;②此函数有最小值,其值是0;故答案为: 小,0;(3)在同一直角坐标系画y=12x +72,①列表;②描点; ③连线.如图所示: 当x <-1时,y =11x x +=--联立11722y x y x =--⎧⎪⎨=+⎪⎩解得:32x y =-⎧⎨=⎩ 当x >-1时,y =11x x +=+联立11722y x y x =+⎧⎪⎨=+⎪⎩解得56x y =⎧⎨=⎩∴两函数图象的交点分别为(-3,2)和(5,6)根据图像,当y 1>y 2时,x>5或x<-3∴不等式1x +> 12x +72的解集为:x>5或x<-3. 【点睛】本题考查了函数与不等式的关系,函数的图象画法等知识点,掌握求函数图象的画法和一次函与不等式的关系是解决此题的关键.27.如图在△ABC 中,AB 、AC 边的垂直平分线相交于点 O ,分别交 BC 边于点 M 、N ,连接 AM ,AN .(1)若△AMN 的周长为 6,求 BC 的长;(2)若∠MON=30°,求∠MAN 的度数;(3)若∠MON=45°,BM=3,BC=12,求 MN 的长度.【答案】(1)6;(2)120°(3)5.【解析】分析】(1)根据垂直平分线的性质可得BM=AM ,CN=AN ,再根据三角形的周长即可求出BC ;(2)设射线OM 交AB 于E ,射线ON 交AC 于F ,根据四边形的内角和,即可求出∠EAF ,再根据三角形的内角和,即可求出∠B +∠C ,然后根据等边对等角即可求出∠MAB +∠NAC ,从而求出∠MAN ; (3)设射线OM 交AB 于E ,射线ON 交AC 于F ,根据四边形的内角和,即可求出∠EAF ,再根据三角形的内角和,即可求出∠B +∠C ,然后根据等边对等角即可求出∠MAB +∠NAC ,从而求出∠MAN ,设MN=x ,根据勾股定理列出方程求出x 即可. 【详解】解:(1)∵AB 、AC 边的垂直平分线相交于点 O ,分别交 BC 边于点 M 、N ,∴BM=AM ,CN=AN∵△AMN 的周长为 6,∴AM +AN +MN=6 ∴BC=BM +MN +CN= AM +MN +AN =6;(2)设射线OM 交AB 于E ,射线ON 交AC 于F ,【在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=150°∴∠B+∠C=180°-∠BAC=30°∵BM=AM,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=30°∴∠MAN=∠EAF-(∠MAB+∠NAC)=120°;(3)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=135°∴∠B+∠C=180°-∠BAC=45°∵BM=AM=3,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=45°∴∠MAN=∠EAF-(∠MAB+∠NAC)=90°设MN=x,则AN =CN=BC-BM-MN=9-x在Rt△AMN中,MN2=AM2+AN2即x2=32+(9-x)2解得:x=5即MN=5【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质和勾股定理,掌握垂直平分线的性质、等边对等角和用勾股定理解直角三角形是解决此题的关键.28.如图1 ,等腰直角三角形ABC 中,∠ACB=90°,CB=CA,直线DE 经过点C,过A 作AD⊥DE 于点D,过B 作BE⊥DE 于点E,则△BEC≌△CDA,我们称这种全等模型为“K 型全等”.(不需要证明)【模型应用】若一次函数y=kx+4(k≠0)的图像与x 轴、y 轴分别交于A、B 两点.(1)如图2,当k=-1 时,若点B 到经过原点的直线l 的距离BE 的长为3,求点A 到直线l 的距离AD 的长;(2)如图3,当k=-43时,点M 在第一象限内,若△ABM 是等腰直角三角形,求点M 的坐标;(3)当k 的取值变化时,点A 随之在x 轴上运动,将线段BA 绕点B 逆时针旋转90° 得到BQ,连接OQ,求OQ 长的最小值.【答案】(1;(2)点M的坐标为(7,3)或(4,7)或(72,72);(3)OQ的最小值为4.【解析】【分析】(1)先求出A、B两点的坐标,根据勾股定理即可求出OE的长,然后利用AAS证出△ADO≌△OEB,即可求出AD的长;(2)先求出A、B两点的坐标,根据等腰直角三角形的直角顶点分类讨论,分别画出对应的图形,利用AAS 证出对应的全等三角形即可分别求出点M的坐标;(3)根据k的取值范围分类讨论,分别画出对应的图形,设点A的坐标为(x,0),证出对应的全等三角形,利用勾股定理得出OQ2与x的函数关系式,利用平方的非负性从而求出OQ的最值.【详解】解:(1)根据题意可知:直线AB的解析式为y=-x+4当x=0时,y=4;当y=0时,x=4∴点A 的坐标为(4,0)点B 的坐标为(0,4)∴OA=BO=4根据勾股定理:OE= =∵∠ADO=∠OEB=∠AOB=90°∴∠AOD +∠OAD=90°,∠AOD +∠BOE=90°∴∠OAD=∠BOE在△ADO 和△OEB 中ADO OEB OAD BOE OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADO ≌△OEB∴(2)由题意可知:直线AB 的解析式为y=43-x+4 当x=0时,y=4;当y=0时,x=3∴点A 的坐标为(3,0)点B 的坐标为(0,4)∴OA=3,BO=4①当△ABM 是以∠BAM 为直角顶点的等腰直角三角形时,AM=AB ,过点M 作MN ⊥x 轴于N∵∠MNA=∠AOB=∠BAM=90°∴∠MAN +∠AMN=90°,∠MAN +∠BAO=90°∴∠AMN=∠BAO在△AMN 和△BAO 中MNA AOB AMN BAO AM BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMN ≌△BAO∴AN=BO=4,MN=AO=3∴ON=OA +AN=7∴此时点M 的坐标为(7,3);②当△ABM 是以∠ABM 为直角顶点的等腰直角三角形时,BM=AB ,过点M 作MN ⊥y 轴于N∵∠MNB=∠BOA=∠ABM=90°∴∠MBN +∠BMN=90°,∠MBN +∠ABO=90°∴∠BMN=∠ABO在△BMN 和△ABO 中MNB BOA BMN ABO BM AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BMN ≌△ABO∴BN=AO=3,MN=BO=4∴ON=OB +BN=7∴此时点M 的坐标为(4,7);③当△ABM 是以∠AMB 为直角顶点等腰直角三角形时,MA=MB ,过点M 作MN ⊥x 轴于N ,MD ⊥y 轴于D ,设点M 的坐标为(x ,y )∴MD =ON=x ,MN = OD =y ,∠MNA=∠MDB=∠BMA=∠DMN=90°∴BD=OB -OD=4-y ,AN=ON -OA=x -3,∠AMN +∠DMA=90°,∠BMD +∠DMA=90° ∴∠AMN=∠BMD在△AMN 和△BMD 中MNA MDB AMN BMD MA MB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMN ≌△BMD∴MN=MD ,AN=BD∴x=y ,x -3=4-y解得:x=y=72 ∴此时M 点的坐标为(72,72) 综上所述:点M 的坐标为(7,3)或(4,7)或(72,72). (3)①当k <0时,如图所示,过点Q 作QN ⊥y 轴,设点A 的坐标为(x ,0)该直线与x 轴交于正半轴,故x >0 的∴OB=4,OA=x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN +∠BQN=90°,∠QBN +∠ABO=90°∴∠BQN=∠ABO在△BQN 和△ABO 中QNB BOA BQN ABO BQ AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BQN ≌△ABO∴QN=OB=4,BN=OA=x∴ON=OB +BN=4+x在Rt △OQN 中,OQ 2=ON 2+QN 2=(4+x )2+42=(x +4)2+16,其中x >0∴OQ 2=(x +4)2+16>16②当k >0时,如图所示,过点Q 作QN ⊥y 轴,设点A 的坐标为(x ,0)该直线与x 轴交于负半轴,故x <∴OB=4,OA=-x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN +∠BQN=90°,∠QBN +∠ABO=90°∴∠BQN=∠ABO在△BQN 和△ABO 中QNB BOA BQN ABO BQ AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BQN ≌△ABO∴QN=OB=4,BN=OA=-x∴ON=OB -BN=4+x在Rt △OQN 中,OQ 2=ON 2+QN 2=(4+x )2+42=(x +4)2+16,其中x <0∴OQ 2=(x +4)2+16≥16(当x=-4时,取等号)综上所述:OQ 2的最小值为16∴OQ 的最小值为4.【点睛】此题考查是一次函数与图形的综合大题,难度系数较大,掌握全等三角形的判定及性质、等腰三角形的性质、勾股定理、平方的非负性和分类讨论的数学思想是解决此题的关键.。
2019-2020学年上海市嘉定区八年级下学期期末数学试题(解析版)
嘉定区2019学年第二学期八年级期末质量调研数学试卷(时间:90分钟,满分:100分)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出推理或计算的主要步骤.一、选择题:(本大题共6题,每题3分,满分18分)1.一次函数32y x =--的截距是()A.3- B.2- C.2 D.3【答案】B【解析】【分析】计算当x =0时对应的y 值即得答案.【详解】解:当x =0时,y =﹣2,所以一次函数32y x =--的截距是﹣2.故选:B .【点睛】本题考查了一次函数的相关知识,属于基本题型,正确得出当x =0时对应的y 值是解题关键.2.如果关于x 的方程(3)2020a x -=的解为负数,那么实数a 的取值范围是()A.3a < B.3a = C.3a > D.3a ≠【答案】A【解析】【分析】由方程的解为负数直接得出a -3<0,解不等式即可得出答案.【详解】解:∵关于x 的方程(a -3)x =2020的解为负数,∴a -3<0,解得a <3,故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.下列方程中,有实数根的是()A.410x += B.10+= C.x =- D.22111x x x =--【答案】C【解析】【分析】利用乘方的意义可对A 进行判断;通过解无理方程可对B 、C 进行判断;通过解分式方程可对D 进行判断.【详解】解:A 、x 4≥0,x 4+1>0,方程x 4+1=0没有实数解;B 1=-,任何数的算术平方根是非负数,故原方程没有实数解;C 、两边平方得x +2=x 2,解得x 1=-1,x 2=2,经检验,原方程的解为x =-1;D 、去分母得x =1,经检验x =1是原方程的增根,故原方程没有实数解,故选:C .【点睛】本题主要考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.4.将只有颜色不同的3个白球、2个黑球放在一个不透明的布袋中.下列四个选项,不正确的是()A.摸到白球比摸到黑球的可能性大B.摸到白球和黑球的可能性相等C.摸到红球是确定事件D.摸到黑球或白球是确定事件【答案】B【解析】【分析】根据随机事件发生的可能性的计算方法和确定事件的概念逐一判断即得答案.【详解】解:A 、由白球的数量比黑球的数量多可得摸到白球比摸到黑球的可能性大,所以本选项说法正确,不符合题意;B 、摸到白球和黑球的可能性不相等,所以本选项说法错误,符合题意;C 、摸到红球是不可能事件,属于确定事件,所以本选项说法正确,不符合题意;D 、摸到黑球或白球是必然事件,属于确定事件,所以本选项说法正确,不符合题意.故选:B .【点睛】本题考查了可能性的大小和确定事件的概念,属于基础题型,熟练掌握上述基本知识是关键.5.下列四个命题中,假命题是()A.有两个内角相等的梯形是等腰梯形B.等腰梯形一定有两个内角相等C.两条对角线相等的梯形是等腰梯形D.等腰梯形的两条对角线相等【答案】A【解析】【分析】利用直角梯形可对A 进行判断;根据等腰梯形的性质对B 、D 进行判断;根据等腰梯形的判定方法对C 进行判断.【详解】解:A 、有两个内角相等的梯形是等腰梯形,如:直角梯形,故这个命题为假命题;B 、等腰梯形一定有两个内角相等,这个命题为真命题;C 、两条对角线相等的梯形是等腰梯形,这个命题为真命题;D 、等腰梯形的两条对角线相等,这个命题为真命题.故选:A .【点睛】本题考查了命题与定理和梯形的性质和判定,命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.已知四边形ABCD 是矩形,点O 是对角线AC 与BD 的交点.下列四种说法:①向量AO 与向量OC 是相等的向量;②向量OA 与向量OC 是互为相反的向量;③向量AB 与向量CD 是相等的向量;④向量BO 与向量BD 是平行向量.其中正确的个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用矩形的性质,相等向量,平行向量的定义一一判断即可.【详解】解:如图:∵四边形ABCD 是矩形,∴AB=CD ,AB ∥CD ,OA=OC ,OB=OD ,∴①向量AO 与向量OC 是相等的向量,正确.②向量OA 与向量OC 是互为相反的向量,正确.③向量AB 与向量CD是相等的向量;错误.④向量BO 与向量BD 是平行向量.正确.故选:C .【点睛】本题考查平面向量,矩形的性质等知识,长度相等且方向相同的两个向量叫做相等向量,平行向量也叫共线向量,是方向相同或相反的非零向量.二.填空题:(本大题共12题,每题2分,满分24分)7.已知一次函数()32f x x =+,那么()1f -=______.【答案】1-【解析】【分析】代入1x =-,即可求出()1f -的值.【详解】当1x =-时,()()13121f -=⨯-+=-.故答案为:1-.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y kx b =+是解题的关键.8.如果将直线12y x =沿y 轴向下平移2个单位,那么平移后所得直线的表达式是______.【答案】122y x =-【解析】【分析】根据平移时k 的值不变,只有b 发生变化即可得到结论.【详解】解:原直线的k=12,b=0;向下平移2个单位长度,得到了新直线,那么新直线的k=12,b=0-2=-2.∴新直线的解析式为y=12x-2.故答案是:y=12x-2.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k 值不变.9.已知函数37y x =-+,当1y <时,自变量x 的取值范围是______.【答案】2x >【解析】【分析】由题意可得关于x 的不等式,解不等式即得答案.【详解】解:当1y <时,371x -+<,解得:2x >.故答案为:2x >.【点睛】本题考查了已知函数的范围求自变量的范围,属于基本题型,熟练掌握基础知识是解题关键.10.二项方程32160x +=在实数范围内的解是_______.【答案】2x =-【解析】【分析】先移项,再将三次项系数化为1,最后根据立方根的定义求解可得.【详解】解:∵32160x +=,∴3216x =-,∴38x =-,则2x ==-故答案为:2x =-.【点睛】本题主要考查立方根,解题的关键是掌握立方根的定义.11.用换元法解方程()223141x x x x-+=-,若设21x y x =-,那么所得到的关于y 的整式方程为________.【答案】2430y y -+=【解析】【分析】根据方程特点,设21x y x =-,则原方程可化为34y y +=,再去分母化为整式方程即得答案.【详解】解:设21x y x =-,则原方程可化为34y y +=,去分母,得234y y +=,即2430y y -+=.故答案为:2430y y -+=.【点睛】本题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较常见的一种方法,熟练掌握该方法是关键.12.方程2=的解是__________.【答案】5x =.【解析】试题分析:原方程两边平方,得:x -1=4,所以,5x =.故答案为5x =.考点:根式方程.13.某校八年级在“停课不停学”期间,积极开展网上答疑活动.在某时间段共开放7个网络教室,其中1个是语文答疑教室,3个是数学答疑教室,3个是英语答疑教室.为了解学校的八年级学生参与网上答疑的情况,学校教学管理人员随机进入一个网络教室,那么他进入数学答疑教室的概率为__________.【答案】37【解析】【分析】根据概率公式解答即可.【详解】解:∵在7个网络教室中有3个是数学答疑教室,∴学校教学管理人员随机进入一个网络教室是数学答疑教室的概率=37.故答案为:37.【点睛】本题考查了简单的概率计算,属于基础题型,正确理解题意、熟练掌握计算的方法是关键.14.已知一个梯形的中位线长为5cm ,其中一条底边的长为6cm ,那么该梯形的另一条底边的长是__________cm .【答案】4【解析】【分析】根据梯形中位线定理解答即可.【详解】解:设该梯形的另一条底边的长是x cm ,根据题意得:()1652x +=,解得:x =4,即该梯形的另一条底边的长是4cm .故答案为:4.【点睛】本题考查了梯形中位线定理,属于基本题目,熟练掌握该定理是解题关键.15.已知菱形的边长为2cm ,一个内角为60︒,那么该菱形的面积为__________2cm .【答案】【解析】【分析】连接AC ,过点A 作AM ⊥BC 于点M ,根据菱形的面积公式即可求出答案.【详解】解:过点A 作AM ⊥BC 于点M ,∵菱形的边长为2cm ,∴AB =BC =2cm ,∵有一个内角是60°,∴∠ABC =60°,∴∠BAM =30°,∴112BM AB ==(cm ),∴AM ==(cm ),∴此菱形的面积为:2=(cm 2).故答案为:【点睛】本题主要考查了菱形的性质和30°直角三角形性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.16.已知梯形的两底长分别为2和8,两腰的长分别为4与a ,那么字母a 的取值范围为_____________.【答案】210a <<【解析】【分析】画出图形如图,作DE ∥AB 交BC 于E ,则四边形ABED 是平行四边形,设DE =AB =a ,求出CE 的长后,在△CDE 中由三角形的三边关系即可得出答案.【详解】解:如图所示:在梯形ABCD 中,AD ∥BC ,AD =2,BC =8,CD =4,AB =a ,作DE ∥AB 交BC 于E ,则四边形ABED 是平行四边形,∴DE =AB =a ,BE =AD =2,∴CE =BC ﹣BE =8﹣2=6,在△CDE 中,由三角形的三边关系得:CE ﹣CD <DE <CE +CD ,即6﹣4<DE <6+4,∴2<a <10;故答案为:2<a <10.【点睛】本题考查了梯形的性质、平行四边形的判定与性质、三角形的三边关系等知识,正确添加辅助线、灵活应用三角形的三边关系是解题的关键.17.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)【答案】OB OD=【解析】【分析】由题意OA=OC ,即一条对角线平分,根据平行四边形的判定方法,可以平分另一条对角线,也可以根据三角形全等,得出答案.【详解】解:如图所示:∵OA=OC ,由定理:两条对角线互相平分的四边形是平行四边形,∴可以是OB=OD (答案不唯一).故答案为:OB=OD (答案不唯一).【点睛】本题考查了平行四边形的判定,一般有几种方法:①两组对边分别平行的四边形是平行四边形,②一组对边平行且相等的四边形是平行四边形,③两组对边分别相等的四边形是平行四边形,④两条对角线互相平分的四边形是平行四边形,⑤两组对角分别相等的四边形是平行四边形.18.贾老师用四个大小、形状完全相同的小长方形围成了一个大正方形,如果大正方形的面积为3,且3m n =那么图中阴影部分的面积是___________.【答案】34【解析】【分析】由大正方形的面积为3可得()23m n +=,由3m n =可得2n 的值,而阴影部分是边长为(m -n )的正方形,进一步即可求出其面积.【详解】解:由题意,得()23m n +=,∵3m n =,∴()233n n +=,即2316n =,阴影部分是边长为(m -n )的正方形,其面积为()()2223344m n n n n -=-==.故答案为:34.【点睛】本题考查了完全平方公式的几何背景和代数式变形求值,属于常考题型,熟练掌握基本知识、灵活应用整体思想是关键.三.解答题:(本大题共7题,满分58分)19.解方程:2121111x x x x +-=--+【答案】10x =【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:()2121x x +-=-20x x +=120,1x x ==-经检验:10x =是原方程的根,21x =-是增根,舍去.∴原方程的根是10x =.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.解方程组:222,{230.x y x xy y -=--=【答案】1111x y =⎧⎨=-⎩2231x y =⎧⎨=⎩【解析】【详解】x 2-2xy-3y 2="0"(x-y)2-4y 2=0又因:x-y=2代入上式4-4y 2=0y=1或y=-1再将y=1、y=-1分别代入x-y=2则x=1、x=3∴1111x y =⎧⎨=-⎩2231x y =⎧⎨=⎩21.如图,已知向量a 、b ,用直尺与圆规先作向量a b + ,再作向量a b - .(不写画法,保留画图痕迹,并在答案中注明所求作的向量.【答案】图见解析;【解析】【分析】利用三角形法则求解即可.【详解】解:如图,AB a b =+ ,CD a b =-.【点睛】本题考查作图-复杂作图,平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【答案】原计划平均每年完成绿化面积40万亩.【解析】【分析】本题的相等关系是:原计划完成绿化时间−实际完成绿化实际=1.设原计划平均每年完成绿化面积x 万亩,则原计划完成绿化完成时间200x 年,实际完成绿化完成时间:200(120%)20x ++年,列出分式方程求解【详解】解:设原计划平均每年完成绿化面积x 万亩.根据题意可列方程:200200(120%)120x x +-=+去分母整理得:26040000x x +-=解得:140x =,2100x =-经检验:140x =,2100x =-都是原分式方程的根,因为绿化面积不能为负,所以取40x =.答:原计划平均每年完成绿化面积40万亩.【点睛】本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解应用题的检验要分两步:第一步检验它是否是原方程的根,第二步检验它是否符合实际问题.23.已知平行四边形ABCD ,对角线AC 、BD 相交于点O ,且CA CB =,延长BC 至点E ,使CE BC =,联结DE .(1)当AC BD ⊥时,求证:2BE CD =;(2)当90ACB ∠=︒时,求证:四边形ACED 是正方形.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据已知条件得到四边形ABCD 是菱形.求得BC=CD .得到BE=2BC ,于是得到结论;(2)根据平行四边形的性质得到AD=BC ,AD ∥BE ,求得AD=CE ,AD ∥CE ,推出平行四边形ACED 是矩形,根据正方形的判定定理即可得到结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,又∵AC BD ⊥,∴四边形ABCD 是菱形.∴BC CD =.又∵CE BC =,∴2BE BC =,∴2BE CD =.(2)证明:∵四边形ABCD 是平行四边形,∴AD BC =,//AD BE ,又∵CE BC =,∴AD CE =,//AD CE ,∴四边形ACED 是平行四边形.∵90ACB ∠=︒∴平行四边形ACED 是矩形.又∵CA CB =,∴CA CE =.∴矩形ACED 是正方形.【点睛】本题考查了正方形的判定,平行四边形的性质,矩形的判定,菱形的判定和性质,熟练掌握各定理是解题的关键.24.在平面直角坐标系xOy 中,已知一次函数43y x b =-+的图像与x 轴、y 轴分别相交于点A 、B ,且与两坐标轴所围成的三角形的面积为6.(1)直接写出点A 与点B 的坐标(用含b 的代数式表示);(2)求b 的值;(3)如果一次函数43y x b =-+的图像经过第二、三、四象限,点C 的坐标为(2,m ),其中0m >,试用含m 的代数式表示△ABC 的面积.【答案】(1)3(,0)4A b ;(0,)B b (2)4±(3)3102m +【解析】【分析】(1)由一次函数43y x b =-+的图象与x 轴、y 轴分别相交于点A 、B ,令y=0求出x ,得到A 点坐标;令x=0,求出y ,得到B 点坐标;(2)根据一次函数43y x b =-+的图象与两坐标轴所围成的三角形的面积为6列出方程,即可求出b 的值;(3)根据一次函数43y x b =-+的图象经过第二、三、四象限,得出b=-4,确定A (-3,0),B (0,-4).利用待定系数法求出直线AC 的解析式,再求出D (0,35m ),那么BD=35m+4,再根据S △ABC =S △ABD +S △DBC ,即可求解.【详解】解:(1)∵一次函数y=43-x+b 的图象与x 轴、y 轴分别相交于点A 、B ,∴当y=0时,43-x+b=0,解得x=34b ,则A (34b ,0),当x=0时,y=b ,则B (0,b );故3(,0)4A b ;(0,)B b ;(2)∵1136224AOB S OA OB b b =⋅⋅=⋅⋅= ∴216b =,∴4b =±;(3)∵函数图像经过二、三、四象限,∴4b =-,∴443y x =--.∴(3,0)A -,(0,4)B -.设直线AC 的解析式为y kx t =+,将A 、C 坐标代入得032k tm k t=-+⎧⎨=+⎩解得535m k t m ⎧=⎪⎪⎨⎪=⎪⎩设直线AC 与y 轴交于点D ,则(0)53D m ,.∴345BD m =+∵ABC ABD CBDS S S =+ ∴13(4)(32)102532ABC S m m =⋅+⋅+=+ .【点睛】本题考查了一次函数图象上点的坐标特征,三角形的面积,一次函数的性质,利用待定系数法求一次函数的解析式.25.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE.过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE=CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:DE =.【答案】(1)30°;(2)不变;45°;(3)见解析【解析】【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得α=∠DCE=30°.(2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF=18045CED CEB ︒-∠-∠=︒.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH.从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中,BC=CD.由旋转知,CE=CD,又∵BE=CE,∴BE=CE=BC,∴△BEC 是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴α=∠DCE=30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE=CD,∴∠CED=∠CDE=1809022=︒-αα︒-,在△CEB 中,CE=CB,∠BCE=90α︒-,∴∠CEB=∠CBE=1804522BCE α︒-∠=︒+,∴∠BEF=18045CED CEB ︒-∠-∠=︒.(3)过点A 作AG ∥DF 与BF 的延长线交于点G ,过点A 作AH ∥GF 与DF 交于点H ,过点C 作CI ⊥DF 于点I易知四边形AGFH 是平行四边形,又∵BF ⊥DF ,∴平行四边形AGFH 是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD ,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD ,∴△ABG ≌△ADH.∴AG=AH ,∴矩形AGFH 是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC ,∴△AHD ≌△DIC∴AH=DI ,∵DE=2DI ,∴DE=2AH=AF识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
人教版2019年八年级下学期期末数学试卷C卷
人教版2019年八年级下学期期末数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列各式中属于最简二次根式的是()D.A.B.C.2 . 今年3月,某校举行“好声音”校园歌曲大赛,有9名同学参加选拔赛,所得分数互不相同,按成绩取前4名进入决赛,若已知某同学分数,要判断他能否进入决赛,只需知道9名同学分数的()A.中位数B.众数C.平均数D.方差3 . 如图,将放置于直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A1OB1.已知∠AOB=30°,∠B=90°,AB=1,则B1点的坐标为()A.(,)B.(,)C.(,) D (,)4 . 下列点在直线y=-x+1上的是()A.(2,-1)B.(3,2)C.(4,1)D.(1,2)5 . 若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1B.k≥-1C.k<-1D.k≤-16 . 点A(-3,-4)到原点的距离为()A.3B.4C.5D.77 . 菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.88 . 如图,在Rt△ABC中,∠C=90°(AC>BC),用尺规作图的方法作线段AD,保留作图痕迹如图所示,认真观察作图痕迹,若CD=4,BD=5,则AC的长为()A.6B.9C.12D.159 . 正比例函数y=x的大致图像是()A.A B.B C.C D.D10 . 下列图形中,是中心对称但不是轴对称图形的是()A.B.C.D.二、填空题11 . 二次函数,当时,在顶点处取得最小值为. (______)12 . 将一元二次方程x(x﹣2)=5化为二次项系数为“1”的一般形式是_____.13 . 如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.14 . 计算﹣的结果等于.15 . 数据10、8、6、4、2的平均数是________.16 . 图1是小明家围墙的一部分,上部分是由不锈钢管焊成的等腰三角形栅栏,底边上等距焊上一些立柱,请你根据图2所标注的尺寸,求焊成一个等腰三角形栅栏(图2中的实线部分)至少需要不锈钢管______米(焊接部分忽略不计).三、解答题17 . 如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.18 . 解方程(1)x2+x﹣1=0(2)(x﹣2)(x﹣3)=1219 . 2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识说明理由.20 . 某淘宝网店销售台灯,成本为每个元.销售大数据分析表明:当每个台灯售价为元时,平均每月售出个;若售价每上涨元,其月销售量就减少个,若售价每下降元,其月销售量就增加个.(1)若售价上涨元,每月能售出________个台灯.(2)为迎接“双十一”,该网店决定降价促销,在库存为个台灯的情况下,若预计月获利恰好为元,求每个台灯的售价.(3)在库存为个台灯的情况下,若预计月获利恰好为元,直接写出每个台灯的售价.21 . 如图,在△ABC中,AB=AC,AD⊥BC点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm 的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值,若不存在,请说明理由.22 . 已知:点C在∠AOB的一边OA上,过点C的直线DE∥OA.做∠ACD的平分线CF,过点C画CF的垂线CG,如图所示.(Ⅰ)若∠AOB=40°,求∠ACD及∠ECF的度数;(Ⅱ)求证:CG平分∠OCD;(Ⅲ)延长FC交OB于点H,用直尺和三角板过点O作OR⊥FH,垂足为R,过点O作FH的平行线交ED于点Q.先补全图形,再证明∠COR=∠GCO,∠CQO=∠CHO.23 . 计算:(1)(2)24 . 在平面直角坐标系中,如图所示,点.(1)求直线的解析式;(2)求的面积;(3)一次函数(为常数).①求证:一次函数的图象一定经过点;②若一次函数的图象与线段有交点,直接写出的取值范围.25 . 已知:等边△ABC中,点E为△ABC内一点.(1)如图1,联结AE、BE并延长分别与BC、CA边交于点D、F。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
2019-2020年八年级下学期期末考试数学试卷(II)
2019-2020年八年级下学期期末考试数学试卷(II)一、选择题:(本大题共10小题,每题3分共计30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来)1.下列四个图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.2.若方程是关于的一元二次方程,则m的取值范围是()A.m≠±l B.m≥一l且m≠1 C.m≥一l D.m>一1且m≠13.已知是关于的方程的一个根,则另一个根是( )A.1 B.-1 C.-2 D.24.对抛物线y=-x2+2x-3 而言,下列结论正确的是( )A.与x轴有两个交点 B.开口向上C.与y轴的交点坐标是(0,3) D.顶点坐标是(1,-2)5.二次函数的图象与轴有交点,则的取值范围是()A. B. C.D.6. 如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为()A.8 B.6 C.4 D. 27.如图,内接于圆O,,,是圆的直径,BD交AC于点E,连结DC,则等于()A.110° B.70° C.90° D.120°(第6题) (第7题)8.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为( ). A .cm 2B .cm 2C .cm 2D .cm 29.输入一组数据,按下列程序进行计算,输出结果如下表:分析表格中的数据,估计方程的一个正数解x 的大致范围为( ). A .20.5<x <20.6 B .20.6<x <20.7C .20.7<x <20.8D .20.8<x <20.910.在同一平面直角坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只A DBE C(第8题)静心x20.5 20.6 20.7 20.8 20.9 输出 --8.04 -2.31 3.44 9.21输入x输出+8 平方-826要求填写最后结果.11.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是.12.将抛物线y=(x﹣2)2+3向右平移2个单位,再向下平移3个单位后所得抛物线的解析式为13.抛物线y=x2﹣2x﹣3与x轴的交点坐标为.14.如图,△ABC是一张三角形纸片,⊙O是它的内切圆,点D是其中的两个切点,已知AD=6cm,小明准备用剪刀沿着与⊙O相切的一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长是(第14题图) (第15题图)15.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点,此时;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点,此时;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点,此时;…,按此规律继续旋转,直至得到点为止.则=________.16.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,将Rt△ABC绕点A逆时针旋转45°后得到△AB′C′,点B经过的路径为,图中阴影部分面积是17.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm.母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为____________cm.(第16题图) (第17题图) (第18题图) 18.如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴是直线x=2,与x轴的一个交点是(﹣1,0),有下列结论:①abc<0,②4a+b=0,③抛物线与x轴的另一个交点是(5,0),④若点(﹣2,y1),(5,y2)都在抛物线上,则有y1<y2,请将正确选项的序号都填在横线上.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分8分) 解方程:(1)(x﹣5)2=2(x﹣5)(2)2x(x﹣1)=3x+1.20. (本题满分8分)已知二次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.21. (本题满分7分)如图,水平放置的圆柱形排水管的截面为⊙O,有水部分弓形的高为2,弦AB=4,求⊙O的半径.22.(本题满分11分)电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?23. (本题满分6分)已知△ABC在平面直角坐标系中的位置如图所示.(1) 分别写出图中点A和点C的坐标;(2) 画出△ABC绕点A按逆时针方向旋转90°后的△AB'C';(3) 在(2)的条件下,求点C旋转到点C'所经过的路线长(结果保留π).234567yAB24、(本题满分9分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BA C=30°,DE=2,求AD的长.25.(本题满分13分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?-----如有帮助请下载使用,万分感谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年八年级秋学期数学期末测试卷(二)
(考试时间100分钟,满分120分)
一、选择题(要你算的少,要你想的多,只选一个可要认准啊!每小题3分,共30分)
1、在平面直角坐标系中,将△ABC 向右平移3个单位得到△C B A ''',则三个顶点A 、B 、C 到对应三点A '、B '、C '的坐标变化为( )
A 、横坐标都加3
B 、纵坐标都加3
C 、横坐标都减3 D
2系,单位长度为1万米。
最近一次台风的中心位置是(-1,0),其影响范围的半径是
则下列四个位置中受到了台风影响的是( )
A 、(1.24,0)
B 、(-6,0)
C 、(3,0)
D 、(0,3) 3、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而减小,则一次函数y =图象大致是( ).
(A ) (B ) (C ) (D )
4、一次函数x y =图象向下平移2个单位长度后,对应函数关系式是( ) (A )2-=x y (B )x y 2= (C )x y 2
1
= (D )2+=x y 5、若5
32+y x
b a 与x y
b a
2425-是同类项.则( ).
(A )⎩
⎨
⎧==2,
1y x (B )⎩⎨⎧-==1,2y x (C )⎩⎨⎧==2,0y x (D )⎩⎨⎧==1,3y x
6、一函数b kx y +=,经过(1,1),(2,-4),则k 与b 的值为( ).
(A )⎩⎨
⎧-==2,3b k (B )⎩⎨⎧=-=4,3b k (C )⎩⎨⎧=-=6,5b k (D )⎩⎨⎧-==5
,
6b k
7、列函数中,y 的值随x 的值增大而增大的函数是( A 、x y 2-= B 、12+-=x y C 、2-=x y D 、2--=x y
8、公司市场营销部的个人月收入与其每月的
销售量成一次函数关系,其图象如图(-)所示,由图中给出的信息可知,营销人员没有销售时的收入是A 、310元 B 、300元 C 、290元 D 、280元 9、同学在“心连心”献爱心捐助活动中都捐了款,他们分别捐了5元、5元、10元、6元、4元,那么这5位同学平均每人捐款( )
A 、4元
B 、5元
C 、6元
D 、8元 10、排球队12名队员年龄情况如下:
万元)
(A )19,20 (B )19,19 (C )19,20.5 (D )20,19 二、填空题:(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3
11、图,矩形ABCD 中,点A (-4,1)、B (0,1)、C (0,3),
则点A 到x 轴的距离是 ,点A 关于x 轴的对称点A
′坐标
是 ,点D 坐标是 ;
12、B (0,-4)在直线b x y +-=图象上,则b = ;
13、直线3+=x y 和直线b x y +-=的交点坐标为(m ,8).则m = ,b = ;
14、⎩⎨
⎧==1
,
2y x 方程2x -ay=5的一个解,则a = ;
15、学生的学科期末成绩由期考分数, 作业分数, 课堂参与分数三部分组成, 并按3:2:5的比例确定. 已知小明的数学期考80分, 作业90分, 课堂参与85分, 则他的数学期末成绩为 。
16、P (3,—4)到x 轴的距离是___________。
17、若)5()2(14-+-=+x n x m x ,则n m ,的值是_____________ 1819、现在高1米,每年长高0.1米,请写出树高y (米)与时间x (年)之间的函数关系式:____________________。
三、解答题(耐心计算,仔细观察。
表露出你萌动的智慧。
共60分) 20、解方程组:(每题5分,计10分)
(1)⎩⎨⎧=-+=-+0519203637y x y x (2)⎪⎩⎪⎨⎧=-=-2
431
43y x y x
21、(10分)一次函数y=kx+b 图象经过点(1,3)和(4,6)。
①试求k 与b ;
②画出这个一次函数图象;
③这个一次函数与y 轴交点坐标是( ) ④当x 时,y=0; ⑤当x 时,y ﹥0; 22、(8分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600
x
个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:
①这10个西瓜质量的众数和中位数分别是和;
②计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约多少千克?
23、在某一电路中,保持电压不变,电功率P(瓦)与电流强度I(安培)成正比,当电流强度I=2安培时,电功率P=5瓦。
①求电功率P(瓦)与电流强度I(安)之间的函数关系式;②当电流I=0.5安培时,求电功率P 的值。
(7分)
24、(11分)红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)。
为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠。
一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元。
①三人间、双人间普通客房各住了多少
间?(5分)
②设三人间共住了x人,则双人间住了
人,一天一共花去住宿费用y元表示,写
出y与x的函数关系式;(3分)
③在直角坐标系内画出这个函数图象;(2
分)
④如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?
(3分)
25、(8分)某电视台在黄金时段的120秒钟广告时间内,正好插播长度为15秒和30秒的两种广告。
15秒广告每播一次收费0.6万元,60秒广告每播一次收费1万元。
若电视台从中共得到收费4.4万元,问电视台插播两种广告的次数分别是多少?
26、(8分)如图,在平面直角坐标系中一次函数62
1
+-=x y 的图像分别交x 、y 轴于点A 、B ,与一次函数x y =的图像交于第一象限内的点C 。
(1) 分别求出A 、B 、C 、的坐标。
(2) 求三角形OBC 的面积。
27、如图,1l 表示神风摩托车厂一天的销售收入与摩托车销售量的关系;2l 表示摩托车厂一天的销售成本与销售量的关系。
(利润=收入-成本)(12分)
(1)写出销售收入与销售量之间的函数关系式: , (2)写出销售成本与销售量之间的函数关系式: , 观察图像得:
(3)当一天的销售量为 辆时,销售收入等于销售成本; (4)当一天的销售超过 辆时,工厂才能获利。
O A
x
y
B
C。