高中数学解题中的辅助线添加方法(文理适用)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题中的辅助线添加方法(文理适用)
三角形中常见辅助线的添加
1、与角平分线有关的
(1)可向两边作垂线。
(2)可作平行线,构造等腰三角形。
(3)在角的两边截取相等的线段,构造全等三角形。
2、与线段长度相关的
(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可。
(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可。
(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。、
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
3、与等腰等边三角形相关的
(1)考虑三线合一。
(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °。
2.四边形中常见辅助线的添加
特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。
1、和平行四边形有关的辅助线作法。
平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。
(1)利用一组对边平行且相等构造平行四边形。
(2)利用两组对边平行构造平行四边形。
(3)利用对角线互相平分构造平行四边形。
2、与矩形有辅助线作法。
(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题。
(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少。
3、和菱形有关的辅助线的作法。
和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题。
(1)作菱形的高。
(2)连结菱形的对角线。
4、与正方形有关辅助线的作法。
正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多。
解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线。
3.圆中常见辅助线的添加
1、遇到弦时(解决有关弦的问题时)。
常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:
① 利用垂径定理。
② 利用圆心角及其所对的弧、弦和弦心距之间的关系。
③ 利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
2、遇到有直径时,常常添加(画)直径所对的圆周角。
作用:
利用圆周角的性质得到直角或直角三角形。
3、遇到90度的圆周角时,常常连结两条弦没有公共点的另一端点。
作用:
利用圆周角的性质,可得到直径。
4、遇到弦时,常常连结圆心和弦的两个端点,构成等腰三角形,
还可连结圆周上一点和弦的两个端点
作用:
①可得等腰三角形。
②据圆周角的性质可得相等的圆周角。
5、遇到有切线时,常常添加过切点的半径(连结圆心和切点)。
作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形
常常添加连结圆上一点和切点。
作用:
可构成弦切角,从而利用弦切角定理。
6、遇到证明某一直线是圆的切线时。
(1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段。
作用:
若OA=r,则l为切线。
(2)若直线过圆上的某一点,则连结这点和圆心(即作半径)。作用:
只需证OA⊥l,则l为切线。
(3)有遇到圆上或圆外一点作圆的切线。
7、遇到两相交切线时(切线长)。
常常连结切点和圆心、连结圆心和圆外的一点、连结两切点。
作用:
据切线长及其它性质,可得到。
① 角、线段的等量关系。
② 垂直关系。
③ 全等、相似三角形。
8、遇到三角形的内切圆时。
连结内心到各三角形顶点,或过内心作三角形各边的垂线段。
作用:
利用内心的性质,可得。
①内心到三角形三个顶点的连线是三角形的角平分线。
② 内心到三角形三条边的距离相等。
9、遇到三角形的外接圆时,连结外心和各顶点。
作用:
外心到三角形各顶点的距离相等。
10、遇到两圆外离时(解决有关两圆的外、内公切线的问题)。
常常作出过切点的半径、连心线、平移公切线,或平移连心线。
作用:
①利用切线的性质;
②利用解直角三角形的有关知识
11、遇到两圆相交时常常作公共弦、两圆连心线、连结交点和圆心等。
作用:
① 利用连心线的性质、解直角三角形有关知识。
② 利用圆内接四边形的性质。
③ 利用两圆公共的圆周的性质。
④ 垂径定理。
12、遇到两圆相切时。
常常作连心线、公切线。
作用:
① 利用连心线性质。
② 切线性质等。
13、遇到三个圆两两外切时。
常常作每两个圆的连心线。
作用:
可利用连心线性质。
14、遇到四边形对角互补或两个三角形同底并在底的同向且有相等“顶角”时。常常添加辅助圆。