(完整版)高三一轮复习三角函数专题及答案解析
2024届高三数学一轮复习--三角函数与解三角形第3练 两角和与差的正弦、余弦和正切公式(解析版)
【详解】因为
cos
4
5 ,所以 5
2 cos 2
2 sin 2
5 ,平方后可得 5
1 cos2 sin2 sin cos 1 ,整理得 1 1 sin 2 1 ,所以 sin 2 3 .
2
5
22
5
5
故选:D.
2.B
【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值
6
,则
tan
(
)
A. 3
B. 2 3
C. 6
D. 6 3
3.(2023·全国·高三专题练习)若
1 1
tan tan
π 4 π 4
1 2
,则
cos
2
的值为(
)
A.- 3 5
B. 3 5
C. 4 5
D. 4 5
4.(2023
秋·江苏泰州·高三泰州中学校考开学考试)已知
cos
12
【详解】因为
sin
3
sin
6
,所以
1 2
sin
3 cos 2
3 sin 1 cos ,
2
2
所以 3 1 cos 3 1 sin ,所以 tan 3 1 2 3 . 3 1
故选:B
3.A
【分析】由已知可得
tan
π 4
1 3
,进而求出
四个命题:
甲: tan 1 ;
2 乙: tan tan 7 : 3 ;
丙:
sin cos
5 4
;
丁: tan tan tan tan 5 : 3 .
如果其中只有一个假命题,则该命题是( )
A.甲
专题24 三角函数的图象与性质-2025年高考数学一轮复习讲义(知识梳理+真题)(新高考专用)解析版
专题24三角函数的图象与性质(新高考专用)【知识梳理】 (2)【真题自测】 (3)【考点突破】 (10)【考点1】三角函数的定义域和值域 (10)【考点2】三角函数的周期性、奇偶性、对称性 (15)【考点3】三角函数的单调性 (22)【分层检测】 (27)【基础篇】 (27)【能力篇】 (34)【培优篇】 (38)考试要求:1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数、正切函数的性质.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0)(π,0)(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.3.对于y =tan x 不能认为其在定义域上为增函数,π-π2,k πk ∈Z )内为增函数.一、单选题1.(2023·全国·高考真题)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A .1B .2C .3D .42.(2023·全国·高考真题)已知函数()()()sin ,0f x x ωϕω=+>在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D .23.(2022·全国·高考真题)设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦4.(2022·全国·高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .5.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .3二、多选题6.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则()A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线2y x =-是曲线()y f x =的切线三、填空题7.(2023·全国·高考真题)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是.8.(2023·全国·高考真题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =.9.(2022·全国·高考真题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =9x π=为()f x 的零点,则ω的最小值为.10.(2021·全国·高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为.参考答案:1.C【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.2.D【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2T ω==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 123f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭故选:D.3.C【分析】由x 的取值范围得到3x ω+【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .4.A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.5.A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A6.AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z ,即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C ,当7π6x =时,2π23π3x +=,7π(06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x -=--即2y x =-.故选:AD .7.[2,3)【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).8.【分析】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,依题可得,21π6x x -=,结合1sin 2x =的解可得,()212π3x x ω-=,从而得到ω的值,再根据2π03f ⎛⎫= ⎪⎝⎭以及()00f <,即可得2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,进而求得()πf .【详解】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=,由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知,()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=.因为28ππsin 033f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,所以()2sin 4π3f x x ⎛⎫=- ⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,()2πsin 4ππ32f ⎛⎫∴=-=- ⎪⎝⎭.故答案为:【点睛】本题主要考查根据图象求出ω以及函数()f x 的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.9.3【分析】首先表示出T ,根据()2f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解:因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0ω>,所以当0k =时min 3ω=;故答案为:310.2【分析】先根据图象求出函数()f x 的解析式,再求出7((43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得.【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,(2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.【考点1】三角函数的定义域和值域一、单选题1.(23-24高一上·河北邢台·阶段练习)函数()f x =)A .()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()5ππ2π,2π66k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .()π2π2π,2π63k k k ⎡⎤++∈⎢⎥⎣⎦Z D .()π7π2π,2π66k k k ⎡⎤++∈⎢⎥⎣⎦Z 2.(23-24高一上·北京朝阳·期末)函数()|sin |cos f x x x =+是()A .奇函数,且最小值为BC .偶函数,且最小值为D二、多选题3.(23-24高三下·江苏南通·开学考试)已知函数()cos 22sin f x x x =+,则()A .()f x 的最小正周期为2πB .()f x 关于直线π2x =对称C .()f x 关于点π,02⎛⎫⎪⎝⎭中心对称D .()f x 的最小值为3-4.(2024·贵州贵阳·二模)函数()tan()(0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .2π3ωϕ⋅=B .()f x在π0,3⎡⎤⎢⎥⎣⎦上的值域为(,)∞∞-⋃+C .函数|()|y f x =的图象关于直线5π3x =对称D .若函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[1,1]-三、填空题5.(2024·辽宁·二模)如图,在矩形ABCD 中,4,2AB BC ==,点,E F 分别在线段,BC CD 上,且π4EAF ∠=,则AE AF ⋅的最小值为.6.(2021·河南郑州·二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是.参考答案:1.A【分析】首先求出定义域,再根据复合函数单调性即可得到单调增区间.【详解】令sin 03x π⎛⎫+≥ ⎪⎝⎭,可得22,3k x k k ππππ≤+≤+∈Z .当22,232k x k k πππππ-≤+≤+∈Z 时,函数sin 3y x π⎛⎫=+ ⎪⎝⎭单调递增.所以当22,32k x k k ππππ≤+≤+∈Z 时,()f x 单调递增.故()f x 在()2,236k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 上单调递增.故选:A.2.D【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =++,因为[0,π]x ∈,可得ππ5π[,444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.3.ABD【分析】将函数()cos 22sin f x x x =+可变形为213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,结合函数性质逐项分析计算即可得.【详解】2213()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,由sin y x =的最小正周期为2π,故()f x 的最小正周期为2π,故A 正确;()()221313(π)2sin π2sin 2222f x x x f x ⎡⎤⎛⎫-=---+=--+= ⎪⎢⎥⎣⎦⎝⎭,且()(π)f x f x -≠-,故()f x 关于直线π2x =,不关于点π,02⎛⎫ ⎪⎝⎭对称,故B 正确,C 错误;由213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,且[]sin 1,1x ∈-,故2min13()21322f x ⎛⎫=-⨯--+=- ⎪⎝⎭,故D 正确.故选:ABD.4.CD【分析】根据正切型三角函数的图象性质确定其最小正周期,从而得ω的值,再根据函数特殊点求得,A ϕ的值,从而可得解析式,再由正切型三角函数的性质逐项判断即可.【详解】函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()tan()f x A x ϕ=+,由函数的图象可知:πππ623ϕϕ+=⇒=,即π()tan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:π(0)tan23f A A ===,所以π3ωϕ⋅=,因此A 不正确;关于πB,()2tan 3f x x ⎛⎫=+ ⎪⎝⎭,当π6x =时,ππ32x +=,故()f x 在π6x =处无定义,故B 错误.因为55ππ5π5ππ2tan 2tan ,2tan 2tan 333333f x x x f x x x π⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5533f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,所以函数|()|y f x =的图象关于直线5π3x =对称,C 正确;ππ()()2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭,当ππ,36x ⎛⎫∈- ⎪⎝⎭时,|()|()y f x f x λ=+=ππππ2tan 2tan 2tan 2tan (22)tan 33333x x x x x πλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当5,63x ππ⎛⎤∈-- ⎥⎝⎦时,()()2tan 2tan 2tan 333y f x f x x x x πππλλ⎛⎫⎛⎫⎛⎫=+=+++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ2tan (22)tan 33x x λλ⎛⎫⎛⎫++=-++ ⎪ ⎪⎝⎭⎝⎭,当函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有(22)(22)011λλλ+-+≤⇒-≤≤,故D 正确.故选:CD .5.)161【分析】根据锐角三角函数可得,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,即可由数量积的定义求解,结合和差角公式以及三角函数的性质即可求解最值.【详解】设π02BAE θθ⎛⎫∠=<< ⎪⎝⎭,则π4DAF θ∠=-,故,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,故π42cos π42cos cos 4AE AF AE AF θθ=⎛⎫- ⎪⋅⋅⎝⎭ππcos cos 44θθθθ=⎡⎤⎡⎤⎛⎫⎛⎫+-+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎝⎭当π2π,Z 4k k θ-=∈时,πcos 214θ⎛⎫-= ⎪⎝⎭,即π8θ=时,此时AE AF ⋅)1612=-.故答案为:)161.【点睛】关键点点睛:本题解决的关键是将所求转化为关于θ的表达式,从而得解,6.2⎛ ⎝【分析】由正弦定理可得sinB sin b cC=b c λ+sin()B θ=+且tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,可知b c λ+存在最大值即2B πθ+=,进而可求λ的范围.【详解】∵1a =,34A π=,由正弦定理得:sinB sin 2b c C =∴)sin sin sin sin cos sin 422b c B C B B B B B πλλ⎫⎛⎫+=+=-=-⎪ ⎪⎪⎝⎭⎭1)sin cos sin()B B B θ=-+⋅+,其中tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,∴b c λ+存在最大值,即2B πθ+=有解,即,42ππθ⎛⎫∈ ⎪⎝⎭,10->,解得2λ>1>,解得λ<,故λ的范围是2⎛ ⎝.故答案为:2⎛ ⎝.【点睛】关键点点睛:应用正弦定理边角关系、辅助角公式,结合三角形内角和、三角函数的性质列不等式组求参数范围.反思提升:1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【考点2】三角函数的周期性、奇偶性、对称性一、单选题1.(2024·重庆·模拟预测)将函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,所得图象关于坐标原点对称,则ϕ的值可以为()A .2π3B .π3C .π6D .π42.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭,的最小正周期为π,在区间ππ,66⎛⎫- ⎪⎝⎭上单调递减,且在区间π0,6⎛⎫ ⎪⎝⎭上存在零点,则ϕ的取值范围是()A .ππ,62⎛⎫ ⎪⎝⎭B .3π,2π⎛⎤-- ⎥⎝⎦C .ππ,32⎡⎫⎪⎢⎣⎭D .π0,3⎛⎤⎥⎝⎦3.(2024·北京西城·二模)将函数()tan f x x =的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()g x =()A .1tan -xB .1tan --xC .tan (1)--x D .tan (1)-+x 二、多选题4.(2024·河南洛阳·模拟预测)已知函数3ππsin ,2π2π44()()π5πcos ,2π2π44x k x k f x k x k x k ⎧-≤≤+⎪⎪=∈⎨⎪+<<+⎪⎩Z ,则()A .()f x 的对称轴为()ππ,Z 4x k k =+∈B .()f x 的最小正周期为4πC .()f x 的最大值为1,最小值为2-D .()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增5.(2024·辽宁·二模)已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭满足πππ(),263f x f x f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0,且在π5π,1212⎛⎫⎪⎝⎭上单调递减,则()A .函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称B .ϕ可以等于π4-C .ω可以等于5D .ω可以等于36.(23-24高三上·山西运城·期末)已知函数()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭,则()A .()f x 的一个周期为2B .()f x 的定义域是1,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭C .()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称D .()f x 在区间[]1,2上单调递增三、填空题7.(2024·全国·模拟预测)已知函数()()21cos cos 02f x x x x ωωωω=->,若()f x 的图象在[]0,π上有且仅有两条对称轴,则ω的取值范围是.8.(2024·四川雅安·三模)已知函数()e cos2e x x a f x x ⎛⎫=- ⎪⎝⎭是偶函数,则实数=a .9.(2023·四川达州·一模)函数()2lntan 32x f x m x x -=+++,且()6f t =,则()f t -的值为.参考答案:1.B【分析】由三角函数的平移变化结合奇函数的性质可得π2π3k k ϕ+=∈Z ,,解方程即可得出答案.【详解】因为()f x 向右平移ϕ个单位后解析式为π=sin 223y x ϕ⎛⎫-- ⎪⎝⎭,又图象关于原点对称,πππ2π,01362k k k k k ϕϕϕ∴+=∈∴=-+∈>∴=Z Z ,,,,时,π3ϕ=,故选:B.2.B【分析】根据给定周期求得2ω=-,再结合余弦函数的单调区间、单调性及零点所在区间列出不等式组,然后结合已知求出范围.【详解】由函数()f x 的最小正周期为π,得2ππ||ω=,而0ω<,解得2ω=-,则()3cos(2)3cos(2)f x x x ϕϕ=-+=-,由2π22ππ,Z k x k k ϕ≤-≤+∈,得2π+22ππ,Z k x k k ϕϕ≤≤++∈,又()f x 在ππ(,)66-上单调递减,因此π2π+3k ϕ≤-,且π2ππ,Z 3k k ϕ≤++∈,解得2ππ2π2π,Z 33k k k ϕ--≤≤--∈①,由余弦函数的零点,得π2π,Z 2x n n ϕ-=+∈,即π2π,Z 2x n n ϕ=++∈,而()f x 在(0,)6π上存在零点,则ππ0π,Z 23n n ϕ<++<∈,于是ππππ,Z 26n n n ϕ--<<--∈②,又ππ22ϕ-<<,联立①②解得ππ23ϕ-<≤-,所以ϕ的取值范围是ππ(,]23--.故选:B 3.D【分析】根据正切函数图象的平移变换、对称变换即可得变换后的函数()g x 的解析式.【详解】将函数()tan f x x =的图象向右平移1个单位长度,所得函数为()(1)tan 1f x x -=-,则函数()(1)tan 1f x x -=-的图象再关于y 轴对称得函数()()()()1tan 1tan 1g x f x x x =--=--=-+.故选:D.4.AD【分析】作出函数()f x 的图象,对于A ,验算()π2π2f k x f x ⎛⎫+-= ⎪⎝⎭是否成立即可;对于B ,由(),(2π)x f x f x ∈+=R 即可判断;对于CD ,借助函数单调性,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值验算即可判断CD.【详解】作出函数()f x 的图象如图中实线所示.对于A ,由图可知,函数()f x 的图象关于直线3ππ5π,,444x x x =-==对称,对任意的k ∈Z ,π1ππ1ππ2πsin 2πcos 2πsin 2πcos 2π2222222f k x k x k x k x k x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=+-++--+--+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111(cos sin )cos sin |(sin cos )|sin cos |()2222x x x x x x x x f x =+--=+--=,所以函数()f x 的对称轴为()ππ,Z 4x k k =+∈,A 正确;对于B ,对任意的11,(2π)[sin(2π)cos(2π)]sin(2π)cos(2π)22x f x x x x x ∈+=+++-+-+R 11(sin cos )|sin cos |()22x x x x f x =+--=,结合图象可知,函数()f x 为周期函数,且最小正周期为2π,故B 错误;对于C ,由A 选项可知,函数()f x 的对称轴为()ππ,Z 4x k k =+∈,且该函数的最小正周期为2π,要求函数()f x 的最大值和最小值,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值,因为函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,所以当π5π,44x ⎡⎤∈⎢⎥⎣⎦时,min ()(π)cos πf x f ==1=-,因为ππ5π5ππsin sin sin 4424442f f ⎛⎫⎛⎫====-=- ⎪ ⎪⎝⎭⎝⎭,所以max π()42f x f ⎛⎫== ⎪⎝⎭,因此()f x ,最小值为-1,故C 错误;对于D ,由C 选项可知,函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,D 正确,故选:AD .【点睛】关键点点睛:判断C 选项的关键是求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值即可,由此即可顺利得解.5.ABD【分析】根据题意,可得函数()y f x =的图象关于π4x =-对称,关于点π,04⎛⎫ ⎪⎝⎭对称,由三角函数的对称性性质可得π4ϕ=±,从而判断选项A 、B ;再根据函数的单调性,可求出ω的值,从而判定选项C 、D.【详解】由π()2f x f x ⎛⎫-=- ⎪⎝⎭,则ππππ(4424f x f x f x ⎛⎫⎛⎫-=+-=-- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于π4x =-对称,又πππ5π126312<<<,且ππ063f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则1πππ02634f f ⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,故A 正确;根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,可得,()()2121ππ,1242k k k k ϕω-=+=+-,由于π||2ϕ<,所以π4ϕ=±,故B 正确;当π4ϕ=时,由π5π1212x <<,得πππ5ππ1244124x ωωω+<+<+,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧+≥⎪⎪⎨⎪+≤+⎪⎩,即92424355k ω-≤≤+,又0ω>,所以90,05k ω=<<,又()2112k k ω=+-,所以1ω=,当π4ϕ=-时,由π5π1212x <<,得πππ5ππ1244124x ωωω-<-<-,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧-≥⎪⎪⎨⎪-≤+⎪⎩,即2424335k k ω+≤≤+,又0ω>,所以0,3k ω==,故C 错误,D 正确.故选:ABD【点睛】关键点点睛:根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,从而()()2121ππ,1242k k k k ϕω-=+=+-.6.ACD 【分析】利用正切函数的图象与性质一一判定选项即可.【详解】对于A ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知其最小正周期π2π2T ==,故A 正确;对于B ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知πππ1π2,Z 2422x k x k k +≠+⇒≠+∈,故B 错误;对于C ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知1πππ2242x x =⇒+=,此时()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称,故C 正确;对于D ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知[]ππ3π5π1,2,2444x x ⎡⎤∈⇒+⎢⎥⎣⎦,又tan y x =在π3π,22⎡⎤⎢⎥⎣⎦上递增,显然3π5π,44⎡⎤⊂⎢⎥⎣⎦π3π,22⎡⎤⎢⎥⎣⎦,故D 正确.故选:ACD 7.54,63⎡⎫⎪⎢⎣⎭【分析】运用正余弦二倍角公式及辅助角公式化简()f x ,由已知条件结合正弦函数性质可得结果.【详解】因为()211πcos cos sin2cos2sin 22226f x x x x x x x ωωωωωω⎛⎫=-=-=- ⎪⎝⎭,因为()f x 的图象在[]0,π上有且仅有两条对称轴,所以3ππ5π2π262ω≤-<,解得5463ω≤<,所以ω的取值范围是54,63⎡⎫⎪⎢⎣⎭.故答案为:54,63⎡⎫⎪⎢⎣⎭.8.1-【分析】根据偶函数的定义,即可列关系式求解.【详解】()f x 定义域为R ,()()()1e cos 2e cos2e cos2e e e x xx xx xa af x x a x f x x --⎛⎫⎛⎫⎛⎫-=--=-+==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()1111e e e e 1e 0e e e e e xxx xx x x x xx a a a a ⎛⎫⎛⎫-+=-⇒-=-⇒+-= ⎪ ⎪⎝⎭⎝⎭,故1a =-,故答案为:1-9.0【分析】构造()()3g x f x =-,得到()g x 为奇函数,从而根据()6f t =得到()3g t =,由()3g t -=-求出()f t -.【详解】令()()23lntan 2x g x f x m x x -=-=++,定义域为{|2x x <-或2x >且ππ,Z}2x k k ≠+∈,关于原点对称,则()()()222lntan ln tan ln tan 222x x x g x m x m x m x g x x x x --+--=+-=-=--=--+-+,故()g x 为奇函数,又()()3633g t t f =-=-=,故()()33t g t f -=--=-,解得()0f t -=.故答案为:0反思提升:(1)三角函数周期的一般求法①公式法;②不能用公式求周期的函数时,可考虑用图象法或定义法求周期.(2)对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.(3)对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.(4)三角函数型奇偶性的判断除可以借助定义外,还可以借助其图象与性质,在y =A sin(ωx +φ)中代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).【考点3】三角函数的单调性一、单选题1.(2024·云南·模拟预测)已知函数()f x 为R 上的偶函数,且当()1212,,0,x x x x ∞∈-≠时,()()12120f x f x x x ->-,若12log 3a f ⎛⎫= ⎪⎝⎭,()()0.20.5,sin1b f c f ==,则下列选项正确的是()A .c b a <<B .b<c<aC .a b c<<D .c<a<b2.(2024·陕西榆林·三模)已知()0,2πα∈,若当[]0,1x ∈时,关于x 的不等式()()2sin cos 12sin 1sin 0x x αααα++-++>恒成立,则α的取值范围为()A .π5π,1212⎛⎫⎪⎝⎭B .π5π,66⎛⎫ ⎪⎝⎭C .ππ,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、多选题3.(2022·湖北武汉·三模)已知函数()2cos f x x x =-的零点为0x ,则()A .012x <B .013>xC .0tan 2x >D .001<sin 4x x -4.(2024·湖南长沙·一模)已知函数()()tan (0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .π6A ωϕ⋅⋅=B .()f x 的图象过点11π6⎛ ⎝⎭C .函数()y f x =的图象关于直线5π3x =对称D .若函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[]1,1-三、填空题5.(2023·陕西西安·模拟预测)已知函数()()cos f x A x b ωϕ=++,(0A >,0ω>,π2ϕ<)的大致图象如图所示,将函数()f x 的图象上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数()g x 的图象,则函数()g x 的一个单调递增区间为.6.(2022·上海闵行·模拟预测)已知[0,π]∈,若sin cos 0αα->,则α的取值范围是.参考答案:1.C【分析】根据条件判断函数的单调性,结合函数奇偶性和单调性的关系进行转化求解即可.【详解】当()12,,0x x ∞∈-时,()()12120f x f x x x ->-,所以()f x 在(),0∞-上单调递增;又有()f x 为R 上的偶函数,所以()f x 在()0,∞+上单调递减.由于我们有()11100.2555522πlog 3log 210.50.50.50.4984210.870.87sin sin 1023>==>=>==>=>>,即0.22sin10log 30.5>>>,故()()()0.22log 30.5sin1f f f <<.而()()1222log 3log 3log 3a f f f ⎛⎫==-= ⎪⎝⎭,()0.20.5b f =,()sin1c f =,故a b c <<.故选:C.2.A【分析】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,易得()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=∈++,则()()00101sin 20sin cos 1f f f ααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪+ ⎪⎪> ⎪⎪++ ⎪⎪⎝⎭⎩,进而可得出答案.【详解】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,由题意可得()()0010f f ⎧>⎪⎨>⎪⎩,则sin 0cos 0αα>⎧⎨>⎩,又因为()0,2πα∈,所以π0,2α⎛⎫∈ ⎪⎝⎭,函数()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=++,则()()2sin 0cos 011sin sin 22sin cos 12sin 1sin 0sin cos 1sin cos 1αααααααααααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪++ ⎪⎪++-+⋅+> ⎪⎪++++ ⎪⎪⎝⎭⎩,即()2sin 0cos 0(2sin 1)4sin sin cos 10αααααα⎧>⎪>⎨⎪+-++<⎩,即sin 0cos 01sin22ααα⎧⎪>⎪>⎨⎪⎪>⎩,结合π0,2α⎛⎫∈ ⎪⎝⎭,解得π5π1212α<<.故选:A.3.ABD【分析】对AB ,求导分析可得()f x 为增函数,再根据零点存在性定理可判断;对C ,根据AB 得出的01132x <<结合正切函数的单调性可判断;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,再根据零点存在性定理,放缩判断()g x 的正负判断即可【详解】对AB ,由题()2sin 0f x x '=+>,故()f x 为增函数.又111cos 022f ⎛⎫=-> ⎪⎝⎭,12122cos cos 03333632f π⎛⎫=-<-=-< ⎪⎝⎭,故01132x <<,故AB 正确;对C ,因为01132x <<,所以01tan tan 2t n 14a x π<=<1>,故C 错误;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,则()1cos 0g x x '=->,故()g x 为增函数.故()111111sin sin sin2424124344g x g πππ⎛⎫⎛⎫<=-<-=--= ⎪ ⎪⎝⎭⎝⎭,因为(2130-=<,故1<,故104<,即()0g x <,故111sin 0,,432x x x ⎛⎫--<∈ ⎪⎝⎭,故001<sin 4x x -,D 正确;故选:ABD【点睛】本题主要考查了利用导数分析函数零点的问题,一般需要用零点存在性定理判断零点所在的区间,同时在判断区间端点正负时,需要适当放缩,根据能够确定取值大小的三角函数值进行判断,属于难题4.BCD【分析】根据函数图象所经过的点,结合正切型函数的对称性、单调性逐一判断即可.【详解】对于A :设该函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()()tan f x A x ϕ=+,由函数的图象可知:πππππ623k k ϕϕ+=+⇒=++,又0πϕ<<,所以π3ϕ=,即()πtan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:()π0tan 23f A A ===,所以2π3A ωϕ⋅⋅=,因此A 不正确;对于B :11π11ππ13ππ2tan 2tan 2tan 26636633f ⎛⎫⎛⎫=+===⨯= ⎪⎪⎝⎭⎝⎭,所以B 正确;对于C :因为5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫+=++= ⎪ ⎪⎝⎭⎝⎭,所以5π5π33f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于直线5π3x =对称,因此C 正确;对于D :()()ππ2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭当ππ,36x ⎛⎫∈- ⎪⎝⎭时,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=++ ⎪⎝⎭,当5ππ,63x ⎛⎤∈-- ⎥⎝⎦,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=-++ ⎪⎝⎭,当函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有()()2222011λλλ+-+≤⇒-≤≤,D 正确.故选:BCD【点睛】关键点睛:运用函数对称性、函数单调性的性质是解题的关键.5.7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)【分析】先根据()f x 的部分图象得到函数的周期、振幅、初相,进而求出()f x 的解析式,再根据函数图象的伸缩变换和平移变换得到()g x 的解析式,后可求()g x 的单调递增区间.【详解】由图可知πππ==43124T -,得=πT ,所以2π==2Tω,()112A =--=,1b =-,所以()()2cos 21f x x ϕ=+-,由图ππ2cos 2111212f ϕ⎛⎫⎛⎫=⨯+-= ⎪ ⎪⎝⎭⎝⎭,得π2π6k ϕ=-+,Z k ∈,又π2ϕ<,所以π6ϕ=-,故()π2cos 216f x x ⎛⎫ -⎪⎝⎭=-,由题意()1ππ2π2cos 212cos 132636g x x x ⎡⎤⎛⎫⎛⎫=⨯+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令2ππ2π2π36k x k -+≤+≤,Z k ∈,得7ππ3π3π44k x k -+≤≤-+,Z k ∈故函数()g x 的单调递增区间为7ππ3π,3π44k k ⎡⎤-+-+⎢⎥⎣⎦,Z k ∈,当0k =时,函数()g x 的一个单调递增区间为7ππ,44⎡⎤--⎢⎥⎣⎦,故答案为:7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)6.π3π(,)44【分析】根据角的范围分区间讨论,去掉绝对值号,转化为不含绝对值的三角不等式,求解即可.【详解】由题,当π[0,]2α∈时,原不等式可化为sin cos αα>,解得ππ42α<≤,当ππ2α<≤时,由原不等式可得tan 1α<-,解得π3π24α<<,综上π3π(,44α∈.故答案为:π3π(,)44反思提升:1.求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题,利用特值验证排除法求解更为简捷.【基础篇】一、单选题1.(2024·福建·模拟预测)若函数()sin23f x A x =-在3π5π,812⎛⎫ ⎪⎝⎭上有零点,则整数A 的值是()A .3B .4C .5D .62.(2024·贵州黔南·二模)若函数()πcos 3f x x ϕ⎛⎫=-+ ⎪⎝⎭为偶函数,则ϕ的值可以是()A .5π6B .4π3C .πD .π23.(2024·安徽·三模)“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(22-23高一下·湖北武汉·期中)若函数()sin 0y x x ωωω=->在区间π,03⎛⎫- ⎪⎝⎭上恰有唯一对称轴,则ω的取值范围为()A .17,22⎡⎫⎪⎢⎣⎭B .17,36⎛⎤ ⎥⎝⎦C .17,33⎛⎤ ⎥⎝⎦D .17,22⎛⎤ ⎥⎝⎦二、多选题5.(2024·云南·模拟预测)已知函数()()()sin ,0,0,πf x x ωϕωϕ=+>∈,如图,图象经过点π,112A ⎛⎫ ⎪⎝⎭,π,03B ⎛⎫⎪⎝⎭,则()A .2ω=B .π6ϕ=C .11π12x =是函数()f x 的一条对称轴D .函数()f x 在区间7π13π,1212⎛⎫⎪⎝⎭上单调递增6.(2023·辽宁·模拟预测)已知定义域为I 的偶函数0(),f x x I ∃∈,使()00f x <,则下列函数中符合上述条件的是()A .2()3f x x =-B .()22x xf x -=+C .2()log||f x x =D .()cos 1f x x =+7.(23-24高一上·广东肇庆·期末)关于函数πtan 3y x ⎛⎫=- ⎪⎝⎭,下列说法中正确的有()A .是奇函数B .在区间ππ,66⎛⎫- ⎪⎝⎭上单调递增C .5π,06⎛⎫⎪⎝⎭为其图象的一个对称中心D .最小正周期为π三、填空题8.(2022·江西·模拟预测)将函数()tan2f x x =的图像向左平移t (0t >)个单位长度,得到函数g (x )的图像,若12g π⎛⎫= ⎪⎝⎭,则t 的最小值是.9.(2022·重庆沙坪坝·模拟预测)若函数cos y x ω=在,06π⎛⎫- ⎪⎝⎭单调递增,在0,3π⎛⎫ ⎪⎝⎭单调递减,则实数ω的取值范围是.10.(21-22高三上·河南·阶段练习)已知函数()3cos 2n f x x x p ⎛⎫=+ ⎪⎝⎭为偶函数,且当()0,x π∈时,()0f x >,则n 的值可能为.四、解答题11.(2022·北京门头沟·一模)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,6x π=是函数()f x 的对称轴,且()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调.(1)从条件①、条件②、条件③中选一个作为已知,使得()f x 的解析式存在,并求出其解析式;条件①:函数()f x 的图象经过点10,2A ⎛⎫⎪⎝⎭;条件②:,03π⎛⎫⎪⎝⎭是()f x 的对称中心;条件③:5,012π⎛⎫ ⎪⎝⎭是()f x 的对称中心.(2)根据(1)中确定的()f x ,求函数()0,2y f x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的值域.12.(2021·浙江·模拟预测)已知函数()22sin 263f x x x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间.(2)若对任意的()2,2m ∈-,方程()f x m =(其中[)0,x a ∈)始终有两个不同的根1x ,2x .①求实数a 的值;②求12x x +的值.参考答案:1.C【分析】将函数的零点问题转化为sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上的交点问题,求出sin2y x =的值域即可.【详解】由于函数()sin23f x A x =-在3π5π,812⎛⎫⎪⎝⎭上有零点,所以方程sin230A x -=在3π5π812⎛⎫⎪⎝⎭,上有实数根,即sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上有交点,令2t x =,则3π5π46t <<,当3π5π46t <<,sin y t =单调递减,故在区间上最多只有1个零点,又1sin 2t ⎛∈ ⎝⎭,即312A ⎛∈ ⎝⎭,解得()6A ∈,由于A 是整数,所以5A =.故选:C.2.B【分析】由题意可知:0x =为函数()f x 的对称轴,结合余弦函数对称性分析求解.【详解】由题意可知:0x =为函数()f x 的对称轴,则ππ,3k k ϕ-+=∈Z ,则ππ,3k k ϕ=+∈Z ,对于选项A :令π5ππ36k ϕ=+=,解得12k =∉Z ,不合题意;对于选项B :令π4ππ33k ϕ=+=,解得1k =∈Z ,符合题意;对于选项C :令πππ3k ϕ=+=,解得23k =∉Z ,不合题意;对于选项D :令πππ32k ϕ=+=,解得16k =∉Z ,不合题意;故选:B.3.A【分析】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,根据正切函数的对称性可得ππ,42k k ϕ=-+∈Z ,再根据充分、必要条件结合包含关系分析求解.【详解】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,则ππ,42k k ϕ+=∈Z ,解得ππ,42k k ϕ=-+∈Z ,因为π|π,4k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 是ππ|,42k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 的真子集,所以“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的充分不必要条件.故选:A.4.D【分析】利用辅助角公式化简得到π2cos 6y x ω⎛⎫=+ ⎪⎝⎭,再求出ππππ,6366x ωω⎛⎫ ⎪⎝+∈-⎭+,结合对称轴条数得到不等式,求出答案.【详解】πsin 2cos 6y x x x ωωω⎛⎫=-=+ ⎪⎝⎭,。
(江苏版)高考数学一轮复习 专题4.4 三角函数图像与性质(讲)-江苏版高三全册数学试题
专题4.4 三角函数图像与性质【考纲解读】【直击考点】题组一 常识题1. 函数y =2sin 12x -3的最小正周期是________.【解析】最小正周期T =2π12=4π.2. 函数y =A sin x +1(A >0)的最大值是5,则它的最小值是________.【解析】依题意得A +1=5,所以A =4,所以函数y =4sin x +1的最小值为-4+1=-3. 3.判断函数y =2cos x 在[-π,0]上的单调性:____________.(填“增函数”或“减函数”) 【解析】由余弦函数的单调性,得函数y =2cos x 在[-π,0]上是增函数. 4.不等式2sin x >3的解集为______________________________. 【解析】不等式2sin x >3,即sin x >32,由函数y =sin x 的图像得所求解集为⎩⎨⎧⎭⎬⎫x π3+2k π<x <2π3+2k π,k ∈Z .题组二 常错题5.函数y =1-2cos x 的单调递减区间是___________________________.【解析】函数y =1-2cos x 的单调递减区间即函数y =-cos x 的单调递减区间,也即函数y =cos x 的单调递增区间,即[2k π-π,2k π](k ∈Z ).6.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图像分别交于M ,N 两点,则|MN |的最大值为________.【解析】设直线x =a 与函数f (x )=sin x 的图像的交点为M (a ,y 1),直线x =a 与函数g (x )=cos x的图像的交点为N (a ,y 2),则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫a -π4≤2,7.函数f (x )=2sin x4对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为________.题组三 常考题8.定义在区间[0,2π]上的函数y =sin 2x 的图像与y =sin x 的图像的交点个数是________. 【解析】由sin 2x =sin x 得sin x =0或cos x =12,因为x ∈[0,2π],所以x =0,π3,π,5π3,2π,交点个数是5.9. 在函数①y =cos|2x |,②y =|sin x |,③y =sin ⎝ ⎛⎭⎪⎫2x -π3,④y =tan ⎝ ⎛⎭⎪⎫2x +π5中,最小正周期为π的所有函数是________.(填序号)【解析】函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =sin x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻折至x 轴上方,即可得到y =|sin x |的图像,所以其最小正周期为π,②正确;函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的最小正周期为π,③正确;函数y =tan ⎝ ⎛⎭⎪⎫2x +π5的最小正周期为π2,④不正确.【知识清单】1.正弦、余弦、正切函数的图像与性质 1.三角函数线三角函数线是通过有向线段直观地表示出角的各种三角函数值的一种图示方法。
高考数学一轮复习三角函数与解三角形多选题(讲义及答案)含答案
高考数学一轮复习三角函数与解三角形多选题(讲义及答案)含答案一、三角函数与解三角形多选题1.知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭,则下述结论中正确的是( )A .若()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有2个极小值点B .若()f x 在[]0,2π有且仅有4个零点,则()f x 在20,15π⎛⎫⎪⎝⎭上单调递增 C .若()f x 在[]0,2π有且仅有4个零点,则ω的范是1519,88⎡⎫⎪⎢⎣⎭D .若()f x 的图象关于4x π=对称,且在5,1836ππ⎛⎫⎪⎝⎭单调,则ω的最大值为9 【答案】ACD 【分析】 令4t x πω=+,由[]0,2x π∈,可得出,244t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin y t =在区间,244ππωπ⎡⎤+⎢⎥⎣⎦上的图象,可判断A 选项正误;根据已知条件求出ω的取值范围,可判断C 选项正误;利用正弦型函数的单调性可判断B 选项的正误;利用正弦型函数的对称性与单调性可判断D 选项的正误. 【详解】 令4t x πω=+,由[]0,2x π∈,可得出,244t ππωπ⎡⎤∈+⎢⎥⎣⎦, 作出函数sin y t =在区间,244ππωπ⎡⎤+⎢⎥⎣⎦上的图象,如下图所示:对于A 选项,若()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有2个极小值点,A 选项正确;对于C 选项,若()f x 在[]0,2π有且仅有4个零点,则4254ππωππ≤+<,解得151988ω<≤,C 选项正确; 对于B 选项,若151988ω<≤,则2192154604πππππω≤+<+,所以,函数()f x 在区间20,15π⎛⎫⎪⎝⎭上不单调,B 选项错误; 对于D 选项,若()f x 的图象关于4x π=对称,则()442k k Z ωππππ+=+∈,()14k k Z ω∴=+∈.52361812T ππππω∴=≥-=,12ω∴≤,()41k k Z ω=+∈,max 9ω∴=. 当9ω=时,()sin 94f x x π⎛⎫=+ ⎪⎝⎭,当5,1836x ππ⎛⎫∈⎪⎝⎭时,339442x πππ<+<, 此时,函数()f x 在区间5,1836ππ⎛⎫⎪⎝⎭上单调递减,合乎题意,D 选项正确. 故选:ACD. 【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.2.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且::4:5:6a b c =,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC 是钝角三角形C .ABC 的最大内角是最小内角的2倍D .若6c =,则ABC 【答案】ACD 【分析】由正弦定理可判断A ;由余弦定理可判断B ;由余弦定理和二倍角公式可判断C ;由正弦定理可判断D. 【详解】解:由::4:5:6a b c =,可设4a x =,5b x =,6c x =,()0x >, 根据正弦定理可知sin :sin :sin 4:5:6A B C =,选项A 描述准确;由c 为最大边,可得2222221625361cos 022458a b c x x x C ab x x +-+-===>⋅⋅,即C 为锐角,选项B 描述不准确;2222222536163cos 22564b c a x x x A bc x x +-+-===⋅⋅,291cos 22cos 121cos 168A A C =-=⨯-==,由2A ,C ()0,π∈,可得2A C =,选项C 描述准确;若6c =,可得2sin 7cR C===,ABC外接圆半径为7,选项D 描述准确. 故选:ACD. 【点睛】本题考查三角形的正弦定理和余弦定理,二倍角公式,考查化简运算能力,属于中档题.3.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( ) A .22sin 2sin 1y x =+ B .22sin 2sin 1y x =-- C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确. 故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.4.已知函数()f x 的定义域为D ,若对于任意()()()a b c D f a f b f c ∈,,,,,分别为某个三角形的边长,则称()f x 为“三角形函数”,其中为“三角形函数”的函数是( ) A .()4sin f x x =- B .()22sin 10cos 13f x x x =-++C .()tan 2xf x = D .()sin 20,34f x x x ππ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦【答案】AD【分析】结合三角形的性质有:两边之差小于第三边,得若()f x 为 “三角形函数”则()()()max min min f x f x f x <-恒成立,即()()max min 2f x f x <恒成立即可,根据条件求出函数的最大值和最小值,进行判断即可. 【详解】解:①()4sin f x x =-,则()max 415f x =+=,()min 413f x =-= 则()()max min 2f x f x <恒成立,则A 满足条件②()22532cos 10cos 112cos 22f x x x x ⎛⎫=++=+= ⎪⎝⎭ 当0,2x π⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤∴当cos 0x =时,函数()f x 取得最小值()min 11f x =,当cos 1x =时,函数()f x 取得最大值,()max 23f x =则()()max min 2f x f x <不恒成立,则B 不满足条件 ③()()()tan ,00,2xf x =∈-∞⋃+∞,则不满足条件()()max min 2f x f x <恒成立,故C 不是④()sin 23f x x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦,52,336x πππ⎡⎤∴+∈⎢⎥⎣⎦,则()max sin12f x π=+=+()min 51sin62f x π=+=+则()min 21f x =+,则()()max min 2f x f x <恒成立,故D 满足条件 故选AD 【点睛】本题考查了三角形的性质及“三角形函数”的概念,根据条件转化为()()max min 2f x f x <恒成立是解决本题的关键,综合性较强,有一定的难度.5.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为πC .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,由于(0)0f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确;2sin 22sin 2sin 222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.6.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min 01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).7.设函数()sin()(0)4f x x πωω=+>,已知()f x 在[]02π,有且仅有5个零点,则下列结论成立的有( )A .()1y f x =+在()02π,有且仅有2个零点 B .()f x 在023π⎛⎫⎪⎝⎭,单调递增C .ω的取值范围是192388⎡⎫⎪⎢⎣⎭,D .将()f x 的图象先右移4π个单位,再纵坐标不变,横坐标扩大为原来的2倍,得到函数1()sin()2g x x ω=【答案】BC 【分析】首先利用图象直接判断A 选项;再利用函数()f x 在[]02π,有且仅有5个零点,求得ω的范围,并利用整体代入的方法判断B 选项;最后利用图象的变换规律,求得变换之后的解析式,判断D. 【详解】A.如图,[]0,2π上函数仅有5个零点,但有3个最小值点,这3个最小值点就是()1y f x =+在()0,2π上的3个零点;B.[]0,2x π∈时,,2444t x πππωωπ⎡⎤=+∈⋅+⎢⎥⎣⎦ 若函数()f x 在[]02π,有且仅有5个零点,则5264ππωππ≤⋅+<,得192388ω≤<,当023x π⎛⎫∈ ⎪⎝⎭,时,,448t x πππω⎛⎫=+∈ ⎪⎝⎭,此时函数单调递增,故BC 正确; D. 函数()f x 的图象先右移4π个单位后得到sin sin 4444y x x ππωππωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标扩大为原来的2倍,得到()1sin 244g x x ωππω⎛⎫=-+ ⎪⎝⎭,故D 不正确;故选:BC 【点睛】关键点点睛:本题的关键是求出ω的取值范围,首先根据函数在区间[]0,2π有5个零点,首先求4t x πω=+的范围,再分析sin y t =的图象,求得ω的范围.8.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈⎪⎝⎭ C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭ D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确;对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确. 故选:AC 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.9.设函数()()1sin 022f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()3131sin sin sin cos sin 2226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误; 对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确;对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<, 此时,函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上不单调,C 选项错误. 故选:AD.【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.10.已知函数()()tan (0)6ωωπ=->f x x ,则下列说法正确的是( ) A .若()f x 的最小正周期是2π,则12ω= B .当1ω=时,()f x 的对称中心的坐标为()π0()6π+∈Z k k , C .当2ω=时,π2π()()125-<f f D .若()f x 在区间()π3π,上单调递增,则203ω<≤ 【答案】AD【分析】根据正切函数的性质,采用整体换元法依次讨论各选项即可得答案.【详解】解:对于A 选项,当()f x 的最小正周期是2π,即:2T ππω==,则12ω=,故A 选项正确;对于B 选项,当1ω=时,()()tan 6f x x π=-,所以令,62k x k Z ππ-=∈,解得:,62k x k Z ππ=+∈,所以函数的对称中心的坐标为()0()62k k ππ+∈Z ,,故B 选项错误; 对于C 选项,当2ω=时,()()tan 26f x x π=-,()()()()ππ10tan 2tan tan 12126330f πππ⎡⎤-=⨯--=-=-⎢⎥⎣⎦,()()()2π2π1911tan 2tan tan 5563030f πππ=⨯-==-,由于tan y x =在,02π⎛⎫- ⎪⎝⎭单调递增,故()()π2π125f f ->,故C 选项错误;对于D 选项,令,262k x k k Z ππππωπ-+<-<+∈,解得:233k k x ππππωωωω-+<<+ 所以函数的单调递增区间为:2,,33k k k Z ππππωωωω⎛⎫-++∈ ⎪⎝⎭,因为()f x 在区间()π3π,上单调递增,所以33,23k k Z k πππωωπππωω⎧-+≤⎪⎪∈⎨⎪+≥⎪⎩,解得:213,3k k k Z ω-+≤≤+∈,另一方面,233T ππππω=≥-=,32ω≤,所以2332k +≤,即56k ≤,又因为0>ω,所以0k =,故203ω<≤,故D 选项正确. 故选:AD【点睛】 本题考查正切函数的性质,解题的关键在于整体换元法的灵活应用,考查运算求解能力,是中档题.其中D 选项的解决先需根据正切函数单调性得213,3k k k Z ω-+≤≤+∈,再结合233T ππππω=≥-=和0>ω得0k =,进而得答案.。
高三一轮复习三角函数专题及答案解析
三角函数典型习题 1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.2 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++C B A . (I )试判断△ABC 的形状;(II )若△ABC 的周长为16,求面积的最大值.3 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.(Ⅰ)(Ⅱ)4.在∆(1)求(2)若5(1(26(I)(II)若7(Ⅰ)(Ⅱ)当0,2x ∈⎢⎥⎣⎦时,求函数()f x 的最大值,并写出x 相应的取值.8.在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。答案解析1【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin AC A A π⎛⎫+=+π-- ⎪6⎝⎭===22∴C II.163∴ (Ⅱ)∵由(Ⅰ)∵C 2∵tan 3A =,A 为三角形的内角,∴sin A = 由正弦定理得:sin sin AB BC C A= ∴BC ==8【解析】:(1) //m n ⇒ 2sinB(2cos 2B 2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得: 4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△∴△②4=a 2∴∵△∴△42sin (2)a 2+故S 5π12sin 23x ⎛⎫=+- ⎪⎝⎭. 又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤, 即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴. (Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 6【解析】:(I)由已知得3sin 3sin 222A A a c b ⇒=⋅-+(II)而b 又S 所以7 =所以(Ⅱ)1-所以此时444428。
(完整版)高考三角函数经典解答题及答案
(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
(完整版)高中数学三角函数复习专题
高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。
(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。
2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。
(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。
(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。
完整版)高三三角函数专题复习(题型全面)
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
新高考一轮复习特训-三角函数-(含答案)高中数学-高考专区-一轮复习
2025届新高考一轮复习特训 三角函数一、选择题1.函数()sin 2f x =到()g x 的图象,则()g x =( )A.cos 4xB.cos x- C.cos 4x- D.sin x-2.已知()1sin ,tan 5tan 2αβαβ+==,则()sin αβ-=( )3.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭,若()f x 在2π0,3⎡⎤⎢⎥⎣⎦上有两个零点,则ω的取值范围是( )A.5,42⎡⎫⎪⎢⎣⎭B.5,2⎡⎫+∞⎪⎢⎣⎭C.511,22⎡⎫⎪⎢⎣⎭D.5,42⎡⎤⎢⎥⎣⎦4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P -,则cos 2α=( )355.与1990-︒终边相同的最小正角是( )A.80︒B.150︒C.170︒D.290︒6.已知tan α==( )7.下列区间中,函数π()7sin 6f x x ⎛⎫=- ⎪⎝⎭单调递增的区间是( )A.π0,2⎛⎫⎪⎝⎭B.π,π2⎛⎫ ⎪⎝⎭C.3ππ,2⎛⎫ ⎪⎝⎭D.3π,2π2⎛⎫ ⎪⎝⎭8.记函数π()sin (0)4f x x b ωω⎛⎫=++> ⎪⎝⎭πT <<,且()y f x =的图象关于点3π,22⎛⎫⎪⎝⎭中心对称,则π2f ⎛⎫= ⎪⎝⎭( )D.3二、多项选择题9.设x ∈R ,用[]x 表示不超过x 的最大整数,则函数[]y x =被称为高斯函数;例如[]2.13-=-,[]2.12=,已知()sin sin f x x =+()()x f x =⎡⎤⎣⎦,则下列说法正确的是( )A.函数()g x 是偶函数B.函数()g x 是周期函数C.函数()g x 的图像关于直线x =()g x x =只有1个实数根10.已知()π23f x x ⎛⎫=+ ⎪⎝⎭,则( )A.()()πf x f x += B.()f x 的图象关于直线x =C.()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称D.()f x 在5ππ,1212⎛⎫-⎪⎝⎭单调递增11.已知函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =A.函数π12f x ⎛⎫+ ⎪⎝⎭为奇函数B.函数()f x 在ππ,123⎡⎤⎢⎥⎣⎦上单调递增)()12x f x -=-D.函数()f x 的图象关于5π,012⎛⎫ ⎪⎝⎭中心对称三、填空题12.若tan θ==____________.13.如图是古希腊数学家希波克拉底研究的几何图形,此图由三个半圆构成,直径分别是直角三角形ABC 的斜边AB ,直角边AC ,BC ,点E 在以AC 为直径的半圆上,延长AE ,BC 交于点D .若5AB =,sin CAB ∠=DCE ∠=ABE 的面积是______.14.如图所示,终边落在阴影部分(含边界)的角的集合是__________.四、解答题15.如图,弹簧挂着的小球做上下振动,它在t (单位:s )时相对于平衡位置(静止时的位置)的高度h (单位:cm )由关系式πsin 4h A t ω⎛⎫=+ ⎪⎝⎭确定,其中0A >,0ω>,[0,)t ∈+∞.在一次振动中,小球从最高点运动至最低点所用时间为1s ,且最高点与最低点间的距离为10cm .(1)求小球相对于平衡位置的高度h (单位:cm )和时间t (单位:s )之间的函数关系式;(2)小球在0t s 内经过最高点的次数恰为50次,求0t 的取值范围.16.已知α=(1)写出与角α终边相同的角的集合;(2)写出在()4π,2π-内与角α终边相同的角.17.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,||πϕ<)图象的最高点为π,16⎛⎫⎪⎝⎭,距离该最高点最近的一个对称中心为5π,012⎛⎫⎪⎝⎭.(1)求()f x 的解析式及单调递减区间;(2)若函数()(0)2a g x f x a ⎛⎫=>⎪⎝⎭,()g x 的图象关于直线x =()g x 在π0,15⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的值.18.已知函数(1)化简;(2)若的值.19.如图,锐角α和钝角β的终边分别与单位圆交于A ,B 两点,且OA OB ⊥.cos αβ的值.()f x =()f x ()0f x =00π2π2cos(2)63x x ⎛⎫-+- ⎪⎝⎭参考答案1.答案:A解析:()sin 2f x=ππsin 2sin 2cos 242y x x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭的图象,再把横坐标缩短为原来的一半,得到()cos 4g x x =的图象故选:A.2.答案:A解析:因为()sin sincos +cos sin αβαβαβ+===cos 5cos sin αβαβ=,所以11sin cos cos sin 6cos sin ,cos sin ,sin cos 212αβαβαβαβαβ+====所以()5141sin sin cos cos sin .1212123αβαβαβ-=-=-==故选:A.3.答案:A解析:因为2π0,3x ⎡⎤∈⎢⎥⎣⎦,0ω>,所以ππ2ππ,3333x ωω⎡+∈+⎢⎣π[2π,3π)3+∈,所以5,42ω⎡⎫∈⎪⎢⎣⎭.4.答案:D解析:因为角α的始边与x 轴非负半轴重合,终边过点()1,2P -,所以cos α==所以2cos 22cos 1αα=-=故选:D.5.答案:C解析:因为199********-=-⨯-︒︒︒,199********-=-⨯+︒︒︒,所以与1990-︒终边相同的最小正角是170︒.故选C.6.答案:B,故选:B.7.答案:A解析:方法一:令πππ2π2π262k x k -+-≤+≤,k ∈Z ,得π2π2π2π33k x k -+≤≤+,k ∈Z .取0k =,则π3x -≤≤ππ2π0,,233⎫⎡⎤-⎪⎢⎥⎭⎣⎦Ü,所以区间π0,2⎛⎫⎪⎝⎭是函数()f x 的单调递增区间.方法二:当π02x <<时,,所以在π0,2⎛⎫⎪⎝⎭上单调递增,故A 正πx <<π6x <-<()f x 在π,π2⎛⎫⎪⎝⎭上不单调,故B 错误;当πx <<π6x <-<()f x 在3ππ,2⎛⎫ ⎪⎝⎭上单调递减,故C 错误;当3π2π2x <<π6x <-<()f x 在3π,2π2⎛⎫⎪⎝⎭上不单调,故D 错误.8.答案:A T <<2ππω<<,解得23ω<<.因为()y f x =的图象关于点3π,22⎛⎫ ⎪⎝⎭中心对称,所以2b =,且,即,所以,又π4π4+=,解得ω=5π()sin 224f x x ⎛⎫=++ ⎪⎝⎭,所以π5ππ3πsin 2sin 2122242f ⎛⎫⎛⎫=⨯++=+= ⎪ ⎪⎝⎭⎝⎭.故选A.9.答案:AD解析:选项A ,函数()f x 的定义域为R ,2tan 313tan 2αα+==-πππ663x -<-<()f x 3ππsin 224b ω⎛⎫++= ⎪⎝⎭3ππsin 024ω⎛⎫+= ⎪⎝⎭3πππ()24k k ω+=∈Z 2ω<<3ππ24ω<+<因为()()()sin sin sin sin f x x x x x f x -=-+-=+=,所以()f x 为偶函数,当0πx <≤时,()sin sin 2sin f x x x x =+=,当π2πx <≤时,()sin sin 0f x x x =-=,当2π3πx <≤时,()sin sin 2sin f x x x x =+=,…因为()f x 为偶函数,所以函数()f x 的图象如下图所示由()()g x f x =⎡⎤⎣⎦可知,在0x ≥内,当2πx k =+∈Z 时,()2g x =,当π2π2π6k x k +≤≤+2πx k ≠+∈Z 时,()1g x =,当2π2πk x k ≤<5ππ2π2π6k x k +<≤+,k ∈Z 时,()0g x =,因为()()()()g x f x f x g x -=-==⎡⎤⎡⎤⎣⎦⎣⎦,所以()g x 为偶函数,则函数()g x 的图象如下图所示显然()g x 不是周期函数,故选项A 正确,B 错误,C 错误;()g x x =,当()0g x =时,0x =方程有一个实数根,当()1g x =时,x =π212⎛⎫=≠ ⎪⎝⎭,方程没有实数根,当()2g x =时,πx =,此时()π02g =≠,方程没有实数根,()g x x =只有1个实数根,故D 正确;故选:AD.10.答案:AD解析:对于A,函数()π23f x x ⎛⎫=+ ⎪⎝⎭的最小正周期2ππ2T ==,()()πf x f x +=,A正确;对于B,由πππ2π3266332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭()f x 的图象不关于直线x =对于C,由πππ2π32066332f ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,得函数()f x 的图象不关于点π,06⎛⎫⎪⎝⎭对称,C 错误;对于D,当5ππ,1212x ⎛⎫∈- ⎪⎝⎭时,πππ2,322x ⎛⎫+∈- ⎪⎝⎭,而正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增,因此函数()f x 在区间5ππ,1212⎛⎫- ⎪⎝⎭上单调递增,D 正确.故选:AD.11.答案:ACD解析: 函数ππ()sin(3)22f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线x =ππ3π42k ϕ∴⨯+=+,k ∈Z ,ππ4k ϕ∴=-+,k ∈Z因为ππ22ϕ-<<,所以ϕ=π()sin(3)4f x x =-.函数πππ()sin 3sin 312124f x x x ⎡⎤⎛⎫+=+-= ⎪⎢⎥⎝⎭⎣⎦为奇函数,故A 正确;当[,123ππx ∈,π3π0,434x ⎡-∈⎤⎢⎥⎣⎦,函数()f x 没有单调性,故B 错误;若12|()()|2f x f x -=,因为[]()1,1f x ∈-,所以()()1211f x f x =⎧⎪⎨=-⎪⎩或()()1211f x f x =-⎧⎪⎨=⎪⎩,则12|x x -2π3=5π5ππsin 3sin 012124f π⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 图象关于5π,012⎛⎫⎪⎝⎭中心对称,故D 正确故选:ACD ..解析:由题意得:DCE ACE ∠+∠=π2CAE ACE +∠=所以DCE CAE ∠=∠,故sin sin DCE CAE ∠=∠=cos CAE ∠==因为sin CAB ∠=45CAB ∠=故()sin sin sin cos cos sin EAB CAE CAB CAE CAB CAE CAB∠=∠+∠=∠∠+∠∠343455=⨯=因为5AB =,ACB ∠=CAB ∠=3BC =,4AC =又因为AEC ∠=CAE ∠=,所以cos 4AE AC CAE =∠==的cos 11cos sin cos tan 131cos cos θθθθθθθ====+++所以ABE △的面积是11sin 522S AB AE EAB =⋅⋅∠=⨯=14.答案:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z 解析:终边落在阴影部分第二象限最左边的角为360120k ⋅︒+︒,k ∈Z ,终边落在阴影部分第四象限最左边的角为,k ∈Z .所以终边落在阴影部分(含边界)的角的集合是.故答案为:36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z .15.答案:(1)π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭(2)1198,10044⎡⎫⎪⎢⎣⎭解析:(1)由题意得1052A ==.因为在一次振动中,小球从最高点运动至最低点所用时间为1s ,所以最小正周期为2s ,即2T ==π=,所以π5sin π([0,))4h t t ⎛⎫=+∈+∞ ⎪⎝⎭.(2)由(1)知,当t =最高点.因为小球在0s t 0149504T tT +≤<+.因为2T =,所以01984t ≤<所以0t 的取值范围为1198,10044⎡⎫⎪⎢⎣⎭.16.答案:(1)π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z (2)36045k ⋅︒-︒36045360120{,|}k k k αα⋅︒-︒≤≤⋅︒+︒∈Z解析:(1)与角α终边相同的角的集合为π2π,3k k θθ⎧⎫=+∈⎨⎬⎩⎭Z .(2)令π4π2π2π3k -<+<,得136k -<<又k ∈Z ,2k ∴=-,-1,0,∴在()4π,2π-内与角α终边相同的角是17.答案:(1)π()sin 26f x x ⎛⎫=+ ⎪⎝⎭;单调递减区间为π2π[π,π]()63k k k ++∈Z(2)a =5=解析:(1)由题意解题思路知A =5ππ126=-=所以πT =,2π2πω==,所以()sin(2)f x x ϕ=+.将π,16⎛⎫ ⎪⎝⎭代入()sin(2)f x x ϕ=+,得πsin 13ϕ⎛⎫+= ⎪⎝⎭,π2π2k ϕ+=+,k ∈Z ,即π2π6k ϕ=+,k ∈Z ,又||πϕ<,所以ϕ=π()sin 26f x x ⎛⎫=+ ⎪⎝⎭.π3π2π22π62k x k +≤+≤+,k ∈Z 2πππ3k x k +≤≤+,k ∈Z ,即()f x 的单调递减区间为π2π[π,π]()63k k k ++∈Z .(2)由(1)可得π()sin (0)6g x ax a ⎛⎫=+> ⎪⎝⎭,由()g x 的图象关于直线x =πππ62k =+,k ∈Z ,即51544a k =+,k ∈Z ,当π0,15x ⎡⎤∈⎢⎥⎣⎦时,ππππ,66156a ax ⎡⎤+∈+⎢⎥⎣⎦,由()g x 在[π0,15ππ62+≤,即5a ≤.又0a >且51544a k =+,k ∈Z ,所以a =5=.18.答案:(1)π()cos 23f x x ⎛⎫=+ ⎪⎝⎭(2)35-解析:(1)ππππcos 2cos 2π2tan 22333()ππtan 2πsin π233x x x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎛⎫⎛⎫-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦πππsin 2cos 2tan 2π333cos 2ππ3tan 2sin 233x x x x x x ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭==+ ⎪⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭.(2)因为()00πcos 23f x x ⎛⎫=+= ⎪⎝⎭所以000ππππsin 2sin 2cos(2)6323x x x ⎡⎤⎛⎫⎛⎫-=+-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦0002πππcos 2cos 2πcos 2333x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故00π2π33sin 2cos 2631010x x ⎛⎫⎛⎫-+-=--=⎪ ⎪⎝⎭⎝⎭19.答案:(1)1-(2)3225-解析:(1)由题意得π2βα=+sin sin cos cos αβαβ=πsin sin sin cos 21πcos sin cos cos 2αααααααα⎛⎫+⎪⎝⎭==-=-⎛⎫+ ⎪⎝⎭.35α=,sin α=则πcos cos sin 2βαα⎛⎫=+=-= ⎪⎝⎭所以442sin cos 255αβ⎛⎫=⨯⨯-= ⎪⎝⎭。
高三一轮复习 三角函数全章 练习(7套)+易错题+答案
第五章三角函数第1节任意角、弧度制、任意角的三角函数一、选择题1.给出下列四个命题:①-是第二象限角;②是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( C )(A)1个(B)2个(C)3个(D)4个解析:-是第三象限角,故①错误.=π+,从而是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.选C.2.已知点P(tan α,cos α)在第三象限,则角α的终边所在象限是( B )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:由题意知tan α<0,cos α<0,所以α是第二象限角.选B.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( C )(A)(B)(C) (D)2解析:设圆半径为r,则其内接正三角形的边长为r,所以α==,选C.4.设集合M={x|x=²180°+45°,k∈Z},N={x|x=²180°+45°,k∈Z},那么( B )(A)M=N (B)M⊆N(C)N⊆M (D)M∩N=∅解析:由于M={x|x=²180°+45°,k∈Z}={…,-45°,45°,135°, 225°,…},N={x|x=²180°+45°,k∈Z}={…,-45°,0°,45°,90°,135°, 180°,225°,…},显然有M⊆N,故选B.5.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( A )(A)1 (B)2 (C)3 (D)4解析:举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin =sin ,但与的终边不相同,故④错;当θ=π,cos θ=-1时既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.选A.6.设θ是第三象限角,且|cos |=-cos ,则是( B )(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角解析:由θ是第三象限角,知为第二或第四象限角,因为|cos |=-cos ,所以cos ≤0,综上知为第二象限角.选B.二、填空题7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为.解析:设扇形的半径为R,则αR2=2,所以R2=1,所以R=1,所以扇形的周长为2R+α²R=2+4=6.答案:68.若α角与角终边相同,则在[0,2π]内终边与角终边相同的角是.解析:由题意,得α=+2kπ(k∈Z),=+(k∈Z).又∈[0,2π],所以k=0,1,2,3,=,,,.答案:,,,9.已知集合E={θ|cos θ<sin θ,0≤θ≤2π},F={θ|tan θ<sin θ},那么E∩F= .解析:由单位圆的正、余弦线,容易得E={θ|<θ<π},又由F可知θ应在第二、四象限,所以E∩F={θ|<θ<π}.答案:{θ|<θ<π}10.已知角α=2kπ-(k∈Z),若角θ与角α的终边相同,则y=++的值为.解析:由已知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y=-1+1-1=-1.答案:-111.满足cos α≤-的角α的集合为.解析:作直线x=-交单位圆于C,D两点,连接OC,OD,则OC与OD围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为{α|2kπ+π≤α≤2kπ+π,k∈Z}.答案:{α|2kπ+π≤α≤2kπ+π,k∈Z}三、解答题12.已知角α的终边经过点P(-,y),且sin α=y(y≠0),判断角α所在的象限,并求cos α,tan α的值.解:因为r=|OP|==,所以sin α==y.因为y≠0,所以9+3y2=16,解得y=±,所以角α在第二或第三象限.当角α在第二象限时,y=,cos α==-,tan α=-;当角α在第三象限时,y=-,cos α=-,tan α=.13.一个扇形OAB的面积是1 cm2,它的周长是4 cm,求圆心角的弧度数和弦长AB.解:设扇形的半径为r cm,弧长为l cm,则解得所以圆心角α==2(rad).如图,过O作OH⊥弦AB于H,则∠AOH=1 rad.所以AH=1²sin 1=sin 1(cm),所以AB=2sin 1(cm).所以圆心角的弧度数为2 rad,弦长AB为2sin 1 cm.14.求函数y=lg(2sin x-1)+的定义域.解:要使原函数有意义,必须有即如图,在单位圆中作出相应的三角函数线,由图可知,原函数的定义域为[2kπ+,2kπ+)(k∈Z).第2节同角三角函数的基本关系及诱导公式一、选择题1.已知A=+(k∈Z),则A的值构成的集合是( C )(A){1,-1,2,-2} (B){-1,1}(C){2,-2} (D){1,-1,0,2,-2}解析:当k为偶数时,A=+=2;k为奇数时,A=-=-2.故选C.2.已知sin α=,则sin4α-cos4α的值为( B )(A)- (B)- (C)(D)解析:sin4α-cos4α=sin2α-cos2α=2sin2α-1=-.3.等于( A )(A)sin 2-cos 2(B)sin 2+cos 2(C)±(sin 2-cos 2)(D)cos 2-sin 2解析:===|sin 2-cos2|=sin 2-cos 2.4.若函数f(x)=则f(-)的值为( A )(A)(B)- (C)(D)-解析:由已知得f(-)=f(-)+1=f()+2=-cos +2=.5.已知=1,则sin2θ+3sin θcos θ+2cos2θ的值是( C )(A)1 (B)2 (C)3 (D)6解析:由已知得=1,即tan θ=1,于是sin2θ+3sin θcos θ+2cos2θ===3.6.若sin θ,cos θ是方程4x2+2mx+m=0的两根,则m的值为( B )(A)1+ (B)1-(C)1± (D)-1-解析:由题意知sin θ+cos θ=-,sin θ²cos θ=.又(sin θ+cos θ)2=1+2sin θcos θ,所以=1+,解得m=1±.又Δ=4m2-16m≥0,所以m≤0或m≥4,所以m=1-.二、填空题7.若=2,则sin(θ-5π)sin(-θ)= .解析:由=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得1+2sin θcos θ=4(1-2sin θcos θ),故sin θcos θ=, 所以sin(θ-5π)sin(-θ)=sin θcos θ=.答案:8.已知cos(-α)=,则sin(α-)= .解析:sin(α-)=-sin[+(-α)]=-cos(-α)=-.答案:-9.已知cos 31°=a,则sin 239°²tan 149°= .解析:sin 239°²tan149°=sin(180°+59°)²tan(180°-31°)=-sin 59°²(-tan 31°)=cos 31°²=sin 31°==.答案:10.若x∈(0,),则2tan x+tan(-x)的最小值为 .解析:因为x∈(0,),所以tan x>0.所以2tan x+tan(-x)=2tan x+≥2,所以2tan x+tan(-x)的最小值为2.答案:211.已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .解析:由题意,得cos(θ+)=,所以tan(θ+)=.所以tan(θ-)=tan(θ+-)=-=-.答案:-12.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则 f (2 017)的值为.解析:因为f(4)=asin(4π+α)+bcos(4π+β)=asin α+bcos β=3,所以f(2 017)=asin(2 017π+α)+bcos(2 017π+β)=asin(π+α)+bcos(π+β)=-asin α-bcos β=-3.答案:-3三、解答题13.已知sin(3π+θ)=,求+的值.解:因为sin(3π+θ)=-sin θ=,所以sin θ=-.所以原式=+=+=+====18.14.已知0<α<,若cos α-sin α=-,试求的值. 解:因为cos α-sin α=-,所以1-2sin α²cos α=.所以2sin α²cos α=,所以(sin α+cos α)2=1+2sin αcos α=1+=.因为0<α<,所以sin α+cos α=.由cos α-sin α=-,sin α+cos α=得sin α=,cos α=,所以tan α=2,所以==-.15.是否存在α∈(-,),β∈(0,π),使等式sin(3π-α)=cos(-β),cos(-α)=-cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在α,β使得等式成立,即有由诱导公式可得③2+④2得sin2α+3cos2α=2,所以cos2α=.又因为α∈(-,),所以α=或α=-.将α=代入④得cos β=.又β∈(0,π),所以β=,代入③可知符合.将α=-代入④得cos β=.又β∈(0,π),所以β=,代入③可知不符合.综上可知,存在α=,β=满足条件.第3节两角和与差的正弦、余弦和正切公式一、选择题1.化简的结果是( C )(A)tan (B)tan 2x (C)-tan x (D)解析:原式===-tan x,故选C.2.在△ABC中,2cos Bsin A=sin C,则△ABC的形状一定是( D )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形解析:由条件得2cos Bsin A=sin(A+B),即2cos Bsin A=sin Acos B+cos Asin B,得sin Acos B-cos Asin B=0,即sin(A-B)=0.因为角A,B是三角形的内角,所以A-B=0,△ABC是等腰三角形,故选D.3.函数f(x)=sin x-cos(x+)的值域为( B )(A)[-2,2] (B)[-,](C)[-1,1] (D)[-,]解析:因为f(x)=sin x-cos(x+)=sin x-(cos xcos -sin xsin)=sin x-cos x=sin(x-),所以值域为[-,],故选B.4.已知tan α,tan β是方程x2+3x+4=0的两根,若α,β∈(-,),则α+β等于( D )(A) (B)或-(C)-或 (D)-解析:由韦达定理得tan α+tan β=-3<0,tan α²tan β=4>0,故tan α<0,tan β<0,所以α,β∈(-,0),故α+β∈(-π,0).又tan(α+β)==,所以α+β=-.故选D.5.已知sin(α+)+cos α=-,则cos(-α)等于( C )(A)-(B)(C)- (D)解析:由sin(α+)+cos α=-,展开化简可得sin(α+)=-,所以cos(-α)=cos[-(+α)]=sin(+α)=-.6.在三角函数中,如果角α与角β可能相等,我们称这两个角是“亲情角”.已知tan(β-)=2,下列选项中,哪个角α与已知的角β互为亲情角( C )(A)tan α=3 (B)tan α=(C)tan2(α+)=(D)cos α=解析:由条件得=2,解得tan β=-3,由于A,B,D三个选项的tan α≠-3,所以均不符合.对于选项C,由tan2(α+)=()2=,解得tan α=-3或tan α=-,故选C.二、填空题7.计算cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α) = .解析:原式=cos [(α-35°)-(25°+α)]=cos 60°=.答案:8.已知tan(+θ)=3,则sin 2θ-2cos2θ= .解析:由tan(+θ)=3,求得tan θ=,而sin 2θ-2cos2θ===-.答案:-9.已知sin(x+)=,则sin(x-)+sin2(-x)的值是.解析:因为sin(x-)=-sin(x+)=-,sin2(-x)=cos2(+x)=1-sin2(+x)=,所以原式=-+=.答案:10.在△ABC中,若cos A=,sin B=,则cos C= .解析:因为cos A=,则sin A=,且45°<A<60°.又因为sin B=,sin B<,则0°<B<30°或150°<B<180°(舍去),所以cos B=,从而有cos C=-cos(A+B)=-cos Acos B+sin Asin B=-.答案:-11.已知cos(α-β)=,则(sin α+sin β)2+(cos α+cos β)2的值为.解析:(sin α+sin β)2+(cos α+cos β)2=2+2(cos αcos β+sin αsin β)=2+2cos(α-β)=.答案:12.设a,b,∈R,c∈[0,2π),若对任意实数x都有2sin(3x-)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.解析:因为2sin(3x-)=asin(bx+c),所以a=±2,b=±3.当a,b确定时,c唯一.若a=2,b=3,则c=;若a=2,b=-3,则c=;若a=-2,b=-3,则c=;若a=-2,b=3,则c=,故共有四组.答案:4三、解答题13.已知cos(α-β)=-,cos β=,α∈(,π),β∈(0,),求cos(α-2β)的值.解:由条件得α-β∈(0,π),sin(α-β)=,sin β=,所以cos(α-2β)=cos [(α-β)-β]=.14.设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f()=0,(1)求ω的值;(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[-,]上的最小值.解:(1)因为f(x)=sin(ωx-)+sin(ωx-)=sin ωxcos -cos ωxsin -cos ωx=sin ωx-cos ωx=sin(ωx-),由题设f()=0,得-=kπ,k∈Z,故ω=6k+2,考虑到0<ω<3,故有ω=2.(2)由上可知f(x)=sin(2x-),所以g(x)=sin(x+-)=sin(x-).因为x∈[-,],所以x-∈[-,],当x-=-,即x=-时,g(x)取最小值是-.15.已知函数f(x)=2sin(x-).(1)求f(x)的单调区间;(2)设α,β∈[0,],f((3α-)=-,f(3β+π)=,求cos(α+β)的值.解:(1)由-+2kπ≤x-≤+2kπ,k∈Z,解得-+6kπ≤x≤+6kπ,k∈Z,即得单调递增区间是[-+6kπ,+6kπ],k∈Z.同理可求单调递减区间是[+6kπ,+6kπ],k∈Z.(2)因为得即因为α,β∈[0,],解得从而有cos(α+β)=-.第4节二倍角公式一、选择题1.化简²的结果为( B )(A)tan α (B)tan 2α(C)1 (D)解析:原式=²==tan 2α,故选B.2.若设a=cos 6°-sin 6°,b=,c=,则有( C )(A)c<b<a (B)a<b<c(C)a<c<b (D)b<c<a解析:经计算得a=sin 24°,b=tan 26°,c=sin 25°,所以a<c<b,故选C.3.已知sin α+cos α=,则sin2(-α)等于( B )(A) (B) (C)(D)解析:由sin α+cos α=,两边平方得1+sin 2α=,解得sin 2α=-,所以sin2(-α)===,故选B.4.函数f(x)=cos 2x+6cos(-x)的最大值为( B )(A)4 (B)5 (C)6 (D)7解析:因为f(x)=1-2sin2x+6sin x=-2(sin x-)2+,当sin x=1时,f(x)取最大值为5,故选B.5.设α为锐角,且cos(α+)=,则sin(2α+)的值为( A )(A)(B)(C)(D)解析:因为α为锐角,且cos(α+)=,得sin(α+)=,所以sin[2(α+)]=,cos[2(α+)]=,从而有sin(2α+)=sin [2(α+)-]=³-³=,故选A.6.已知不等式f(x)=3sin cos +cos2-+m≤0对于任意的-≤x≤恒成立,则实数m的取值范围是( C )(A)[,+∞) (B)(-∞,)(C)(-∞,-] (D)[-,]解析:因为f(x)=sin +cos +m=(sin +cos )+m=sin(+)+m.因为-≤x≤,则-≤+≤,所以-≤sin(+)≤,即f(x)的最大值是²+m=+m≤0,解得m≤-,故选C.二、填空题7.已知角α终边过点P(3,4),则cos 2α= .解析:因为角α终边过点P(3,4),所以cos α=,sin α=,cos 2α=-.答案:-8.某会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是四个全等的直角三角形与一个小正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于.解析:设直角三角形的两直角边长分别为a,b,则4³(ab)+1=25,得ab=12.又因为a2+b2=25,联立方程组可解得或所以cos θ=,从而有cos 2θ=2cos2θ-1=.答案:9.若=2 018,则+tan 2α= .解析:+tan 2α=+=+====2 018.答案:2 01810.已知4cos Acos B=,4sin Asin B=,则(1-cos 4A)(1-cos 4B) = .解析:由条件得4cos Acos B²4sin Asin B=²,即sin 2Asin 2B=,所以原式=2sin22A²2sin22B=4(sin 2Asin 2B)2=4()2=3.答案:311.设△ABC的三个内角分别为A,B,C,则cos A+2cos 的最大值是.解析:因为cos A+2cos =cos A+2sin=-2sin2+2sin +1=-2+,所以当sin =,即A=时,cos A+2cos 的最大值是.答案:三、解答题12.已知f(x)=sin x+2sin(+)cos(+).(1)若f(α)=,α∈(-,0),求α的值;(2)若sin =,x0∈(,π),求f(x0)的值.解:(1)由条件可得f(x)=sin x+cos x=sin(x+).因为f(α)=,α∈(-,0),所以sin(α+)=.则α+=,解得α=-.(2)因为sin =,x0∈(,π),得sin x0=,cos x0=-,所以f(x0)=.13.已知函数f(x)=2cos x(sin x+cos x)-1.(1)求f()的值;(2)若f(x0)=,x0∈[0,],求sin 2x0的值.解:(1)因为f(x)=sin 2x+cos 2x=2sin(2x+),所以f()=2.(2)由上可知,f(x0)=2sin(2x0+)=,所以sin(2x0+)=.由x0∈[0,],得2x0+∈[,].由0<sin(2x0+)=<,知2x0+∈(,π),从而有cos(2x0+)=-, 所以sin 2x0=sin[(2x0+)-]=²-(-)²=.14.已知函数f(x)=sin 2xsin ϕ+cos2xcos ϕ-sin(+ϕ)(0<ϕ<π),其图象过点(,).(1)求ϕ的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在区间[0,]上的最大值和最小值.解:(1)由条件得f(x)=sin 2xsin ϕ+cos ϕ-cos ϕ=sin 2xsin ϕ+cos 2xcos ϕ=cos(2x-ϕ).又函数图象过点(,),得=cos(2²-ϕ),-ϕ=2kπ,ϕ=-2kπ,k∈Z.又因为0<ϕ<π,解得ϕ=.(2)由上可知f(x)=cos(2x-),将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,即g(x)=f(2x)=cos(4x-).因为x∈[0,],所以4x-∈[-,],有cos(4x-)∈[-,1],所以函数g(x)在区间[0,]上的最大值和最小值分别为和-.第5节三角函数的化简与求值一、选择题1.计算等于( D )(A)-(B)- (C) (D)解析:原式====,故选D.2.式子tan 11°+tan 19°+tan 11°tan 19°的值是( D )(A) (B) (C)0 (D)1解析:因为tan(11°+19°)==,所以tan 11°+tan 19°=(1-tan 11°tan 19°),即tan 11°+tan 19°=1-tan 11°tan 19°,从而有tan 11°+tan 19°+tan 11°tan 19°=1,故选D.3.若sin(-α)=,则cos(+2α)等于( A )(A)- (B)- (C)(D)解析:观察发现+2α=2(+α),而(+α)+(-α)=,则有cos(+α)=sin(-α)=,所以cos(+2α)=2cos2(+α)-1=2³-1=-,故选A.4.设M=sin 100°-cos 100°,N=(cos 46°cos 78°+cos 44°²cos 12°),P=,Q=,则M,N,P,Q的大小关系是( C )(A)M>N>P>Q (B)P>M>N>Q(C)N>M>Q>P (D)Q>P>M>N解析:因为M=sin(100°-45°)=sin 55°,N=(cos 46°sin 12°+sin 46°cos 12°)=sin 58°,P==tan(45°-10°)=tan 35°,Q==tan 45°=1,所以N=sin 58°>sin 55°=M>sin 45°=1=Q.=tan 45°>tan 35°=P,即有N>M>Q>P,故选C.5.设△ABC的三内角为A,B,C,向量m=(sin A,sin B),n=(cos B, cos A),若m²n=1+cos(A+B),则角C等于( C )(A) (B) (C) (D)解析:因为m²n=1+cos(A+B),所以sin Acos B+cos Asin B=1+cos(A+B),即sin(A+B)=1+cos(A+B).又因为A+B+C=π,得sin(A+B)=sin C,cos(A+B)=-cos C,因此有sin C=1-cos C,即sin C+cos C=1,从而有sin(C+)=.考虑到0<C<π,得C+=,所以C=,故选C.6.若0≤A,B≤,且A+B=,则cos2A+cos2B的最小值和最大值分别为( C )(A), (B),(C), (D),解析:因为A+B=,所以cos2A+cos2B=+=1+(cos 2A+cos 2B)=1+[cos 2A+cos(-2A)]=1+(cos 2A+coscos 2A+sin sin 2A)=1+(cos 2A-sin 2A)=1+cos(2A+).又因为0≤A,B≤,且A+B=,得≤A≤,≤2A+≤,则-1≤cos(2A+)≤-,从而有≤cos2A+cos2B≤,故有最大值为,最小值为,故选C.二、填空题7.定义运算a⊕b=ab2+a2b,则sin 15°⊕cos 15°= .解析:依题意得sin 15°⊕cos 15°=sin15°cos215°+sin215°²cos 15°=sin 15°cos 15°(sin 15°+cos 15°)=sin30°²sin(15°+45°)=.答案:8.已知<β<α<,cos(α-β)=,sin(α+β)=-,则sin 2α的值是.解析:由已知<β<α<,可知π<α+β<,0<α-β<.又因为cos(α-β)=,sin(α+β)=-,得sin(α-β)=,cos(α+β)=-,所以sin 2α=sin [(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-³+(-)³=-.答案:-9.已知sin(x+20°)=cos(x+10°)+cos(x-10°),则tan x的值是.解析:由条件可化为sin xcos 20°+cos xsin 20°=2cos xcos 10°,两边同除以cos x,得tan x=====.答案:10.已知α=,则+++的值是.解析:法一因为===tan 4α-tan 3α,同理可得=tan 3α-tan 2α,=tan 2α-tan α,所以原式=tan 4α=tan =.法二原式=sin α²+sinα²=+=sin 2α²=sin 2α²=tan 4α=tan =.答案:11.如果cos5θ-sin5θ<7(sin3θ-cos3θ),θ∈[0,2π),那么θ的取值范围是.解析:原不等式等价于sin3θ+sin5θ>cos3θ+cos5θ.又因为f(x)=x3+x5是(-∞,+∞)上的增函数,所以sin θ>cos θ.又因为θ∈[0,2π),所以θ的取值范围是(,).答案:(,)12.函数f(x)=4cos2cos(-x)-2sin x-|ln(x+1)|的零点个数为.解析:因为f(x)=2(1+cos x)sin x-2sin x-|ln(x+1)|=sin2x-|ln(x+1)|,所以函数f(x)的零点个数转化为函数y=sin 2x与y=|ln(x+1)|图象的交点的个数.由图象可得交点有2个,故f(x)的零点也有2个.答案:2三、解答题13.已知函数f(x)=sin xsin(x+).(1)求f(x)的最小正周期;(2)当x∈[0,]时,求f(x)的取值范围.解:(1)由题意得f(x)=sin2x+sin xcos x=²+sin 2x=sin 2x-cos 2x+=sin(2x-)+,所以最小正周期为T=π.(2)由0≤x≤,得-≤sin(2x-)≤1,所以f(x)的取值范围是[0,].14.已知tan(π+α)=-,tan(α+β)=.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)因为tan(π+α)=-,所以tan α=-,从而有tan(α+β)====.(2)tan β=tan [(α+β)-α]===.15.如图,A,B,C,D为平面四边形ABCD的四个内角.(1)证明:tan =;(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan的值.(1)证明:tan ===.(2)解:由A+C=180°,得C=180°-A,D=180°-B.由(1),有tan +tan +tan +tan=+++=+.连接BD(图略),在△ABD中,有BD2=AB2+AD2-2AB²ADcos A,在△BCD中,有BD2=BC2+CD2-2BC²CDcos C,所以AB2+AD2-2AB²ADcos A=BC2+CD2+2BC²CDcos A. 则cos A===.于是sin A===.连接AC,同理可得cos B===,于是sin B===.所以tan +tan +tan +tan=+=+=.第6节三角函数的图象与性质一、选择题1.函数y=tan(-x)的定义域为( A )(A){x|x≠kπ-,k∈Z} (B){x|x≠2kπ-,k∈Z}(C){x|x≠kπ+,k∈Z} (D){x|x≠2kπ+,k∈Z}解析:令-x≠kπ+,k∈Z,所以x≠--kπ,即x≠kπ-,k∈Z.2.(2016²山东卷)函数f(x)=(sin x+cos x)(cos x-sin x)的最小正周期是( B )(A)(B)π (C) (D)2π解析:f(x)=3sin xcos x-sin2x+cos2x-sin xcos x=sin 2x+cos 2x=2sin(2x+).最小正周期T==π,故选B.3.(2017²全国Ⅲ卷)设函数f(x)=cos(x+),则下列结论错误的是( D )(A)f(x)的一个周期为-2π(B)y=f(x)的图象关于直线x=对称(C)f(x+π)的一个零点为x=(D)f(x)在(,π)单调递减解析:f(x)=cos(x+)中,x∈(,π),x+∈(,),则f(x)=cos(x+)不是单调函数.故选D.4.如果函数y=3cos(2x+ϕ)的图象关于点(,0)对称,那么|ϕ|的最小值为( A )(A) (B) (C) (D)解析:由题意得3cos(2³+ϕ)=3cos(+ϕ+2π)=3cos(+ϕ)=0,所以+ϕ=kπ+,k∈Z,所以ϕ=kπ-,k∈Z,取k=0,得|ϕ|的最小值为.5.(2016²浙江卷)设函数f(x)=sin 2x+bsin x+c,则f(x)的最小正周期( B )(A)与b有关,且与c有关(B)与b有关,但与c无关(C)与b无关,且与c无关(D)与b无关,但与c有关解析:f(x)=sin2x+bsin x+c=+bsin x+c=-+bsin x+c+,其中当b=0时,f(x)=-+c+,此时周期是π;当b≠0时,周期为2π,而c不影响周期.故选B.6.(2016²全国Ⅰ卷)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,](C)[-,] (D)[-1,-]解析:f′(x)=1-cos 2x+acos x=1-²(2cos2x-1)+acos x=-cos2x+acos x+,f(x)在R上单调递增,则f′(x)≥0在R上恒成立.令cos x=t,t∈[-1,1],则-t2+at+≥0在[-1,1]上恒成立,即4t2-3at-5≤0在[-1,1]上恒成立,令g(t)=4t2-3at-5,则解得-≤a≤,故选C.二、填空题7.已知a>0,函数f(x)=-2asin(2x+)+2a+b,当x∈[0,]时,-5≤f(x)≤1,则常数a= ;设g(x)=f(x+),则g(x)的单调增区间为 .解析:因为x∈[0,],所以2x+∈[,],所以sin(2x+)∈[-,1],所以-2asin(2x+)∈[-2a,a].所以f(x)∈[b,3a+b].又因为—5≤f(x)≤1,所以b=-5,3a+b=1,解得a=2,b=-5.所以f(x)=-4sin(2x+)-1,g(x)=f(x+)=-4sin(2x+)-1=4sin(2x+)-1,当-+2kπ≤2x+≤+2kπ,k∈Z时,g(x)单调递增,即-+kπ≤x≤+kπ,k∈Z.所以g(x)的单调增区间为[-+kπ,+kπ],k∈Z.答案:2 [-+kπ,+kπ](k∈Z)8.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.解析:f(x)=sin ωx+cos ωx=sin(ωx+),因为f(x)在区间(-ω,ω)内单调递增,且函数图象关于直线x=ω对称,所以f(ω)必为一个周期上的最大值,所以有ω²ω+=2kπ+,k ∈Z,所以ω2=2kπ+,k∈Z.又2[ω-(-ω)]≤,即ω2≤,所以ω2=,所以ω=.答案:9.已知函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x+ )+1的图象的对称轴完全相同,若x∈[0,],则f(x)的取值范围是. 解析:因为f(x)与g(x)的图象的对称轴完全相同,所以f(x)与g(x)的最小正周期相等,因为ω>0,所以ω=2,所以f(x)=3sin(2x-),因为0≤x≤,所以-≤2x-≤,所以-≤sin(2x-)≤1,所以-≤3sin(2x-)≤3,即f(x)的取值范围是[-,3].答案:[-,3]10.(2017²嘉兴模拟)已知函数f(x)=3sin(3x+ϕ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有个.解析:令f(x)=3sin(3x+ϕ)=2,得sin(3x+ϕ)=∈[-1,1],又x∈[0,π],所以3x+ϕ∈[ϕ,3π+ϕ];根据正弦函数的图象与性质,可得该方程在正弦函数一个半周期上最多有4个解,即函数y=f(x)的图象与直线y=2的交点最多有4个.答案:411.下列四个函数:①y=sin |x|,②y=cos |x|,③y=|tan x|,④y=-ln|sin x|,以π为周期,在(0,)上单调递减且为偶函数的是___ .(只填序号)解析:①y=sin |x|在(0,)上单调递增,故①错误;②y=cos |x|=cos x 周期为T=2π,故②错误;③y=|tan x|在(0,)上单调递增,故③错误;④ln|sin(x+π)|=ln|sin x|,周期为π,当x∈(0,)时,y=-ln|sin x|=-ln(sin x)在(0,)上单调递减,y=-ln|sin x|为偶函数,故④正确.答案:④12.已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则ω的取值范围是.解析:T=≥2(π-)=π,所以0<ω≤2,由<x<π得ω+<ωx+<πω+,由题意知(ω+,πω+)⊆[+2kπ,+2kπ],k∈Z,所以即所以≤ω≤.答案:[,]三、解答题13.(2017²北京卷)已知函数f(x)=cos(2x-)-2sin xcos x.(1)求f(x)的最小正周期;(2)求证:当x∈[-,]时,f(x)≥-.(1)解:f(x)=cos 2x+sin 2x-sin 2x=sin 2x+cos 2x=sin(2x+),所以f(x)的最小正周期T==π.(2)证明:因为-≤x≤,所以-≤2x+≤,所以sin(2x+)≥sin(-)=-,所以当x∈[-,]时,f(x)≥-.14.求函数y=cos2x+sin x(|x|≤)的最大值与最小值.解:令t=sin x,因为|x|≤,所以t∈[-,].所以y=-t2+t+1=-(t-)2+,所以当t=时,y max=,当t=-时,y min=.所以函数y=cos2x+sin x(|x|≤)的最大值为,最小值为. 15.(2017²浙江协作体)已知0≤ϕ<π,函数f(x)=cos(2x+ϕ)+sin2x.(1)若ϕ=,求f(x)的单调递增区间;(2)若f(x)的最大值是,求ϕ的值.解:(1)由题意f(x)=cos 2x-sin 2x+=cos(2x+)+,由2kπ-π≤2x+≤2kπ,得kπ-≤x≤kπ-.所以f(x)的单调递增区间为[kπ-,kπ-],k∈Z.(2)由题意f(x)=(cos ϕ-)cos 2x-sin ϕsin 2x+,由于函数f(x)的最大值为,即+=1,从而cos ϕ=0,又0≤ϕ<π,故ϕ=.第7节函数y=Asin(ωx+φ)+b的图象与性质一、选择题1.为了得到函数y=sin(x+1)的图象,只需把函数y=sin x的图象上所有的点( A )(A)向左平行移动1个单位长度(B)向右平行移动1个单位长度(C)向左平行移动π个单位长度(D)向右平行移动π个单位长度2.(2016²全国Ⅰ卷)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+) (B)y=2sin(2x+)(C)y=2sin(2x-) (D)y=2sin(2x-)解析:因为T==π,=,所以y=2sin(2x+)y=2sin[2(x-)+],所以y=2sin(2x-).故选D.3.函数y=sin 2x的图象向右平移φ(φ>0)个单位,得到的图象恰好关于x=对称,则φ的最小值为( A )(A)π(B)π(C)π(D)以上都不对解析:y=sin 2x的图象向右平移φ个单位得到y=sin 2(x-φ)的图象,又关于x=对称,则2(-φ)=kπ+(k∈Z),2φ=-kπ-(k∈Z),即φ=--,取k=-1,得φ=π.4.设a∈R,b∈[0,2π],若对任意实数x都有sin(3x-)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为( B )(A)1 (B)2 (C)3 (D)4解析:由已知,3x-=ax+b+2kπ或3x-+ax+b=π+2kπ,k∈Z,所以或k∈Z,所以或满足条件的有序实数对(a,b)的对数为2.5.将函数f(x)=sin 2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)-g(x2)|=2的x1,x2,有=.则φ等于( D )(A) (B)(C)(D)解析:由已知得g(x)=sin(2x-2φ),满足|f(x1)-g(x2)|=2,不妨设此时y=f(x)和y=g(x)分别取得最大值与最小值,又|x1-x2|min=,令2x1=,2x2-2φ=-,此时|x1-x2|=-φ=,又0<φ<,故φ=.故选D.6.已知函数f(x)=Asin(x-),g(x)=k(x-3).已知当A=1时,函数h(x)=f(x)-g(x)所有零点和为9.则当A=2时,函数h(x)=f(x)-g(x)所有零点和为( A )(A)15 (B)12(C)9 (D)与k的取值有关解析:如图,函数y=f(x)与y=g(x)图象均过的点(3,0),且均关于点(3,0)对称.所以h(x)零点关于x=3“对称”,因为当A=1时,h(x)所有零点和为9,所以此时,函数y=f(x)与y=g(x)图象有三个公共点,此时,f(6)<g(6),得k>.当A=2时,f(6)>g(6)且g(9)=6k>2=f max(x),所以h(x)有5个零点x1,x2,x3,x4,x5,且x1+x5=x2+x4=6,x3=3.所以x1+x2+x3+x4+x5=15.故选A.7.(2016²全国Ⅰ卷)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( B )(A)11 (B)9 (C)7 (D)5解析:因为f(x)=sin(ωx+φ)的一个零点为x=-,x=为y=f(x)图象的对称轴,所以²k=(k为奇数).又T=,所以ω=k(k为奇数).又函数f(x)在(,)上单调,所以≤³,即ω≤12.若ω=11,又|φ|≤,则φ=-,此时,f(x)=sin(11-x-),f(x)在(,)上单调递增,在(,)上单调递减,不满足条件.若ω=9,又|φ|≤,则φ=,此时f(x)=sin(9x+),满足f(x)在(,)上单调的条件.故选B.二、填空题8.(2017²温州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,将f(x)的图象向左平移个单位,得到g(x)的图象,则函数g(x)的解析式为 .解析:由题意得=-=,所以T=π,所以ω=2,又因为2³+φ=π,所以φ=,所以f(x)=sin(2x+).因为g(x)的图象是由f(x)的图象向左平移个单位得到,所以g(x)=sin [2(x+)+]=sin(2x+).答案:g(x)=sin(2x+)9.(2016²全国Ⅲ卷)函数y=sin x-cos x的图象可由函数y=sin x+cos x的图象至少向右平移个单位长度得到.解析:y=sin x-cos x=2sin(x-),y=sin x+cos x=2sin(x+),y=2sin(x+)的图象至少向右平移个单位长度得到y=2sin(x+-)=2sin(x-)的图象.答案:10.若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为.解析:将函数y=2sin 2x的图象向左平移个单位长度,得到函数y=2sin [2(x+)]=2sin(2x+)的图象.由2x+=kπ+(k∈Z),得x=+(k∈Z),即平移后图象的对称轴为x=+(k∈Z).答案:x=+(k∈Z)11.(2016²浙江卷)已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),则A= ,b= .解析:2cos2x+sin 2x=sin(2x+)+1,所以A=,b=1.答案: 112.(2016²江苏卷)定义在区间[0,3π]上的函数y=sin 2x的图象与y=cos x的图象的交点个数是.解析:联立两曲线方程,得两曲线交点个数即为方程组解的个数,也就是方程sin 2x=cos x解的个数.方程可化为2sin xcos x=cos x,即cos x(2sin x-1)=0,所以cos x=0或sin x=.①当cos x=0时,x=kπ+,k∈Z,因为x∈[0,3π],所以x=,π,π,共3个;②当sin x=时,因为x∈[0,3π],所以x=,π,π,π,共4个.综上,方程组在[0,3π]上有7个解,故两曲线在[0,3π]上有7个交点.答案:7三、解答题13.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<)的部分图象如图所示,M 为最高点,该图象与y轴交于点F(0,),与x轴交于点B,C,且△MBC 的面积为π.(1)求函数f(x)的解析式;(2)若f(α-)=,求cos 2α的值.解:(1)因为S△MBC=³2³BC=BC=π,所以周期T=2π=,ω=1,由f(0)=2sin φ=,得sin φ=,因为0<φ<,所以φ=,所以f(x)=2sin(x+).(2)由f(α-)=2sin α=,得sin α=,所以cos 2α=1-2sin2α=.14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f(x-),求g(x)的单调递减区间.解:(1)函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π, 所以T==π,ω=2,又x=为f(x)图象的一条对称轴,所以2³+φ=kπ+,k∈Z,解得φ=kπ+,k∈Z,又|φ|≤,所以φ=.(2)由(1)知,f(x)=sin(2x+),所以g(x)=f(x)+f(x-)=sin(2x+)+sin 2x=sin 2x+cos 2x+sin 2x =sin(2x+),令+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,所以g(x)的单调递减区间是[+kπ,+kπ],k∈Z.15.函数f(x)=cos(πx+φ)(0<φ<)的部分图象如图所示.(1)求φ及图中x0的值;(2)设g(x)=f(x)+f(x+),求函数g(x)在区间[-,]上的最大值和最小值.解:(1)由题图得f(0)=,所以cos φ=,因为0<φ<,故φ=.法一由于f(x)的最小正周期T==2,由题图可知1<x0<2,故<πx0+<,由f(x0)=得cos(πx0+)=,所以πx0+=,x0=.法二求离原点最近的正的最小值点,令πx+=π+2kπ,得x=+2k,k∈Z,令k=0得x=,所以=,x0=.(2)因为f(x+)=cos [π(x+)+]=cos(πx+)=-sin πx,所以g(x)=f(x)+f(x+)=cos(πx+)-sin πx=cos πxcos -sin πxsin -sin πx=cos πx-sin πx=sin(-πx)=-sin(πx-).当x∈[-,]时,πx∈[-,],(πx-)∈[-,], 所以sin(πx-)∈[-1,],-sin (πx-)∈[-,],当πx-=-,即x=-时,g(x)取得最大值;当πx-=,即x=时,g(x)取得最小值-.易错点训练:忽视函数值造成范围扩大一、选择题1.的值是( A )(A)sin 40° (B)cos 40° (C)cos 130°(D)±cos 50°解析:因为==-cos 130°=sin 40°,故选A.2.已知sin α=2sin β,tan α=3tan β,则cos α的值是( D )(A) (B)-(C)± (D)±或±1解析:由条件tan α=3tan β,得=.又因为sin α=2sin β,所以=.当sin β=0时,sin α=0,显然成立,故有cos α=±1;当sin β≠0时,3cos α=2cos β,从而有(sin α)2+(3cos α)2=4,解得cos2α=,所以cos α=±,故选D.3.在△ABC中,若sin A=,cos B=,则cos C的值是( B )(A) (B)(C)或 (D)以上都不对解析:因为cos B=,所以sin B=.又因为sin A=<=sin B,若A 为钝角,则sin(π-A)<sin B,得π-A<B,π<A+B矛盾.因此A肯定是锐角,所以cos A=,从而有cos C=-cos(A+B)=sin Asin B-cos Acos B=,故选B.4.已知3sin2x+2sin2y=2sin x,则sin2x+sin2y的最值情况是( D )(A)最大值为,最小值为-(B)最大值为,最小值为0(C)最大值为,最小值为-(D)最大值为,最小值为0解析:由0≤sin2y=(2sin x-3sin2x)≤1,可解得0≤sin x≤,则sin2x+sin2y=sin2x+(2sin x-3sin2x)=-sin2x+sin x=-(sin x-1)2+,所以sin2x+sin2y的最大值为,最小值为0.5.已知方程x2+4ax+3a+1=0(a>1)的两根为tan α,tan β,且α,β∈(-,),则tan 的值是( A )(A)-2 (B)(C)-2或(D)2或-解析:由韦达定理可知tan α,tan β同为负值,可得α,β∈(-,0),所以∈(-,0).又因为所以tan(α+β)===.又因为tan(α+β)==,解得tan =-2或,取tan =-2.二、填空题6.已知sin θ+cos θ=,其中θ∈(0,π),则tan θ的值是.。
高考数学一轮复习 专题18 任意角、弧度制及任意角的三角函数(含解析)-人教版高三全册数学试题
专题18任意角、弧度制及任意角的三角函数最新考纲1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.基础知识融会贯通 1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx(x ≠0). 三个三角函数的性质如下表:三角函数 定义域第一象限符号第二象限符号第三象限符号 第四象限符号sinαR+ + - - cosR+--+αtanα{α|α≠k π+π2,k ∈Z } +-+-4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦. 2.任意角的三角函数的定义(推广)设P (x ,y )是角α终边上异于顶点的任一点,其到原点O 的距离为r ,则sin α=y r ,cos α=x r,tan α=y x(x ≠0).重点难点突破 【题型一】角及其表示【典型例题】已知集合{α|2k πα≤2k π,k ∈Z },则角α的终边落在阴影处(包括边界)的区域是( )A .B .C .D .【解答】解:集合{α|2k πα≤2k π,k ∈Z },表示第一象限的角,故选:B . 【再练一题】直角坐标系内,β终边过点P (sin2,cos2),则终边与β重合的角可表示成( )A .2+2πk ,k ∈ZB .2+k π,k ∈ZC .2+2k π,k ∈zD .﹣2+2k π,k ∈Z【解答】解:∵β终边过点P (sin2,cos2),即为(cos (2),sin (2))∴终边与β重合的角可表示成2+2k π,k ∈Z ,故选:A .思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角. (2)确定kα,αk(k ∈N *)的终边位置的方法先写出kα或αk 的X 围,然后根据k 的可能取值确定kα或αk的终边所在位置. 【题型二】弧度制 【典型例题】已知扇形的周长是6cm,面积是2cm2,试求扇形的圆心角的弧度数()A.1B.4C.1或 4D.1或 2【解答】解:设扇形的圆心角为αrad,半径为Rcm,则,解得α=1或α=4.故选:C.【再练一题】将300°化成弧度得:300°=rad.【解答】解:∵180°=π,∴1°,则300°=300.故答案为:.思维升华应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.【题型三】三角函数的概念及应用命题点1 三角函数定义的应用【典型例题】已知角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=()A.B.C.1D.﹣1【解答】解:角θ的顶点与原点重合,始边与x轴正半轴重合,若A(x,3)是角θ终边上一点,且,则x=﹣1,故选:D.【再练一题】已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上一点A(2sinα,3),则cosα=()A.B.C.D.【解答】解:∵由题意可得:x=2sinα,y=3,可得:r,∴cosα,可得:cos2α,整理可得:4cos4α﹣17cos2α+4=0,∴解得:cos2α,或(舍去),∴cosα.故选:A.命题点2 三角函数线的应用【典型例题】已知,a=sinα,b=cosα,c=tanα,那么a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【解答】解:作出三角函数对应的三角函数线如图:则AT=tanα,MP=sinα,OM=cosα,则sinα>0,AT<OM<0,即sinα>cosα>tanα,则a>b>c,故选:A.【再练一题】已知a =sin ,b =cos ,c =tan ,则( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c【解答】解:因为,所以cos sin ,tan 1,所以b <a <c . 故选:A .思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的X 围.基础知识训练1.【某某省某某市第八中学2018-2019学年高一下学期期中考试】已知角θ的终边经过点()2,3-,则( )A .5B .15-C .15D .5-【答案】A【解析】由任意角的三角函数定义可知:3 tan2θ=-本题正确选项:A2.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】函数的值域是()A.B.C.D.【答案】C【解析】由题意可知:角的终边不能落在坐标轴上,当角终边在第一象限时,当角终边在第二象限时,当角终边在第三象限时,当角终边在第四象限时,因此函数的值域为,故选:C.3.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】已知角α的终边上一点P的坐标为,则sinα的值为()A.12B.1-2C3D.3【答案】B 【解析】解:角α的终边上一点P 的坐标为31,22⎛⎫- ⎪ ⎪⎝⎭, 它到原点的距离为r =1,由任意角的三角函数定义知:,故选:B .4.【某某省宁县第二中学2018-2019学年高一下学期期中考试】已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值X 围是( )A .(2π,34π)∪(54π,32π) B .(0,4π)∪(54π,32π) C .(2π,34π)∪(74π,2π)D .(2π,34π)∪(π,32π)【答案】C 【解析】∵点P (sinα+cosα,tanα)在第四象限, ∴,由sinα+cosα2=(α4π+), 得2kπ<α4<π+2kπ+π,k∈Z,即2kπ4π-<α<2kπ34π+π,k∈Z. 由tanα<0,得kπ2π+<α<kπ+π,k∈Z.∴α∈(2π,34π)∪(74π,2π).故选:C .5.【某某省示X 高中2018-2019学年高一下学期第三次联考】若角θ是第四象限角,则32πθ+是( ) A .第一象限角 B .第二象限角C .第三象限角D .第四象限角【答案】C 【解析】角θ是第四象限角.,则故32πθ+是第三象限角.故选C. 6.【某某省某某市第一中学2018-2019学年高一下学期第四次月考】已知且sin 0α>,则下列不等式一定成立的是() A . B . C .D .【答案】D 【解析】 由于且sin 0α>,故α为第二象限角,故,故D 选项一定成立,故本小题选D. 7.【某某某某市第三中学2018-2019学年高一5月月考】半径为1cm ,中心角为150°的角所对的弧长为( )cm .A .23B .23π C .56D .56π 【答案】D 【解析】由题意,半径1r cm =,中心角,又由弧长公式,故选:D .8.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与0420-终边相同的角是( ) A .0120- B .0420C .0660D .0280【答案】C 【解析】与0420-角终边相同的角为:,当3n =时,.故选:C.9.【某某省某某师X大学附属实验中学2018-2019学年高一下学期第二次月考】下列说法正确的是()A.钝角是第二象限角B.第二象限角比第一象限角大C.大于90︒的角是钝角D.-165︒是第二象限角【答案】A【解析】解:钝角的X围为,钝角是第二象限角,故A正确;﹣200°是第二象限角,60°是第一象限角,-200°<60°,故B错误;由钝角的X围可知C错误;-180°<-165°<-90°,-165°是第三象限角,D错误.故选:A.10.直角坐标系内,角β的终边过点,则终边与角β重合的角可表示成()A.B.C.D.【答案】A【解析】因为点为第四象限内的点,角β的终边过点,所以β为第四象限角,所以终边与角β重合的角也是第四象限角,而,均为第三象限角,为第二象限角,所以BCD排除,故选A11.【某某省某某市启东中学2018-2019学年高二5月月考】给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号) 【答案】③ 【解析】 ①43απ=-,则α为第二象限角;3πβ=,则β为第一象限角,此时αβ<,可知①错误;②当三角形的一个内角为直角时,不属于象限角,可知②错误; ③由弧度角的定义可知,其大小与扇形半径无关,可知③正确; ④若3πα=,23πβ=,此时,但,αβ终边不同,可知④错误;⑤当θπ=时,,此时θ不属于象限角,可知⑤错误.本题正确结果:③12.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】与02018-角终边相同的最小正角是______ 【答案】0142 【解析】 解:,即与02018-角终边相同的最小正角是0142, 故答案为:0142.13.【某某省某某市郏县第一高级中学2018-2019学年高一下学期第二次5月月考】从8:05到8:50,分针转了________(rad ). 【答案】3π2- 【解析】从8:05到8:50,过了45分钟,时针走一圈是60分钟,故分针是顺时针旋转,应为负角, 故分针转了32π-. 14.【2017届某某省某某市石室中学高三二诊模拟考试】已知角3πα+的始边是x 轴非负半轴.其终边经过点34(,)55P --,则sin α的值为__________.【答案】43310-+ 【解析】解:∵点P (1,2)在角α的终边上,∴tan α2=, 将原式分子分母除以cos α,则原式故答案为:5.16.【某某省涟水中学2018-2019学年高二5月月考】欧拉公式(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,3i e -表示的复数在复平面中位于第_______象限. 【答案】三 【解析】由题e -3i=cos3-i sin3,又cos3<0, sin3>0,故3i e -表示的复数在复平面中位于第三象限. 故答案为三17.【某某省会宁县第一中学2018-2019学年高一下学期期中考试】(1)已知扇形的周长为8,面积是4,求扇形的圆心角.(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才使扇形的面积最大? 【答案】(1)2;(2)当半径为10圆心角为2时,扇形的面积最大,最大值为100. 【解析】(1)设扇形的圆心角大小为α()rad ,半径为r ,则由题意可得:.联立解得:扇形的圆心角2α=. (2)设扇形的半径和弧长分别为r 和l , 由题意可得240r l +=, ∴扇形的面积.当10r =时S 取最大值,此时20l =, 此时圆心角为2l rα,∴当半径为10圆心角为2时,扇形的面积最大,最大值为100.18.【某某市徐汇区2019届高三上学期期末学习能力诊断】我国的“洋垃极禁止入境”政策已实施一年多某沿海地区的海岸线为一段圆弧AB ,对应的圆心角,该地区为打击洋垃圾走私,在海岸线外侧20海里内的海域ABCD 对不明船只进行识别查证如图:其中海域与陆地近似看作在同一平面内在圆弧的两端点A ,B 分别建有监测站,A 与B 之间的直线距离为100海里.求海域ABCD 的面积;现海上P 点处有一艘不明船只,在A 点测得其距A 点40海里,在B 点测得其距B 点海里判断这艘不明船只是否进入了海域ABCD ?请说明理由. 【答案】(1)平方海里; (2)这艘不明船只没进入了海域ABCD ..【解析】,在海岸线外侧20海里内的海域ABCD,,,平方海里,由题意建立平面直角坐标系,如图所示;由题意知,点P在圆B上,即,点P也在圆A上,即;由组成方程组,解得;又区域ABCD内的点满足,由,不在区域ABCD内,由,也不在区域ABCD内;即这艘不明船只没进入了海域ABCD.19.已知角β的终边在直线x-y=0上.①写出角β的集合S;②写出S中适合不等式-360°≤β<720°的元素.【答案】①{β|β=60°+n·180°,n∈Z};②-120°,240°,600°.【解析】①如图,直线x-y=0过原点,倾斜角为60°,在0°~360°X围内,终边落在射线OA上的角是60°,终边落在射线OB上的角是240°,所以以射线OA、OB为终边的角的集合为:S1={β|β=60°+k·360°,k∈Z},S2={β|β=240°+k·360°,k∈Z},所以,角β的集合S=S1∪S2={β|β=60°+k·360°,k∈Z}∪{β|β=60°+180°+k·360°,k∈Z}={β|β=60°+2k·180°,k∈Z}∪{β|β=60°+(2k+1)·180°,k∈Z}={β|β=60°+n·180°,n∈Z}.②由于-360°≤β<720°,即-360°≤60°+n·180°<720°,n∈Z,解得,n∈Z,所以n可取-2、-1、0、1、2、3.所以S中适合不等式-360°≤β<720°的元素为:60°-2×180°=-300°;60°-1×180°=-120°;60°-0×180°=60°;60°+1×180°=240°;60°+2×180°=420;60°+3×180°=600°.20.已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合.(2)写出终边落在阴影部分(包括边界)的角的集合.【答案】(1) 终边落在OA位置上的角的集合为{α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z};(2) {α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}. 【解析】(1)终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z}={α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z}.(2)由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的角及终边与它们相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z}.能力提升训练1.【某某省某某市2019届高三模拟考试】如图,点为单位圆上一点,,点沿单位圆逆时针方向旋转角到点,则( )A .B .C .D .【答案】D 【解析】∵点A 为单位圆上一点,,点A 沿单位圆逆时针方向旋转角α到点,∴A (cos ,sin ),即A (),且cos (α),sin (α).则sinα=sin[(α)]=sin (α)cos cos (α)sin,故选:D .2.【某某省某某实验中学2018-2019学年高一下学期期中考试】在ABC ∆中,若,那么ABC∆是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】A【解析】∆中,,∵在ABC∴,∴,A B为锐角.又,∴,∴,∴C为锐角,∆为锐角三角形.∴ABC故选A.3.【某某省某某市2018-2019学年高一下学期期中考试】已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】由,得异号,则角是第二或第三象限角,故选:.【某某省某某市2018-2019学年高一下学期期中考试】已知角α的终边经过点P(-3,y),且y<0,cosα=-,4.则tanα=()A.B.C.D.【答案】C 【解析】由题意,角的终边经过点,且,则,∴,所以,故选:C .5.【某某省某某市2019届高三下学期第三次统考】已知角83πθ=的终边经过点(,23)P x ,则x 的值为( ) A .±2 B .2C .﹣2D .﹣4【答案】C 【解析】 ∵已知角83πθ=的终边经过点(,23)P x ,∴23x,则2x =-,故选:C .6.【某某省某某市第三中学2019届高三上学期期中考试】,则3f π⎛⎫=⎪⎝⎭( ) A .32B .33C .12D .3【答案】C 【解析】根据题意,,且123π<<,则.故选:C .7.【某某省华文大教育联盟2019届高三第二次质量检测考试】在平面直角坐标系xOy 中,已知02απ<<,点是角α终边上一点,则α的值是___________.【答案】3π 【解析】,∵02απ<<,且点P 在第一象限, ∴α为锐角,∴α的值是3π, 故答案为:3π8.【某某省某某市第一中学2018-2019学年高一下学期开学考试】函数的定义域为______.【答案】或x k π=,k Z}∈【解析】 因为所以 2sin x 0cosx≥等价于0cosx >或0sinx =所以或x k π=,k Z ∈故答案为:或x k π=,k Z}∈.9.【某某省蓉城名校联盟2018-2019学年上期期末联考高一】在平面直角坐标系中,已知一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),则sinα+cosα的值为___. 【答案】【解析】∵一个角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (5,-12),∴sinα=则sinα+cosα=-,故答案为:-.10.对于任意实数,事件“”的概率为_______.【答案】【解析】由于“”,故为第二象限角,故概率为.。
专题4.3三角函数的图象与性质(2021年高考数学一轮复习专题)
专题 三角函数的图象与性质一、题型全归纳题型一 三角函数的定义域【题型要点】三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域. (2)转化为求解简单的三角不等式来求复杂函数的定义域.【例1】(2020·昆山一中模拟)1.函数y =lg(3tan x -3)的定义域为 .【答案】:Z k k k ∈⎪⎭⎫⎝⎛++,2,6ππππ【解析】:要使函数y =lg(3tan x -3)有意义,则3tan x -3>0,即tan x >33.所以π6+k π<x <π2+k π,k ∈Z . 【例2】函数y =cos x -12的定义域为 .【答案】 ⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ【解析】 要使函数有意义,则cos x -12≥0,即cos x ≥12,解得-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ. 题型二 三角函数的单调性命题角度一 确定三角函数的单调性(单调区间)【题型要点】求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.【例1】(2020·广东省七校联考)函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是( ) A.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,342,322ππππ B.Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,344,324ππππ D.Z k k k ∈⎪⎭⎫ ⎝⎛+-,344,324ππππ 【解析】:由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ,故选B. 【例2】.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛24ππ,单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |【解析】A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递增,故A正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.命题角度二 利用三角函数的单调性比较大小利用单调性比较大小的方法:首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.【例3】已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πx ,设a =⎪⎭⎫⎝⎛7πf ,b =⎪⎭⎫⎝⎛6πf ,c =⎪⎭⎫⎝⎛3πf ,则a ,b ,c 的大小关系是( ) A .a <c <b B .c <a <b C .b <a <cD .b <c <a【解析】 a =⎪⎭⎫⎝⎛7πf =2sin 10π21,b =⎪⎭⎫⎝⎛6πf =2sin π2=2,c =⎪⎭⎫⎝⎛3πf =2sin 2π3=2sin π3, 因为y =sin x 在⎥⎦⎤⎢⎣⎡20π,上单调递增,且π3<10π21<π2,所以c <a <b .命题角度三 已知三角函数的单调区间求参数【题型要点】已知函数单调性求参数——明确一个不同,掌握两种方法(1)明确一个不同:“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)抓住两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.【例4】(2020·湖南师大附中3月月考)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D .13【解析】 法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,所以⎩⎨⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎨⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B.命题角度四 利用三角函数的单调性求值域(最值)【题型要点】1.三角函数值域的求法 (1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域. (3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域. 2.换元法求三角函数的值域(最值)的策略(1)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值). (2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例5】 (2019·高考全国卷Ⅱ)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -3cos x 的最小值为 . 【解析】 f (x )=sin(2x +3π2)-3cos x =-cos 2x -3cos x =1-2cos 2x -3cos x =-2243cos ⎪⎭⎫ ⎝⎛+x +178,因为cosx ∈[-1,1],所以当cos x =1时,f (x )取得最小值,f (x )min =-4.【例6】(2020·河北省中原名校联盟联考)若函数f (x )=3sin ⎪⎭⎫⎝⎛+10πx -2在区间⎥⎦⎤⎢⎣⎡a ,2π上单调,则实数a 的最大值是 .【解析】:法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎥⎦⎤⎢⎣⎡5752ππ,上单调递减,所以a 的最大值为7π5.法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎥⎦⎤⎢⎣⎡a ,2π上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5.题型三 三角函数的周期性与奇偶性【题型要点】(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的最小正周期为2πω,函数y =A tan(ωx +φ)(ω>0)的最小正周期为πω求解.【例1】(2020·湖北宜昌联考)已知函数y =2sin(ωx +θ)(0<θ<π)为偶函数,其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,则( ) A .ω=2,θ=π2 B .ω=12,θ=π2 C .ω=12,θ=π4D .ω=2,θ=π4【答案】因为函数y =2sin(ωx +θ)的最大值为2,且其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,所以函数y =2sin(ωx +θ)的最小正周期是π. 由2πω=π得ω=2.因为函数y =2sin(ωx +θ)为偶函数,所以θ=π2+k π,k ∈Z . 又0<θ<π,所以θ=π2,故选A.【例2】(2020·石家庄市质量检测)设函数f (x )=sin ⎪⎭⎫ ⎝⎛-+4πϕωx ⎪⎭⎫⎝⎛<>2,0πϕω的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎪⎭⎫⎝⎛20π,上单调递增 B .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递减 C .f (x )在⎪⎭⎫⎝⎛20π,上单调递减 D .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递增 【解析】:.f (x )=sin ⎪⎭⎫⎝⎛-+4πϕωx ,因为f (x )的最小正周期为π,所以ω=2,所以f (x )=sin ⎪⎭⎫ ⎝⎛-+42πϕx .f (-x )=f (x ),即f (x )为偶函数,所以φ-π4=k π+π2(k ∈Z ),所以φ=k π+3π4(k ∈Z ).因为|φ|<π2,所以φ=-π4,所以f (x )=-cos 2x ,所以f (x )在⎪⎭⎫ ⎝⎛20π,上单调递增,在⎪⎭⎫⎝⎛02-,π上单调递减,故选A. 题型四 三角函数的对称性【题型要点】对称中心的求解思路和方法(1)思路:函数y =A sin(ωx +φ)图象的对称轴和对称中心可结合y =sin x 图象的对称轴和对称中心求解. (2)方法:利用整体代换的方法求解,令ωx +φ=k π+π2,k ∈Z ,解得x =(2k +1)π-2φ2ω,k ∈Z ,即对称轴方程;令ωx +φ=k π,k ∈Z ,解得x =k π-φω,k ∈Z ,即对称中心的横坐标(纵坐标为0).对于y =A cos(ωx +φ),y =A tan(ωx +φ),可以利用类似方法求解(注意y =A tan(ωx +φ)的图象无对称轴).【例1】(2020·北京西城区模拟)函数f (x )=A sin(ωx +φ)⎪⎭⎫⎝⎛<>>2,0,0πϕωA 的图象关于直线x =π3对称,它的最小正周期为π,则函数f (x )图象的一个对称中心是( )A.⎪⎭⎫⎝⎛13,π B.⎪⎭⎫ ⎝⎛012,π C.⎪⎭⎫ ⎝⎛0125,π D .⎪⎭⎫⎝⎛012-,π 【解析】 由题意可得2πω=π,所以ω=2,可得f (x )=A sin(2x +φ),再由函数图象关于直线x =π3对称,故⎪⎭⎫ ⎝⎛3πf =A sin ⎪⎭⎫⎝⎛+ϕπ32=±A ,故可取φ=-π6. 故函数f (x )=A sin ⎪⎭⎫⎝⎛-62πx ,令2x -π6=k π,k ∈Z , 可得x =k π2+π12,k ∈Z ,故函数的对称中心为⎪⎭⎫⎝⎛+0122,ππk ,k ∈Z . 所以函数f (x )图象的一个对称中心是⎪⎭⎫⎝⎛012,π. 【例2】已知函数f (x )=|sin x ||cos x |,则下列说法错误的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的周期为π2C .(π,0)是f (x )的一个对称中心D .f (x )在区间⎥⎦⎤⎢⎣⎡24ππ,上单调递减【解析】:f (x )=|sin x ||cos x |=|sin x cos x |=12·|sin 2x |,则⎪⎭⎫ ⎝⎛2πf =12|sin π|=0,则f (x )的图象不关于直线x =π2对称,故A 错误;函数周期T =12×2π2=π2,故B 正确;f (π)=12|sin 2π|=0,则(π,0)是f (x )的一个对称中心,故C 正确;当x ∈⎥⎦⎤⎢⎣⎡24ππ,时,2x ∈⎥⎦⎤⎢⎣⎡ππ,2,此时sin 2x >0,且sin 2x 为减函数,故D 正确.题型五 三角函数的图象与性质的综合问题【题型要点】解决三角函数图象与性质综合问题的方法先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【例1】 已知函数f (x )=2sin ⎪⎭⎫⎝⎛-42πx . (1)求函数的最大值及相应的x 值的集合;(2)求函数f (x )的图象的对称轴方程与对称中心.【解析】:(1)当sin ⎪⎭⎫⎝⎛-42πx =1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2;故f (x )的最大值为2,使函数取得最大值的x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,83ππ(2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z .即函数f (x )的图象的对称轴方程为x =3π8+12k π,k ∈Z .由2x -π4=k π,k ∈Z 得x =π8+12k π,k ∈Z ,即对称中心为⎪⎭⎫⎝⎛+0,28ππk k ∈Z . 【例2】已知函数f (x )=sin(2π-x )·sin ⎪⎭⎫⎝⎛x -23π-3cos 2x + 3.(1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎡⎦⎤0,7π12时,求f (x )的最小值和最大值. 【解析】 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2x +3=sin x cos x -3cos 2x +3=12sin 2x -32(cos 2x +1)+3=12sin 2x -32cos 2x +32=sin ⎪⎭⎫ ⎝⎛3-2πx +32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),则x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知,-32≤sin ⎪⎭⎫ ⎝⎛3-2πx ≤1,即0≤sin(2x -π3)+32≤2+32. 故f (x )的最小值为0,最大值为2+32.二、高效训练突破 一、选择题1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎪⎭⎫⎢⎣⎡20π, B.⎥⎦⎤⎝⎛ππ,2 C.⎪⎭⎫⎢⎣⎡23ππ, D .⎥⎦⎤ ⎝⎛ππ223, 【解析】:法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎪⎭⎫⎢⎣⎡23ππ,.故选C.法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0B .3C .-1D .-2【解析】:因为f (b )=tan b +sin b +1=2,即tan b +sin b =1. 所以f (-b )=tan(-b )+sin(-b )+1=-(tan b +sin b )+1=0.3.已知函数f (x )=cos 2x +sin 2⎪⎭⎫ ⎝⎛+6πx ,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-12【解析】:.f (x )=1+cos 2x 2+1-cos ⎝⎛⎭⎫2x +π32=12+12cos 2x +12-12⎝⎛⎭⎫cos 2x cos π3-sin 2x sin π3=14cos 2x +34sin 2x +1=12sin⎪⎭⎫ ⎝⎛+62πx +1,则f (x )的最小正周期为π,最小值为-12+1=12,最大值为12+1=32. 4.(2020·福州市第一学期抽测)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是( ) A.π4 B.π2 C.3π8D .π【解析】:由题意,得f (x )=sin 2x -cos 2x =2sin⎪⎭⎫ ⎝⎛4-2πx ,由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ), 解得-π8+k π≤x ≤3π8+k π(k ∈Z ),当k =0时,-π8≤x ≤3π8,即函数f (x )在⎥⎦⎤⎢⎣⎡838-ππ,上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8,即m 的最大值为3π8,故选C.5.若⎪⎭⎫⎝⎛08,π是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( ) A .2 B .4 C .6D .8【解析】:因为f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,由题意,知⎪⎭⎫ ⎝⎛8πf =2sin ⎪⎭⎫ ⎝⎛+48πωπ=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 6.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心 D .最小正周期为π【解析】:函数y =tan(2x -π3)是非奇非偶函数,A 错;在区间(0,π3)上单调递增,B 错;最小正周期为π2,D错;由2x -π3=k π2,k ∈Z 得x =k π4+π6,当k =0时,x =π6,所以它的图象关于(π6,0)中心对称,故选C.7.(2020·武汉市调研测试)已知函数f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在区间⎪⎭⎫ ⎝⎛80π,上单调递增,则ω的最大值为( ) A.12 B .1 C .2D .4【解析】:法一:因为x ∈⎪⎭⎫ ⎝⎛80π,,所以ωx +π4∈⎪⎭⎫ ⎝⎛+484πωππ,,因为f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在⎪⎭⎫ ⎝⎛80π,上单调递增,所以ωπ8+π4≤π2,所以ω≤2,即ω的最大值为2,故选C.法二:将选项逐个代入函数f (x )进行验证,选项D 不满足条件,选项A 、B 、C 满足条件f (x )在⎪⎭⎫⎝⎛80π,上单调递增,所以ω的最大值为2,故选C.8.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( ) A .当k =1,a =2时,f (sin A )<f (cos B ) B .当k =1,a =2时,f (cos A )>f (sin B ) C .当k =2,a =1时,f (sin A )>f (cos B ) D .当k =2,a =1时,f (cos A )>f (sin B )【解析】:A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin⎪⎭⎫ ⎝⎛-B 2π=cos B ,cos A <cos ⎪⎭⎫ ⎝⎛-B 2π=sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误; 当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cos B ),f (cos A )>f (sin B ),故C 错误,D 正确.9.已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .4【解析】:函数f (x )=sin ωx +3cos ωx =2sin ⎪⎭⎫ ⎝⎛+3πωx . 由f (α)=2,f (β)=2,且|α-β|的最小值是π2,所以函数f (x )的最小正周期T =π2,所以ω=2ππ2=4.10.(2020·江西八所重点中学联考)已知函数f (x )=2sin(ωx +φ)⎪⎭⎫⎝⎛<<<2,10πϕω的图象经过点(0,1),且关于直线x =2π3对称,则下列结论正确的是( )A .f (x )在⎥⎦⎤⎢⎣⎡3212ππ,上是减函数 B .若x =x 0是f (x )图象的对称轴,则一定有f ′(x 0)≠0 C .f (x )≥1的解集是⎥⎦⎤⎢⎣⎡+32,2πππk k ,k ∈Z D .f (x )图象的一个对称中心是⎪⎭⎫⎝⎛03-,π 【解析】:由f (x )=2sin(ωx +φ)的图象经过点(0,1),得sin φ=12,又|φ|<π2,所以φ=π6,则f (x )=2sin⎪⎭⎫ ⎝⎛+6πωx .因为f (x )的图象关于直线x =2π3对称,所以存在m ∈Z 使得2π3ω+π6=m π+π2,得ω=3m 2+12(m ∈Z ),又0<ω<1,所以ω=12,则f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx .令2n π+π2≤12x +π6≤2n π+3π2,n ∈Z ,得4n π+2π3≤x ≤4n π+8π3,n ∈Z ,故A 错误;若x =x 0是f (x )图象的对称轴,则f (x )在x =x 0处取得极值,所以一定有f ′(x 0)=0,故B 错误;由f (x )≥1得4k π≤x ≤4k π+4π3,k ∈Z ,故C 错误;因为⎪⎭⎫ ⎝⎛-3πf =0,所以⎪⎭⎫⎝⎛03-,π是其图象的一个对称中心,故D 正确.选D.二、填空题1.比较大小:sin ⎪⎭⎫ ⎝⎛18-π sin ⎪⎭⎫⎝⎛10-π. 【解析】:因为y =sin x 在⎥⎦⎤⎢⎣⎡02-,π上为增函数且-π18>-π10>-π2,故sin ⎪⎭⎫ ⎝⎛18-π>sin ⎪⎭⎫⎝⎛10-π. 2.已知函数f (x )=4sin⎪⎭⎫ ⎝⎛3-2πx ,x ∈[-π,0],则f (x )的单调递增区间是 . 【解析】:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ),又因为x ∈[-π,0],所以f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡127--ππ,和⎥⎦⎤⎢⎣⎡012-,π 3.设函数f (x )=cos ⎪⎭⎫ ⎝⎛6-πωx (ω>0).若f (x )≤⎪⎭⎫ ⎝⎛4πf 对任意的实数x 都成立,则ω的最小值为 . 【解析】:由于对任意的实数都有f (x )≤⎪⎭⎫⎝⎛4πf 成立,故当x =π4时,函数f (x )有最大值,故⎪⎭⎫⎝⎛4πf =1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin =23. 4.若函数y =cos ⎪⎭⎫ ⎝⎛+6πωx (ω∈N *)图象的一个对称中心是⎪⎭⎫⎝⎛06,π,则ω的最小值为 . 【解析】:由题意知πω6+π6=k π+π2(k ∈Z )∈ω=6k +2(k ∈Z ),又ω∈N *,所以ωmin =2.5.(2020·无锡期末)在函数∈y =cos|2x |;∈y =|cos 2x |;∈y =cos⎪⎭⎫ ⎝⎛+62πx ;∈y =tan 2x 中,最小正周期为π的所有函数的序号为 .【解析】:∈y =cos|2x |=cos 2x ,最小正周期为π;∈y =cos 2x ,最小正周期为π,由图象知y =|cos 2x |的最小正周期为π2;∈y =cos⎪⎭⎫ ⎝⎛+62πx 的最小正周期T =2π2=π;∈y =tan 2x 的最小正周期T =π2.因此∈∈的最小正周期为π.6.已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .【解析】:由函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,所以ω=k +23,又ω∈(1,2),所以ω=53,从而得函数f (x )的最小正周期为2π53=6π5.三 解答题1.已知函数f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡44-ππ,时,f (x )≥-12. 【解析】:(1)f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x =32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎪⎭⎫ ⎝⎛+32πx ,所以T =2π2=π. (2)证明:令t =2x +π3,因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,因为y =sin t 在⎥⎦⎤⎢⎣⎡26-ππ,上单调递增,在⎥⎦⎤⎢⎣⎡652ππ,上单调递减,且sin ⎪⎭⎫⎝⎛6-π<sin 5π6, 所以f (x )≥sin ⎪⎭⎫⎝⎛6-π=-12,得证. 2.已知f (x )=2sin⎪⎭⎫ ⎝⎛+62πx +a +1. (1)求f (x )的单调递增区间;(2)当x ∈⎥⎦⎤⎢⎣⎡20π,时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合.【解析】:(1)f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,可得k π-π3≤x ≤k π+π6,k ∈Z , 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即⎪⎭⎫⎝⎛6πf =2sin π2+a +1=a +3=4,所以a =1. (3)由f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +2=1,可得sin⎪⎭⎫ ⎝⎛+62πx =-12, 则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.3.已知函数f (x )=sin(ωx +φ)⎪⎭⎫⎝⎛<<320πϕ的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎪⎪⎭⎫⎝⎛236,π,求f (x )的单调递增区间.【解析】:由f (x )的最小正周期为π,则T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).所以sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0, 已知上式对∈x ∈R 都成立,所以cos φ=0.因为0<φ<2π3,所以φ=π2.(2)因为⎪⎭⎫ ⎝⎛6πf =32,所以sin⎪⎭⎫ ⎝⎛+⨯ϕπ62=32,即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z ), 故φ=2k π或φ=π3+2k π(k ∈Z ),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎪⎭⎫ ⎝⎛+32πx ,由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得k π-5π12≤x ≤k π+π12(k ∈Z ), 故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).4.已知函数f (x )=sin ⎪⎭⎫⎝⎛x -2πsin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.【解】:(1)f (x )=cos x sin x -32(2cos 2x -1)=12sin 2x -32cos 2x =sin⎪⎭⎫ ⎝⎛3-2πx . 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),所以当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.所以x 1+x 2=56π,则x 1=56π-x 2,所以cos(x 1-x 2)=cos ⎪⎭⎫ ⎝⎛22-65x π=sin ⎪⎭⎫ ⎝⎛3-22πx ,又f (x 2)=sin⎪⎭⎫ ⎝⎛3-22πx =23,故cos(x 1-x 2)=23.。
高考数学一轮总复习 专题4.1 三角函数的概念、同角三角函数的关系及诱导公式练习(含解析)理-人教版
专题4.1 三角函数的概念、同角三角函数的关系及诱导公式真题回放1.【2017课标II ,理14】函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是。
【答案】1 【解析】【考点】 三角变换,复合型二次函数的最值。
【考点解读】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法。
一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析。
2.【2017,理12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终 边关于y 轴对称.若1sin 3α=,cos()αβ-=___________. 【答案】79- 【解析】【考点】1.同角三角函数;2.诱导公式;3.两角差的余弦公式.【考点解读】本题考查了角的对称的关系,以及诱导公式,常用的一些对称关系包含,α与β关于y 轴对称,则2k αβππ+=+,若α与β关于x 轴对称,则02k αβπ+=+,若α与β关于原点对称,则2k αβππ-=+k Z ∈.3.【2017某某,5】 若π1tan(),46α-= 则tan α=.【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ππαππααππα+-+=-+===---.故答案为75.【考点】两角和正切公式【考点解读】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的X 围,确定角. 4.【2016高考新课标2理数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D5.【2015高考新课标1,理2】o o o o sin 20cos10cos160sin10- =( ) (A )32-(B )32 (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 6.【2015高考某某,文17】已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ). A.233 B. 235 C.211 D. 213 【答案】D考点分析1.了解任意角的概念;2.了解弧度制的概念,能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.知识1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角W.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式3.任意角的三角函数三角函 数线有向线段MP 为正弦线有向线段OM 为余弦线 有向线段AT 为正切线融会贯通题型一象限角与终边相同的角典例1. 终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________。
2024届高三数学一轮复习-三角函数与解三角形 第1练 任意角和弧度制及三角函数的概念(解析版)
第1练任意角和弧度制及三角函数的概念一、单选题B.A.8π33.(2023·福建福州·福建省福州第一中学校考模拟预测)为解决皮尺长度不够的问题,实验小组利用自行车来测量A,B上与点A接触的地方标记为点直),直到前轮与点B接触.经观测,当前轮与点B接触时,标记点度为0.45m.已知前轮的半径为A.20.10m B.19.94m4.(2023秋·甘肃天水·高二天水市第一中学校考开学考试)种结构样式,多见于亭阁式建筑、园林建筑.如图所示的带有攒尖的建筑屋顶可近似看作一个圆锥,其底面积为9π,侧面展开图是圆心角为A.122π5.(2023·河北衡水·河北衡水中学校考模拟预测)A.32-6.(2023·全国·高一专题练习)已知角重合.若角α终边上一点A.32-7.(2023春·广东深圳·高二深圳外国语学校校考期末)在平面直角坐标系中,已知点为角α终边上一点,若二、多选题9.(2023春·江西九江·高一校考期中)如图,在平面直角坐标系中,以原点O 为圆心的圆与x 轴正半轴交于点()1,0A .已知点()11,B x y 在圆O 上,点T 的坐标是()00,sin x x ,则下列说法中正确的是()A.若AOB α∠=,则 ACB α=B.若C.10sin y x =,则 0ACB x =D.若10.(2023春·湖北恩施·高一校联考期中)如图所示,以x 轴非负半轴为始边作锐角α,β,αβ-,它们的终边分别与单位圆相交于点P ,则下列说法正确的是()A. AP的长度为αβ-B.扇形11OA P 的面积为αβ-C.当1A 与P 重合时,12sin AP β=D.当3πα=时,四边形11OAA P 面积的最大值为11.(2023·全国·高三专题练习)如图,A ,B 是在单位圆上运动的两个质点.初始时刻,质点A 在(1,0)处,质点B 在第一象限,且AOB ∠=向运动,质点B 同时以rad /s 12π的角速度按逆时针方向运动,则(A.经过1s 后,扇形AOB B.经过2s 后,劣弧 AB 的长为C.经过6s 后,质点B 的坐标为D.经过22s 3后,质点A ,12.(2023秋·浙江杭州·高三浙江省杭州第二中学校考阶段练习)已知点点P 为圆C :2268x y x y +--+A.PAB 面积的最小值为C.∠PAB 的最大值为5π1213.(2023春·浙江衢州·高一校考阶段练习)0<φ<π)的图像与x 轴相邻两个交点之间的最小距离为与x 轴的所有交点的横坐标之和为A.123f π⎛⎫=- ⎪⎝⎭B.f (x )在区间,66ππ⎛⎫- ⎪⎝⎭内单调递增C.f (x )的图像关于点512π⎛- ⎝D.f (x )的图像关于直线x =14.(2023·全国·高二专题练习)在平面直角坐标系中,角与x 轴的非负半轴重合,终边经过点A.2±B.±1三、填空题16.(2023春·河南濮阳·高一濮阳一高校考阶段练习)已知圆锥侧面展开图的圆心角为底面周长为2π,则这个圆锥的体积为17.(2023·全国·高三专题练习)已知单位长度,再向下平移两个单位长度,得到为.18.(2023·安徽安庆·安庆市第二中学校考模拟预测)已知函数四、解答题(1)求扇形AOB的周长;(2)当点C在什么位置时,矩形参考答案:则有113l l r l R -==,所以1l =所以圆台的侧面积为(πR r +故选:C.3.D【分析】由题意,前轮转动了【详解】解:由题意,前轮转动了所以A ,B 两点之间的距离约为故选:D.4.D【分析】根据底面圆面积可求底面圆半径,从而可求底面圆周长,即可求扇形半径,再根据3如图所示:则圆锥的高h =则圆锥的体积2133V π=⨯⨯故选:D 5.C【分析】利用诱导公式,逆用正弦和角公式计算出答案.【详解】cos198cos132︒︒+cos18sin 42cos 42sin18=︒︒+︒故选:C 6.A【分析】计算得到1,2P ⎛- ⎝【详解】2π2πcos ,sin 33P ⎛对于A,PAB 面积的最小值为点12PAB M S AB y =⋅⋅= 对于B,连接,A C 交圆于22(31)42-=++-AC RC 对于C,当AP 运动到与圆Q ,2sin 4∠==QC CAQ AC ∠∠∠∴=+PAB CAQ CAN。
高三数学一轮复习三角函数(解析版)
数 学C 单元 三角函数C1 角的概念及任意角的三角函数 2.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-452.D [解析] 根据题意,cos α=-4(-4)2+32=-45.C2 同角三角函数的基本关系式与诱导公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3³6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33³⎝⎛⎭⎫-33+63³63=13.因此△ABC 的面积S =12ab sin C =12³3³32³13=322.C3 三角函数的图象与性质 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12³3³1²sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³⎝⎛⎭⎫-13=12,所以a =2 3.7.[2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称7.D [解析] 将函数y =sin x 的图像向左平移π2个单位后,得到函数y =f (x )=sin ⎝⎛⎭⎫x +π2的图像,即f (x )=cos x .由余弦函数的图像与性质知,f (x )是偶函数,其最小正周期为2π,且图像关于直线x =k π(k ∈Z )对称,关于点⎝⎛⎭⎫π2+k π,0(k ∈Z )对称,故选D.图1-25.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2³π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.C4 函数sin()y A x ωϕ=+的图象与性质8.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3C .πD .2π 8.C [解析] ∵f (x )=2sin ⎝⎛⎭⎫ωx +π6=1,∴sin ⎝⎛⎭⎫ωx +π6=12,∴ωx 1+π6=π6+2k 1π(k 1∈Z )或 ωx 2+π6=5π6+2k 2π(k 2∈Z ),则ω(x 2-x 1)=2π3+2(k 2-k 1)π.又∵相邻交点距离的最小值为π3,∴ω=2,∴T =π.7.[2014·安徽卷] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π47.C [解析] 方法一:将f (x )=2sin ⎝⎛⎭⎫2x +π4的图像向右平移φ个单位,得到y =2sin ⎝⎛⎭⎫2x +π4-2φ的图像,由所得图像关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,又φ>0,所以φmin =3π8.13.[2014·重庆卷] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.13.22[解析] 函数f (x )=sin(ωx +φ)图像上每一点的横坐标缩短为原来的一半,得到y =sin(2ωx +φ)的图像,再向右平移π6个单位长度,得到y =sin2ωx -π6+φ=sin ⎝⎛⎭⎫2ωx -ωπ3+φ的图像.由题意知sin ⎝⎛⎭⎫2ωx -ωπ3+φ=sin x ,所以2ω=1,-ωπ3+φ=2k π(k ∈Z ),又-π2≤φ≤π2,所以ω=12,φ=π6,所以f (x )=sin ⎝⎛⎭⎫12x +π6,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12³π6+π6=sin π4=22.16.[2014·北京卷] 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.16.解:(1)f (x )的最小正周期为π. x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1 =2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.11.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增11.B [解析] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,得到y =3sin ⎝⎛⎭⎫2x -23π的图像 ,函数单调递增,则-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z ,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,当k =0时,可知函数在区间⎣⎡⎦⎤π12,7π12上单调递增.14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 14.1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.7.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③7.A [解析] 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;将函数y =cos x 的图像中位于x 轴上方的图像不变,位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小天正周期也为π,②正确;函数y =cos ⎝⎛⎭⎫2x +π6的最小正周期为π,③正确;函数y =tan ⎝⎛⎭⎫2x -π4的最小正周期为π2,④不正确.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .2.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 2.B [解析] T =2π2=π.4.[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位4.A [解析] y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12,故将函数y =2cos 3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选A.3.[2014·四川卷] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度3.A [解析] 由函数y =sin x 的图像变换得到函数y =sin(x +1)的图像,应该将函数y =sin x 图像上所有的点向左平行移动1个单位长度,故选A.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C5 两角和与差的正弦、余弦、正切 9.、[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定9.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ²sin 2π3EC =2³327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12³277+32³217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ²(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )]=-tan(A+C)=tan A+tan C tan A tan C-1=-1,所以B=135°.14.[2014·新课标全国卷Ⅱ] 函数f(x)=sin(x+φ)-2sin φcos x的最大值为________.14.1[解析] f(x)=sin(x+φ)-2sin φcos x=sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x-φ),其最大值为1.17.,,[2014·山东卷] △ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=63,B=A+π2.(1)求b的值;(2)求△ABC的面积.17.解:(1)在△ABC中,由题意知,sin A=1-cos2A=33.又因为B=A+π2,所以sin B=sin⎝⎛⎭⎫A+π2=cos A=63.由正弦定理可得,b=a sin Bsin A=3³6333=3 2.(2)由B=A+π2得cos B=cos⎝⎛⎭⎫A+π2=-sin A=-33.由A+B+C=π,得C=π-(A+B),所以sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B=33³⎝⎛⎭⎫-33+63³63=13.因此△ABC的面积S=12ab sin C=12³3³32³13=322.8.、[2014·四川卷] 如图1-3所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高度是60 m,则河流的宽度BC等于()图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m8.C [解析] 由题意可知,AC =60sin 30°=120.∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,所以sin ∠ABC =sin105°=sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45°=6+24.在△ABC 中,由正弦定理得AC sin ∠ABC =BC∠BAC,于是BC =120³222+64=240 22+6=120(3-1)(m).故选C.17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.18.、[2014·重庆卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.18.解:(1)由题意可知c =8-(a +b )=72.由余弦定理得cos C =a 2+b 2-c 22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222³2³52=-15. (2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得sin A ²1+cos B 2+sin B ²1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知a +b =3c .又a +b +c =8,所以a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,所以b =3.C6 二倍角公式 18.,,[2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.18.解:方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sinx =12时函数y =cos 2x +2sin x 取得最大值,最大值为32. 16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16.43 [解析] 如图所示,根据题意知,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43,即l 1与l 2的夹角的正切值等于43.2.、[2014·全国新课标卷Ⅰ] 若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin 2α>0 D .cos 2α>0 2.C [解析]因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C. 17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.C7 三角函数的求值、化简与证明16.、[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.18.、、、[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.18.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12³8-sin ⎝⎛⎭⎫π12³8=10-3cos 2π3-sin 2π3=10-3³⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. 5.、[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.5.π6 [解析] 将x =π3分别代入两个函数,得到sin ⎝⎛⎭⎫2³π3+φ=12,解得23π+φ=π6+2k π(k ∈Z )或23π+φ=5π6+2k π(k ∈Z ),化简解得φ=-π2+2k π(k ∈Z )或φ=π6+2k π(k ∈Z ).又φ∈[0,π),故φ=π6.15.[2014·江苏卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 15.解: (1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22³⎝⎛⎭⎫-2 55+22³55=-1010. (2)由(1)知sin 2α=2sin αcos α=2³55³ ⎝⎛⎭⎫-2 55=-45,cos 2α=1-2sin 2α=1-2³⎝⎛⎭⎫552=35,所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α= ⎝⎛⎭⎫-32³35+12³⎝⎛⎭⎫-45=-4+3 310.16.、[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 16.解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ²(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →²BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →²BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2³2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23³223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13³79+2 23³4 29=2327.21.、[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x1+sin x+2xπ-1.证明: (1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ).由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎭⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎭⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.12.,[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 12.π [解析] 因为y =32sin 2x +1+cos 2x 2= sin ⎝⎛⎭⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .17.、、、[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.17.解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 a -c =66b ,sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值.16.解:(1)在△ABC 中,由b sin B =csin C,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ²cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ²cos π6+sin 2A ²sin π6=15-38.C8 解三角形18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 18.解:(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22, 所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 16.、[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 16.解: 由三角形面积公式,得12³3³1²sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2³1³3³⎝⎛⎭⎫-13=12,所以a =2 3.12.[2014·北京卷] 在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.12.2158 [解析] 由余弦定理得c 2=a 2+b 2-2ab cos C =1+4-2³2³1³14=4,即c =2;cos A =b 2+c 2-a 22bc =4+4-12³2³2=78,∴sin A =1-⎝⎛⎭⎫782=158.14.[2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________.14.1 [解析] 由BC sin A =ACsin B ,得sin B =2sin 60°3=1,即B =90°,所以△ABC 为以AB ,BC 为直角边的直角三角形, 则AB =AC 2-BC 2=22-(3)2=1,即AB 等于1.7.、[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 7.A [解析] 设R 是三角形外切圆的半径,R >0,由正弦定理,得a =2R sin A ,b =2R sin B .故选A.∵sin ≤A sin B ,∴2R sin A ≤2R sin B ,∴a ≤b .同理也可以由a ≤b 推出sin A ≤sin B .13.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.13.π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.19.、、[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC=7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-419.解:设∠CED =α.(1)在△CDE 中,由余弦定理,得EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ²sin 2π3EC =2³327=217,即sin ∠CED =217. (2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12³277+32³217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.14.、[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是______.14.6-24[解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab =34a 2+12b 22ab -24≥234a 2²12b 22ab -24=6-24,当且仅当3a 2=2b 2,即a b =23时等号成立.18.、、、[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-618.解: 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 5.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19 B.13 C .1 D.725.D [解析] 由正弦定理得,原式=2b 2-a 2a 2=2⎝⎛⎭⎫b a 2-1=2³⎝⎛⎭⎫322-1=72. 17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →²BC →=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →²BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2³2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2.因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23³223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13³79+2 23³4 29=2327. 18.、[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .18.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 17.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. 17.解:(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ²DA sin A +12BC ²CD sin C =⎝⎛⎭⎫12³1³2+12³3³2sin 60°=2 3. 16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-316.150 [解析] 在Rt △ABC 中,BC =100,∠CAB =45°,所以AC =100 2.在△MAC中,∠MAC =75°,∠MCA =60°,所以∠AMC =45°,由正弦定理有AM sin ∠MCA =ACsin ∠AMC ,即AM =sin 60°sin 45°³100 2=1003,于是在Rt △AMN 中,有MN =sin 60°³1003=150 .17.,,[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积. 17.解:(1)在△ABC 中,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数典型习题
1 •设锐角ABC的内角A B, C的对边分别为a, b, c,a 2bsi nA.
(I )求B的大小;
(n)求cosA sin C的取值范围• A B C 厂
2 •在ABC中角A,B,C所对的边分别为a, b, c,sin sin— 2 .
2 2
(1)试判断△ ABC的形状;
(II)若厶ABC的周长为16,求面积的最大值•
2
3 •已知在ABC中,A B,且tan A与tan B是方程x 5x 6 0的两个根•
(I )求tan (A B)的值;
(n )若AB 5 ,求BC的长•
2 2 2 1
4. 在ABC中,角A. B. C所对的边分别是a,b,c,且a c b ac.
2
2A C
(1) 求sin cos2B 的值;
2
(2) 若b=2,求厶ABC面积的最大值.
5. 已知函数f(x) 2s in2 n x 3cos2x, x
n,-n•
4 4 2
(1 )求f (x)的最大值和最小值;
(2)f(x) m 2在x n,n上恒成立,求实数m的取值范围.
4 2
6. 在锐角△ ABC 中,角A. B. C 的对边分别为a、b、c,已知(b2 c2 a2)ta nA 3bc.
(I) 求角A;
(II) 若a=2,求厶ABC面积S的最大值?
7. 已知函数f (x) (sin x cosx) +cos2 x .
(I )求函数f x的最小正周期;
(n )当x o,?时,求函数f x的最大值拼写出x相应的取值•
8 .在ABC中,已知内角A . B . C所对的边分别为a、b、c,向量
r r 2 B r r m 2sin B, 、3 ,n cos2B, 2cos 1,且m//n?
2
(I) 求锐角B的大小;
(II) 如果b 2,求ABC的面积S ABC的最大值?
答案解析
1
1【解
析】:(I )由a 2bsi nA ,根据正弦定理得si nA 2si n Bsin A ,所以sin B -,
2 由
ABC 为锐角三角形得B n .
6
(n )cosA sin C cos A sin
A
cos A sin -
A
6
1 3
cos A cos A
sin A
2
2
、、3
sin
A -.
3
2【解析】 :I. sin
C . sin C
C cos .C sin
2sin('—
2
2
2 2
2
4
C C 即C
,所以此三角形为直角三角形
2 4
2
2
••• tanA 3, A 为三角形的内角,二sin A
由正弦定理得:-A 艮 -BC
sin C sin A
-2 2
b a b 2 ab
II.16 号,
此时面积的最大值为 32 6 42 .
-2ab ,
—2
ab 64(2 -.2)当且仅当a b 时取等
3【解析】
:(I )由所给条件 方程x 2 5x 6 ••• tan (A B) tan A tan B
1 tan Atan B
B C 180 ,• C
180 (A 0 的两根 tan A 3, tan B 2 . 1
B).
由(I )知,tanC
tan(A B)
1,
•/ C 为三角形的内角,• sinC
_2 2
3 10
弘知教育内部资料 中小学课外辅导专家
2 3
••• BC 1 —汇 3.5. 近 y/10 2
r r 2B 厂
8【解析】:(1) m//n
2sinB(2cos ;-1)=-,3cos2B 2sinBcosB=- 3cos2B
tan2B=- 3
2兀 心宀 n
••• 0<2B< n,2B=y,A 锐角 B=3
① 当B=n^,已知b=2,由余弦定理
,得: 4=a 2+c ?-ac > 2aac=ac(当且仅当a=c=2时等号成立)
■/ △ ABC 的面积 S ABC =
3
acsinBh^ac w 3
ABC 的面积最大值为.3
② 当B=6n 时,已知b=2,由余弦定理,得:
4=a 2+c 2+ 3ac 县ac+ . 3ac=(2+ 3)ac(当且仅当 a=c= , 6- . 2时等号成立) •,ac < 4(23)
1 1
•••△ ABC 的面积 S AABC =2 acsinB^ac <2- , 3 ,△ ABC 的面积最大值为 2- 3
1
4【解析】:(1)由余弦定理:cosB=4
sid +cos2B=
1 2
4
⑵由cos B
4 得
sinB
.15 •/ b=2,
4
n
1 2sin 2x —
;=;ac+4 > 2c,得 acw —,
c 2
3
3 2sin(2x -)
2 ,即 0 1 -2sin(2x -) 1
2 4
4
(2)由 tan2B=- .3
n [、. 5
n
B
=3或石 1 V15
S\ ABc =~acsi nB
w
(a=c 时取等号)
3
故S A ABC 的最大值为
5【解析】(I ) T f(x)
.
n _
1 cos 2x
3cos2x 1 sin2x 3cos2x
弘知教育内部资料 中小学课外辅导专家
n n
n n
又••• x —< 2x -<
4 2 6
1
3 又 S besin A be
2
4
所以△ ABC 面积S 的最大值等于3
2 2
7【解析】:(I )因为 f (x) (sin x eosx) +eos2 x sin
1 sin2x eos2x ( ) =1+.2si n(2x )
4
2
所以,T —
,即函数f(x)的最小正周期为
2
(n )因为 0 x ,得 2x L,所以有-sin(2x
) 1
2 4 4 4 2
4
所以,函数f x 的最大值为1 2
此时,因为一2x —丄,所以,2x ,即x -
4 4 4
4
2
8
即 2 < 1 2sin
n
2x -
3 • f(x) max
f (X)min
(n) •/ f (x)
f(x)
f(x)
•- m f (X)max
f ( X) min
••• 1 m 4,即
m 的取值范围是(1,4).
6【解析】:(1)由已知得
b 1 2 * 4
e 2 a 2 si nA ,3
2bc
cos A
又在锐角△ ABC 中,所以A=60,[不说明是锐角 △ ABC 中,扣 1 分]
(II)因为 a=2,A=60 所以 b e be 4,S
1 3
besin A
be
2
而 b 2 e 2 2be be 4
2bc
be 4 ,3
x 2sin xeosx eos 2 x eos2x。