数据结构(CC++语言版)第五章 树和二叉树
数据结构(C语言版)
比较
Prim算法适用于稠密图, Kruskal算法适用于稀疏图;
两者时间复杂度相近,但 Kruskal算法需额外处理并查
集数据结构。
最短路径算法设计思想及实现方法比较
1 2
Dijkstra算法
从源点出发,每次找到距离源点最近的顶点并更 新距离值,直至所有顶点距离确定。适用于不含 负权边的图。
Floyd算法
特殊二叉树
满二叉树、完全二叉树等。
二叉树的遍历与线索化
二叉树的遍历
前序遍历、中序遍历、后序遍历和层 次遍历是二叉树的四种基本遍历方法 。
线索化二叉树
为了方便查找二叉树节点的前驱和后 继,可以对二叉树进行线索化处理, 即在节点的空指针域中存放指向前驱 或后继的指针。
树和森林的遍历与转换
树的遍历
01
串的顺序存储结构
01
02
03
串的顺序存储结构是用 一组地址连续的存储单 元来存储串中的字符序
列的。
按照预定义的大小,为 每个定义的串变量分配 一个固定长度的存储区 ,一般是用定长数组来
定义。
串值的存储:将实际串 长度值保存在数组的0下 标位置,串的字符序列 依次存放在从1开始的数
组元素中。
串的链式存储结构
03
比较
DFS空间复杂度较低,适用于递 归实现;BFS可找到最短路径, 适用于非递归实现。
最小生成树算法设计思想及实现方法比较
Prim算法
从某一顶点开始,每次选择当 前生成树与外界最近的边加入 生成树中,直至所有顶点加入
。
Kruskal算法
按边权值从小到大排序,依次 选择边加入生成树中,保证不
形成环路。
数据结构(C语言版)
《数据结构及其应用》笔记含答案 第五章_树和二叉树
第5章树和二叉树一、填空题1、指向结点前驱和后继的指针称为线索。
二、判断题1、二叉树是树的特殊形式。
()2、完全二叉树中,若一个结点没有左孩子,则它必是叶子。
()3、对于有N个结点的二叉树,其高度为。
()4、满二叉树一定是完全二叉树,反之未必。
()5、完全二叉树可采用顺序存储结构实现存储,非完全二叉树则不能。
()6、若一个结点是某二叉树子树的中序遍历序列中的第一个结点,则它必是该子树的后序遍历序列中的第一个结点。
()7、不使用递归也可实现二叉树的先序、中序和后序遍历。
()8、先序遍历二叉树的序列中,任何结点的子树的所有结点不一定跟在该结点之后。
()9、赫夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。
()110、在赫夫曼编码中,出现频率相同的字符编码长度也一定相同。
()三、单项选择题1、把一棵树转换为二叉树后,这棵二叉树的形态是(A)。
A.唯一的B.有多种C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。
2、由3个结点可以构造出多少种不同的二叉树?(D)A.2 B.3 C.4 D.5解释:五种情况如下:3、一棵完全二叉树上有1001个结点,其中叶子结点的个数是(D)。
A.250 B. 500 C.254 D.501解释:设度为0结点(叶子结点)个数为A,度为1的结点个数为B,度为2的结点个数为C,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C为整数,所以B=0,C=500,A=501,即有501个叶子结点。
4、一个具有1025个结点的二叉树的高h为(C)。
A.11 B.10 C.11至1025之间 D.10至1024之间解释:若每层仅有一个结点,则树高h为1025;且其最小树高为⎣log21025⎦ + 1=11,即h在11至1025之间。
数据结构-C语言-树和二叉树
练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边
数据结构 第五章树答案
第五章 树(答案)一、选择题1、二叉树的第i 层最多有( )个结点。
A .2i B. 2i C. 2i-1 D.2i -12.对于一棵满二叉树,高度为h ,共有n 个结点,其中有m 个叶子结点,则( )A .n=h+m B.h+m=2n C.m=h-1 D.n=2h -1 3.在一棵二叉树中,共有16个度为2的结点,则其共有( )个叶子结点。
A .15 B.16 C.17 D.184. 一棵完全二叉树中根结点的编号为1,而且编号为23的结点有左孩子但没有右孩子,则此树中共有( )个结点。
A .24 B.45 C.46 D.47 5.下述编码那一组不是前缀码( )A .00,01,10,11 B.0,1,00,11 C.0,10,110,111 D.1,01,001,000 6.某二叉树的中序序列和后序序列相同,则这棵二叉树必然是( )A .空树B .空树或任一结点均无左孩子的非空二叉树C .空树或任一结点均无右孩子的非空二叉树D .空树或仅有一个结点的二叉树7.设n,m 为一棵二叉树上的两个结点,在中序遍历时,n 在m 前的条件是( )A .n 在m 的右边 B.n 是m 的祖先C .n 在m 的左边 D.n 是m 的子孙8、假定中根遍历二叉树的定义如下:若二叉树为非空二叉树,则中根遍历根的右子树;访问根结点;中根遍历根的左子树。
按此定义遍历下图所示的二叉树,遍历的结果为: A 、 DBEAFHGC A B 、 C GHFADBE B C C 、 E BDAFHGC E D FD 、 FHGCADBE GH9、文中出现的字母为A 、B 、C 、D 和E ,每个字母在电文中出现的次数分别为9、27、3、5和11。
按哈夫曼编码(构造时左小右大),则字母C 的编码应是:A 、10B 、0110C 、1110D 、1100 10、设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8 11.算术表达式a+b*(c+d/e )转为后缀表达式后为( )A .ab+cde/*B .abcde/+*+C .abcde/*++D .12. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( )A. A*B+C/(D*E)+(F-G)B. (A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D. A*B+C/D*E+F-G13.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( ) A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D. -+A*BC/DE14.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( )A .9B .11C .15D .不确定15.树的后根遍历序列等同于该树对应的二叉树的( ).A. 先序序列B. 中序序列C. 后序序列16.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为( )。
数据结构第五章参考答案
习题51.填空题(1)已知二叉树中叶子数为50,仅有一个孩子的结点数为30,则总结点数为(___________)。
答案:129(2)3个结点可构成(___________)棵不同形态的二叉树。
答案:5(3)设树的度为5,其中度为1~5的结点数分别为6、5、4、3、2个,则该树共有(___________)个叶子。
答案:31(4)在结点个数为n(n>1)的各棵普通树中,高度最小的树的高度是(___________),它有(___________)个叶子结点,(___________)个分支结点。
高度最大的树的高度是(___________),它有(___________)个叶子结点,(___________)个分支结点。
答案:2 n-1 1 n 1 n-1(5)深度为k的二叉树,至多有(___________)个结点。
答案:2k-1(6)(7)有n个结点并且其高度为n的二叉树的数目是(___________)。
答案:2n-1(8)设只包含根结点的二叉树的高度为0,则高度为k的二叉树的最大结点数为(___________),最小结点数为(___________)。
答案:2k+1-1 k+1(9)将一棵有100个结点的完全二叉树按层编号,则编号为49的结点为X,其双亲PARENT (X)的编号为()。
答案:24(10)已知一棵完全二叉树中共有768个结点,则该树中共有(___________)个叶子结点。
答案:384(11)(12)已知一棵完全二叉树的第8层有8个结点,则其叶子结点数是(___________)。
答案:68(13)深度为8(根的层次号为1)的满二叉树有(___________)个叶子结点。
答案:128(14)一棵二叉树的前序遍历是FCABED,中序遍历是ACBFED,则后序遍历是(___________)。
答案:ABCDEF(15)某二叉树结点的中序遍历序列为ABCDEFG,后序遍历序列为BDCAFGE,则该二叉树结点的前序遍历序列为(___________),该二叉树对应的树林包括(___________)棵树。
(完整word版)数据结构(c语言版)课后习题答案完整版资料
第1章绪论5.选择题:CCBDCA6.试分析下面各程序段的时间复杂度。
(1)O(1)(2)O(m*n)(3)O(n2)(4)O(log3n)(5)因为x++共执行了n—1+n—2+……+1= n(n—1)/2,所以执行时间为O(n2)(6)O(n)第2章线性表1.选择题babadbcabdcddac2.算法设计题(6)设计一个算法,通过一趟遍历在单链表中确定值最大的结点。
ElemType Max (LinkList L ){if(L—〉next==NULL) return NULL;pmax=L-〉next;//假定第一个结点中数据具有最大值p=L-〉next—>next;while(p != NULL ){//如果下一个结点存在if(p->data > pmax—>data) pmax=p;p=p->next;}return pmax-〉data;(7)设计一个算法,通过遍历一趟,将链表中所有结点的链接方向逆转,仍利用原表的存储空间.void inverse(LinkList &L) {// 逆置带头结点的单链表Lp=L-〉next;L->next=NULL;while (p){q=p—>next;// q指向*p的后继p->next=L—>next;L—>next=p; // *p插入在头结点之后p = q;}}(10)已知长度为n的线性表A采用顺序存储结构,请写一时间复杂度为O(n)、空间复杂度为O(1)的算法,该算法删除线性表中所有值为item的数据元素.[题目分析]在顺序存储的线性表上删除元素,通常要涉及到一系列元素的移动(删第i个元素,第i+1至第n个元素要依次前移)。
本题要求删除线性表中所有值为item的数据元素,并未要求元素间的相对位置不变。
因此可以考虑设头尾两个指针(i=1,j=n),从两端向中间移动,凡遇到值item的数据元素时,直接将右端元素左移至值为item的数据元素位置。
数据结构C语言版章节练习题(1-6章)
数据结构章节练习题第一章绪论一、单选题1.一个数组元素a[i]与________的表示等价。
A、 *(a+i)B、 a+iC、 *a+iD、 &a+i2.下面程序段的时间复杂度为____________。
for(int i=0; i<m; i++)for(int j=0; j<n; j++)a[i][j]=i*j;A、 O(m2)B、 O(n2)C、 O(m*n)D、 O(m+n)3.执行下面程序段时,执行S语句的次数为____________。
for(int i=1; i<=n; i++)for(int j=1; j<=i; j++)S;A、 n2B、 n2/2C、 n(n+1)D、 n(n+1)/24.下面算法的时间复杂度为____________。
int f( unsigned int n ){ if ( n==0 || n==1 ) return 1; else return n*f(n-1); }A、 O(1)B、 O(n)C、 O(n2)D、 O(n!)二、填空题1.数据的逻辑结构被分为__________、_________、__________和__________四种。
2.数据的存储结构被分为__________、和__________两种。
3.在线性结构、树形结构和图形结构中,前驱和后继结点之间分别存在着________、________和________的联系。
4.一种抽象数据类型包括__________和__________两个部分。
5.当一个形参类型的长度较大时,应最好说明为_________,以节省参数值的传输时间和存储参数的空间。
6.当需要用一个形参访问对应的实参时,则该形参应说明为__________。
7.在函数中对引用形参的修改就是对相应__________的修改,对__________形参的修改只局限在该函数的内部,不会反映到对应的实参上。
数据结构+二叉树及遍历课件
A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
4
课程13
数据结构和算法
定义树结构(续)
中的每一个 点在其 下可能有子 。
root A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
5
课程13
数据结构和算法
树结构术语 我 来 构常用的一些 。 叶子 点:指没有子 点的 点。
C 点的度 1
D节点的度为2
D
A节点的度为3
B节点的度为4
J
K
L
M
Ver. 1.0
8
课程13
数据结构和算法
树结构术语(续)
兄弟:它指同一个 点的子 点。
A
B、C和D 点互 兄弟
点。
B
C
D
E、F、G和H互为兄弟节点。
E F GH I J
K
L
M
Ver. 1.0
9
课程13
数据结构和算法
树结构术语(续)
使用 接列表来 一个二叉 。 接表示中的每个 点都具有以下信息:
数据 左子 点的引用 右子 点的引用
如果一个 点不含有左子 点或右子 点,或一个子 点都没 有,相 的左(右)子 点字段就指向NULL。
Ver. 1.0
Data
Node
18
课程13
数据结构和算法
表示一个二叉树(续)
内部 点:它指根 点与叶子 点之 的中 点 。
点的 :它指一个 点与根 点之 的距离(按 点数 目 算)。根 点永 位于0 。
数据结构C语言版第二版第5章树和二叉树答案
第5章 树和二叉树1.选择题(1)把一棵树转换为二叉树后,这棵二叉树的形态是( )。
A .唯一的 B.有多种C .有多种,但根结点都没有左孩子 D.有多种,但根结点都没有右孩子 答案:A解释:因为二叉树有左孩子、右孩子之分,故一棵树转换为二叉树后,这棵二叉树的形态是唯一的。
(2)由3个结点可以构造出多少种不同的二叉树?( ) A .2 B .3 C .4 D .5 答案:D解释:五种情况如下:A CBACBA CBACBACB(3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是( )。
A .250 B . 500 C .254 D .501 答案:D解释:设度为0结点(叶子结点)个数为A ,度为1的结点个数为B ,度为2的结点个数为C ,有A=C+1,A+B+C=1001,可得2C+B=1000,由完全二叉树的性质可得B=0或1,又因为C 为整数,所以B=0,C=500,A=501,即有501个叶子结点。
(4)一个具有1025个结点的二叉树的高h 为( )。
A .11B .10C .11至1025之间D .10至1024之间 答案:C解释:若每层仅有一个结点,则树高h 为1025;且其最小树高为 log 21025 + 1=11,即h 在11至1025之间。
(5)深度为h 的满m 叉树的第k 层有( )个结点。
(1=<k=<h) A .mk-1B .m k -1C .m h-1D .m h-1答案:A解释:深度为h 的满m 叉树共有m h-1个结点,第k 层有m k-1个结点。
(6)利用二叉链表存储树,则根结点的右指针是( )。
A .指向最左孩子B .指向最右孩子C .空D .非空 答案:C解释:利用二叉链表存储树时,右指针指向兄弟结点,因为根节点没有兄弟结点,故根节点的右指针指向空。
(7)对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,可采用( )遍历实现编号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 1、若一棵树中度为1的结点有n1个,度为2的结点有n2 个,……,度为m的结点有nm个,它有多少个叶结点? 2、找出所有的二叉树,其结点在下列两种次序下恰好都以 同样的顺序出现: (1)先根和中根 (2)先根和后根(3)中根和后根 3、设计一个算法,根据一个二叉树结点的先根序列和中根 序列构造出该二叉树。假设二叉树是链接表示的,并且任意 两个结点的info字段值都不同。 4、设计一个算法,将一个链接表示的二叉树中每个结点的 左、右子女位置交换。 5、设计一个算法,按层次顺序输出二叉树中的所有结点, 要求同一层上的结点从左到右输出。 6、设F是一个森林,B是与F对应的二叉树。试问,F中非叶 结点的个数和B中右子树为空的结点的个数之间有什么数量 关系?
C
BC
D
E F GH I J
KL
M
1层
2层 高度=4
3层
4层 9
5.1 树的逻辑结构
树的基本术语
层序编号:将树中结点按照从上层到下层、同层从左 到右的次序依次给他们编以从1开始的连续自然数。
1A
2
B
3C
4
D
5 E F 6 7H
J8
9
K
10
L
10
5.1 树的逻辑结构
树的基本术语
有序树、无序树:如果一棵树中结点的各子树从左 到右是有次序的,称这棵树为有序树;反之,称为 无序树。
抽象操作,可以是对结点进行的各种处理,这里简 化为输出结点的数据。
遍历的实质?
树结构(非线性结构)→线性结构。
如何理解次序?
树通常有前序(根)遍历、后序(根)遍历和层
序(次)遍历三种方式。
18
5.1 树的逻辑结构
前序遍历
树的前序遍历操作定义为: 若树为空,则空操作返回; 否则
A
B
C
⑴ 访问根结点; ⑵ 按照从左到右的顺序前序
树的定义是采用递归方法
5
5.1 树的逻辑结构
树的基本术语
结点的度:结点所拥有的子树的个数。
树的度:树中各结点度的最大值。 叶子结点:度为0的结点,也称为终端结点。 分支结点:度不为0的结点,也称为非终端结点。 孩子、双亲:树中某结点子树的根结点称为这个 结点的孩子结点,这个结点称为它孩子结点的双 亲结点;
A
BC
D
E F GH I J
KL
M
7
5.1 树的逻辑结构
树的基本术语
祖先、子孙:在树中,如果有一条路径从结点x到结 点y,那么x就称为y的祖先,而y称为x的子孙。
A
BC
D
E F GH I J
KL
M
8
5.1 树的逻辑结构
树的基本术语
结点所在层数:根结点的层数为1;对其余任何结点, 若某结点在第k层,则其孩子结点在第k+1层。 树的深度:树中所有结点的最大层数,也称高度。
【作业】
树的存储方法主要有哪些?举例说明 具体存储结构。
【课堂作业】
已知一棵二叉树的前序遍历序列和中 序遍历序列分别为ABCDEFGHI 和 BCAEDGHFI,如何构造该二叉树?
4
5.1 树的逻辑结构
树的定义
树:n(n≥0)个结点的有限集合。当n=0时,称为 空树;任意一棵非空树满足以下条件: ⑴ 有且仅有一个特定的称为根的结点; ⑵ 当n>1时,除根结点之外的其余结点被分成 m (m>0)个互不相交的有限集合T1,T2,… ,Tm,其中 每个集合又是一棵树,并称为这个根结点的子树。
DEF G
遍历根结点的每一棵子树。
HI
前序遍历序列: ABDEHIFCG
19
5.1 树的逻辑结构
后序遍历
树的后序遍历操作定义为: 若树为空,则空操作返回; 否则
A
B
C
⑴ 按照从左到右的顺序后序 遍历根结点的每一棵子树;
DEF G
⑵ 访问根结点。
HI
后序遍历序列: DHIEFBGCA
20
5.1 树的逻辑结构
数据结构(CC++语言版)第五章 树和二 叉树
要求:
1. 熟练掌握二叉树的结构特性,了解相应的证明方法。 2. 熟悉二叉树的各种存储结构的特点及适用范围。 3. 遍历二叉树是二叉树各种操作的基础,掌握各种遍历策略 的递归算法,灵活运用遍历算法实现二叉树的其它操作。 4.熟悉树的各种存储结构及其特点,掌握树和森林与二叉树 的转换方法。 5.学会编写实现树的各种操作的算法。 6.了解最优树的特性,掌握建立最优树和哈夫曼编码的方法。
兄弟:具有同一个双亲的孩子结点互称为兄弟。
A
BC D
E F GH I J
6
5.1 树的逻辑结构
树的基本术语
路径:如果树的结点序列n1, n2, …, nk有如下关系: 结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称 为一条由n1至nk的路径;路径上经过的边的个数称为 路径长度。
数据对象 D:
D是具有相同特性的数据元素的集合。
数据关系 R:
若D为空集,则称为空树; 否则: (1) 在D中存在唯一的称为根的数据元素root, (2) 当n>1时,其余结点可分为m (m>0)个互不相 交的有限集T1, T2, …, Tm, 其中每一棵子集本身又是 一棵符合本定义的树,称为根root的子树。
层序遍历
树的层序遍历操作定义为: 从树的第一层(即根结点) 开始,自上而下逐层遍历, 在同一层中,按从左到右的 顺序对结点逐个访问。
15
例如:
(a)
(b)
A( B(E, F(K, L)), C(G), D(H, I, J(M)) )
树根
T1
T2
T3
•上面是树的广义表表示形式
16
•树的文氏图表示法和凹入表示法
17
5.1 树的逻辑结构
树的遍历操作
树的遍历:从根结点出发,按照某种次序访问树中 所有结点,使得每个结点被访问一次且仅被访问一 次。 如何理解访问?
A
B
C
D
E
ADEF GG来自F C135.1 树的逻辑结构
树结构和线性结构的比较
线性结构
树结构
第一个数据元素
根结点(只有一个)
无前驱
无双亲
最后一个数据元素 无后继
叶子结点(可以有多个) 无孩子
其它数据元素
其它结点
一个前驱,一个后继
一对一
一个双亲,多个孩子
一对多
14
5.1 树的逻辑结构
树的抽象数据类型定义
A
A
B
C
C
B
DEF G
GD E F
数据结构中讨论的一般都是有序树
11
5.1 树的逻辑结构
树的基本术语
森林:m (m≥0)棵互不相交的树的集合。
A
BC
D
EF
H
J
KL
12
5.1 树的逻辑结构
树的基本术语
同构:对两棵树,若通过对结点适当地重命名, 就可以使这两棵树完全相等(结点对应相等,结 点对应关系也相等),则称这两棵树同构。