锐角三角函数练习题

合集下载

锐角三角函数练习卷(含答案)

锐角三角函数练习卷(含答案)

锐角三角函数练习卷(含答案)
一、选择题
1. 设角A为锐角,且sin(A) = 0.6,那么A的近似值是多少?- A)36.87°
- B)45°
- C)53.13°
- D)64.04°
答案:C)53.13°
2. 三角函数tan(A)的值是斜边长与________的比值。

- A)对边长
- B)邻边长
- C)斜边长
- D)角A的弧度
答案:B)邻边长
3. 三角函数cot(A)的值是邻边长与________的比值。

- A)对边长
- B)斜边长
- C)角A的弧度
- D)斜边长的倒数
答案:A)对边长
二、填空题
4. 已知角B是锐角,且cos(B) = 0.8,那么角B的近似值是________度。

答案:37°
5. 已知角C是锐角,且tan(C) = 0.5,那么角C的近似值是________度。

答案:26.57°
三、计算题
6. 已知三角形的两边分别为5和12,夹角为60°,求第三边的长度。

答案:13
7. 已知一个角的弧度为π/3,求sin和cos的值。

答案:sin(π/3) = (√3) / 2, cos(π/3) = 1 / 2
四、证明题
请证明:sin^2(A) + cos^2(A) = 1,其中A是任意角。

证明:
由三角恒等式sin^2(A) + cos^2(A) = 1可得:
sin^2(A) + cos^2(A) = (1 - cos^2(A)) + cos^2(A) = 1
证毕。

锐角三角变换经典练习题附带答案

锐角三角变换经典练习题附带答案

锐角三角变换经典练习题附带答案锐角三角变换是三角学中的重要概念,是一种将锐角三角函数互相转换的方法。

掌握锐角三角变换可以简化计算过程,提高计算准确性。

下面是一些经典的锐角三角变换练题,附带答案供参考。

1. 计算 $\sin(90° - x)$ 的值。

- 解答:根据余角公式,$\sin(90° - x) = \cos x$。

2. 计算 $\cos(90° - x)$ 的值。

- 解答:根据余角公式,$\cos(90° - x) = \sin x$。

3. 计算 $\tan(90° - x)$ 的值。

- 解答:根据余角公式,$\tan(90° - x) = \cot x$。

4. 计算 $\cot(90° - x)$ 的值。

- 解答:根据余角公式,$\cot(90° - x) = \tan x$。

5. 计算 $\sec(90° - x)$ 的值。

- 解答:根据余角公式,$\sec(90° - x) = \csc x$。

6. 计算 $\csc(90° - x)$ 的值。

- 解答:根据余角公式,$\csc(90° - x) = \sec x$。

以上是锐角三角变换的经典练题及答案。

通过这些练,可以更好地理解锐角三角变换的概念,并熟练运用余角公式进行计算。

锐角三角变换在解决三角函数计算问题中起到了重要的作用,值得深入研究和掌握。

注意:以上答案中的角度单位均为度。

锐角三角变换经典练题附带答案锐角三角变换是三角学中的重要概念,是一种将锐角三角函数互相转换的方法。

掌握锐角三角变换可以简化计算过程,提高计算准确性。

下面是一些经典的锐角三角变换练题,附带答案供参考。

1. 计算 $\sin(90° - x)$ 的值。

- 解答:根据余角公式,$\sin(90° - x) = \cos x$。

锐角三角函数专项练习题

锐角三角函数专项练习题

锐角三角函数专项练习题一. 选择题1. 在锐角三角形ABC中,已知∠A=30°,∠B=60°,则∠C 等于:a) 30°b) 60°c) 90°d) 120°2. 在锐角三角形ABC中,已知a=3,b=4,则∠C等于:a) 30°b) 45°c) 60°d) 90°3. 已知在锐角三角形ABC中,a=5,c=13,则∠C等于:a) 30°b) 45°c) 60°d) 90°4. 在锐角三角形ABC中,已知a=8,b=15,则sinC等于:a) 8/17b) 15/17c) 17/8d) 17/155. 在锐角三角形ABC中,已知a=7,b=24,则cosC等于:a) 7/24b) 24/7c) 7/25d) 24/25二. 填空题1. 在锐角三角形ABC中,已知a=4,b=5,则c=____。

2. 在锐角三角形ABC中,已知a=7,c=10,则b=____。

3. 在锐角三角形ABC中,已知b=9,c=15,则a=____。

4. 已知sinA=3/5,∠A为锐角,则cosA=____。

5. 已知cosA=4/5,∠A为锐角,则sinA=____。

三. 计算题1. 在锐角三角形ABC中,已知a=6,b=8,求c。

解:利用勾股定理,c=sqrt(a^2+b^2)c=sqrt(6^2+8^2)=sqrt(36+64)=sqrt(100)=102. 在锐角三角形ABC中,已知a=5,c=13,求∠A。

解:利用余弦定理,cosA=(b^2+c^2-a^2)/(2bc)cosA=(5^2+13^2-5^2)/(2*5*13)= (25+169-25)/(130)=169/130然后,∠A=arccos(169/130)=22.62°3. 在锐角三角形ABC中,已知b=7,c=10,求∠B。

锐角三角函数练习题

锐角三角函数练习题

锐角三角函数练习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 33.B C D .0 3.等腰直角三角形一个锐角的余弦为( ) A 、12 32B C D .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3 cosB 等于( ) A .abc B .(a+b )c 3 C .c 3 D ().abc a b c+ 5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(3,); 3,); .(3,) .(3,)2222A B C D ----6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+cosA 的值为( ) 131223. 2 B C D +++7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )3sin(90°-B )3,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形8.sin35°·cos55°十cos35°·sin55°=_______ 9. 已知0°<a <4512sin cos =__αα-10.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 6012--+1||245(20041)2O O -+- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)36033π-O +÷-+- )()013222sin 60-︒+-(结果保留根号......)2(tan301)____-=1360|2|2-+-+ sin 30(1tan 60)tan 45sin 60---13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。

锐角三角函数练习题及答案

锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。

锐角三角函数练习题(含答案)

锐角三角函数练习题(含答案)

锐角三角函数练习题一、选择题(本大题共10小题,每小题3分,共30分)1.一段公路的坡度为1︰3,某人沿这段公路路面前进100米,那么他上升的最大高度是(D)A.30米B.10米C. 米D. 米2.如图,坡角为的斜坡上两树间的水平距离AC为,则两树间的坡面距离AB为(C)A.B.C.D.3.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是(A)A.250mB.mC.mD.m4.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是(C)A.2 3 B. 3 2 C. 3 4 D. 4 3(第2题)(第3题)(第4题)5.如果∠A是锐角,且,那么∠A=(B)A. 30°B. 45°C. 60°D. 90°6. 等腰三角形的一腰长为,底边长为,则其底角为(A)A. B. C. D.7.若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是(B)A.150 B.C.9 D.78.在△ABC中,∠C=90°,BC=2,,则边AC的长是(A)A.B.3 C.D.9.如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( A )A. (m2)B. (m2)C.1600sinα(m2)D.1600cosα(m2)10.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=,则tanA =(C)A.1B.C.D.(第9题)(第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.已知为锐角, sin( )=0.625, 则cos =___ 0.625 。

12.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC= ,则梯子长AB = 4 米。

锐角三角函数的经典测试题含答案

锐角三角函数的经典测试题含答案

CE平行于AB,BC的坡度为i 1: 0.75,坡长0.64,cos40BC 140米,则AB的长为( )(精确0.77,tan40 0.84 )A.78.6米【答案】CB.78.7 米C.78.8 米D.78.9 米锐角三角函数的经典测试题含答案一、选择题1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点 A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高解析】【分析】在Rt△ABD和Rt△ABC中,由三角函数得出BC=atan α,BD=atan β,得出CD=BC+BD=atan α +atan即β可.【详解】∴BC=atan α,BD=atan β,∴CD=BC+BD=atan α+atan β,故选C.点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC和BD 是解题的关键.2.在课外实践中,小明为了测量江中信号塔A离河边的距离AB ,采取了如下措施:如图在江边D处,测得信号塔A的俯角为40 ,若DE 55米,DE CE,CE 36米,acos α +acos βC.atan α +atan βaD.tanatan在Rt△ABD 和Rt△ABC中,AB= a ,BC BDtan α=,tan β=AB ABB.答案】CA.533B.C.222D.【分析】如下图,先在Rt△CBF中求得BF、CF的长,再利用Rt△ADG 求AG的长,进而得到AB的长度【详解】如下图,过点C作AB的垂线,交AB延长线于点F,延长DE交AB延长线于点G∵BC 的坡度为1:0.75∴设CF为xm,则BF 为0.75xm ∵BC=140m∴在Rt△BCF中,x20.75x 21402,解得:x=112 ∴CF=112m,BF=84m∵DE⊥CE,CE∥AB,∴DG⊥AB,∴△ ADG 是直角三角形∵ DE=55m,CE=FG=36m∴DG=167m,BG=120m 设AB=ym ∵∠ DAB=40°DG 167 ∴tan40 °= 0.84AG y 120 解得:y=78.8 故选: C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值3.如图,在等腰直角△ABC中,∠ C=90°,D为BC的中点,将△ABC折叠,使点A与点D 重合,EF为折痕,则sin∠ BED的值是()35解析】分析】先根据翻折变换的性质得到DEF AEF ,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ,设CD 1,CF x,则CA CB 2 ,再根据勾股定理即可求解.【详解】解:∵△ DEF是△AEF翻折而成,∴△ DEF≌△ AEF,∠ A=∠ EDF,∵△ ABC是等腰直角三角形,∴∠ EDF=45°,由三角形外角性质得∠ CDF+45°=∠ BED+45°,∴∠ BED=∠ CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,3解得:x 3,4CFsin BED sin CDFDF故选:B.点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.4.直角三角形纸片的两直角边长分别为6,8,现将VABC如图那样折叠,使点A与点B 重合,折痕为DE ,则tan CBE 的值是()71 C.D.7 3 24 3 【答案】 C【解析】试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+62,25 25 7解得x= 25,故CE=8-25 = ,4 4 4CE 7∴tan ∠CBE= .CB 24故选 C. 考点:锐角三角函数.5.如图,从点A看一山坡上的电线杆PQ ,观测点P的仰角是45 ,向前走6m到达B 点,测得顶端点P和杆底端点Q的仰角分别是60 和30°,则该电线杆PQ 的高度()A.24B.7A.6 2 3 B.6 3 C.10 3 D.8 3【答案】A【解析】【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x 表示出AE和BE,列出方程求得x 的值,再在直角△BQE中利用三角函数求得QE的长,则问题求解.【详解】解:延长PQ 交直线AB于点E,设PE=x.在直角△APE中,∠ A=45°,AE=PE=x;∵∠ PBE=60°∴∠ BPE=30°在直角△BPE中,BE= 3 PE= 3 x,33∵AB=AE-BE=6米,则x- x=6,3解得:x=9+3 3.则BE=3 3 +3 .在直角△BEQ中,QE= 3 BE= 3(3 3 +3)=3+ 3.33∴PQ=PE-QE=9+3 3-(3+ 3 )=6+2 3.答:电线杆PQ的高度是(6+2 3 )米.故选:A.【点睛】本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题6.如图,在x轴的上方,直角∠ BOA绕原点O按顺时针方向旋转.若∠ BOA的两边分别与12函数y 、y 的图象交于B、A 两点,则∠ OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D 【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OE ;1设 B 为(a,), A 为OF AF a2 1 2(b,),得到OE=-a,EB= ,OF=b,AF= ,进而得到a2b22 ,此为解决问题的关 b a b2键性结论;运用三角函数的定义证明知tan∠ OAB= 2为定值,即可解决问题.2【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△ OFA,∴BE OE∴OF AF ,12设点 B 为(a,),A 为(b,2),a b12则OE=-a,EB= ,OF=b,AF= 2,a b2可代入比例式求得 a 2b 2 2 ,即 a 2 2 , b 2该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问 题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判 定等知识点来分析、判断、推理或解答.7.如图,要测量小河两岸相对的两点 P ,A 的距离,可以在小河边取 PA 的垂线 PB 上的一解析】 分析】根据正切函数可求小河宽 PA 的长度. 【详解】∵PA ⊥ PB ,PC=100米,∠ PCA=35°,根据勾股定理可得: OB= OE 2EB 2a 212,OA= OF 2 AF 2∴tan ∠OAB=OBOA1 b 22 2 (b 2 b 2) = 2 b b2 b 42 = 22∴∠ OAB 大小是一个定值,因此∠ 故选 DOAB 的大小保持不变 .D . 100tan55 米°a 2a 122 b2b b 42 b 2 b 42点睛】PA 等于( )C . 100tan35米°∴小河宽PA=PCtan∠ PCA=100tan35°米.故选:C.【点睛】此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:① 将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).② 根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.8.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB 自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12 米,CD=8 米,∠ D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1 米,参考数据:tan36 °≈0,.7c3os36 °≈0,.8s1in36 °≈)0.59A.5.6 B. 6.9 C.11.4 D.13.9【答案】C【解析】【分析】根据勾股定理,可得CE,BE的长,根据正切函数,可得AE 的长,再根据线段的和差,可得答案.【详解】解:如图,延长DC、AB 交于点E,由斜坡轨道BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=xm,CE=2xm.在Rt △BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12 )2,解得x=12,BE=12m,CE=24m ,DE =DC+CE =8+24=32m , 由 tan36 °≈ 0.,73得=0.73,解得 AB =0.73 ×3=2 23.36m . 由线段的和差,得AB =AE ﹣BE =23.36﹣12= 11.36 ≈ 11m.4, 故选: C .【点睛】 本题考查解直角三角形的应用,利用勾股定理得出 切函数,线段的和差.9.如图,对折矩形纸片 ABCD ,使 AD 与 BC 重合,得到折痕 EF ,把纸片展平,再一次折叠 纸片,使点 A 落在 EF 上的点 A ′处,并使折痕经过点 B ,得到折痕 BM ,若矩形纸片的宽 AB=4,则折痕 BM 的长为 ( )1BE= AB ,A ′B=AB=,4∠BA ′M=∠A=90°,∠ ABM=∠MBA ′,可得∠2EA ′B=30°,根据直角三角形两锐角互余可得∠ E BA ′=60 °,进而可得∠ ABM=30°,在Rt △ABM中,利用∠ ABM 的余弦求出 BM 的长即可 .【详解】 ∵对折矩形纸片 ABCD ,使 AD 与 BC 重合, AB=4,1∴BE= AB=2,∠ BEF=90°,2∵把纸片展平,再一次折叠纸片,使点 A 落在 EF 上的点 A '处,并使折痕经过点 B , ∴A ′B=AB=4,∠ BA ′M= ∠ A=90°,∠ ABM=∠ MBA ′, ∴∠ EA ′B=30°, ∴∠ EBA ′=60°, ∴∠ ABM=3°0 ,∴在 Rt △ABM 中, AB=BM cos ∠ ABM ,即 4=BM cos30 °,CE ,BE 的长是解题关键,又利用了正A . 8 33【答案】 A 【解析】 【分析】B . 4 33C .8D . 8 3根据折叠性质可得解得: BM= 8 3 ,3故选 A.【点睛】 本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角 三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻 边;余切是角的邻边比对边;熟练掌握相关知识是解题关键 .故选 B .【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质, 线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图 1,在△ABC 中,∠ B =90°,∠ C = 30°,动点 P 从点 B 开始沿边 BA 、AC 向点 C 以 恒定的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以恒定的速度移动,两点同时到达点 C ,设△BPQ 的面积为 y (cm 2).运动时间为 x ( s ), y 与 x 之间关系如图 2所示,当点 P 恰好为 AC 的中点时, PQ 的长为( )10. 如图,菱形 ABCD 中, AC 交 BD 于点 O ,DE ⊥BC 于点 E ,连接 OE ,∠ DOE =120°,DE A . 33【答案】 B 【解析】 【分析】证明 △OBE 是等边三角形,然后解直角三角形即可. 【详解】∵四边形 ABCD 是菱形,∴ OD=OB ,CD=BC . ∵DE ⊥BC ,∴∠ DEB=90°,∴OE=OD=OB . ∵∠ DOE=120°,∴∠ BOE=60°,∴△ OBE是等边三角形,∴∠ ∵∠ DEB=90°,∴ BD= DE 2 3 .sin60 3B .23 3D . 3 3DBC=60°直角三角形斜边的中3,解:设 AB =a ,∠ C = 30°,则 AC =2a ,BC = 3 a , 设 P 、 Q 同时到达的时间为 T ,则点 P 的速度为 3a ,点 Q 的速度为 3a ,故点 P 、 Q 的速度比为 3: 3, TT 故设点 P 、 Q 的速度分别为: 3v 、 3 v ,由图 2 知,当 x =2 时,y =6 3,此时点 P 到达点 A 的位置,即 AB =2×3v =6v , BQ = 2×3 v = 2 3 v ,11y =AB ×BQ =6v ×2 3 v = 6 3 ,解得: v =1,22故点 P 、Q 的速度分别为: 3, 3,AB =6v =6=a , 则 AC =12,BC =6 3 ,如图当点 P 在 AC 的中点时, PC =6,此时点 P 运动的距离为 AB+AP =12,需要的时间为 12÷3=4, 则 BQ =3 x =4 3 , CQ = BC﹣ BQ =6 3 ﹣4 3 =2 3 , 过点 P 作 PH ⊥BC 于点 H ,PC = 6,则 PH = PCsinC = 6×1 =3,同理 CH =3 3 ,则 HQ = CH ﹣ CQ = 3 3 ﹣2 3 =2PQ = PH 2 HQ 2 = 3 9 =2 3,D . 4 3【答案】【解析】【分析】 点 P 、 Q 的速度比为【详解】3: 3 ,根据 x =2,y =6 3 ,确定 P 、Q 运动的速度,即可求解.C故选: C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关 系,进而求解.12.一艘轮船从港口 O 出发,以 15海里 /时的速度沿北偏东 60°的方向航行 4小时后到达 A 处,此时观测到其正西方向 50 海里处有一座小岛 B .若以港口 O 为坐标原点,正东方向为 x 轴的正方向,正北方向为 y 轴的正方向, 1 海里为 1 个单位长度建立平面直角坐标系(如解析】分析】 【详解】解: OA=15×4=60海里,∵∠ AOC=60°,∴∠ CAO=30°,∵sin30°= OCAO 2∴CO=30 海里, ∴AC=30 3 海里, ∴BC=(30 3 -50)海里, ∴B ( 30 3 -50, 30) 故选 A点睛】 本题考查掌握锐角三角函数的应用.13.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测 角仪,去测量学校内一座假山的高度 CD .如图,嘉淇与假山的水平距离 BD 为 6m ,他的D .(30,30 3 )C .(30 3 ,30)眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA和假山的最高点C ,此时,铅垂线OE经过量角器的60 刻度线,则假山的高度CD 为()A.2 3 1.6 m B.2 2 1.6 m C.4 3 1.6 m D.2 3m【答案】A【解析】【分析】CK CK根据已知得出AK=BD=6m,再利用tan30 °= ,进而得出CD 的长.AK 6【详解】解:如图,过点 A 作AK CD 于点K∵BD=6 米,李明的眼睛高AB=1.6米,∠ AOE=6°0 ,∴DB=AK,AB=KD=1.6米,∠ CAK=30°,CK CK∴tan30 °= ,AK 6解得:CK=2 3即CD=CK+DK=2 3 +1.6=( 2 3 +1.6)m .故选:A.【点睛】本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.14.如图,△ABC的顶点是正方形网格的格点,则cosA ()答案】 B 【解析】【分析】构造全等三角形,证明 △ABD 是等腰直角三角形,进行作答【详解】过 A 作 AE ⊥ BE ,连接 BD ,过 D 作 DF ⊥BF 于 F. ∵AE=BF ,∠ AEB=∠ DFB ,BE=DF ,∴△ AEB ≌△ BFD ,∴AB=DB.∠ABD=90°,∴△ ABD 是等腰直角三角形,∴cos ∠ DAB= 22 答案选 B.【点睛】 本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题 解题关键 .15. 如图,矩形 ABCD 的对角线 AC 、 BD 相交于点 O ,AB :BC =2:1,且 BE ∥ AC , CE ∥答案】 B解析】分析】DC 交线段 DC 延长线于点 F ,连接 OE 交BC 于点 G .根据邻边相等的平行四边形是菱形即可判断四边形 OBEC 是菱形,则 OE 与 BC 垂直平分,易得 EF=1 x , 2 1 A . 2B . 2 2C . 3 2D . 55C . 62 3D . 10过点 E 作 EF ⊥直线 B . A .4CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD 相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点 E 作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=1 AD=1 x,OE∥ AB,22∴四边形AOEB是平行四边形,∴OE=AB=2x,1∴CF=OE=x.2本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.16.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m 千米∴tan ∠EDC=EFDF2x xA.m cotcot千米B.cot cot千米C.tan tan千米D.tan tan故选:B.点睛】m m m【答案】A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O,由锐角三角函数知,AO=PO cotBO=PO cot m,又AB=m=AO-BO= PO cot - PO cot = . 所以答案选 A. cot cot【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键17.如图,在边长为8的菱形ABCD中,∠ DAB=60°,以点D为圆心,菱形的高画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是解析】分析】由菱形的性质得出AD=AB=8,∠ ADC=12°0 ,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠ DAB=60°,∴AD=AB=8,∠ ADC=18°0 -60°=120 °,∵DF是菱形的高,∴DF⊥ AB,∴DF=AD?sin60 °=834 3,2∴图中阴影部分的面积=菱形ABCD 的面积- 扇形DEFG的面积=8 4 3120 (4 3)32 3 16.360故选: C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.DF 为半径C.32 3 16 D.18 3 答案】C18.如图,一艘轮船从位于灯塔 C 的北偏东 60°方向,距离灯塔 60 nmile 的小岛 A 出发, 沿正南方向航行一段时间后,到达位于灯塔小岛 A 的距离是 ( AB 的长.【详解】 CDcos ∠ ACD= ,AC∴CD=AC?cos ∠ACD=6×0 3 30 3 .2在 Rt △DCB 中,∵∠ BCD=∠ B=45°,∴CD=BD=30 3 ,∴AB=AD+BD=30+30 3 .答:此时轮船所在的 B 处与灯塔 P 的距离是( 30+30 3 )nmile .故选 D .【点睛】此题主要考查了解直角三角形的应用 -方向角问题,求三角形的边或高的问题一般可以转化 C 的南偏东 45°方向上的 B 处,这时轮船 B 与A . 30 3 n mile 【答案】 D【解析】【分析】过点 C 作 CD ⊥AB , B . 60 n mile C .120 nmile D . (30 30 3) n mile则在 Rt △ACD 中易得A D 的长,再在直角 △BCD 中求出 BD ,相加可得 在 Rt △ACD中, AC=60.为解直角三角形的问题,解决的方法就是作高线.19.已知 B 港口位于 A 观测点北偏东 45°方向,且其到 A 观测点正北风向的距离 BM 的长 为 10 2 km ,一艘货轮从 B 港口沿如图所示的 BC 方向航行 4 7 km 到达 C 处,测得 C 处 位于 A 观测点北偏东 75°方向,则此时货轮与 A 观测点之间的距离 【答案】 A【解析】【分析】【详解】解:∵∠ MAB=4°5 , BM=10 2 ,∴AB= BM 2 MA 2 = (10 2)2 (10 2)2 =20km , 过点 B 作 BD ⊥AC ,交 AC 的延长线于 D , 在 Rt △ADB 中,∠ BAD=∠MAC ﹣∠ MAB=7°5 ﹣45°=30°, BDtan ∠ BAD=AD∴AD= 3 BD , BD 2 +AD 2 =AB 2,即BD 2+( 3 BD )2=202,∴ BD=10,∴ AD=10 3 ,在 Rt △BCD 中, BD 2+CD 2=BC 2, BC=4 3 ,∴ CD=2 3 , ∴AC=AD ﹣ CD=10 3 ﹣ 2 3 =8 3 km ,答:此时货轮与 A 观测点之间的距离 AC 的长为 8 3 km . 故选 A .【考点】解直角三角形的应用 -方向角问题.AC 的长为( )B . 9 3C . 6 3D . 7 320.如图,一艘轮船位于灯塔 P 的北偏东 60°方向,与灯塔 P 的距离为 30 海里的 A 处,轮 船沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东 30°方向上的 B 处,则此时轮船 所在位置 B 与灯塔 P 之间的距离为 ( )【答案】 D【解析】 【分析】 根据题意得出:∠ B=30°,AP=30 海里,∠ 案.【详解】 解:由题意可得:∠ B=30°, AP=30海里,∠ APB=90°, 故AB=2AP=60(海里),则此时轮船所在位置 B 处与灯塔 P 之间的距离为: BP= AB 2 AP 2 故选:D .【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. B . 45 海里 C .20 3 海里 D .30 3 海里APB=90°,再利用勾股定理得出 BP 的长,求出答 30 3 (海里)。

锐角三角函数及其应用(共60题)(学生版)

锐角三角函数及其应用(共60题)(学生版)

锐角三角函数及其应用(60题)一、解答题1(2023·河南·统考中考真题)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF= 11m,BH=20cm.求树EG的高度(结果精确到0.1m).2(2023·四川宜宾·统考中考真题)渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD,如图2.在桥面上点A处,测得A到左桥墩D的距离AD=200米,左桥墩所在塔顶B的仰角∠BAD=45°,左桥墩底C的俯角∠CAD=15°,求CD的长度.(结果精确到1米.参考数据:2≈1.41,3≈1.73)3(2023·辽宁·统考中考真题)暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B.D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE;(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)4(2023·甘肃兰州·统考中考真题)如图1是我国第一个以“龙”为主题的主题公园--“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得∠BAC=38°、∠BAD=53°,AB=18m.求“龙”字雕塑CD的高度.(B,C,D三点共线,BD⊥AB.结果精确到0.1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)5(2023·内蒙古通辽·统考中考真题)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B 处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.)6(2023·湖北·统考中考真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)7(2023·湖南张家界·统考中考真题)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P 点,测得奇楼顶端A的俯角为15°,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为45°,求奇楼AB的高度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)8(2023·辽宁大连·统考中考真题)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE,BC ⊥BE,CD∥BE,AC=10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)9(2023·广东·统考中考真题)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂AC=BC= 10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)10(2023·湖南·统考中考真题)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹中国空间站应用与发展阶段首次载人发射任务取得圆满成功,如图(九),有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°.9s,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°.求火箭从P 到Q处的平均速度(结果精确到1m/s).(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)11(2023·浙江绍兴·统考中考真题)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筺EF与支架DE在同一直线上,OA=2.5米,AD=0.8米,∠AGC=32°.(1)求∠GAC的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)12(2023·浙江台州·统考中考真题)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图像高度AB抽象成如图所示的△ABC,∠BAC=90°.黑板上投影图像的高度AB=120cm,CB 与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)13(2023·湖南怀化·统考中考真题)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(3≈1.732,结果保留一位小数)14(2023·新疆·统考中考真题)烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度31.5米的A处,测得烽燧BC的顶部C处的俯角为50°,测得烽燧BC的底部B处的俯角为65°,试根据提供的数据计算烽燧BC的高度.(参数据:sin50°≈0.8,cos50°≈0.6,tan50≈1.2,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)15(2023·四川遂宁·统考中考真题)某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到了如下记录表:实践探究活动记录表活动内容 测量湖边A、B两处的距离成员 组长:××× 组员:××××××××××××测量工具 测角仪,皮尺等测量示意图说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C.可测量C处到A、B两处的距离.通过测角仪可测得∠A、∠B、∠C的度数.测量数据角的度数∠A=30°∠B=45°∠C=105°边的长度BC=40.0米AC=56.4米数据处理组得到上面数据以后做了认真分析.他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离.于是数据处理组写出了以下过程,请补全内容.已知:如图,在△ABC中,∠A=30°,∠B=45°..(从记录表中再选一个条件填入横线)求:线段AB的长.(为减小结果的误差,若有需要,2取1.41,3取1.73,6取2.45进行计算,最后结果保留整数.)16(2023·四川成都·统考中考真题)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)17(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)18(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=43;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)19(2023·山东东营·统考中考真题)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为多少km?20(2023·四川凉山·统考中考真题)超速容易造成交通事故.高速公路管理部门在某隧道内的C、E 两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A、D、B、F在同一直线上.点C、点E到AB的距离分别为CD、EF,且CD=EF=7m,CE=895m,在C处测得A点的俯角为30°,在E处测得B点的俯角为45°,小型汽车从点A行驶到点B所用时间为45s.(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速80千米/小时,判断小型汽车从点A行驶到点B是否超速?并通过计算说明理由.(参考数据:2≈1.4,3≈1.7)21(2023·内蒙古·统考中考真题)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向32km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;(2)求检查点B和C之间的距离(结果保留根号).22(2023·湖南常德·统考中考真题)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)23(2023·山东·统考中考真题)无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号)24(2023·重庆·统考中考真题)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品,经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:2≈1.414,3≈1.732)25(2023·山东聊城·统考中考真题)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内).求明珠大剧院到龙堤BC的距离(结果精确到1m).(参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)26(2023·四川·统考中考真题)“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120°,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角∠OED =45°,风叶OA 的视角∠OEA =30°.(1)已知α,β两角和的余弦公式为:cos α+β =cos αcos β-sin αsin β,请利用公式计算cos75°;(2)求风叶OA 的长度.27(2023·湖北宜昌·统考中考真题)2023年5月30日,“神舟十六号”航天飞船成功发射.如图,飞船在离地球大约330km 的圆形轨道上,当运行到地球表面P 点的正上方F 点时,从中直接看到地球表面一个最远的点是点Q .在Rt △OQF 中,OP =OQ ≈6400km .(参考数据:cos16°≈0.96,cos18°≈0.95,cos20°≈0.94,cos22°≈0.93,π≈3.14)(1)求cos α的值(精确到0.01);(2)在⊙O 中,求PQ的长(结果取整数).28(2023·四川泸州·统考中考真题)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:3的斜坡AB前进207m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,计算结果用根号表示,不取近似值).29(2023·山西·统考中考真题)2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑各种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算BC 和AB 的长度(结果精确到0.1m .参考数据:3≈1.73,2≈1.41).课题母亲河驳岸的调研与计算调查方式资料查阅、水利部门走访、实地查看了解功能驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物驳岸剖面图相关数据及说明,图中,点A ,B ,C ,D ,E 在同一竖直平面内,AE 与CD 均与地面平行,岸墙AB ⊥AE 于点A ,∠BCD =135°,∠EDC =60°,ED =6m ,AE =1.5m ,CD =3.5m计算结果交流展示30(2023·湖南·统考中考真题)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”一辆车从被山峰POQ遮挡的道路②上的点B处由南向北行驶.已知∠POQ=30°,BC∥OQ,OC⊥OQ,AO⊥OP,线段AO的延长线交直线BC于点D.(1)求∠COD的大小;(2)若在点B处测得点O在北偏西α方向上,其中tanα=35,OD=12米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A处的货车)31(2023·四川内江·统考中考真题)某中学依山而建,校门A处有一坡角α=30°的斜坡AB,长度为30米,在坡顶B处测得教学楼CF的楼顶C的仰角∠CBF=45°,离B点4米远的E处有一个花台,在E 处测得C的仰角∠CEF=60°,CF的延长线交水平线AM于点D,求DC的长(结果保留根号).32(2023·湖北随州·统考中考真题)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)(1)求点D到地面BC的距离;(2)求该建筑物的高度AB.33(2023·天津·统考中考真题)综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB前有一座高为DE的观景台,已知CD=6m,∠DCE=30°,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为45°,在观景台D处测得塔顶部B的仰角为27°.(1)求DE的长;(2)设塔AB的高度为h(单位:m).①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(tan27°取0.5,3取1.7,结果取整数).34(2023·山东临沂·统考中考真题)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625;sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)35(2023·湖南永州·统考中考真题)永州市道县陈树湘纪念馆中陈列的陈树湘雕像高2.9米(如图1所示),寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB代表陈树湘雕像,一参观者在水平地面BN上D处为陈树湘雕拍照,相机支架CD高0.9米,在相机C处观测雕像顶端A的仰角为45°,然后将相机架移到MN处拍照,在相机M处观测雕像顶端A的仰角为30°,求D、N两点间的距离(结果精确到0.1米,参考数据:3≈1.732)36(2023·重庆·统考中考真题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图;①A-D-C-B;②A-E-B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B 的南偏西60°方向.(参考数据:2≈1.41,3≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?37(2023·江苏苏州·统考中考真题)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)38(2023·湖南·统考中考真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部243米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以43米/秒的速度继续向前匀速飞行,求经过多少秒时,无人机刚好离开圆圆的视线EB.39(2023·山东烟台·统考中考真题)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD长16米,在地面点A处测得风力发电机塔杆顶端P点的仰角为45°,利用无人机在点A的正上方53米的点B处测得P点的俯角为18°,求该风力发电机塔杆PD的高度.(参考数据:sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)40(2023·甘肃武威·统考中考真题)如图1,某人的一器官后面A处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)41(2023·四川达州·统考中考真题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m;参考数据:sin26°≈0.44,cos26°≈0.9,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)42(2023·江西·统考中考真题)如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)43(2023·浙江宁波·统考中考真题)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)44(2023·江苏连云港·统考中考真题)渔湾是国家“AAAA”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A处出发,沿着坡角为48°的山坡向上走了92m到达B处的三龙潭瀑布,再沿坡角为37°的山坡向上走了30m到达C处的二龙潭瀑布.求小卓从A处的九孔桥到C处的二龙潭瀑布上升的高度DC为多少米?(结果精确到0.1m)(参考数据:sin48°≈0.74,cos48°≈0.67,sin37°≈0.60,cos37°≈0.80)45(2023·四川广安·统考中考真题)为了美化环境,提高民众的生活质量,市政府在三角形花园ABC 边上修建一个四边形人工湖泊ABDE,并沿湖泊修建了人行步道.如图,点C在点A的正东方向170米处,点E在点A的正北方向,点B、D都在点C的正北方向,BD长为100米,点B在点A的北偏东30°方向,点D在点E的北偏东58°方向.(1)求步道DE的长度.(2)点D处有一个小商店,某人从点A出发沿人行步道去商店购物,可以经点B到达点D,也可以经点E到达点D,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,3≈1.73)46(2023·浙江嘉兴·统考中考真题)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)47(2023·安徽·统考中考真题)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.48(2023·浙江·统考中考真题)如图,某工厂为了提升生产过程中所产生废气的净化效率,需在气体净化设备上增加一条管道A -D -C ,已知DC ⊥BC ,AB ⊥BC ,∠A =60°,AB =11m ,CD =4m ,求管道A -D -C的总长.49(2023·浙江温州·统考中考真题)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1).他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度.问题解决任务1分析规划选择两个观测位置:点_________和点_________获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN.任务3换算高度楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm.50(2023·四川自贡·统考中考真题)为测量学校后山高度,数学兴趣小组活动过程如下:(1)测量坡角如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.(2)测量山高同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT≈5cm,TS≈2cm.求山高DF.(2≈1.41,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)。

中考数学总复习《锐角三角函数》专题训练(附带答案)

中考数学总复习《锐角三角函数》专题训练(附带答案)

中考数学总复习《锐角三角函数》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________命题点1直角三角形的边角关系及简单应用1(2022广西北部湾经济区)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是() A.12sin α米B.12cos α米C.12sinα米 D.12cosα米(第1题) (第2题)2(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44 cm,则高AD约为(参考数据:sin 27°≈0.45,cos 27°≈0.89,tan27°≈0.51)()A.9.90 cmB.11.22 cmC.19.58 cmD. 22.44 cm3(2022随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=a,则建筑物AB的高度为()A.atanα-tanβB.atanβ-tanαC.atanαtanβtanα-tanβD.atanαtanβtanβ-tanα(第3题) (第4题)4(2022乐山)如图,在Rt △ABC 中,∠C=90°,BC=√5,点D 是AC 上一点,连接BD.若tan A=12,tan ∠ABD=13,则CD 的长为 ( )A.2√5B.3C.√5D.25(2022益阳)如图,在Rt △ABC 中,∠C=90°,若sin A=45,则cos B= .(第5题) (第6题)6(2022常州)如图,在四边形ABCD 中,∠A=∠ABC=90°,DB 平分∠ADC.若AD=1,CD=3,则sin ∠ABD= .7(2022广州)如图,AB 是☉O 的直径,点C 在☉O 上,且AC=8,BC=6.(1)尺规作图:过点O 作AC 的垂线,交AC ⏜于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O 到AC 的距离及sin ∠ACD 的值.命题点2解直角三角形的实际应用 角度1背靠背型8(2022安徽)如图,为了测量河对岸A ,B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得A ,B 均在C 的北偏东37°方向上,沿正东方向行走90米至观测点D ,测得A 在D 的正北方向上,B 在D 的北偏西53°方向上.求A ,B 两点间的距离.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.9(2022抚顺)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向.求此时货轮与A港口的距离(结果取整数.参考数据:sin 50°≈0.766,cos 50°≈0.643,tan 50°≈1.192,√2≈1.414)角度2母子型10(2022天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32 m,求这座山AB的高度(结果取整数).(参考数据:tan 35°≈0.70,tan 42°≈0.90)11(2022连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10 m;小亮在点G处竖立标杆FG,小亮所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5 m,GD=2 m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01 m.参考数据:sin 53°≈0.799,cos 53°≈0.602,tan 53°≈1.327)角度3拥抱型12(2021自贡)如图,在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1米.参考数据:tan 37°≈0.75,tan 53°≈1.33,√3≈1.73)角度4实物型13(2022吉林)动感单车是一种新型的运动器械.图(1)是一辆动感单车的实物图,图(2)是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70 cm,∠BCD的度数为58°.当AB长度调至34 cm时,求点A到CD的距离AE的长度(结果精确到1 cm).(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan58°≈1.60)图(1)图(2)14(2022成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10 cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是点A的对应点),用眼舒适度较为理想,求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1 cm.参考数据:sin 72°≈0.95,cos 72°≈0.31,tan 72°≈3.08)角度5其他类型15(2022山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60 m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24 m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD 之间的距离AC 的长(结果精确到1 m.参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75,√3≈1.73).分类训练15 锐角三角函数1.A2.B 【解析】 ∵AB=AC ,AD ⊥BC ,∴BD=CD=12BC=22 cm .在Rt △ABD 中,tan ∠ABD=ADBD ,∴AD=BD ·tan ∠ABD=22×tan 27°≈22×0.51=11.22(cm). 3.D 【解析】 设AB=x.在Rt △ABD 中,tan β=AB BD =x BD ,∴BD=xtanβ,∴BC=CD+BD=a+xtanβ.在Rt △ABC 中,tan α=ABBC =xa+xtanβ,∴x=atanαtanβtanβ-tan α.4.C 【解析】 如图,过点D 作DE ⊥AB 于点E.∵tan A=DE AE =12,tan ∠ABD=DE BE =13,∴AE=2DE ,BE=3DE ,∴2DE+3DE=5DE=AB.在Rt △ABC 中,tan A=12,BC=√5,∴BC AC =√5AC =12,∴AC=2√5,∴AB=√AC 2+BC 2=5,∴DE=1,∴AE=2,∴AD=√AE 2+DE 2=√22+12=√5,∴CD=AC-AD=√5,故选C .5.456.√66 【解析】 如图,过点D 作DE ⊥BC ,垂足为E ,则四边形ABED 是矩形,∴BE=AD=1,DE=AB ,∠ADB=∠CBD.∵DB 平分∠ADC ,∴∠ADB=∠CDB ,∴∠CBD=∠CDB ,∴CB=CD=3,∴CE=BC-BE=3-1=2,∴DE=√CD 2-CE 2=√32-22=√5,∴BD=√DE 2+BE 2=√(√5)2+12=√6,∴sin ∠ABD=AD BD =√6=√66.7.【答案】 (1)作图如图所示.(2)设(1)中AC 的垂线交AC 于点F ,则OF ⊥AC∴AF=CF=12AC=4. 又点O 是AB 的中点∴OF 是△ABC 的中位线∴OF=12BC=3,即点O 到AC 的距离为3. ∵AB 是☉O 的直径 ∴∠ACB=90°∴AB=√AC 2+BC 2=√82+62=10 ∴OD=5∴DF=OD-OF=5-3=2∴在Rt △CDF 中,CD=√DF 2+CF 2=√22+42=2√5 ∴sin ∠ACD=DFCD =2√5=√55.8.【答案】如图,由题意知,∠ECA=37°,CD=90,∠ADC=90°,∠ADB=53°,AD∥EC∴∠BCD=53°,∠BDC=∠ADC-∠ADB=37°,∠A=37°∴∠BCD+∠BDC=90°∴∠CBD=90°,即AC⊥BD.在Rt△CBD中,BD=CD cos∠BDC=90cos 37°≈90×0.80=72.在Rt△ABD中,AB=BDtanA =72tan37°≈720.75=96.答:A,B两点间的距离为96 m.9.【答案】如图,过点B作BH⊥AC于点H,根据题意,得∠BAC=25°+25°=50°,∠BCA=70°-25°=45°.在Rt△ABH中,AB=100,∠BAH=50°,sin∠BAH=BHAB ,cos∠BAH=AHAB∴BH=AB·sin∠BAC≈100×0.766=76.6,AH=AB·cos∠BAC≈100×0.643=64.3.在Rt△BHC中,∠BCH=45°∴CH=BH=76.6∴AC=AH+CH=64.3+76.6≈141.答:货轮距离A港口约141海里.10.【答案】根据题意,得BC=32,∠APC=42°,∠APB=35°.在Rt△PAC中,tan∠APC=ACPA∴PA=ACtan∠APC.在Rt△PAB中,tan∠APB=ABPA∴PA=ABtan∠APB.∵AC=AB+BC∴AB+BCtan∠APC =AB tan∠APB∴AB=BC·tan∠APBtan∠APC-tan∠APB =32×tan35°tan42°−tan35°≈32×0.700.90−0.70=112(m).答:这座山AB的高度约为112 m.11.【答案】(1)在Rt△CAE中,∵∠CAE=45°∴CE=AE.∵AB=10∴BE=AE-10=CE-10.在Rt△CEB中,由tan 53°=CEBE =CE CE-10得tan 53°(CE-10)=CE,∴CE≈40.58.答:阿育王塔的高度约为40.58 m.(2)由题意知Rt△FGD∽Rt△CED∴FGCE =GDED,即 1.540.58=2ED,∴ED≈54.11.答:小亮与阿育王塔之间的距离约为54.11 m.归纳总结解直角三角形实际应用的一般步骤①审题:根据题意画出图形,建立数学模型.②构造直角三角形:将已知条件转化到示意图中,把实际问题转化为解直角三角形问题.③列关系式:选择合适的边角关系式,使运算简便、准确.④检验:得出数学问题的答案并检验答案是否符合实际意义,同时还要注意结果有无对精确度的要求.12.【答案】在Rt△BAD中,tan∠BDA=ABAD,∠BDA=53°∴AD=ABtan53°≈18.05(米).在Rt△CAD中,tan∠CAD=CDAD,∠CAD=30°第 11 页 共 11页 ∴CD=AD ·tan ∠CAD=√33AD ≈10.4(米).故办公楼的高度约为10.4米.13.【答案】 在Rt △ACE 中,∠AEC=90°,∠C=58°,AC=AB+BC=34+70=104 ∴AE=AC sin C=104×sin 58°≈104×0.85≈88.答:点A 到CD 的距离AE 的长度约为88 cm .14.【答案】 在Rt △ACO 中,∠AOC=180°-∠AOB=30°,AC=10 cm∴OA=2AC=20 cm .在Rt △A'DO 中,∠A'OD=180°-∠A'OB=72°,OA'=OA=20 cm∴A'D=A'O sin ∠A'OD ≈20×0.95=19(cm).答:顶部边缘A'处离桌面的高度A'D 的长约为19 cm .15.【答案】 分别延长AB ,CD 与直线OF 交于点G ,点H ,如图则∠AGO=∠EHO=90°.又∵∠GAC=90°,∴四边形ACHG 是矩形∴GH=AC.由题意,得AG=60,OF=24,∠AOG=70°,∠EOF=30°,∠EFH=60°.在Rt △AGO 中,∠AGO=90°,tan ∠AOG=AG OG ∴OG=AG tan∠AOG =60tan70°≈602.75≈21.8.∵∠EFH 是△EOF 的外角∴∠FEO=∠EFH-∠EOF=60°-30°=30°∴∠EOF=∠FEO ,∴EF=OF=24.在Rt △EHF 中,∠EHF=90°,cos ∠EFH=FH EF ∴FH=EF ·cos ∠EFH=24×cos 60°=12∴AC=GH=GO+OF+FH=21.8+24+12≈58(m).答:楼AB 与CD 之间的距离AC 的长约为58 m.。

锐角三角函数检测卷及答案

锐角三角函数检测卷及答案

锐角三角函数单元检测时间:100分钟班级: 姓名: 分数:一、单选题1.已知△ABC 中, ∠C =90°,tan A =12,D 是 AC 上一点, ∠CBD =∠A , 则 cos∠CDB 的值为( )A .12B C D .22.如图,正方形ABCD 中,点E 在边CD 上,且3CD DE =,将ADE 沿AE 对折至AFE △.延长EF 交边BC 于点G ,连接AG 、CF .下列结论:∠ABG AFG △△≌;∠45GAE ∠=︒;∠BG GC =;∠AG CF ∥;∠GCF 是等边三角形,其中正确结论有( )个.A .2B .3C .4D .53.如图,将边长6cm 的正方形纸片沿虚线剪开,剪成两个全等梯形.已知裁剪线与正方形的一边夹角为60°,则梯形纸片中较短的底边长为( )A .(3cm B .(3﹣cm C .(6cm D .(6﹣cm4.三角函数sin40cos16tan50︒︒︒、、之间的大小关系是( ) A .tan50cos16sin40︒>︒>︒ B .cos16sin40tan50︒>︒>︒ C .cos16tan50sin40︒>︒>︒D .tan50sin40cos16︒>︒>︒5.如图,在网格中,小正方形的边长为1,点A 、B 、C 都在格点上,则sin A 的值为( )A B .35C .45D 6.如图,已知窗户高AB m =米,窗户外面上方0.2米的点C 处安装水平遮阳板CD n =米,当太阳光线与水平线成α角时,光线刚好不能直接射入室内,则m n ,的关系式是( )A .n =m tan α-0.2B .n =m tan α+0.2C .m =n tan α-0.2D .m =n tan α+0.27.如图,已知楼高AB 为50m ,铁塔基与楼房房基间的水平距离BD 为50m ,塔高DC ,下列结论中,正确的是( )A .由楼顶望塔顶仰角为60°B .由楼顶望塔基俯角为60°C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°8.先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭=( ),其中tan602sin30a =︒-︒.ABCD 9.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:sin 220.37︒≈,tan220.40︒≈,sin580.85︒≈,tan58 1.60︒≈)A .28mB .34mC .37mD .46m10.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1AB 的高度为( )(精确到0.1)A .30.4B .36.4C .39.4D .45.411.如图所示一座楼梯的示意图,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =6米,楼梯宽度4米,则地毯的面积至少需要( )A .24sin θ米2 B .24cos θ米2 C .2424tan θ⎛⎫+⎪⎝⎭米2D .()2424tan θ+米212.如图,在长方形ABCD 中,5AB =,3AD =,点E 在AB 上,点F 在BC 上.若2AE =,1CF =,则()sin 12∠+∠=( )A .12B C D 13.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则∠AOB 的正弦值是( )A B C .13D .1214.式子2cos30tan 45︒-︒ )A .0B .C .2D .2-15.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为( )A .12B C .35D 16.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,B ,则cos BOD ∠的值等于( )A .14B .13C D 17.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的顶点均是格点,则cos BAC ∠的值是( )A B C D .4518.如图,在Rt ABC 中,90C ∠=︒,BC =D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A .B .3CD .219.在直角三角形ABC 中,90,4,C AB BC =∠=︒=3tan 2A的值是( )AB .C .D .320.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,若4CF =,3tan 4EFC ∠=,则折痕AE =( )A .B .C .8D .1021.已知:如图,在平面直角坐标系中,有菱形OABC ,点A 的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y=kx(x >0)经过点D ,交BC 的延长线于点E ,且OB •AC =160,有下列四个结论:∠双曲线的解析式为y =40x (x >0);∠点E 的坐标是(4,8);∠sin∠COA =45;∠AC +OB 其中正确的结论有( ) A .1个B .2个C .3个D .4个22.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .81523.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米24.中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 25.如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos∠APC 的值为( )A B C .25D 26.如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F , FG AD ∥ 交AE 于点G ,若1cos 4B =,则FG 的长是( )A .3B .83C D .52第II 卷(非选择题)二、解答题27.如图,山坡上有一棵与水平面垂直的大树AB ,且90BHE ∠=︒,一场台风过后,大树被刮倾斜后折断()A C D --倒在山坡上,树的顶部恰好接触到坡面().AB AC CD =+已知山坡的坡角30AEF ∠=︒,量得树干倾斜角45BAC ∠=︒,大树被折断部分CD 和坡面所成的角60ADC ∠=︒,4AD =米.(1)求CAD ∠的度数;(2)求这棵大树折断前AB 的高度.(结果保留根号)28.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB 进行实地测量.如图所示,他在地面上点C 处测得隧道一端点A 在他的北偏东15︒方向上,他沿西北方向前进D ,此时测得点A 在他的东北方向上,端点B 在他的北偏西60︒方向上,(点A 、B 、C 、D 在同一平面内)(1)求点D 与点A 的距离;(2)求隧道AB 的长度.(结果保留根号) 29.(1)已知:对于锐角α满足sin 1cos tan21cos sin ααααα-==+,求tan15°的值;(2)如图,△ABC 中,∠C =90°,∠BAC =30°,延长CA 到D ,使AD =AB ,连接BD ,请利用这个图形求tan15°的值.30.某市政府为了方便市民绿色出行,推出了共享单车服务.图∠是某品牌共享单车放在水平地面上的实物图,图∠是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32cm ,∠BCD =64°,BC =60cm ,坐垫E 与点B 的距离BE 为15cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm ,现将坐垫E 调整至坐骑舒适高度位置E ',求E E '的长.(结果精确到0.1cm ,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05) 31.计算:1202203(1)|2cos308|(3)π--︒--- 32.在遵义市科技馆楼前,在A 点观测楼顶K 的仰角为30°,然后将观测点沿石梯向楼的水平方向移动了28m ,上升4m ,到达最上一层平台,用高为1.4m 的测角仪,在C 点观测楼顶K 的仰角为45°.(1)求:A ,C 间的距离;(结果保留根号)(2)求:科技馆的楼高KF 的值.1.7)33.计算:212)4cos30|32-⎛⎫--+- ⎪⎝⎭.34.如图,是学生小金家附近的一块三角形绿化区的示意图;为增强体质,他每天早晨都沿着绿化区周边小路AB ,BC ,CA 跑步(小路的宽度不计),观测得点B 在点A 的南偏东30°方向上,点C 在点A 的南偏东60°的方向上,点B 在点C 的北偏西75°方向上,AC 间距离为400米.小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(结果精确到1 1.4≈ 1.7≈)35.图1是笔记本电脑放在散热支架上的实物图,实物图的侧面可抽象成图2,结点B ,C ,D 处可转动,支撑架AB =BC =CD =28cm ,面板DE =28cm ,若DE 始终与AB 平行.(1)直接写出∠ABC ,∠BCD ,∠CDE 之间的数量关系;(2)若ABC BCD CDE ∠=∠=∠,电脑显示屏宽EF =26cm .且105DEF ∠=︒,求笔记本电脑显示屏的端点F 到AB 的距离.(结果精确到0.1cm .参考数据sin750.97︒≈,cos750.26︒≈ 1.73≈)36.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB =50cm ,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒∠A ,∠A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm .设AF ∥MN .(1)求∠A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,∠CAF =60°.求此时拉杆BC 的伸长距离.37.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离; (2)求OD 长.(结果精确到0.1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈ 2.24≈)38.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响. (1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈34,cos42°≈2940,tan42°≈910)39.如图,港口B 位于港口A 的南偏西45︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向港口B 的南偏东45︒方向的D 处,它沿正北方向航行21km 到达E 处,此时测得灯塔C 在E 的南偏西70︒方向上,E 处距离港口A 有多远?(结果用含非特殊角的三角函数及根式表示即可)40.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A 处时,船上游客发现岸上P 1处的临皋亭和P 2处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60°方向.则临皋亭P 1处与遗爱亭P 2处之间的距离为 _____.(计算结果保留根号)41.如图,线段EF 与MN 表示某一段河的两岸,EF 平行MN .综合实践课上,同学们需要在河岸MN 上测量这段河的宽度(EF 与MN 之间的距离),已知河对岸EF 上有建筑物C 、D ,且CD =30米,同学们首先在河岸MN 上选取点A 处,用测角仪测得C 建筑物位于A 北偏东45°方向,再沿河岸走10米到达B 处,测得D 建筑物位于B 北偏东55°方向,请你根据所测数据求出该段河的宽度,(用非特殊角的三角函数或根式表示即可)42.图1是某小型汽车的示意图,图2是其后备厢的箱盖打开过程侧面简化示意图,五边形ABCDE 表示该车的后备厢的厢体侧面,在打开后备厢的过程中,箱盖AED 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖AED 落在AE D ''的位置.若90EAB ABC BCD ∠=∠=∠=︒,150AED ∠=︒,AE =80厘米,ED =40厘米,DC =25厘米,且后备厢底部BC 离地面的高CN =25厘米.(1)求点D 到地面MN 的距离(结果保留根号);(2)求箱盖打开60°时的宽D ,D 1.73≈ 2.91116.3,结果取整数).43.如图是一种手机三脚架,它通过改变锁扣C 在主轴AB 上的位置调节三脚架的高度,其它支架长度固定不变,已知支脚DE =AB .底座CD ∠AB ,BG ∠AB ,且CD =BG ,F 是DE 上的固定点,且EF :DF =2:3.(1)当点B ,G ,E 三点在同一直线上(如图1所示)时,测得tan∠BED =2.设BC =5a ,则FG =__(用含a 的代数式表示);(2)在(1)的条件下,若将点C 向下移动24cm ,则点B ,G ,F 三点在同一直线上(如图2),此时点A 离地面的高度是__cm .44.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC =OD =10分米,展开角∠COD =60°,晾衣臂OA =OB =10分米,晾衣臂支架HG =FE =6分米,且HO =FO =4分米.(参考数据:)(1)当90AOC ∠=︒时,求点A 离地面的距离AM 约为多少分米;(结果精确到0.1)(2)当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,求B E BE ''-为多少分米.45.海绵拖把一般由长杆、U 型挤压器、海绵及连杆(含拉杆)装置组成(如图),拉动拉杆可带动海绵进入挤压器的两压杆间,起到挤水的作用.图1,图2,图3是其挤水原理示意图,A 、B 是拖把上的两个固定点,拉杆AP 一端固定在点A ,点P 与点B 重合(如图1),拉动点P 可使拉杆绕着点A 转动,此时点C 沿着AB 所在直线上下移动(如图2).已知AB =10cm ,连杆PC 为40cm ,FG =4cm ,MN =8cm .当P 点转动到射线BA 上时(如图3),FG 落在MN 上,此时点D 与点E 重合,点I 与点H 重合.(1)求ME 的长;(2)转动AP ,当∠P AC =53°时,∠求点C 的上升高度;∠求点D 与点I 之间的距离(结果精确到0.1).(sin53°≈45,cos53°≈35≈2.45) 参考答案:1.B【分析】由已知条件CBD A ∠=∠,可得1tan tan 2CBD A ∠==,设CD a =,由题意可得1tan 2CD CBD BC ∠==,即可算出2BC a =,在t ΔR CBD 中,根据勾股定理可得BD 答案.【详解】解:CBD A ,1tan tan 2CBD A ∴∠==, 设CD a =,1tan 2CD CBD BC ∴∠==, 2BC a ∴=, 在Rt ΔCBD 中,BD ,cosCD CDB BD ∴∠===. 故选:B 【点睛】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.2.C【分析】根据翻折变换的性质和正方形的性质可证ABG AFG △△≌;在直角ECG 中,根据勾股定理可证BG GC =;通过证明===∠∠∠∠AGB AGF GFC GCF ,由平行线的判定可得AG CF ∥;由于BG CG =,得到tan 2AGB ∠=,求得60AGB ∠≠︒,根据平行线的性质得到60FCG AGB ∠=∠≠︒,求得GCF 不是等边三角形.【详解】解:由翻折变换可知,AD AF =,DAE FAE ∠=∠,DE FE =,D AFE ∠=∠,∠18090AFG AFE B ∠=︒-∠=︒=∠,在Rt ABG 和Rt AFG 中,AF AB AG AG =⎧⎨=⎩, ∠()≌Rt ABG Rt AFG HL ,因此∠正确;∠BAG FAG ∠=∠,又∠90BAG FAG DAE FAE ∠+∠+∠+∠=︒, ∠190452GAE FAG FAE ∠=∠+=︒∠⨯=︒,因此∠正确; 由翻折变换可知,DE EF =,由全等三角形可知BG GF =,设正方形的边长为a ,BG x =,13DE EF a ==,则CG a x =-,13GE x a =+,1233EC a a a =-=, 在Rt ECG 中,由勾股定理得,222EC GC EG +=, 即()22221=33a a x x a ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,解得12x a =, 即1122BG a BC ==, ∠BG CG =,因此∠正确;∠BG CG FG ==,∠GCF GFC ∠=∠,由三角形全等可得,AGB AGF ∠=∠,又∠180AGB AGF FGC FGC GCF GFC ∠+∠+∠=︒=∠+∠+∠,∠ABG FCG ∠=∠,∠AG FC ∥,因此∠正确,∠BG CG =, ∠12BG AB =, ∠tan 2AGB ∠=,∠60AGB ∠≠︒,∠AG FC ∥,∠60FCG AGB ∠=∠≠︒,∠GCF 不是等边三角形,因此∠不正确;故选:C .【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,求一个角的正切值,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.3.A【分析】过M 点作ME ∠AD 于E 点,根据四边形ABCD 是正方形,有AD =CD =6,∠C =∠D =90°,由裁剪的两个梯形全等,可得AN =MC ;再证明四边形MCDE 是矩形,即有MC =ED ,ME =CD =6,进而有AN =ED ,在Rt ∠MNE 中,解直角三角形可得NE =3AN =【详解】如图,过M 点作ME ∠AD 于E 点,∠四边形ABCD 是正方形,边长为6,∠AD =CD =6,∠C =∠D =90°,∠裁剪的两个梯形全等,∠AN =MC ,∠ME ∠AD ,∠四边形MCDE 是矩形,∠MC =ED ,ME =CD =6,∠AN =ED ,根据题意有∠MNE =60°,∠在Rt ∠MNE 中,62tan tan 60ME NE MNE ===∠∠∠6AN ED AD NE +=-=-∠3AN =即梯形中较短的底为3cm ),故选:A .【点睛】本题主要考查了正方形的、矩形的判定与性质、解直角三角形的应用等知识,根据梯形全等得出AN =MC 是解答本题的关键.4.A【分析】首先把sin 40cos16︒︒、转换成相同的锐角三角函数;再根据正弦值是随着角的增大而增大,进行分析,可以知道1sin74sin 40︒︒>>,又根据正切值随着角度增大而增大,因此tan50tan 451︒︒=>,即可得出正确选项.【详解】解:∠()sin cos 90αα=︒-(090α≤≤︒),∠()cos16sin 9016sin74︒=︒-︒=︒,sin901︒=∠1sin74sin 40︒︒>>,∠tan50tan 451︒︒=>,∠tan50sin74sin 40︒>︒>︒,∠tan50cos16sin40︒>︒>︒,故选:A .【点睛】本题考查三角函数值的大小比较,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值;以及正余弦值、正切值的变化规律是本题的关键.5.C【分析】过点B 作BD AC ⊥于点D ,连接BC ,利用面积法求出BD 的长,然后由sin BD A AB=即可获得答案. 【详解】解:过点B 作BD AC ⊥于点D ,连接BC ,如下图,∠小正方形的边长为1,∠AB AC == ∠111333*********ABC S=⨯-⨯⨯-⨯⨯-⨯⨯=,∠11422ABC S AC BD BD =⋅==,∠BD =∠4sin5BD A AB ===. 故选:C .【点睛】本题主要考查了利用三角函数解直角三角形、勾股定理的应用等知识,解题关键是正确作出直角三角形并熟记正弦函数的定义.6.C【分析】根据CB =CA +AB 求出CB 的长,再利用三角函数求出m 的值即可.【详解】解:∠窗子高AB =m 米,窗子外面上方0.2米的点C 处安装水平遮阳板CD =n 米,∠CB =CA +AB =(m +0.2)米,∠光线与水平线成α角,∠∠BDC =α,∠tan∠BDC =CB CD, ∠CB =n •tan α,∠m =n tan α-0.2,故选:C .【点睛】本题主要考查三角函数的应用,熟练利用三角函数解直角三角形是解题的关键.7.C【分析】求CE ,进而求得∠CAE 的正切值即可求得∠CAE 的度数;同理可求得∠EAD 的正切值,得到∠EAD 的度数.【详解】解:过点A 作水平线AE ,则∠EAD 为楼顶望塔基俯角,∠CAE 为由楼顶望塔顶仰角.∠AB =50m∠DE =50m∠CE =CD 50(m)∠tan∠CAE =CE :AE =CE :BD ∠∠CAE =30°.故C 正确,D 错误;∠tan∠EAD =DE :AE =50:BD =1,∠∠EAD =45°.故A 、B 错误;故选:C .【点睛】本题考查解直角三角形的应用,熟练掌握正切的定义,特殊角的三角函数值是解题的关键.8.A【分析】先将题目中的式子化简,再根据锐角三角函数求得a 的值,代入化简后的式子即可解答本题. 【详解】解:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭ ()()()212111a a a a a a-++-=⨯+-()()3111a a a a a -=⨯+- 31a =+, 当tan602sin30a =︒-︒1212=⨯=时,原式= 故选:A .【点睛】本题考查分式的化简求值、特殊角的三角函数值,解题的关键是明确它们各自的计算方法.9.C【分析】在Rt △ABD 中,解直角三角形求出58DB AB =,在Rt △ABC 中,解直角三角形可求出AB . 【详解】解:在Rt △ABD 中,tan∠ADB =AB DB , ∠5tan 58 1.68AB AB DB AB =≈=︒, 在Rt △ABC 中,tan∠ACB =AB CB , ∠tan 220.45708AB AB ︒=≈+, 解得:112373AB =≈m , 故选:C .【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键.10.C【分析】延长AB 交DC 于H ,作EG ∠AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH米,在Rt ∠BCH中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CHBG 、EG 的长度,证明∠AEG 是等腰直角三角形,得出AG =EG =()(米),即可得出大楼AB 的高度.【详解】解:如图,延长AB 交DC 于H ,作EG ∠AB 于G ,则GH =DE =15米,EG =DH ,∠梯坎坡度i =1∠BH :CH =1设BH =x 米,则CH米,)2=122,由勾股定理得:x2+解得:x=6,∠BH=6米,CH=∠BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=()(米),∠∠α=45°,∠∠EAG=90°﹣45°=45°,∠∠AEG是等腰直角三角形,∠AG=EG=()(米),∠AB=AG+BG=(米);故选:C.【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.11.D【分析】在Rt△ABC中,利用锐角三角函数求出BC,然后根据平移的性质可得在楼梯上铺的地毯长,从而求出地毯的面积.【详解】解:在Rt△ABC中,AC=6,∠BAC=θ,∠tanθ=BC,AC∠BC=AC tanθ=6tanθ(米),∠在楼梯上铺的地毯长=BC+AC=(6+6tanθ)米,∠地毯的面积=4(6+6tanθ)=(24+24tanθ)平方米,故选:D.【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的计算是解题的关键.12.B【分析】连接EF,求证∠DEF是等腰直角三角形,得∠EDF=45°,所以1+245∠∠=,即可求解.【详解】解:连接EF,∠四边形ABCD是长方形,∠∠A=∠B=∠C=∠ADC=90°,BC=AD=3,CD=AB=5,∠22222=+=+=,DE AD AE3213∠AB=5,∠BE=AB-AE=3,∠CF=1,∠BF=BC-CF=2,在在Rt∠EBF中,∠22222=+=+=,EF BE BF3213∠EF=DE在Rt∠CDF中,∠22222=+=+=,DF DC CF5126∠26=13+13,即:222=+,DF DE EF∠∠DEF=90°,∠∠EDF=∠DFE=45°,∠1+2=45∠∠∠-∠=,ADC EDF∠()2∠+∠=sin12sin45=2故选B.【点睛】本题考查长方形的性质、勾股定理及其逆定理、正弦函数,根据勾股定理的逆定理证明出∠DEF是等腰直角三角形是解题的关键.13.B【分析】过点B作BC∠OA于点C.先利用勾股定理求出BO、AO的长,再利用∠AOB的面积求出BC的长,最后在直角∠BCO中求出∠AOB的正弦值.【详解】解:过点B作BC∠OA于点C.BO=,AO==,∠S △AOB 12=×2×2=2, ∠12AO •BC =2,∠BC==sinBC AOB BO ∴∠=== 故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,利用∠的面积求出OA 边上的高是解决本题的关键. 14.A【分析】根据特殊角的三角函数值计算即可.【详解】解:原式21=-11)=-11==0故选:A .【点睛】本题考查特殊角的三角函数值及二次根式的混合运算,解题关键是熟练掌握特殊角的三角函数值. 15.D【分析】根据勾股定理计算得出AB AC BC CE BE =====可得出AE BC ⊥,由勾股定理得AE =从而可得出sin ABC ∠= 【详解】解:如图,连接AE ,由勾股定理得,AB AC ∠AB AC =又BC CE BE ===∠点E 为BC 的中点,∠AE BC ⊥,∠AE ==∠sin AE ABC AB ∠== 故选:D【点睛】本题考查了解直角三角形、勾股定理,利用勾股定理求出AE 的长度是解题的关键.16.D【分析】根据网格的特点找到格点E ,使得AE CD ∥,则BOD A ∠=∠,构造Rt AEF ,即可求解.【详解】如图,5DG CG ==,90G ∠=︒,45CDG ∴∠=︒,1AG GE ==,45AEG ∴∠=︒,∴AE CD ∥,∴BOD A ∠=∠,2,AE AF EF ===22218220,20AE EF AF +=+==, 222AE EF AF ∴+=, ∠∠AEF 是直角三角形,∠AEF =90°,cos cosAE BOD A AF ∴∠=== 故选D 【点睛】本题考查了勾股定理与网格,勾股定理的逆定理,求余弦,构造直角三角形是解题的关键.17.C【分析】过点C 作AB 的垂线,构造直角三角形,利用勾股定理求解即可.【详解】解:过点C 作AB 的垂线交AB 于一点D ,如图所示,∠每个小正方形的边长为1,∠5AC BC AB ===,设AD x =,则5BD x =-,在Rt ACD △中,222DC AC AD =-,在Rt BCD 中,222DC BC BD =-,∠2210(5)5x x --=-,解得2x =,∠cosAD BAC AC ∠== 故选:C .【点睛】本题考查了解直角三角形,勾股定理等知识,解题的关键是能构造出直角三角形.18.C 【分析】先根据锐角三角函数值求出AC =5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD 可求出CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC = ∠1tan 2BC A AC ∠==∠2AC BC ==由勾股定理得,5AB ==过点D 作DE AB ⊥于点E ,如图,∠1tan 2A ∠=,1tan 3ABD ∠=, ∠11,,23DE DE AE BE ==∠11,,23DE AE DE BE == ∠1123AE BE = ∠32BE AE =∠5,AE BE += ∠352AE AE += ∠2,AE =∠1DE =,在Rt ADE ∆中,222AD AE DE =+ ∠AD∠AD CD AC +==∠CD AC AD =-==故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键. 19.A【分析】由勾股定理求出AB =2,再由三角函数的意义求出60,A ∠=︒进一步可得出结论.【详解】解:如图,∠90,4,C AB BC =∠=︒=∠2AC ===又tan BC A AC ∠=== ∠60A ∠=︒ ∠302A ∠=︒∠3tan3tan 3032A =︒== 故选:A【点睛】本题主要考查了正切函数的定义,正确求得AC 的长是解题关键.20.B【分析】首先根据折叠及3tan 4EFC ∠=求得EF 的值,进一步知道DC 的长度,后根据BAF EFC ∠=∠,其正切值相同解三角形ABF 得BF 的长度,从而知道AD 的长度,后根据勾股定理求得AE 的长度.【详解】解:由题意4CF =,∠C =90°,3tan 4EC EFC FC ∠== ∠CE =3∠Rt EFC 中,∠C =90°,∠5EF =∠AEF 是ADE 折叠而来∠5ED EF ==,538DC AB ==+=∠矩形ABCD∠90C B AFE ∠=∠=∠=︒∠90BAF AFB ∠+∠=︒,90AFB EFC ∠+∠=︒∠BAF EFC ∠=∠ ∠tan∠BAF =tan∠EFC =34, 即34BF AB =, ∠364BF AB == ∠6410AD BC ==+=∠AE 故选:B【点睛】本题考查了锐角三角函数解直角三角形,勾股定理,矩形的性质,翻折的性质,根据等量变换得到BAF EFC ∠=∠并运用其锐角三角函数相等,求线段长是解决本题的关键.21.C【分析】过点B 作BF x ⊥轴于点F ,先根据菱形的性质可得10AB OA ==,1802OA BF OB AC ⋅=⋅=,OD BD =,从而可得8BF =,再在Rt ABF 中,利用勾股定理可得6AF =,从而可得点B 的坐标,然后根据中点的坐标公式可得点D 的坐标,最后利用待定系数法可得双曲线的解析式,由此可判断∠;根据点E 的纵坐标为8,代入反比例函数即可判断∠;先根据平行线的性质可得COA BAF ∠=∠,再根据正弦的定义即可判断∠;先在Rt OBF △中,利用勾股定理可得OB =160OB AC ⋅=可得AC =AC OB +的值,由此即可判断∠.【详解】解:如图,过点B 作BF x ⊥轴于点F ,点A 的坐标为(10,0),10OA ∴=,四边形OABC 是菱形,且160OB AC ⋅=,10AB OA ∴==,1802OA BF OB AC ⋅=⋅=,OD BD =,AD CD =, 解得8BF =,在Rt ABF 中,6AF ==,16OF OA AF ∴=+=,(16,8)B ∴,又OD BD =,即点D 是OB 的中点,01608(,)22D ++∴,即(8,4)D , 将点(8,4)D 代入反比例函数k y x =得:8432k =⨯=, 则该双曲线解析式为32y x=,结论∠错误; 四边形OABC 是菱形,BC OA ∴,OC AB ∥,∴点E 的纵坐标与点B 的纵坐标相同,即为8,当8y =时,3248x ==, 则点E 的坐标是(4,8),结论∠正确;OC AB ,COA BAF ∴∠=∠,84sin sin 105BF COA BAF AB ∴∠=∠===,结论∠正确;在Rt OBF △中,OB =160OB AC ⋅=,160AC OB∴==,AC OB ∴+==,结论∠正确;综上,正确的结论有3个,故选:C .【点睛】本题考查了菱形的性质、勾股定理、反比例函数、正弦等知识点,熟练掌握菱形的性质是解题关键. 22.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.23.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中,4==sin sin 40AP BP ABP ∠︒, 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米), 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.24.A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∠小正方形与每个直角三角形面积均为1,∠大正方形的面积为5,∠小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0,∠a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键. 25.B【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∠AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos∠APC =cos∠EDC 即可得答案.【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∠AB ,∠∠APC =∠EDC .在△DCE 中,有EC DC =5DE =,∠22252025EC DC DE +=+==,∠DCE ∆是直角三角形,且90DCE ∠=︒,∠cos∠APC =cos∠EDC =DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.26.B【分析】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题干所给条件可知,AG =FG ,EG =GP ,利用∠AGP =∠B 可得到cos∠AGP =14,即可得到FG 的长; 【详解】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题意可知,AB =BC =4,E 是BC 的中点,∠BE =2,又∠1cos 4B =, ∠BH =1,即H 是BE 的中点,∠AB =AE =4,又∠AF 是∠DAE 的角平分线,FG AD ∥,∠∠F AG =∠AFG ,即AG =FG ,又∠PF AD ∥,AP DF ∥,∠PF =AD =4,设FG =x ,则AG =x ,EG =PG =4-x ,∠PF BC ∥,∠∠AGP =∠AEB =∠B ,∠cos∠AGP =12PG AG =22x x-=14, 解得x =83; 故选B .【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.27.(1)75︒(2)()2米【分析】(1)根据直角三角形的性质求出EAH ∠,根据平角的定义计算,求出CAD ∠;(2)过点A 作AM CD ⊥,垂足为M ,根据正弦的定义求出AM 、根据余弦的定义求出DM ,根据直角三角形的性质求出CM ,根据正弦的定义求出AC ,结合图形计算,得到答案.(1)解:在Rt AHE 中,30AEH ∠=︒, 60EAH ∴∠=︒,45BAC ∠=︒,180604575CAD ∴∠=︒-︒-︒=︒;(2)过点A 作AM CD ⊥,垂足为M ,在Rt ADM △中,60ADC ∠=︒,4AD =米,cos 4cos602DM AD ADC ∠∴=⋅=︒=(米),sin 4sin 60AM AD ADC ∠=⋅=︒=,在Rt ACM △中,180756045C ∠=︒-︒-︒=︒,CM AM ∴==,sin AM AC C==, ()2AB AC CD ∴=+=米,答:这棵大树折断前高为()2米.【点睛】本题考查的是解直角三角形的应用——坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解答此题的关键.28.(1)点D 与点A 的距离为300米(2)隧道AB 的长为米【分析】(1)根据方位角图,易知60ACD ∠=︒,90ADC ∠=︒,解Rt ADC 即可求解;(2)过点D 作DE AB ⊥于点E .分别解Rt ADE △,Rt BDE 求出AE 和BE ,即可求出隧道AB 的长(1)由题意可知:154560ACD ∠=︒+︒=︒,180454590ADC ∠=︒-︒-︒=︒在Rt ADC 中,∠tan tan 60300AD DC ACD =⨯∠=︒=(米)答:点D 与点A 的距离为300米.(2)过点D 作DE AB ⊥于点E .。

初三数学锐角三角函数测试题及答案

初三数学锐角三角函数测试题及答案

ACOP D B图3锐角三角函数(一)测试题一、 选择题(每小题3分,共30分)1、在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D ,已知AC=5,BC=2,那么sin ∠ACD=( )A 、35B 、32C 、552D 、252、如图1,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( ) A 、1200m B 、2400m C 、4003m D 、12003m3、(08)在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A .12B .22C .32D .334、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( )A 、34B 、43C 、35D 、535、如图2,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11,则tan α的值为( )A 、311B 、113C 、119D 、9116、在△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=22ABC 三个角的大小关系是( )A 、∠C >∠A >∠B B 、∠B >∠C >∠A C 、∠A >∠B >∠CD 、∠C >∠B >∠A7、若关于x 的方程x 2-2x+cos α=0有两个相等的实数根,则锐角α为( )A 、30°B 、45°C 、60°D 、0°8、如图3,∠AOB=30°,OP 平分∠AOB ,PC ∥OB ,PD ⊥DB , 如果PC=6,那么PD 等于( ) A 、4 B 、3 C 、2 D 、19、已知∠A 为锐角,且cosA ≤21,则( )A 、 0°≤A ≤60°B 、60°≤A <90°C 、0°<A ≤30°D 、30°≤A ≤90°10、如图4,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,设∠ACE=α,则 tan α的值为( )ABC( α 图1CEDAB图2(αA 、21B 、34C 、43D 、2二、 填空题(每小题3分,共30分)11、直线y=kx-4与y 轴相交所成的锐角的正切值为21,则k 的值为。

《锐角三角函数》习题(含答案)

《锐角三角函数》习题(含答案)

《锐⾓三⾓函数》习题(含答案)《锐⾓三⾓函数》⼀、选择题1. 4sin tan 5ααα=若为锐⾓,且,则为 ( )933425543A B C D ....2.在Rt△ABC 中,∠C = 90°,下列式⼦不⼀定成⽴的是()A .sinA = sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90°3.直⾓三⾓形的两边长分别是6,8,则第三边的长为()A .10B .C .10或D .⽆法确定4.在Rt△ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是()A .c =B .c =C .c = a·tanAD .c = sin a A cos a A tan a A 5、的值等于()o o 45cos 45sin +A. B. C. D. 12213+36.在Rt△ABC 中,∠C=90°,tan A=3,AC 等于10,则S△ABC 等于( )A. 3B. 300C.D. 155037.当锐⾓α>30°时,则cosα的值是()A .⼤于B .⼩于CD 12128.⼩明沿着坡⾓为30°的坡⾯向下⾛了2⽶,那么他下降()A .1⽶B ⽶C .9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=()(A )4 (B )5 (C )(D10.已知Rt△ABC 中,∠C=90°,tanA=,BC=8,则AC 等于()43 A .6 B . C .10 D .12323⼆、填空题11.计算2sin30°+2cos60°+3tan45°=_______.12.若sin28°=cosα,则α=________.13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.14.某坡⾯的坡度为1,则坡⾓是_______度.15.在△ABC 中,∠C =90°,AB =10cm ,sinA =,则BC 的长为_______cm .5416.如图,在⾼楼前点测得楼顶的仰⾓为,向⾼楼前进60⽶到点,⼜测得仰⾓为,则该⾼楼的D 30?C 45?⾼度⼤约为A.82⽶B.163⽶C.52⽶D.70⽶17.如图,⼩鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的⾼度CD =1m ,测得旗杆顶端B 的仰⾓=60°,则旗杆AB 的⾼度为.(计算结果保留根号)α(16题)三、解答题18.由下列条件解直⾓三⾓形:在Rt△ABC 中,∠C=90°:(1)已知a=4,b=8,(2)已知b=10,∠B=60°.(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°19.计算下列各题.(1)s in 230°+cos 2sin60°·tan45°;(2)+ sin45°22cos 30cos 60tan 60tan 30?+四、解下列各题20.如图所⽰,平地上⼀棵树⾼为5⽶,两次观察地⾯上的影⼦,第⼀次是当阳光与地⾯成45°时,第⼆次是阳光与地⾯成30°时,第⼆次观察到的影⼦⽐第⼀次长多少⽶?(第21.如图,AB 是江北岸滨江路⼀段,长为3千⽶,C 为南岸⼀渡⼝,为了解决两岸交通困难,拟在渡⼝C 处架桥.经测量得A 在C 北偏西30°⽅向,B 在C 的东北⽅向,从C 处连接两岸的最短的桥长多少?(精确到0.1)22. 如图,点A 是⼀个半径为300⽶的圆形森林公园的中⼼,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修⼀条长为1000⽶的笔直公路将两村连通,经测得∠ABC=45o ,∠ACB=30o ,问此公路是否会穿过该森林公园?请通过计算进⾏说明。

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

第二十八章锐角三角函数一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A. 4B. 2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A. 30°B. 45°C. 60°D. 90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A. 5米B. 6米C. 6.5米D. 12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A 测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A. 2 kmB. (2+)kmC. (4-2) kmD. (4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A. 100tanα米B. 100cotα米C. 100sinα米D. 100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE 即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·co s 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN=,故 cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.。

中考数学专项复习《锐角三角函数》练习题(附答案)

中考数学专项复习《锐角三角函数》练习题(附答案)

中考数学专项复习《锐角三角函数》练习题(附答案)一、单选题1.如图,在△ABC中CA=CB=4,cosC=14,则sinB的值为()A.√102B.√153C.√64D.√1042.在Rt△ABC中,△C=90°,cosA=35,那么tanB=()A.35B.45C.43D.34 3.如图,在Rt△ABC中∠ACB=90°,BC=1,AB=2则下列结论正确的是()A.sinA=√32B.tanA=12C.cosB=√32 D.tanB=√34.如图,已知△ABC内接于△O,△BAC=120°,AB=AC,BD为△O的直径,AD=6,则BC的长为()A.2√3B.6C.2√6D.3√3 5.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里6.在矩形ABCD中AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F设∠AGE=α(0°<α<90°),下列四个结论:①AE= CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=1cos2α,正确的个数是()A.1B.2C.3D.4 7.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得△PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.11−sinαB.11+sinαC.11−cosαD.11+cosα8.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,下列结论:①△ABC的形状是等腰三角形;②△ABC的周长是2√10+√2;③点C到AB边的距离是38√10;④tan∠ACB的值为2,正确的个数为()A .0个B .1个C .2个D .3个9.在Rt△ABC 中△ACB=90°,BC=1,AB=2,则下列结论正确的是( )A .sinA=√32B .cosA=√32C .tanA=12D .cotA=√3310.已知:如图,正方形网格中∠AOB 如图放置,则cos∠AOB 的值为( )A .2√55B .2C .12D .√5511.如图,菱形ABCD 的周长为20cm ,DE△AB ,垂足为E ,cosA=45,则下列结论中正确的个数为( )①DE=3cm ;②EB=1cm ;③S 菱形ABCD =15cm 2A .3个B .2个C .1个D .0个12.如图,在Rt △ABC 中 ∠ABC =90°,以其三边为边向外作正方形,连接EH ,交AC 于点P ,过点P 作PR ⊥FG 于点R.若tan∠AHE =12,EH =8√5,则PR 的值为( )A.10B.11C.4√5D.5√5二、填空题13.如图,在RtΔABC中∠B=90°,AB=3 ,BC=4 ,点M、N分别在AC、AB两边上,将ΔAMN沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当ΔDCM是直角三角形时,则tan∠AMN的值为.14.如图,在△ABC中∠ABC=60°,AB=6,BC=10将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1,A1落在边BC上,连接AC1,则AC1的长为.15.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C 的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.16.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.17.如图,某高为60米的大楼AB旁边的山坡上有一个“5G”基站DE,从大楼顶端A 测得基站顶端E的俯角为45°,山坡坡长CD=10米,坡度i=1:√3,大楼底端B 到山坡底端C的距离BC=30米,则该基站的高度DE=米.18.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,则2号楼的高度为(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)三、综合题19.(1)已知Rt△ABC中△C=90°,△A=30°,BC= √3,解直角三角形.(2)已知△ABC中△A=45°,AB=4,BC=3,求AC的长.20.如图1,已知∠PAQ=60°.请阅读下列作图过程,并解答所提出的问题.△如图2,以点A为圆心,任意长为半径画弧,分别与AP,AQ交于B,C两点;△如图3,分别以B,C两点为圆心,以大于12BC的长为半径画弧,两弧交于点D;△如图4,作射线AD,连接BC,与AD交于点E.问题:(1)∠ABC的度数为.(2)若AB=4,求AE的长.21.如图,在△ABC中△C=60°,△O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是△O的切线;(2)若AB=2 √3,求图中阴影部分的面积.(结果保留π和根号)22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中在OA的位置时俯角△EOA=30°,在OB的位置时俯角△FOB=60°,若OC△EF,点A比点B高7cm.求:(1)单摆的长度(√3≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).23.已知:如图,AB是△O的直径,C是△O上一点,OD△BC于点D,过点C作△O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与△O相切;(2)连接AD并延长交BE于点F,若OB=9,sin△ABC= 23,求BF的长.24.如图,AB是△O的直径,OE垂直于弦BC,垂足为F,OE交△O于点D,且△CBE=2△C.(1)求证:BE与△O相切;(2)若DF=9,tanC= 34,求直径AB的长.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】A8.【答案】C9.【答案】B10.【答案】D11.【答案】A12.【答案】B13.【答案】1或214.【答案】1415.【答案】(20√3−20)16.【答案】√31817.【答案】(25﹣5 √3)18.【答案】45.8米19.【答案】(1)解:在Rt△ABC中△C=90°,△A=30°∴△B=90°-△A=60°,AB=2BC=2 √3∴AC= √AB2−BC2=√(2√3)2−(√3)2=3;(2)解:如图,过点B作BD△AC于D∵△A=45°∴△ABD=△A=45°∴AD=BD∵AB=4,AD2+BD2=AB2∴AD=BD= 2√2在Rt△BCD中BC=3∴CD=√BC2−BD2=1∴AC=AD+CD= 2√2+1.20.【答案】(1)60°(2)由作图可知AB=AC,AD平分∠PAQ∴AE⊥BC.∵∠PAQ=60°∴∠BAE=30°.在Rt△ABC中AE=AB⋅cos30°=4×√32=2√3.答:AE的长为2√3.21.【答案】(1)解:如图,连接OA;∵△C=60°∴△AOB=120°;而OA=OB∴△OAB=△OBA=30°;而AB=AP∴△P=△ABO=30°;∵△AOB=△OAP+△P∴△OAP=120°﹣30°=90°∴PA是△O的切线.(2)解:如图,过点O作OM△AB,则AM=BM= √3∵tan30°= OMAM sin30°=OMAO∴OM=1,OA=2;∴S△AOB=12·AB·OM= 12× 2√3×1= √3S扇形OAB =120π⋅22360= 4π3∴图中阴影部分的面积= 4π3−√3.22.【答案】(1)解:如图,过点A作AP△OC于点P,过点B作BQ△OC于点Q∵△EOA=30°、△FOB=60°,且OC△EF∴△AOP=60°、△BOQ=30°设OA=OB=x则在Rt△AOP中OP=OAcos△AOP= 1 2x在Rt△BOQ中OQ=OBcos△BOQ= √32x由PQ=OQ﹣OP可得√32x﹣12x=7解得:x=7+7 √3≈18.9(cm)答:单摆的长度约为18.9cm(2)解:由(1)知,△AOP=60°、△BOQ=30°,且OA=OB=7+7 √3∴△AOB=90°则从点A摆动到点B经过的路径长为90⋅π⋅(7+7√3)180≈29.295答:从点A摆动到点B经过的路径长为29.295cm 23.【答案】(1)证明:连接OC∵OD△BC∴△COE=△BOE在△OCE和△OBE中∵{OC=OB∠COE=∠BOEOE=OE∴△OCE△△OBE∴△OBE=△OCE=90°,即OB△BE∵OB 是△O 半径∴BE 与△O 相切.(2)解:过点D 作DH△AB ,连接AD 并延长交BE 于点F∵△DOH=△BOD ,△DHO=△BDO=90°∴△ODH△△OBD∴OD OB =OH OD =DH BD又∵sin△ABC= 23,OB=9 ∴OD=6易得△ABC=△ODH∴sin△ODH= 23 ,即 OH OD = 23∴OH=4∴DH= √OD 2−OH 2 =2 √5又∵△ADH△△AFB∴AH AB = DH FB 1318 = 2√5FB∴FB= 36√51324.【答案】(1)证明:∵OE 垂直于弦BC∴△BOE+△OBF=90°∵△CBE=2△C , △BOE=2△C∴△CBE=△BOE∴△CBE+△OBF=90°∴△OBE=90°∴BE 与△O 相切;(2)解:∵OE 垂直于弦BC∴△CFD=△BFO=90°,CF=BF.∵DF=9,tanC= 34∴CF=BF=12.设半径长是x,则OF=x-9在Rt△BOF中∵x2=(x-9)2+122∴x= 25 2∴直径AB=25.。

《锐角三角函数》习题

《锐角三角函数》习题

《锐角三角函数》习题一、单项选择题1.计算sin245°+cos30°•tan60°,其结果是().A.2B.1C.52D.542.如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC的三个顶点在图中相对应的格点上,则tan∠ACB的值为().A.13B.12C.22D.33.已知Rt△ABC中,∠C=90º,那么cos A表示()的值.A.BCACB.BCABC.ACBCD.ACAB4.如图,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=8,CD=4,DA=3,则sin B的值是().A.35B.45C.34D.435.在△ABC中,∠A,∠B都是锐角,且sin A=12,cos B3,则△ABC的形状是().A.直角三角形B.钝角三角形C.锐角三角形D.不能确定6.如图,点E、F分别为正方形ABCD中AB、BC边的中点,连接AF、DE相交于点G,连接CG,则cos∠CGD=().A.12B3C25D5二、填空题7.若α为一锐角,且cos α=sin60°,则α=.8.计算(sin30°)-1-(tan60°)0=________.9.如图,在小山的东侧A 点处有一个热气球,因为受风向的影响,该热气球以每分钟30米的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则A ,B 两点间的距离为米.10.在直角三角形中,斜边和一直角边的比是5∶3,最小角为α,则sin α=_______________,cos α=_________________,tan α=__________________.11.已知∠A 、∠B 、∠C 分别是△ABC 的三个内角,若21(2sin 1)cos 02A B -+-=,则△ABC 的形状为.12.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC 的顶点都在方格的格点上,则cos A =.13.在△ABC 中,AB =AC ,AB 的垂直平分线DE 与AC 所在的直线相交于点E ,垂足为D ,连接BE .已知AE =5,tan ∠AED =34,则BE +CE =.14.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AB 1C 1,则tan B 1的值为.三、解答题15.先化简,再求值2211121 x xx x x--÷+++(),其中x=2sin60°+1.16.(1)计算:(-1)2-2cos30°+3+(-2014)0;(2)当x为何值时,代数式x2-x的值等于1.17.(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:18.如下列图,某幼儿园为了增强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:2≈1.414,3≈1.732,6≈2.449)19.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.20.已知:BD是四边形ABCD的对角线,AB⊥BC,∠C=60°,AB=1,BC=33,CD=23.(1)求tan∠ABD的值;(2)求AD的长.21.如图,⊙O的直径AB=10,CD是⊙O的弦,AC与BD相交于点P.(1)设∠BPC=α,假设sinα是方程5x2-13x+6=0的根,求cosα的值;(2)在(1)的条件下,求弦CD的长.22.△ABC中,∠C=90°,点D在边AB上,AD=AC=7,BD=12BC.动点M从点C出发,以每秒1个单位的速度沿CA向点A运动,同时,动点N从点D出发,以每秒2个单位的速度沿DA向点A运动.当一个点到达点A时,点M、N两点同时停止运动.设M、N运动的时间为t秒.(1)求cos A的值.(2)当以MN为直径的圆与△ABC一边相切时,求t的值.《锐角三角函数》习题答案1.知识点:命题与定理、特殊角的三角函数值.答案:A.解析:试题分析:原式=)2=12+32=2.应选A.考点:1.特殊角的三角函数值;2.实数的计算.2.知识点:锐角三角函数的定义.答案:A.3.知识点:特殊角的三角函数值.答案:D.解析:试题分析:根据直角三角形三角函数值得求法即可得出;cos A=ACAB,所以选D.考点:三角函数.4.知识点:特殊角的三角函数值、解直角三角形.答案:A.解析:试题分析:过点C作CE⊥AB,垂足为E,∵ABCD是直角梯形,AB∥CD,∠A=90°,∴CE=AD=3,AE=CD=4,∴BE=AB-AE=8-4=4,在Rt△CEB中,∵BC5==,∴sin B=35 CEBC=.应选A.考点:1.直角梯形;2.勾股定理;3.锐角三角函数的定义.5.知识点:特殊角的三角函数值.答案:B.解析:试题分析:∵sin A=12,∴∠A=30°,又∵cos B=32,∴∠B=30°,所以∠C=180°-30°-30°=120°.故△ABC是钝角三角形.应选B.考点:1.特殊角的三角函数值;2.三角形内角和定理.6.知识点:锐角三角函数的定义、解直角三角形.答案:D.7.知识点:同角三角函数的关系.答案:30º.解析:试题分析:∵cosα=sin60°,sin60°=32,∴cosα=32.∵α为一锐角,∴α=30°.考点:特殊角的三角函数.8.知识点:特殊角的三角函数值.答案:1.解析:试题分析:根据特殊角的锐角三角函数值即可求得结果.(sin30°)-1-(tan60°)0=(12)-1-1=2-1=1.考点:此题考查的是特殊角的三角函数.点评:解答此题的关键是掌握好特殊角的锐角三角函数.9.知识点:锐角三角函数的定义、特殊角的三角函数值、解直角三角形的应用-坡度坡角问题.答案:7502.解析:试题分析:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°-30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=3752(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数.10.知识点:锐角三角函数的定义、解直角三角形答案:354534.11.知识点:特殊角的三角函数值.答案:直角三角形.解析:试题分析:根据题意得,2sin A-1=0,且cos B-12=0,即sin A=cos B=12,∴∠A=30°,∠B=60°,则∠C=90°.故△ABC是直角三角形.故答案是直角三角形.考点:直角三角形.12.知识点:特殊角的三角函数值、解直角三角形.答案:255.解析:试题分析:如图,由勾股定理得AC=25AD=4,cos A=2525ADAC=,25.考点:1.勾股定理;2.三角函数.13.知识点:线段垂直平分线的性质、锐角三角函数的定义.答案:6或16.解析:试题分析:有两种情形,需要分类讨论:①若∠BAC 为锐角,如下列图,∵AB 的垂直平分线是DE ,∴AE =BE ,ED ⊥AB ,AD =12AB . ∵AE =5,tan ∠AED =34,∴sin ∠AED =35. ∴AD =AE •sin ∠AED =3.∴AB =6.∴BE +CE =AE +CE =AC =AB =6.②若∠BAC 为钝角,如下列图,同理可求得:BE +CE =16.综上所述,BE +CE =6或1614.知识点:锐角三角函数的定义、旋转的性质答案:13解析:试题分析:A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AB 1C 1,根据旋转的特征,∠B =∠B 1,所以tan B 1=tan B ,又因为tan B =13,所以tan B 1的值为13. 考点:旋转,三角函数.点评:此题考查旋转,三角函数,解答此题的关键是掌握旋转的特征,熟悉三角函数的定义,会用三角函数的定义来解此题.15.知识点:分式的化简求值、特殊角的三角函数值答案:. 解析:试题分析:先算括号内的减法,把除法变成乘法,求出结果后代入求出即可. 试题解析:222111*********x x x x x x x x x x -+-÷=-=-+++++--()()()()当x =2sin60°+1=2+11时原式11x =-==-. 考点:1.分式的化简求值;2.特殊角的三角函数值.16.知识点:实数的运算、零指数幂、解一元二次方程-公式法、特殊角的三角函数值.答案:(1)2(2)x 1,x 2. 解析:试题分析:(1)由数的乘方、0指数幂及特殊角的三角函数依次求出,再根据混合运算的法则实行计算即可.(2)由题意可关于x 的一元二次方程:x 2-x =1,解方程求出x 的值即可.试题解析:(1)原式=1-2 1=1 1=2;(2)由题意得,x 2-x =1,整理得,x 2-x -1=0,∵a =1,b =-1,c =-1,∴b 2-4ac =(-1)2-4×1×(-1)=5.∴x 1x 2. 考点:1.实数的混合运算;2.特殊角的三角函数值;3.零指数幂;4.解一元二次方程.17.知识点:全等三角形的性质、锐角三角函数的定义.答案:(1)解;依题意,可得山高h =200sin45°+300sin30°=200×22+300×12=150+1002. ∴山高为m . (2)解:添加条件例举:AD =BC ;OC =OD ;∠C =∠D ;∠CAO =∠DBC 等.证明例举(以添加条件AD =BC 为例):∵AB =AB ,∠1=∠2,BC =AD ,∴△ABC ≌△BAD (SAS )∴AC =BD .解析:试题分析:(1)直接应用正弦函数求解.(2)要证AC =BD ,只要AC 和BD 所在的三角形全等即可,由∠1=∠2,故可添加AD =BC ;OC =OD ;∠C =∠D ;∠CAO =∠DBC 等,均能构成全等三角形.答案不唯一.18.知识点:锐角三角函数的定义.答案:6-2.59=3.41(米)>3米,这样改造是可行的.解析:试题分析:∵在直角三角形ABC 中,sin45°=AC AB, ∴AC =AB ·sin45°52. ∵在直角三角形ABC 中,∠C =90°,∠ABC =45°,∴BC =AC 52, ∵在直角三角形ADC 中,tan30°=AC CD , ∴CD =tan30AC=56∴BD =CD -BC =5262 2.5875≈2.29 ∵6-2.59=3.41(米)>3米,∴这样改造是可行的.考点:三角函数.点评:此题考查三角函数,要求考生掌握三角函数的定义,会利用三角函数的定义解此题,三角函数是很重要的知识点,中考必考的内容.19.知识点:锐角三角函数的定义、特殊角的三角函数值.答案:233.解析:试题分析:延长BA、CD交于点E,构成两个含30°角的直角三角形:△EAB,△EAD,应用锐角三角函数定义和特殊角的三角函数值求解即可.试题解析:如图,延长BA、CD交于点E.∵∠B=90°,∠C=60°,BC=4,∴∠E=30°,CE=8,BE=43.∵CD=3,∴DE=5.∴AE=5103 cos cos303DEE==︒.∴AB=BE-AE=43-1033=233.考点:1.特殊三角形的构造;2.锐角三角函数定义;3.特殊角的三角函数.20.知识点:勾股定理的应用、锐角三角函数的定义、特殊角的三角函数值.答案:(1)1;(213解析:试题分析:(1)过点D作DE⊥BC于点E,根据∠C=60°求出CE、DE,再求出BE,从而得到DE=BE,然后求出∠EDB=∠EBD=45°,再求出∠ABD=45°,然后根据特殊角的三角函数值解答.(2)过点A作AF⊥BD于点F,求出BF=AF 2,再求出BD,然后求出DF,在Rt△ADF中,利用勾股定理列式计算即可得解.试题解析:(1)如图,作DE⊥BC于点E.∵在Rt△CDE中,∠C=60°,CD=23,∴CE3DE=3.∵BC3∴BE=BC-CE33.∴DE=BE=3∴在Rt△BDE中,∠EDB=∠EBD=45º.∵AB⊥BC,∠ABC=90º,∴∠ABD=∠ABC-∠EBD=45º.∴tan∠ABD=1.(2)如图,作AF⊥BD于点F.在Rt△ABF中,∠ABF=45º,AB=1,∴BF=AF=22.∵在Rt△BDE中,DE=BE=3,∴BD=32.∴DF=BD-BF=32-22=522.∴在Rt△AFD中,AD=22DF AF=13.考点:1.勾股定理;2.锐角三角函数定义;3.特殊角的三角函数值.21.知识点:圆周角定理、锐角三角函数的定义答案:(1)45;(2)8.解析:试题分析:(1)利用十字相乘法,求得一元二次方程的根,即sinα的值.进而求得cosα的值.(2)首先连接BC,利用圆周角定理得到∠B=∠C,∠A=∠D,进而证得△APB∽△DPC.再利用相似三角形的性质定理及(1)中的解,求得弦CD的长.试题解析:(1)∵sinα是方程5x2-13x+6=0的根解得:sinα=2(舍去),sinα=3 5∴cosα=4 5(2)连接BC∵∠B=∠C,∠A=∠D ∴△APB∽△DPC∴CD CP AB PB=∵AB为直径∴∠BCA为直角∵cosα=4 5∴45 CD CPAB PB==∴CD=8.考点:1.相似三角形的判定与性质;2.解一元二次方程-因式分解法;3.圆周角定理.22.知识点:切线的性质、锐角三角函数的定义答案:(1)35;(2)t=1或t=2.解析:试题分析:(1)设BC=4m,AC=x,用m表示出AC和AB,根据三角函数定义即可求解.(2)分⊙O与AB相切,⊙O与AC相切和⊙O与BC相切三种情况讨论即可.(1)设BC=4m,AC=x,则BD=2m,AD=x,∵BC2+CA2=AB2,∴16m2+x2=(2m+x)2.解之得x=3m.从而AB=5m.所以cos A=35.(2)CM=t,AM=7-t,DN=2t,AN=7-2t,其中0≤t≤3.5,记以MN为直径的圆为⊙O,当⊙O与AB相切时,则MN⊥AB,所以72375AN tAM t-==-,t=2,符合题意;当⊙O与AC相切时,则MN⊥AC,所以73725AM tAN t-==-,t=-14,舍去;当⊙O与BC相切时,如图,作NE⊥BC,垂足为E.取EC的中点F,连结OF,则OF⊥BC,即点F为⊙O与BC相切的切点.连结MF,NF,则FM⊥FN,所以△FCM∽△NEF.所以CM·EN=EF2=FC2.而CM=t,EN=(143+2t)·35,EF=FC=12EC=25(7-2t),所以t·[(143+2t)·35]=[=25(7-2t)]2,整理得t2+13t-14=0,解之得t=1,t=-14(舍去).综上所得,当以MN为直径的圆与△ABC一边相切时,t=1或t=2.考点:1.双动点问题;2.勾股定理;3.锐角三角函数定义;4.直线与圆的位置关系;5.分类思想的应用.。

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。

xx 。

]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。

锐角三角函数(全)

锐角三角函数(全)

锐角三角函数 ( 1)一.问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿山坡铺设水管,在山坡上修建一座扬 水站,对坡面的绿地进行喷灌 .现测得斜坡与水平面所成角的度数是 30 ,为使出水口的高度为 35m , 求需要准备多长的水管?探究:如图, Rt ABC 与 Rt ABC 中, C C 90 , A A , 探究 BC 与 BC 的关系AB A B结论:在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如何,∠ A 的对边 与斜边的比是一个固定值 .※在 Rt ABC 中, C 90 ,我们把锐角 A 的对边与斜边的比叫做∠ A 的正弦 . 记作 sin ABC 如图, sinA A 的对边a A 的斜边 c AB 二.例题与练习: 1. 例题:如图,在 Rt ABC 中, C 90 ,求 sin A 和 sinB的值 . 同理: sinB B 的对边B 的斜边 2. 练习: 1. 三角形在正方形网格纸中的位置如图所示,则 3. 4 C . 3 . C . 35 Rt ABC 中, C 90 ,若 AB 5 , C .3 4 A . 42. 如图,在 A .3 5 B .45 3. 在 Rt ABC 中, C 90 , BC 2 , 4 3 AB 是⊙ O 的直径,点 ; sin ADC = 5.在 Rt ABC 中, ACB 90 , A . 13 B 4.如图,已知 则 sin BAC = sin ACD 的值为( ) A . 5B . 2 33D D ,则边 AC 的长是 ( ) .5 且 AB 5 , BC 3 . 则 sinA 的值是( 4 3 b c sin 的值是﹙ .4 5 AC 4, ACABsin A 23 C 、 D 在⊙ O 上, CD AB 于点 D . 已知 AC 5 , BC 2 , .5三.在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如何,∠ A 的邻边与 斜边的比是一个固定值,∠ A 的对边与邻边的比是一个固定值,※在 Rt ABC 中, C 90 ,我们把锐角 A 的邻边与斜边的比叫做∠ A 的余弦.记作 cosAA 的邻边 b ACB 的邻边 a BC 如图, cosA 同理: cosB A 的斜边 c AB B 的斜边 c AB ※在 Rt ABC 中, C 90 ,我们把锐角 A 的对边与邻边的比叫做∠ A 的正切.记作 tanABC AC 如图, tanA A A 的的邻对边边 a b 四.例题与练习: 同理: tanB B B 的的对邻边边b a AC BC 例题:如图,在 Rt ABC 中, 3 C 90 , BC 6 ,sin A ,求 cos A , tanB 的值 . 5练习: 1. 分别求出下列直角三角形中两个锐角的正弦值、余弦值和正切值 2. 如图,在 Rt ABC 中, 五.课后作业:1. 在 Rt ABC 中, A . b a tan A2. 在 Rt ABC中, C 90 , AC 8 , 3 tan A 4 求 sin A 、 cosB 的值C 90 , a , b , c 分别是 A 、 B 、 C 的对边,则有( B . b c sinA C . a c cosBD C 90 ,如果 cosA 4,那么 tan B 的值为 5 c a sinA A . 3 5 3.如图: 4. 分别求出图中 A 、 B 的正弦值、余弦值和正切值 5 C . 3 44 P 是 的边 OA 上一点,且 4 3 P 点的坐标为( 3, 4),则 cos = (B 层)在 ABC 中, AB a , AC b , A ,求 ABC 的面积(用含有字母示)a ,b , 的式子表三 角 函 数(2).探究: 如图,在 Rt ABC 中, C 90 .⑴如图 1, A 30 ,求 sin A 、⑵如图 1, B 60 ,求sinB 、⑶如图 2, A 45 ,求 sin A 、⑶ A 的正切值随着 A 的角度的增大而三.例题与练习:例题 1:求下列各式的值:例题 2:⑴如图 1, 在 Rt ABC 中, C 90 , AB 6 , BC 3 ,求 A 的度数 . ⑵如图 2,已知圆锥的高 AO 等于圆锥的底面半径 OB 的 3倍, 求 .⑵ 3 tan 30 tan45 2 sin 60 ⑶ cos60 1二.结论: 1. 完成表格:2. ⑴ A 的正弦值随着 A 的角 度的增大而 .⑵ A 的余弦值随着 A 的角度 的增大而 .cosA 、 tanA 的值; cosB 、 tanB 的值; cosA 、 tan A 的值; ⑴ cos 260 sin 260cos45 sin45tan45 练习: 1. 求下列各式的值: ⑴ 1 2 sin 301 sin60 tan30 四.课堂检测:计算:cos260 cos245 2sin30 sin 451.将21 cosB 23 sin B改写成下列形式的式子,其中错误的是()A. sin30 cosB cos30 sinBB. sin30 cosB sin60 sinBC. cos60 cosB cos30 sinBD. cos60 cosB sin30 sinB2. 在 Rt ABC中, C 90 , a:b 3,则 sin A的值是()1A. 1B.2 22C. 32D.333. 在 ABC 中,A、 B 都是锐角,且sin A 1,,cosB 3,则 ABC 的形状为()2 2A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定4. 化简tan30 12的结果为()3A.1B. 3 1C. 3 1D. 133 35. 已知2sin 3 0 ,则锐角的度数为 . B16.已知 B 是锐角,若sin B 1,则 tan B的值为.2237.在 Rt ABC中, C 90 ,sinB ,则 cos A的值为.238.已知 sin90 23,则锐角的度数为 .9.求下列各式的值:3⑴tan230 2 sin 60 tan45 tan60 cos230 ⑵ cos60 sin 245 tan230 cos 230 sin30410.在Rt ABC中, C 90 , tanA 3 ,且 AB 10cm ,求 AC 、BC的长.11.如图,一块为 ABC 的空地, AC 10m , BC 30m , C 150 ,现在这块空地上种植每平方米 a 元的草皮,求购买这种草皮至少需要多少钱?(B层)12.如图, A ,B两地之间有一座山,汽车原来从A地到B地须经 C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB 行驶. 已知 AC 10km, A 30 , B 45 ,求开通隧道后,汽车从 A 地到 B 地比原来少走多少千米?(结果保留根号)锐角三角函数 ( 3)二.课堂检测:1. 求下列锐角三角函数值(精确到 0.0001):⑴ sin25 30 = ; ⑵ cos62 18 =一.例题与练习:例题 1:用计算器计算下列锐角三角函数值(精确到 0.0001) ⑴ sin 20 ⑵ cos70 ⑶ sin15 32 ⑷ cos74 28 ⑸tan3 8⑹ tan80 25 43由⑴→⑷你能得到的猜想为 ,请利用下图验证你的猜想练习:用计算器计算下列锐角三角函数值(精确到 0.0001)⑸ tan36 20 ⑹ tan75 17例题 2:已知下列锐角三角函数值,用计算器求其相应的锐角 ⑴ sinA 0.6275 ⑵ cosA 0.6252 ⑶ tanA 4.8425 练习:⑴ sin A 0.0547⑵ cosA 0.1659 ⑶ tanA 0.8816⑷ sinA 0.9816 ⑸ cosA 0.8607 ⑹ tanA 0.1890例题 3:如图,要焊接一个高 3.5m ,底角为 32 的人字形钢架,约需要多长的钢材(结果保留小数点 后两位)练习:如图,一块平行四边形木板的两条邻边 AD 、 BC 的长分别为 62.31cm 和 35.24cm ,它们之间的 夹角 B 为 35 40 ,求这块木板的面积(结果保留小数点后两位)tan26 50 = .⑴ sinA 0.4723,A= ;⑵ cos A A= ;⑶ tanA 15.94 , A三.课后练1.计算 2sin 60 3 tan 30 的值)A .3B . 2 3C .3 3D .432.在 Rt ABC 各边的长度都扩 4 倍,那么 B 的正切值()A .扩大 4 倍B .扩大 2倍C .保持不变D .缩小4倍3.已知为锐角,tan 3 ,则c os 等于()A .1B .2C .3 D. 3 2 2 2 34.如果等腰三角形的底角为 30 ,腰长为 6cm ,那么这个三角形的面积为()A .4. 5cm2B .9 3 cm2C .18 3cm2D .36cm25Rt ABC C 90 , b a 则 cosB 等()5 .5.12 12A B cm C D .cm12 .12 .13 136已知 cos 则的度数为()A40 B .41 C .42 D .437.已知 cosA 0.5761,则 A ;若tanA 15.21,则 A ;若sin A 0.3562 ,则 A8. 某人沿倾斜角为 25 的斜坡前行了 100m ,则他上升的最大高度为(精确到 0.01 m )9.计算:⑴ 2cos60 6 sin 45 sin 60 ⑵ cos45 sin 301cos60 tan45210. 已知:如图,在 Rt ABC中, C 90 ,CD 是高,BC 10cm, B 53 6 ,?求CD 、 AC 、AB .(精确到 1cm)(B层)1.要求 tan30 的值,可构造如图所示的直角三角形进行计算:作Rt ABC ,使 C 90 ,斜边AB 2 ,直角边 AC 1,那么BC 3 , ABC 30 ,tan30 AC 1 3,在此图的基础上,BC 3 3 通过添加适当的辅助线,可求出 tan15 的值,请简要写出你添加的辅助线和求出 tan15 的值.2 如图,把矩形纸片 OABC 放入平面直角坐标系中,y 轴上,连接 OB ,将纸片 OABC 沿 OB 折叠,使点--6--锐角三角函数 ( 4)一.问题: 如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角 满足 50 75 ,现有一个长 6m 的梯子,问: ⑴使用这个梯子最高可以攀上多高的墙(结果保留小数点后一位)? ⑵当梯子底端距离墙面 2.4m 时,这个人是否能够安全使用这个梯子? B 得 AC BC.解直角三角形:在 Rt ABC 中, C 90 ,AC ABB得 A 或由BCA AB三.例题与练习:例题 1:如图, Rt ABC 中, C 90 , AC 2 , BC 6 ,解这个直角三角形练习:如上图, Rt ABC 中, C 90 , BC 30 , AC 20 ,解这个直角三角形 .例题 2:如图,在 Rt ABC 中, C 90 , B 35 , AC 20 ,解这个直角三角形(结果保留小数点 后一位) 练习:如上图,在 Rt ABC 中, C 90 , A 72 , 后一位) . AB 14 ,解这个直角三角形(结果保留小数点四.课堂检测:在 Rt ABC中, C 90 , A 、 B 、 C 的对边分别为 解这个直角三角形 a 、b 和c ,若c 20,b 102 ,五.课后作业:1.在 Rt ABC 中, C 90 , A 、 B 、 C 的对边分别为 a 、b 和 c ,根据下列条件解直角三角形2.在 ABC 中, AD BC 于点 D ,且 B 30 , C 45 ⑴若 AD 5 ,求 BC 的长 ⑵若 BC =15,求 AD 的长3.为了测量塔高,小龙在距塔的中心点 B 50 米的C 处,用测角器量得仰角为 40 ,已知测角器的高度为 1.52 米,求塔高 AB 的长 .(精确到 0.1 米)4. 如图所示,在离铁塔 150米的 A 处用测角仪测得塔顶仰角 求铁塔高 BE . (精确到 0.1 米)5.如图所示,从某海岛上的观察所 A 测得海上某船只 B 的俯角为 8 18 ,若观察所 A 与海面的垂⑴ a 3 3 , c 6 ⑵ a 36 , B 30 ⑶ c 10 , b 6BAC 26 12 ,已知仪器高 AD 1.5 米,直高度 AC 50 米,求船只 B 到观察所的水平距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由题意可知,
h,
h , h h ,即 h , h ,
h h ,因为
h h h , h h ,即
h ,由
勾股定理的逆定理可知, △ th 是直角三角形。
5、【答案】C
解析:本题主要考查三角形的基本概念和三角形内角和定理。
因为三角形三个内角的比为 t t ,则不妨设三角形的三个内角分别为
, , 。因为三角形的内角和为
·猿辅导学科基础知识测试 | 初中数学
4、已知 〱 , , 为一个直角三角形的三边长,且有 〱 h ,求三角形三边长分别为多少。
答案
一、选择题
1、【答案】C 解析:本题主要考查角的正切值。 因为只知道 ∠ 是锐角,所以根据正切的定义,可得 ∠ 的正切值为
h
或h。 2、【答案】A
解析:本题主要考查三角函数。
在 t △ th 中,根据勾股定理可得, h h t th h
A.
B.
C. D. 4、已知 、 、 是三角形的三边长,如果满足 ,则三角形的形状是( )。
t th
h
·猿辅导学科基础知识测试 | 初中数学
A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 5、若三角形三个内角的比为 t t ,则这个三角形是( )。 A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰直角三角形 6、三角形的三边长分别为 、 、 ,且满足等式 则此三角形是( )。 A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 等腰直角三角形
7、【答案】C
解析:本题主要考查等腰三角形的判定和勾股定理的逆定理。
如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三
角形。由题意知,
h
,所以该三角形为直角三角形。因为三角形
中有两边相等,因此该三角形为等腰直角三角形。
8、【答案】A
解析:本题主要考查三角形的基本概念。
因为三角形的内角和为
〱 h ,那么这个三
A. 锐角三角形
·猿辅导学科基础知识测试 | 初中数学
B. 直角三角形 C. 钝角三角形 D. 无法确定
10、在 △ th 中, t h , h h , th h A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰直角三角形
,则该三角形为( )。
11、在一个三角形中,若 ∠ h ∠t ∠h ,则 △ th 是( )。 A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 以上都不对
12、在 △ th 中, sin A. 锐角三角形 B. 直角三角形 C. 等边三角形 D. 钝角三角形
二、填空题
t sin tt h ,则 △ th 为( )
1、已 知 直 角 三 角 形 的 一 个 锐 角 的 余 弦 值 为 , 则 它 的 正 弦 值 也


2、在 △ ABC 中 , 若 tan A h
个顶点, sin , cos t 是方程 h 〱
h 的两个不相等的实数根,
求 〱 的值及 ∠ 和 ∠t 的大小。
3、如图,防洪大堤的横截面是梯形 th ,其中
,h

·猿辅导学科基础知识测试 | 初中数学
汛期来临前对其进行了加固,改造后的背水面坡角
。若原坡长 t h
〱 ,求改造后的坡长 t 。(结果保留根号)(10 分)
处,它沿正南方向航行一段时间后,到达位于灯塔 的南偏东 450 方向上的 t 处,这时,海轮所在的 t 处距离灯塔 有多远?(结果用非特殊角的三角函 数及根式表示即可)
2、对于钝角 ,定义它的三角函数值如下:


(1)求


的值。
(2)若一个三角形的三个内角的比是 t th , , t 是这个三角形的两
·猿辅导学科基础知识测试 | 初中数学
3、解析:本题主要考查角的正弦值和余弦值。
根据题意可得
,所以 cos
t
h
th t
h
7
4、解析:本题主要考查解直角三角形的应用。
在 Rt △ ACD 中, CD = 3 AD = 2 3m ,所以树高: CE = CD + DE = 1.6 +
3
2 3 ≈ 5.1m 。 三、计算题
,且三个内角度数的比为 t th ,故设其三个
内角分别为 , , h ,因此有
,解得
,因此
三个内角分别为 、 和 ,所以该三角形为锐角三角形。 9、【答案】B
·猿辅导学科基础知识测试 | 初中数学
解析:本题主要考查勾股定理的逆定理。
勾股定理的逆定理:如果三角形其中两边的平方和等于第三边的平方,则这
4、【答案】
因为 〱 h
,〱
h ,所以
·猿辅导学科基础知识测试 | 初中数学

h h ,因为 〱 ⩾ , h ⩾ ,所以 〱 h ,
h h ,所以 〱 h , h h ,若 〱 和 为三角形的两条直角边,
则 h〱
h
h h h , h 体 h 体 h ,符合三角形的
三边关系。若 〱 为斜边, , 为直角边,则 h 〱
个三角形是直角三角形。因为 〱
〱 h ,所以
h 〱 ,又
因为 , 〱 , 是三角形的三边,根据勾股定理的逆定理可知三角形是直角
三角形。
10、【答案】B
解析:本题主要考查勾股定理的逆定理。
如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三
角形。因为
h ,即 th h t h ,所以 △ th 是直角三角
的内角,则
,所以

,故
是直角三角形。 二、填空题
1、解析:本题主要考查角的正弦值和余弦值。
,即 △ th
因为一个锐角的余弦值为 ,所以这个锐角为 ,所以

2、解析:本题主要考查由三角函数求锐角。
因为 ∠ 、 ∠t 是三角形的内角, tan h , sin t h ,所以

。所以
即 △ th 为等腰直角三角形。
形。
11、【答案】A
解析:本题主要考查三角形的基本概念和三角形的内角。
在 △ th 中, ∠ ∠t ∠h h
, ∠ h ∠t ∠h ,所以
∠h
,即 ∠ h 。故该三角形是直角三角形。
12、【答案】B
解析:本题主要考查由三角函数求锐角。
因为 sin
t sin tt h ,所以 sin
h,
sin t h 。所以 sin h , sin t h 。因为 ∠ 和 ∠t 是 △ th


, sin B h
, 则 △ ABC
3、已知直角三角形的斜边 AB 与一直角边 BC 的比为 7t ,则 ∠B 的余
弦值为

4、身高 . m 的小丽用一个两锐角分别为 和 的三角尺测量一棵
树的高度,已知她与树之间的距离为 m ,那么这棵树高大约为

·猿辅导学科基础知识测试 | 初中数学
三、计算题 1、如图,一艘海轮位于灯塔 的北偏东 650 方向,距离灯塔 海里的
,则
h
,解
得 h 。因此三角形的三个内角分别为 , , ,即该三角形
为直角三角形。
6、【答案】C
解析:本题主要考查完全平方公式和勾股定理。
由完全平公式的概念“两数和(或差)的平方,等于它们的平方和,加上
(或减去)它们的积的 倍”可知,
h⇒
h⇒
h ,即满足勾股定理,所以三角形应为直角三角形,故 C
项符合题意。
h
hh ,
h 体 体 h ,符合三角形的三边关系。所以三角形的三边长分别为

,h或 ,h, 。 【解析】 本题主要考查勾股定理的基本概念、三角形的三边关系以及完全平方公式。 先根据完全平方公式与二次根式的综合运用得出 〱 和 的值,再分情况
在直角三角形中根据勾股定理计算出 的值,再根据三角形的三边关系判断能 不能构成三角形即可。
韦达定理求出 ∠ 、 ∠t 的大小即可。 3、【答案】
如图所示,过 作 㫘 ⊥ th 交 th 于点 㫘 ,在 t △ t㫘 中,根据三
角函数公式得 公式得 20 2 sinα。
,在 t △ t㫘 中根据三角函数
【解析】 本题主要考查直角三角形和三角函数。
在 t △ t㫘 中,根据三角函数公式求出 㫘 ,再在 t △ t㫘 中根据三 角函数公式求出 t 即可。
(1)根据题意可得:



·猿辅导学科基础知识测试 | 初中数学
(2)因为一个三角形的三个内角的比是 t th ,三角形的内角和为
,所
以三个内角的度数分别为 、 、 ,又因为 sin , cos t 是方
程h sin

h 的两个不相等的实数根,所以根据韦达定理可得:
cos
t
h
〱 h

sin
h,
7、已知一个三角形的三边长分别为 〱 , 〱 和 〱 ,则这个三角形是
( )。
A. 等腰三角形
B. 直角三角形
C. 等腰直角三角形
D. 锐角三角形
8、若一个三角形三个内角度数的比为 t th ,则这个三角形是( )。 A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 等边三角形
9、如果三角形的三边 , 〱 , 满足 〱 角形是( )。
1、【答案】如图所示,由题意知

。在 t △
中,
根据三角函数可得
。在
中,根据三角函数得
海里。
。由题意知
h
( 海 里 ), 故 :
(海里),即海轮所在的 t 距离灯塔 距离为
【解析】 本题主要考查直角三角形和三角函数。
相关文档
最新文档