青海师范大学附属中学数学代数式达标检测(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)
1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.
我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.
(1)求a,c的值;
(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.
【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30
(2)-70或
(3)解:①如下图所示:
当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,
点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果
AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,
点A,C之间
每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,
点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.
【解析】【解答】解:(2)分三种情况讨论,
•当点D在点A的左侧,
∵CD=2AD,
∴AD=AC=50,
点C点表示的数为-20-50=-70,
‚当点D在点A,C之间时,
∵CD=2AD,
∴AD= AC= ,
点C点表示的数为-20+ =- ,
ƒ当点D在点C的右侧时,
AD>CD与条件CD=2AD相矛盾,不符合题意,
综上所述,D点表示的数为-70或 ;
【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时,根据CD=2AD,及点A、C表示的数,就可求出点D表示的数。
(3)① 根据题意画出图形,当t=0时,AB=21,BC=29 ,分情况讨论:a.点A,C在相遇前时; b.点A,C在相遇时,AB=BC ,分别求出符合题意的t的值即可;②当时间为t 时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,建立方程求出m的值即可。
2.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:
(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;
(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________
①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________
②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.
【答案】(1)3;8或﹣4
(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,
∴点B、C在数轴上表示的数分别为﹣2、3.
;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,
∵OC=2OB,
∴3+2t=2× ,
∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),
解得t=,或t=,
故所求t的值为或
;;5.
【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;
设点Q表示的数是m,则|m﹣2|=6,
解得m=8或﹣4,
即点Q表示的数是8或﹣4.
故答案为3,8或﹣4。(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.
故答案为|﹣2﹣x|+|3﹣x|,5.
【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;
(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;
①根据OC=2OB列出方程,解方程即可求解;
②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.
3.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.
方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.
(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).
【答案】(1)解:方案一:∵石子路宽为4,
∴S石子路面积=4a+4b-16,
方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2
(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;
方案二:S石子路面积=129m2,则S植物=600-129=471m2.
故答案为:择方案二,植物面积最大为471m2。
【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;
方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;
(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.
4.根据数轴和绝对值的知识回答下列问题
(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.
(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?
【答案】(1)3;5
(2)6
(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;
②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4
③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4
④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4
⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6
综上所述,当a=2或3时,原式有最小值4.
故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.