必修一 第二章 基本初等函数及应用讲义

合集下载

高中数学人教A版必修1第二章 基本初等函数——幂函数(共14张PPT)

高中数学人教A版必修1第二章 基本初等函数——幂函数(共14张PPT)

f(x 1 )f(x2 )x 1x2(x 1x x 2 1 )+ (x x 2 1+x2)
x1 x2 x1 + x2
方法技巧:分子有理化
因 x 1 x 2 , x 为 1 , x 2 [ 0 , + ) 所 ,x 1 x 2 以 0 ,x 1 + x 2 0 ,
所 f(x 以 1 )f(x2 )即 , 幂 f(x) 函 x在 [0 数 ,+)上 的 .
课堂小结
(1) 幂函数的定义; (2)五个基本幂函数的图像画法及特征; (3) 幂函数的性质。
作业:P79习题2.3: 1,2,3。
谢谢指导
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了��

数学必修1课件:第二章 基本初等函数(I)1.1 第2课时

数学必修1课件:第二章 基本初等函数(I)1.1 第2课时

12
4.已知 m>0,则 m3 ·m3 =( )
A.m
2
B.m3
C.1 [答案] A
2
D.m9
5.( 3)1+ 3·( 3)1- 3=( )
A. 3
C.1 [答案] D
B.2 3 D.3
[解析] 原式=( 3)1+ 3+1- 3=( 3)2=3.
第二章 2.1 2.1.1 第二课时 第十六页,编辑于星期日:十一点 二十九分。
第二章 2.1 2.1.1 第二课时 第九页,编辑于星期日:十一点 二十九分。
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
●自主预习
1.分数指数幂
m
(1)意义:a n
=___n_a_m___,a-
m n
1 1 =_a_mn ______=_n__a_m____,
其中a>0,m,n∈N*,n>1.
第二章 2.1 2.1.1 第二课时 第二十四页,编辑于星期日:十一点 二十九分。
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
化简下列各式:
(1)2 3×3 1.5×6 12;
4
1
a3-8a3b
3
(2)
÷(1-2
4b23+23
2
ab+a3
ba)×3 a.
[解析]
(1)2
3×3
1.5×6
23
23
13
[解析] (1)原式=a3 ·a2 =a3 +2 =a 6 ;
111
111
111
7
(2)原式=[a·(a·a2 )2 ]2 =a2 ·a4 ·a8 =a2 +4 +8 =a8 ;
1
1

人教版数学必修一第2章讲义

人教版数学必修一第2章讲义

必修一 第2章 基本初等函数一、指数函数1、 根式:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示.a a n n =当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示,(a >0) 此时⎩⎨⎧<≥-==)0()0(||a a a a a a n n 2、分数指数幂规定:)1,,,0(*>∈>=n N n m a a a n m n m)1,,,0(11*>∈>==-n N n m a a a a n m n mn m0的正分数指数幂等于0,0的负分数指数幂没有意义3、有理指数幂的运算性质(1)r a ·s r r a a +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>; (3)s r r a a ab =)(),0,0(Q r b a ∈>>. 例:化简(1+2-1/32)(1+2-1/16)(1+2-1/8)(1+2-1/4)(1+2-1/2)例 :下列命题中,正确命题的个数为(B )(1)、设n ∈N*,则√a n n=a; (2)、a ∈R,则(a 2-a+1)0=1; (3)、√x 4+y 33=x 43 +y; (4)、√−53=√(−5)26A 0B 1C 2D 3例:将下列根式化为分数指数幂的形式: (1)√x √x 3 (x ≥0); (2)√a 2b √b 3a √a b 3 (a>0,b>0) 例:设a 12 - a − 12 =m ,则a 2+1a =(C)A m 2−2B 2-m 2C m 2+2D m 24、【指数函数定义:一般的,函数叫做指数函数,其中x 是自变量,函数定义域是R. )10(≠>=a a a y x且例:若函数f(x)=(a 2-7a+7)a x 为指数函数,求a 的值3、指数函数图像和性质作图:y=2x ,y=(12)x , y=3x , y=(13)x 例:比较1.70.3和0.93.1大小。

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.2第1课时指数函数的图象及性质课件新人教A版必修1
由图象可知值域是(0,1],递增区间是(-∞,0],递减区间 是[0,+∞).
与指数函数有关的定义域、值域问题
求下列函数的定义域与值域:
(1)y=
;(2)y=23-|x|.
思路点拨:
指数函数y=axa>0, 且a≠1的定义域是R
―→
函数y=afxa>0,且a≠1 与fx的定义域相同
―→
值域
解:(1)由xx+ -11≥0,得 x≤-1 或 x>1.
已知指数函数f(x)的图象过点(3,8),则f(6)=________. 解析:设f(x)=ax(a>0,且a≠1). ∵函数f(x)的图象过点(3,8). ∴8=a3,∴a=2. ∴f(x)=2x. ∴f(6)=26=64. 答案:64
2.指数函数的图象和性质 a>1
图象图象
如图是指数函数:①y=ax,②y=bx,③y=cx,④ y=dx的图象,则a,b,c,d与1的大小关系是( )
A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c
思路点拨:
解析:方法一:在①②中底数大于零且小于 1,在 y 轴右 边,底数越小,图象向下越靠近 x 轴,故有 b<a,在③④中底 数大于 1,在 y 轴右边,底数越大,图象向上越靠近 y 轴,故 有 d<c.故选 B.
1.指数函数的图象一定在x轴的上方.( ) 2.当a>1时,对于任意x∈R总有ax>1.( ) 3.函数f(x)=2-x在R上是增函数.( ) 答案:1.√ 2.× 3.×
指数函数的概念
函数y=(a2-3a+3)ax是指数函数,求a的值. 思路点拨: ax的系数为1 ―→ a为常数,a>0且a≠1 ―→ 不等式组 解:∵y=(a2-3a+3)ax 是指数函数, ∴aa>2-03且a+a≠3=1,1, 解得aa= >10或 且2a,≠1. ∴a=2.

高中数学第二章基本初等函数(Ⅰ)2.1.1.1根式课件新人教A版必修13

高中数学第二章基本初等函数(Ⅰ)2.1.1.1根式课件新人教A版必修13
__5_-__2_7__. 7
(2)已知 x7=6,则 x=____6____. (3)若4 x-2有意义,则实数 x 的取值范围是__[2_,__+__∞__)__.
[解析] (1)∵(±4)2=16, ∴16 的平方根为±4.-27 的 5 次方根为5 -27. (2)∵x7=6,∴x=7 6. (3)要使4 x-2有意义, 则需 x-2≥0,即 x≥2. 因此实数 x 的取值范围是[2,+∞).
5.已知 a<b<0,n>1,n∈N*,化简n a-bn+n a+bn.
解:∵a<b<0,∴a-b<0,a+b<0. 当 n 是奇数时,原式=(a-b)+(a+b)=2a; 当 n 是偶数时,原式=|a-b|+|a+b| =(b-a)+(-a-b)=-2a. ∴n a-bn+n a+bn=2-a, 2an,为n奇 为数 偶, 数.
知识点一 a 的 n 次方根和根式
1.a 的 n 次方根 (1)定义:如果 xn=a n>1,且 n∈N*. (2)表示:
[填一填] ,那么 x 叫做 a 的 n 次方根,其中
2.根式 式子 n a 是 a.
叫做根式,其中根指数是 n ,被开方数
[答一答] 1.3 8是根式吗?根式一定是无理式吗?
(2)原式=-8+|3-π|=-8+π-3=π-11.
(3)原式=(a-b)+|b-a|=a-b+b-a=0.
[变式训练 2] (1)化简3 a3+4 1-a4的结果是( C )
A.1
B.2a-1
C.1 或 2a-1 D.0
解析:3 a3+4 1-a4=a+|1-a|
=12, a-1,
a≤1, a>1.来自n (2)an是实数

数学必修1课件:第二章 基本初等函数(I)2.1 第2课时

数学必修1课件:第二章 基本初等函数(I)2.1 第2课时

(2)loga yzx=loga x-loga(yz)=logax12-(logay+logaz)
=12logax-logay-logaz.
第二章 2.2 2.2.1 第二课时
第十六页,编辑于星期日:十一点 三十分。
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
运用对数的运算性质解题
第二章 2.2 2.2.1 第二课时
第七页,编辑于星期日:十一点 三十分。
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
●自主预习
1.对数的运算性质
条件 性质
a>0,且a≠1,M>0,N>0 loga(MN)=_l_o_g_aM__+__lo_g_a_N_____
logaMN =___lo_g_a_M_-__l_o_g_aN____ logaMn=__n_l_o_g_aM__(n_∈__R__) ___
第二章 2.2 2.2.1 第二课时
第二十四页,编辑于星期日:十一点 三十分。
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
(1)求证:logambn=mn logab(a>0 且 a≠1,b>0); (2)求 log927 的值; (3)求 log89·log2732 的值. [分析] 原式 及换常―底― 用公→结式论 同底数的对数式 对―性 数―质 运→算 结果
第二章 2.2 2.2.1 第二课时
第六页,编辑于星期日:十一点 三十分。
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·必修1
3.指数的运算法则:a>0,b>0,r,s∈R, ar·as=__a_r_+_s, ar÷as=_a_r-__s _, (ar)s=__a_r_s _, (ab)r=__a_rb_r_.

高中必修一数学第二章_基本初等函数(Ⅰ)ppt课件-人教版

高中必修一数学第二章_基本初等函数(Ⅰ)ppt课件-人教版

x-13,x<2.
有两个不同的实根,则实数 k 的取值范围是______.
高中数学
解析:(1)作出
的图象,如
示.再把 f(x)的图象向左平移一个单位长度,可得到 y=
的图象.故选 B.
高中数学
(2)作出函数 f(x)=2x,x≥2,
的简图,如图
x-13,x<2.
方程 f(x)=k 有两个不同的实根,也就是函数 f(x)的图象 =k 有两个不同的交点,所以 0<k<1.
• (4)采用数形结合的方法,通过函数的图象解决
高中数学
比较下列各组数的大小:
(1)0.65.1,5.10.6,log0.65.1;
(2)log712,log812;
1
1
1
1
(3) a=0.22 ,b=0.32 ,c=331)因为 0<0.65.1<1,5.10.6>1,log0.65.1<0,

lg 42-lg 16+1-lg 14+log5 35-log
解:(1)原式=53212
3 +
-287-3÷(24)
3 -4
1
+25 ×
-1
=53-23-24+2-1=-22.
高中数学
1
(2)原式=(3-3) -3 + lg 42-2lg 4+1
-lg 4-1+log5
35 7
=3+ lg 4-12+lg 4+log5 5 =3+1-lg 4+lg 4+1
要题型,主要考查幂函数、指数函数、对数函 与性质的应用及差值比较法与商值比较法的应 用的方法有单调性法、图象法、中间搭桥法、 作商法. • (2)当需要比较大小的两个实数均是指数幂或对 可将其看成某个指数函数、对数函数或幂函数 值,然后利用该函数的单调性比较.

人教版《第二章 基本初等函数》PPT完美课件1

人教版《第二章 基本初等函数》PPT完美课件1

例2:求下面对数式中x 的取值范围.
lo2g x1x2
2x 1 0 解: 2 x 1 1
x 2 0
x 1 2
x1
x 2
x
x
1,且x 2
1
人教版《第二章 基本初等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
例3:解方程.
lo2lgo4xg 0
解 所l: 以 to 4 x 2 0g t ,则 1,设 即 llo 2 ot4 gx0 g 1注 验 大意 证 于0: 真,一 数底定 是数要 否是
思考:你发现了什么?
lo a a g 1 a 0 ,且 a 1
人教版《第二章 基本初等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
4.求下列各式的值:
12log28
2 3log327
3
1
log
18
2
2
猜想: a lo a N g ? a 0 ,且 a 1
赋予它的含义就是:1.2的多少次幂等于2.
人教版《第二章 基本初等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
对数的定义:
若ax N(a0,a1) ,则数 x叫做
以a为底 N的对数,x记 lo作 ga N,
其中 a为底数N为 ,真.数loga N
指数
对数


ax N
数 loga Nx
ax N
xloga N
等函数》PPT完美课件1
人教版《第二章 基本初等函数》PPT完美课件1
对数的性质:
1零和负数没有对数
2 lo a 1 0 g a 0 ,且 a 1 3 lo a a 1 g a 0 ,且 a 1

人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数课件(2)

人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数课件(2)

栏目导引
3.设23-2x>0.53x-4,则x的取值范围是 ________. 解析: 23-2x>0.53x-4 ⇒23-2x>24-3x ⇒3-2x>4-3x ⇒x>1. 答案: {x|x>1}
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
4.函数 f(x)=ax(a>0,且 a≠1)在区间[1,2]上的 最大值比最小值大a2,求 a 的值. 解析: 当 a>1 时,f(x)=ax 为增函数,在 x∈ [1,2]上, f(x)最大=f(2)=a2,f(x)最小=f(1)=a, ∴a2-a=a2,即 a(2a-3)=0, ∴a=0(舍)或 a=32>1,∴a=32.
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
[题后感悟] 如何判断形如y=af(x)(a>0且a≠1) 的函数的单调性?
方法一:利用单调性定义比较y1=af(x1)与y2= af(x2)时,多用作商后与1比较. 方法二:利用复合函数单调性:当a>1时,函 数y=af(x)与函数y=f(x)的单调性相同;当 0<a<1时,函数y=af(x)与函数y=f(x)的单调性 相反.
必修1 第二章 基精品本PPT初等函数(I)
必修1 第二章 基精品本PPT初等函数(I)
栏目导引
[解题过程] (1)∵x-1≠0,∴x≠1, ∴函数 y=3x-1 1的定义域为{x|x≠1}, 又∵x-1 1≠0,∴y≠30=1. ∴函数的值域为{y|y>0 且 y≠1}, (2)函数的定义域为 R ∵x2-4x=(x-2)2-4≥-4, y=12x 在 R 上是减函数 ∴0<12x2-4x≤12-4=16. ∴函数的值域为(0,16].

高一数学必修1第二章基本初等函数知识点总结归纳

高一数学必修1第二章基本初等函数知识点总结归纳

必修1第二章基本初等函数(Ⅰ)知识点整理〖2.1〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n当n 是偶数时,正数a 的正的nn次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.(2(3(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式:l o g 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4【(5(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()xy ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数y =(7③将x=(8①原函数y ②函数y =③若(,P a (1一般地,函数(2(3①三象限,时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. 幂函数在(0,)+∞都有②过定点:所有的通过点(1,1).定义,并且图象都0α>,则幂函数的图③单调性:如果象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当α(1①一般式:f ③两根式:f (2(3①二次函数f ②当0a >当0a <.③二次函数11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆④端点函数值符号. ①k <x 1≤x 2⇔ ②x 1≤x 2<k ⇔ ③x 1<k <x 2⇔af (k )<0 ④k 1<x 1≤x 2<k 2⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2⇔ 此结论可直接由⑤推出. (5)二次函数2设f (p) )2b a -f x0x (q) 0x x ??0x xx。

高中数学课件归纳必修1必修1第二章基本初等函数(Ⅰ)分数指数幂

高中数学课件归纳必修1必修1第二章基本初等函数(Ⅰ)分数指数幂

(2)
m3 m

m3

m

1 2

m
3
1 2

5
m2
课时小结
一 理解分数指数幂的意义
m
a
n

m
n
a n
am (a 0, m, n N ,且n
1 (a 0, m, n N ,且n 1) n am
1)
0的正分数指数指数幂等于0 ,0的负分数指数幂没意义
二熟练运用有理指数幂的运算性质
0的正分数指数幂等于0
0的负分数指数幂没有意义
练习1 用根式的形式表示下列各式的的值
(a>0):
1
3
(1)a 5 (2)a 4
1
解: (1)a 5 5 a
3
(3)a 5
2
(4)a 3
3
(2)a 4 4 a3
3
(3)a 5
2
(4)a 3
1
3
a5
1

5 a3
1
2
a3

1 3 a2
练习2 用分数指数幂表示下列各式的值:
(1)3 x2
(2)4 (a b)3 ((a b) 0)
(3)3 (m n)2
2
解: (1)3 x2 x 3
(4) (m n)4 (m n)
3
(2)4 (a b)3 (a b)4
2
(3)3 (m n)2 (m n) 3
4
(4) (m n)4 (m n)2 (m n)2
整数指数幂运算性质
aman amn
(m,n z)
(a m )n amn

必修一基本初等函数复习PPT课件

必修一基本初等函数复习PPT课件

18
底数互为倒数的两个 对数函数
y = loga x, y = log1 x
的函数图像关于x轴对a称。
19
当a>1时,a值越大, y=logax的图像越靠近x轴;
当0<a<1时,a值越大, y=logax的图像越远离x轴。
20
4.若loga2<logb2<0,则( B )
(A)0<a<b<1
(B)0<b<a<1
y
叫做幂函数,
其中x是自变
量,α是常数.
O
x
23
幂函数的性质
函数
性质 y=x
y=x2
1
y=x3 y = x 2
y=x-1
定义域 R
R
R [0,+∞) {x|x≠0}
值域 R [0,+∞) R [0,+∞) {y|y≠0}
奇偶性 奇


单调性

[0,+∞)增 (-∞,0]减

非奇非偶 奇
(0,+∞)减
常用对数:通常将log10N的对数叫做常用对数,为了简便, N的常用对数记作lgN。
自然对数:通常将使用以无理数e=2.71828…为底的对数

做自然对数,为了简便,
N的自然对数logeN简记作lnN.
12
2024/10/27
13
9.对数恒等式
( ) aloga N = N a 0且a 1,N 0 叫做对数恒等式
10.对数的性质 (1)负数和零没有对数; (2)1的对数是零,即loga1=0; (3)底数的对数等于1,即logaa=1 11.对数的运算法则 如果a>0,a≠1,M>0,N>0,那么

高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数的运算第1课时对数课件新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.1对数与对数的运算第1课时对数课件新人教A版必修1

【答案】A 【解析】∵2log3x=14=2-2,∴log3x=-2.∴x=3-2=19.
5.已知loga2=m,loga3=n,则a2m+n等于( )
A.5
B.7
C.10 【答案】D
D.12
【解析】∵am=2,an=3,∴a2m+n=a2m·an=(am)2·an=
12.
6.ln 1+log( ( 2-1) 2-1)=______. 【答案】1 【解析】ln 1+log( ( 2-1) 2-1)=0+1=1.
1
3.若 log3(log2x)=1,则 x-2 等于( )
A.13
B.
3 6
C.
2 4
D.
3 9
【答案】C
1
【解析】∵log3(log2x)=1,∴log2x=3.∴x=23=8,则 x-2

1= 8
2 4.
4.方程 2log3x=14的解是(
)
A.x=19
B.x=
3 3
C.x= 3
D.x=9
指数式与对数式的互化
【例 1】将下列指数式化为对数式,对数式化为指数式: (1)2-7=1128;(2)3a=27;(3)10-1=0.1; (4) log1 32=-5;(5)lg 0.001=-3.
2
【解题探究】利用指数式与对数式之间的互化关系求解.
【解析】(1)log21128=-7.
(2)log327=A.
2.利用指数式、对数式的互化求下列各式中 x 的值. (1)log2x=-12;(2)logx25=2;(3)log5x2=2.
【解析】(1)由
log2x=-12,得
1
2-2
=x,∴x=
2 2.

高中数学第二章基本初等函数(Ⅰ)章末总结课件新人教A版必修12(1)

高中数学第二章基本初等函数(Ⅰ)章末总结课件新人教A版必修12(1)

专题二 指数函数、对数函数及幂函数的图象与性质 指数函数、对数函数、幂函数是中学数学中重要的基本初等 函数.它们的图象与性质始终是高考考查的重点.由于指数函数 y=ax,对数函数 y=logax(a>0,a≠1)的图象与性质都与 a 的取 值有密切的联系,幂函数 y=xα 的图象与性质与 α 的取值有关, a,α 变化时,函数的图象与性质也随之改变;因此,在 a,α 的 值不确定时,要对它们进行分类讨论.
当 t≥1 时,点 M(1,4)在曲线 y=(12)t-a 上,则(12)1-a=4,得 a =3,这时 y=(12)t-3,
4t0≤t≤1, 所以 f(t)=12t-3t>1.
(2)由题意知,需 f(t)≥0.25,当 0≤t≤1 时,由 4t≥0.25,得 t≥116,所以116≤t≤1;当 t>1 时,由(12)t-3≥0.25=(12)2,得 t≤5, 所以 1<t≤5.所以满足 f(t)≥0.25 时,116≤t≤5.由此知,服药一次 治疗疾病有效的时间为 5-116=41156小时.
[例 4] 方程 log2(x+2)= -x的实数解有( B )
A.0 个
B.1 个
C.2 个
D.3 个
[分析] 令 y1=log2(x+2),y2= -x,分别作出两个函数图 象,利用数形结合的方法解题.
[解析]
令 y1=log2(x+2),y2= -x,分别画出两个函数图象,如 图所示.
函数 y1=log2(x+2)的图象是由函数 y=log2x 的图象向左平 移 2 个单位长度得到.
4.对数的运算性质:logaMN =logaM-logaN,loga(MN)=logaM +logaN,logaMn=nlogaM(n∈R),其中 a>0,且 a≠1,M>0,N>0.

高中数学第二章基本初等函数I2.1.1.1根式课件新人教版必修1

高中数学第二章基本初等函数I2.1.1.1根式课件新人教版必修1

n 的奇偶性
a 的 n 次方根的 表示符号
a 的取值范围
n 为奇数
பைடு நூலகம்
n a
a∈R
n 为偶数
n
±a
[0,+∞)
(3)根式 n
式子__a__叫做根式,这里 n 叫做_根__指__数__,a 叫做被开方数.
2.根式的性质
n
(1) 0=_0_ (n∈N*,且 n>1);
n
(2)( a)n=_a_ (n∈N*,且 n>1);
3.掌握两个公式:(1)(n a)n=a,n 为奇数;(2)n an=a,n 为偶
数,n an=|a|=a-a
(a≥0), (a<0).
1.若 m 是实数,则下列式子中可能没有意义的是( )
A.4 m2
B.3 m
C.6 m
5
D.
-m
解析 C 中,6 m隐含 m≥0;当 m<0 时,没有意义.
编后语
常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
一、释疑难
对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已 经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。
(2)设 m<0,则( -m)2=________.
解析 (1)依题意,x 是 3 的 4 次方根,∴x=±4 3.
(2)∵m<0,∴-m>0,∴( -m)2=-m.

高中数学第二章基本初等函数2.1.1指数与指数幂的运算第2课时分数指数幂新人教A版必修1

高中数学第二章基本初等函数2.1.1指数与指数幂的运算第2课时分数指数幂新人教A版必修1

B.234
C.18
D.243
[解析]
4-23

1
3
42
=22123
=213=18.
(C)
2.若a>0,n,m为实数,则下列各式中正确的是
m
A.am÷an=a n
B.an·am=am·n
C.(an)m=am+n
D.1÷an=a0-n
(D )
• [解析] 由指数幂的运算法则知1÷an=a0÷an=a0-n正确, 故选D.
(3)由于a23
-a-32
=(a12
)3-(a-12
3
)3,所以有a21 a2
-a-32 -a-12
1
=a2
-a-21 a+a-1+a12
1
a2
-a-12
·a-12
=a+a-1+1=7+1=8.
『规律方法』 (1)条件求值是代数式求值中的常见题型,一般要结合已知
条件先化简再求值,另外要特别注意条件的应用,如条件中的隐含条件,整体
3
(2)化简:
7
a2
a-3÷ 3 a-83 a15÷3
a-3 a-1.
• [思路分析] 将根式化为分数指数幂的形式,利用分数指 数幂的运算性质计算.
[解析] (1)原式=1+14×(49)12 -(1100)21 =1+16-110=1165.
3
(2)原式=
7
a2
a-32
÷
a-83
15
a3
3
÷
a-23
• 利用分数指数幂进行根式计算时,结果可化为根式形式或保留分 数指数幂的形式,不强求统一用什么形式,但结果不能既有根式 又有分数指数幂,也不能同时含有分母和负指数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数及其综合运用
考纲要求
指数函数、对数函数、二次函数是高考考查的重点内容之一,本节主要帮助考生掌握三种函数的概念、图象和性质并会用它们去解决某些简单的实际问题 重难点归纳
(1)运用三种函数的图象和性质去解决基本问题 此类题目要求考生熟练掌握函数的图象和性质并能灵活应用
(2)综合性题目 此类题目要求考生具有较强的分析能力和逻辑思维能力 (3)应用题目 此类题目要求考生具有较强的建模能力
(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪
⎧⎨
⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩
为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。

指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪
⎪⎪⎪⎪
⎨⎪⎨⎪⎪⎨⎪⎪
⎪⎪⎪
=>≠>⎪⎪⎩⎩⎧⎨⎩⎩
为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪


⎪⎪⎪⎪


⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪
⎪⎪⎪⎪⎪⎪⎪
⎧=⎪⎨
⎪⎩⎩
幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。

性质:见表2
典型题例示范讲解
题型一:指数及指数函数的考查:
例1.(2010深圳)7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是
(A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数
2.(2010东莞)(7)设232555
322555
a b c ===(,()(),则a ,b ,c 的大小关系是
(A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 3. (12汕头理)若1
02
a b <<<
,则( ) A .22ab
a
> B .22ab
b
> C .2log ()1ab >- D .2log ()2ab <-
54. (12汕头)下列函数中,既是偶函数又在()0,+∞上单调递增的是( )
A. 3
y x = B. ln y x = C. 2
1
y x = D. cos y x = 6. 12
32,2()((2))log (1) 2.
x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,
则的值为,
题型二:对数及对数函数的考查
例1.(2010山东)(10)设25a
b
m ==,且
11
2a b
+=,则m = (A
(B )10 (C )20 (D )100
2.(2009年山东理)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则
a b ,满足的关系是
( )
A .1
01a b -<<<
B .1
01b a -<<<
C .1
01b
a -<<<-
D .1
101a
b --<<<
3.(2010山东文)(3)函数()()
2log 31x
f x =+的值域为
A. ()0,+∞
B. )0,+∞⎡⎣
C. ()1,+∞
D. )1,+∞⎡⎣ 练习:1(2009
全国卷Ⅱ理)设323log ,log log a b c π===
A. a b c >>
B. a c b >>
C. b a c >>
D. b c a >>
2.(2009年山东理)已知2(3)4log 3233x
f x =+,则8(2)(4)(8)(2)f f f f +++
+
x
的值等于 .
3.(2010山东)函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A ,若点A 在直线
01=++ny mx 上,其中0>mn ,则
n
m 2
1+的最小值为 . 题型三:二次函数的考查
例1(2010山东文)(6)设0abc >,二次函数2()f x ax bx c =++的图像可能是
2.(本小题满分14分)(2011广一模)
已知函数()2
f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且
1122f x f x ⎛⎫⎛⎫
-
+=-- ⎪ ⎪⎝⎭⎝⎭
,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;
题型四:反函数的考查
例 1.(2009年广东卷文)若函数()y f x =是函数1x
y a a a =>≠(0,且)
的反函数,且(2)1f =,则()f x =( )A .x 2log B .
x 21 C .x 2
1log D .22
-x
2.(2009全国卷Ⅰ文)已知函数()f x 的反函数为()()10g x x =+2lgx >,则=+)1()1(g f (A )0 (B )1 (C )2 (D )4
3.(2009泰安一模)已知函数y=f(x)与x y e =互为反函数,函数y=g(x)的图像与y=f(x)图像关于x 轴对称,若g(a)=1,则实数a 值为 (A )-e (B) 1e -
(C) 1
e
(D) e 练习1. (11山东)设⎭
⎬⎫
⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为
( ) A .1,3
B .-1,1
C .-1,3
D .-1,1,3
2.(2011佛二模).已知()(0,1)
x
f x a a a =>≠,()
g x 为()f x 的反函数.若(2)(2)0f g -⋅<,那么()f x 与()g x 在同一坐标系内的图像可能是
A B C D
3.(2010全国卷2理)(2).函数1ln(1)
(1)2
x y x +-=
>的反函数是
(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+> (C )211(R)x y e x +=-∈ (D )211(R)x y e x +=+∈
4.(2010佛山)9.函数3()log (3)f x x =+的反函数的图像与y 轴的交点坐标是 。

课后练习:
1.(2010全国文)(6)给定函数①1
2
y x =,②12
log (1)y x =+,③|1|y x =-,④1
2
x y +=,
期中在区间(0,1)上单调递减的函数序号是 (A )①② (B )②③ (C )③④ (D )①④
2.(2010海南)(6)设5
54a log 4b log c log ===2
5,(3),,则
(A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c
3.(2009临沂一模)已知函数f(x)=31()log 5
x
x -,若x 0是方程f(x)=0的解,且0<x 1<x 0,则f(x 1)的值为
A .恒为正值 B.等于0 C.恒为负值 D.不大于0
4.(2009青岛一模)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()
0f x f x x
--<的解集为
A .(10)(1)-+∞,,
B .(1)(01)-∞-,,
C .(1)(1)-∞-+∞,,
D .(10)(01)-,,
5(2009日照一模)(6)函数32
()ln
2f x x
π=-的零点一定位于区间
A .(1,2)
B .(2,3)
C .(3,4)
D .(4,5)
6(2009日照一模)(函数()y f x =的图象如右图所示,则函数
12
log ()y f x =的图象大致是
7.(2009青岛一模)定义:区间[]()1212,x x x x <的长度为21x x -.已知函数||2x y =的定义域为[],a b ,值域为[]1,2,则区间[],a b 的长度的最大值与最小值的差为_________.。

相关文档
最新文档