最新解方程例2例3
人教版五年级上册简易方程《解方程例3》-PPT

一、复习
解方程。
x-20 = 9
x ÷2.1 = 3
解:x–20+20 = 9+20 解:x ÷ 2.1×2.1 = 3×2.1
x = 12.4
x = 6.3
说说你的想法?
解方程。
一、复习
x+3.2=4.6
解:x+3.2-3.2=4.6-3.2÷1.6
x = 1.4
解:2.1 ÷ x × x = 3x
各部分间的关系解方程。
2.1 = 3x 3x = 2.1 3x÷3 = 2.1÷3
解: x = 2.1 ÷ 3 x = 0.7
x =0.7
比较:下面的这两个方程有什么不同的地方?
解方程:2.1÷ x = 3
除数
x ÷2.1 = 3
被除数
练习:对比提升
解方程。 18÷x=12 x÷18 =12
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
◇ 1、根据“等式的性质”解方程
例3 解方程 20-x=9
解:20-x+x=9+x 20=9+x
9+x=20 9+x-9=20-9
x=11
等式两边加上相同的式子,左
右方两程边左仍边然相=等2。0-x =20-11
为什么要交换=它9们的位置呢? =方程右边
1. 解方程。
188=12x 12x=18 12x÷12=18÷12
x=1.5
问题:1. 为什么解方程的第一步两边要乘x? 2. 你学会解方程了吗?和同学讨论一下,解方程时要注意什么?
2. 列方程并解答。
x元
x元 x元
12.6元 3x=12.6 解:3x÷3=12.6÷3
最新二元一次方程解法大全说课材料

二元一次方程解法大全摘要Ideal isthe b eac on. Without ideal, there is no secure direction ; without di recti on , thereis no life20XX年XX月二元一次方程解法大全1、直接开平方法:直接开平方法就是用直接开平方求解二元一次方程的方法。
用直接开平方法解形如(X -ID) 2二n(n20)的方程,其解为x二土根号下n+m.例1・解方程(1) (3x+l)2=7 (2) 9x2— 2 4x+16二1 1分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1 )解:(3 x +1) 2=7X•••(3x+l) 2 =5・・.3x+l二土(注意不要丢解)X 二・•・原方程的解为x 1 = x2=(2)解:9 x 2-24x4- 1 6=11••• (3x-4)2 二1 1••• 3x-4 =±x 二••・原方程的解为X 1 =, x2=2.配方法:用配方法解方程a x2+ b x+c = O(aHO)先将常数c移到方程右边:ax2+bx= — c将二次项系数化为l:x2+x=-方程两边分别加上一次项系数的一半的平方:x 2+x+()2二一+()2方程左边成为一个完全平方式:(x+) 2 =当b"2-4ac20 时,x+=±•・.x二(这就是求根公式)例2.用配方法解方程3x^2-4x-2= 0 (注:X"2是X的平方)解:将常数项移到方程右边3x*2-4x=2将二次项系数化为1 :x2-x=方程两边都加上一次项系数一半的平方:x2-x+ () 2 =+()2配方:(X-) 2=直接开平方得浪-二土.°.x =•••原方程的解为xl二,x2二.3.公式法:把一元二次方程化成一般形式,然后计算判别式△二b2- 4 a c的值,当b 2-4 a cNO 时,把各项系数a, b, c的值代入求根公式x=[-b±(b*2-4ac)* (l/2)]/(2a ), (L2-4acM 0 )就可得到方程的根。
人教版小学五年级数学上学期第五单元《解方程(例2、3)》同步检测题及答案(含两套题)

人教版小学五年级数学上学期第五单元《解方程(例2、3)》同步检测题及答案1.解方程,带“※”的要检验。
0.45x=9 x÷6=12 12.5-x=7.8 ※36÷x=2.5 2.找钥匙。
3.下面的解方程对吗?如果不对,请改正。
4.5÷x=9解:4.5÷x÷4.5=9÷4.5x=2()4.小猫钓鱼。
(将序号填在相应的篮子里)①32÷x=4 ②10.6-x=4.2 ③4x=25.6④16÷x=2.5 ⑤x÷0.2=40 ⑥6x=485.看图列方程,并求出方程的解。
(1)(2)6.当x等于多少时,36÷x的结果是4.5?参考答案1. x=20 x=72 x=4.7 x=14.4 检验:方程左边=36÷x=36÷14.4=2.5=方程右边,所以x=14.4是方程的解2.3. ×解:4.5÷x×x=9×x 9x=4.5 9x÷9=4.5÷9 x=0.54. ①⑤⑥②③④5. (1)5x=18.5 x=3.7 (2)2x=50+20 x=356. 36÷x=4.5 x=8人教版小学五年级数学上学期第五单元《解方程(例2、3)》同步检测题及答案1.解方程,带☆的要检验。
x+5.9=8.6 x-3.5=11.8 0.09x=6.3x÷1.2=4.5 ☆7.8-x=6.2 ☆5.4÷x=9 2.下面的解方程对吗?请把不对的改正过来。
(1) 3.6x=36解:3.6x÷3.6=36÷36x=1()(2) 0.8÷x=8解:0.8÷x÷0.8=8÷0.8x=10()3.看图列方程,并求解。
4.用方程表示下面的数量关系,并求出方程的解。
(1)x加上14.3等于31.8。
五年级解方程经典例题

第五单元解方程经典例题例1甲、乙两城相距315 km,一辆汽车由甲城开往乙城,同时一辆摩托车由乙城开往甲城。
汽车每小时行驶60 km,3小时后两车相距15 km。
摩托车每小时行驶多少千米?练习1甲、乙两城相距102 km.一辆轿车由甲城开往乙城,同时一辆客车由乙城开往甲城。
轿车每小时行驶65km.0.8小时后两车相距18km。
客车每小时行驶多少千米?例2妈妈买回一些苹果,按计划天数吃,若每天吃6个,则少8个;若每天吃4个,则多4个。
妈妈买回多少个苹果?练习2实验小学五(2)班的同学准备合买一个足球。
若每人拿2.5元,则少4元;若每人拿2.8元,则多8元。
五(2)班一共有多少人?例3乐乐今年8岁,爸爸今年34岁,乐乐多少岁时,爸爸的年龄是乐乐的3倍?练习3陈明今年7岁,王老师今年43岁。
陈明多少岁时,王老师的年龄是陈明的4倍?例4用一根绳子测量一口井的深度,若把绳子折成三折后垂到井底,则绳子的长度超过井口4m;若把绳子折成四折后垂到井底,则绳子的长度超过并口1m。
求井的深度和绳子的长度各是多少米。
练习4用一根绳子测量桥面到水面的距离,若把绳子对折后垂到水面,则绳子的长度超过桥面3m;若把绳子折成三折后垂到水面,则绳子的长度超过桥面0.2m。
求绳子的长度和桥面到水面的距离。
5李白在街上行走,提着酒壶去买酒,遇到店,就把酒壶中的酒加一倍,赏花就把酒壶中的酒喝去一斗。
每次都是遇到店后又赏花,一共3次,恰好喝完了酒壶中所有的酒,求酒壶中原有多少斗酒。
6有甲、乙两根彩带,甲彩带长100m,乙彩带长45m,将这两根彩带剪去同样的长度后,甲彩带所剩的长度比乙彩带所剩长度的4倍多4m,甲彩带还剩多少米?7有三堆西瓜,共有49个,如果第一堆增加1个,第二堆减少2个,第三堆减少一半,那么这三堆西瓜的个数就相等了。
这三堆西瓜原来各有多少个?列方程解决环形跑道问题典型例题1甲、乙两人在周长为400m的环形跑道上同时从同一地点背向跑步,5分钟后两人第二次相遇。
《解方程(例2、例3)》教学课件

VS
步骤2
找出两条直线的交点,即方程组的解为 (2, 3)。
总结归纳与提升
总结
通过消元法或图形法,我们可以 求解二元一次方程组,得到未知
数的值。
归纳
在解二元一次方程组时,需要注 意选择合适的解法,并遵循相应
的步骤进行求解。
提升
对于更复杂的二元一次方程组, 可以尝试使用其他方法,如矩阵 法等,进行求解。同时,需要注 意检查解的正确性,确保满足所
通过例2详细讲解解一元一次方程的方法和步骤。
解一元二次方程
通过例3深入剖析解一元二次方程的思路和技巧。
教学目标与要求
80%
知识与技能
掌握解一元一次方程和一元二次 方程的基本方法,能熟练运用所 学知识解决实际问题。
100%
过程与方法
通过观察、思考、实践等过程, 培养学生的数学逻辑思维能力和 解决问题的能力。
04
例题3:解二元一次方程组
题目呈现与理解
题目
解二元一次方程组 {x + y = 5, 2x y = 1}
理解
这是一个包含两个未知数的方程组, 需要找到满足两个方程的 x 和 y 的值 。
解题思路与方法
消元法
通过加减消元法或代入消元法,将二 元一次方程组转化为一元一次方程进 行求解。
图形法
在坐标系中分别画出两个方程的图像, 找出它们的交点即为方程组的解。
有方程的要求。
05
学生自主练习与互动环节
学生自主练习题目
01
题目一
解方程 $2x + 3 = 7$
02
题目二
解方程 $3x - 4 = 5$
03
题目三
解方程 $4x - 2 = 10$
二元一次方程[解法][最新]
![二元一次方程[解法][最新]](https://img.taocdn.com/s3/m/7a721bf2541810a6f524ccbff121dd36a32dc4c5.png)
一元二次方程基本解法,“降次”化为两个一元一次0有4种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
1、直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±√n. 0例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 0分析:一、此方程显然用直接开平方法好做,0二、左边是完全平方式(3x-4)2,右边=11>0,所以也可用直接开平方法解。
(1)解:(3x+1)2=7 ∵(3x+1)2=7 ∴3x+1=±√7 (注意不要丢解)∴x=(﹣1±√7﹚/3 ∴原方程的解为x1=﹙√7﹣1﹚/3,x2=(﹣√7-1﹚/3(2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=±√11 ∴x=(4±√11)/3∴原方程的解为x1=﹙4﹢√11﹚/3 , x2=(4﹣√11﹚/3 02.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x2+b/ax+( b/2a)2=- c/a+( b/2a)2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²当△=b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x={﹣b±[√﹙b²﹣4ac﹚]﹜/2a (这就是求根公式) 0例2.用配方法解方程3x²-4x-2=0 0解:将常数项移到方程右边3x²-4x=2 将二次项系数化为1:x²-﹙4/3﹚x= 2/3方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 2/3)²=2/3 +(2/3 )²配方:(x-2/3)²= 2/3 +(2/3 )²直接开平方得:x-2/3=±√[2/3+(2/3 )² ] =±√10 /3 ∴x= 2/3±√10 /3∴原方程的解:x1=2/3﹢√10 /3 , x2=2/3﹣√10 /3 . 0 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (△=b²-4ac≥0)就可得到方程的根。
人教版五年级数学上册《解方程》例2PPT课件

解方程:3x=18
x xx
解方程:3x=18 3x÷(3)=18÷(3)
方程两边同时除以一 个不等于0的数,左 右两边仍然相等。
x xx
解方程:3x=18 解: 3x÷3=18÷3
x=6
检验:方程左边=3X
=3*6 =18 =方程右边 所以,X=6是方程的解。
检验一下吧!
一、看图列方程试着解一下 X元
1.比x多3的数。
X+3
2.X的1.5倍。
1.5x
3.每枝铅笔x元,买30枝铅笔需要多少钱? 30x
4.小明13岁,比小红小x岁,小红多少岁? 13+x
五、用方程表示下面的数量关系,并求出方程 的解
(1)X加上35等于91 . (2)X的3倍等于57
解:3X=57 X=57÷3 X=19
(3)X减3的差是6.
(4)一个正方形的周长是36cm,它的边长是多少?
(5)体育用品商店运来120个篮球,是运来足球个数 的3倍,运来足球多少个?
X元
186元
X元
3x=186
三、抢答
1、含有未知数的式子叫做方程.( )
2、方程一定是等式.
()
3、方程的两边同时加上一个相同 的数,左右两边仍然相等 . ( )
4、等式一定是方程.
()
5、8=4+2X不是方程.
()
6、方程的两边同时除以一个数,
左右两边仍然相等
()
7、18x=6的解是x=3
()
四、用含有字母的式子表示下列数量关系。
人教新课标版五年级数学上册
解方程
二、填空。
(1)使方程左右两边相等的( 未知数的值 )叫做方 程的解。
(2)求方程的解的过程叫做( 解方程 )。
五年级上册简易方程解方程 (例2例3)课件

2. 列方程并解答。 x元
x元 x元
12.6元
3x=12.6 解:3x÷3=12.6÷3
x=4.2
问题:请你根据数量关系列出不同的方程,并解答。
七、布置作业
作业:第70页练习十五,第2题(后4道)、 第3题(最后一道)。
第70页练习十五,第1题。 第71页练习十五,第7题。
3. 列方程并解答。
方程2: 18÷x=12
问题:方程2你会解吗?我们下节课继续研究。
四、复习导入
解方程。
x+3.2=4.6 x=1.4
1.6x=6.4 x=4
x-1.8=4 x=5.8
x÷4=1.6 x=6.4
问题:请你运用等式的性质解方程,并具体说说你的想法。
五、问题引入、探究新知 (一)合作交流,解决问题
五年级上册
第五单元 简易方程
解方程 例2例3
一、复习导入 列方程并解答。
解: x+1.2=4 x+1.2-1.2=4-1.2 x=2.8
问题:在解方程过程中你运用了什么知识?请具体说一说。
二、引入问题,探究新知 (一)自主迁移,解决问题
解方程 3x=18。 3x=18
解: 3x÷3=18÷3 x=6
3. 第二步与第三步有什么不同?为什么要这样做?
4. x=11是方程的解吗?请你检验一下。
五、问题引入、探究新知 (二)对比反思,总结方法
20-x=9
x-1.8=4
解:20-x+x=9+x 解:x-1.8+1.8=4+1.8
20=9+x
x=5.8
9+x=20
9+x-9=20-9
x=11
问题:1. 今天学的解方程与以前解决的方程进行比较, 有什么不同?