内耗(阻尼)的分类、特点及其与金属结构的关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内耗(阻尼)的分类、特点及其与金属结构的关系

分类和特点内耗产生的原因归纳起来有三种类型即滞弹性内耗、静滞后内耗和阻尼共振型内耗。

1. 滞弹性内耗1948年,Zener提出了滞弹性这一名词,他从Boltzmann的线性叠加原理出发,推导出各种滞弹性效应之间的定量关系。滞弹性的特征是在加载或去载时,应变不是瞬时达到其平衡值,而是通过一种驰豫过程来完成其变化。如图1,应力去除后应变有一部分(ε0)发生瞬时回复,剩余一部分则缓慢回到零,这种现象叫弹性后效。

图1 恒应力下的应变弛豫又如图2,要保持应变不变,应力就要逐渐松弛达到平衡值σ(∞),称为应力驰豫现象。由于应变落后于应力,在适当的频率的振动应力作用下就会出现内耗。在此基础上产生的内耗称为动滞后型内耗或驰豫型内耗。

图2 恒应力下的应力弛豫过程示意图对于金属,其内耗表达式

式中,ω、τ分别为振动角频率、驰豫时间;M为动力模量(动态模量),即实测的弹性模量;MR为驰豫模量;Mu为未驰豫模量;

驰豫强度为:

模量亏损为:

其内耗于ωτ的关系曲线如图3所示。当ωτωτ>>1时,内耗值都很小;只有当ωτ=1时,内耗达到最大值。因此滞弹性内耗有一下特征:内耗与频率有关而与振幅无关。图3 之弹性内耗和模量亏损与ωτ的关系

2. 静滞后型内耗在低振动频率下,应力与应变存在多值函数关系,即在加载和去载时同以载荷下具有不同的应变值。完全去掉载荷后有永久变形存在。仅当反向加载时,才能回复的零应变,如图4这种原因产生的内耗时静滞后型的。图4 静态滞后回线示意图由于静态滞后的各种机制之间没有类似的应力应变方程,所以不能像滞弹性内耗那样进行简单明了的数学处理,而必须针对具体的内耗机制进行计算,可先求出回线面积ΔW,再从内耗定义式

求内耗。一般来说,静滞后回线的面积与振幅不存在线性关系,因此内耗的特征式内耗与频率无关,而与振幅有很强的依赖关系,内耗在某一振幅处达到最大值。

3. 阻尼共振型内耗由非弹性应变产生的阻尼,即为阻尼共振型内耗。阻尼共振型内耗的特征是与频率的关系极大,而与振幅无关,内耗峰所对应的频率一般对温度不敏感。研究表明,这种内耗很可能是由于振动固体中存在阻尼共振现象引起的能量损耗,阻尼强迫振动方程可用微分方程来描述:

式中ξ为偏离平衡位置的位移;A为振子的有效质量;B为

阻尼系数;C(ξ)为回复力(一般与位移成正比)。

位错在交变应力作用下做强迫振动,依照理论上的推导可以求得与振幅无关的内耗:

式中Ω为考虑到滑移面上分解切应力小于外加纵向应力而引入的取向因子;Λ为位错密度;ω为振动频率;谐振频率为:

d=B/A表示位错弦振动时的阻尼情况。对于高频内耗,如果阻尼系数B很小,即ω0/d>>1的情况,在ω=ω0处出现陡峭的尖峰,具有共振的特征,此时阻尼对振子所做的功(即内耗)最大;如果阻尼系数B很大,即ω0/dω= ω02/d处出现一系列平缓的峰,具有驰豫特征。

这样,阻尼共振型内耗和滞弹性型内耗好像都与振幅无关,而与频率有极大关系,但他们在温度上反映处很大差异。因为大多数驰豫过程的驰豫时间对温度都很敏感,温度略有改变,内耗峰对应的额频率就有很大的改变;而共振型中的固有频率,一般对温度不敏感,因此,内耗峰的闻之随温度的变化要小得多。与金属结构的关系1. 驰豫谱

在应力作用下,合金与金属的驰豫过程式由不同原因引起的。这些过程的驰豫时间是材料的常数,并决定了这些驰豫过程的特点。所以只要改变振动频率来测量内耗的变化,就可以在不同条件下找到一系列满足ωτ=1关系的内耗

峰,形成一个和光谱相似的对弹性应力波的吸收谱。这些内耗峰的总和称为该材料的驰豫谱。

若驰豫过程是通过原子扩散来进行的,则驰豫时间τ应与温度有关,并遵从阿伦纽斯(Arrhenius)方程:

式中H为扩散激活能;R为气体常数;τ0为决定材料的常数;ω0为试探频率;T为绝对温度。此关系式的存在对内耗的实验研究非常有利,因为改变频率测量内耗在技术上是困难的。利用阿伦纽斯方程,则用改变温度,也可得到改变ω的同样效果。因为Q?1依从ωτ乘积,所以测出Q?1—T曲线就与Q?1—ln(ωτ)曲线特征相一致。对于两个不同频率(ω1和ω2)的曲线,巅峰温度不同,设为T1和

T2,且因巅峰处有ω1τ1=ω2τ2=1,从阿伦纽斯方程可得激活能的表达式为:

或2. 由点缺陷引起的内耗(阻尼)在外加应力作用下,点缺陷处在应力场中时,会发生重新分布,从而在原有应变的基础上引起附加应变,从而消耗能量,引起内耗(阻尼)效应。

(1) 斯诺克(Snock)峰——体心立方晶体中间隙原子引起的内耗在铁、钽、钒、铬、铌、钼、钨等体心立方金属中含有碳、氮、氧等间隙原子时,由于间隙原子在外应力场作用下发生再分布而在室温附近呈现的斯诺克峰。

(2) 甄纳(Zener)峰——置换原子引起的内耗在置换型体心立

方、面心立方、密排六角晶体点阵中,由于异类原子对在应力场下的再分布,而在400~500℃处呈现的内耗峰。近来发现,空位有时也会形成内耗峰。

(3) 洛辛峰(Rozin)——面心立方晶体中间隙原子引起的内耗在交变应力的作用下,面心立方晶体中间隙原子产生微扩散出现应力感生有序,从而产生内耗。

3. 与位错有关的内耗(1) 低温位错驰豫型内耗(波多尼峰)对于面心立方金属、体心立方金属、六方金属以及离子晶体材料中,大约在该金属德拜温度的三分之一处有一个很高的内耗峰。在冷加工状态,Bordoni第一次系统地测量了由4K到室温范围内面心立方金属(Cu,Ag,Al,Pb)的内耗,发现了上述现象,因此这种内耗被称为Bordoni峰。

图5 “弯结对”机制示意

(a)最低能量位置的位错;(b)位错上的凸起对Bordoni峰解释比较成功的理论时Seeger理论,他认为Bordoni峰是由与沿着平行与晶体中密排方向的位错运动有关的驰豫过程所引起。图5中,实线代表晶格密排方向能量最低位置,即Peierls能谷。处于其中的位错在热激活的帮助下,可以形成由一对弯结组成的小凸起。在没有外应力时,这一对弯结由于吸引而消失,但在给定的外应力作用下,弯结对就由一定的临界距离d,即低于此值时,弯结对仍要相互吸引而消失;高于此值时,完结对就相互分开,从而产生了

相关文档
最新文档