气相色谱质谱联用原理和应用

合集下载

气相色谱质谱联用分析技术在环境监测中的应用

气相色谱质谱联用分析技术在环境监测中的应用

气相色谱质谱联用分析技术在环境监测中的应用随着工业和人类活动的不断增加,环境污染问题也越来越严重。

环境污染对生态系统、人类健康以及整个社会经济发展造成了极大的影响。

为了控制和减少环境污染,需要对环境中各种污染物进行监测和分析。

气相色谱质谱联用分析技术(GC-MS)是目前最常用的环境污染物分析技术之一,它可以对环境中的污染物种类和浓度进行准确快速的测定。

一、气相色谱质谱联用分析技术的原理GC-MS联用技术是一种光谱分析方法,它通过对环境样品中的化学物质进行逐步分离、提取和检测,实现对物质种类、结构和量的鉴定和分析。

GC-MS联用技术的原理是将样品中的化学物质先通过气相色谱(GC)进行分离和纯化,再通过质谱(MS)进行检测和鉴定。

利用GC的色谱柱对化学物质进行分离,将化学物质逐步按照化学性质分离到不同位置,从而实现对各种化学物质的分离。

随后,将分离后的化学物质通过质谱进行检测和鉴定,其中质谱的检测部分利用的是化学物质的物理化学特性,如分子量、挥发性、极性等,在这一过程中,利用质谱提供的分子质量信息,能够准确地鉴定出样品中所含的化学物质。

二、气相色谱质谱联用分析技术的优点GC-MS联用技术是一种高灵敏度、高选择性和高稳定性的分析技术,具有以下几个优点:(1)分离效果好。

由于GC的分离柱对化学物质进行了分离,并消除了多种不同的干扰物,因此GC-MS能够更容易地识别和鉴定样品中的目标污染物。

(2)灵敏度高。

GC-MS的检测灵敏度很高,通常可以检测到微克甚至纳克级别的化学物质。

因此,GC-MS技术可以用于对高复杂度的样品进行分析。

(3)选择性强。

由于GC-MS联用技术可以利用各种谱图分析技术,因此对于不同的环境样品,GC-MS能够根据样品的特点进行调整,从而分析出与样品中各种化学物质的共存情况。

三、1.土壤污染分析土壤是一个容易受到污染的环境,它不仅与工业有关,而且是农药和重金属污染的重要媒介。

因此,将土壤中的污染物进行分析和监测是非常重要的。

气相色谱质谱联用原理和应用分解

气相色谱质谱联用原理和应用分解

03 气相色谱质谱联用应用
在环境监测中的应用
在环境监测中,气相色谱质谱联用技术可用于检测空气、水和土壤中的有机污染物,如挥发性 有机物、农药残留等。
在环境监测中,气相色谱质谱联用技术可以用于检测食品中的农药残留和添加剂,保障食品安 全。
在环境监测中,气相色谱质谱联用技术可以用于检测饮用水中的有害物质,如消毒副产物和微 量有机物,保障饮用水安全。
添加标题
应用:用于检测和鉴定有机化合物、无机化合物、生 物大分子等物质,也可用于研究化学反应机理和物质 结构。
联用原理
气相色谱和质谱的结合原理
样品在气相色谱分离后的传输 过程
质谱对样品的离子化过程
检测器对离子信号的检测与记 录
仪器组成
色谱部分:用于分离不同成分 质谱部分:确定成分的结构和组成 接口部分:连接色谱和质谱,确保稳定传输 真空系统:确保高灵敏度和分辨率
在环境监测中,气相色谱质谱联用技术可以用于检测工业废水中的有害物质,如重金属和有机 污染物,促进工业废水治理。
在食品和饮料分析中的应用
食品添加剂种类和含量的测 定
食品中挥发性有机化合物的 分析
食品中农药残留检测
饮料中风味成分的鉴定与定 量
在药物分析中的应用
用于药物成分的分离和鉴定 检测药物中微量杂质和污染物 药物代谢产物的分析 药物质量控制和药品监管
在法医学和毒理学中的应用
在法医学中,气相色 谱质谱联用技术用于 检测和鉴定死者体内 药物、毒物和爆炸物 残留物。
在毒理学中,该技术 用于研究药物代谢、 毒物分布和代谢转化, 以及评估药物和毒物 的风险和安全性。
气相色谱质谱联用技 术还可以用于检测食 品中的农药残留和环 境污染物质。
在临床医学中,该技 术用于检测生物样品 中的代谢物和内源性 物质,以帮助诊断疾 病和研究生物过程。

GCMS原理及应用

GCMS原理及应用

GCMS原理及应用GCMS全称为气相色谱-质谱联用仪(Gas Chromatography-Mass Spectrometry),是一种用于分析复杂混合物的强大技术工具。

它将气相色谱和质谱联合在一起,能够在短时间内对样品中含有的化合物进行有效分离和鉴定。

本文将详细介绍GCMS的原理及其应用领域。

首先,我们来了解一下GCMS的原理。

GCMS由两个主要部分组成:气相色谱仪(GC)和质谱仪(MS)。

气相色谱仪用于将混合物的化合物分离,而质谱仪用于对化合物进行鉴定。

气相色谱仪的工作原理是基于化合物之间的相互作用力的不同,通过将气体样品注入到柱子中,利用化合物在固定相(填充柱)和流动相(载气)之间的分配系数不同,使不同的化合物以不同的速度通过柱子,从而实现对化合物的分离。

质谱仪则是通过将化合物转化为离子,并根据离子的质量-电荷比(m/z)进行分离和检测。

首先,化合物经过电离源,通常是通过化合物与电子碰撞或化合物分子之间的化学反应来产生正离子或负离子。

然后,离子进入质量分析器,在磁场的作用下根据离子的质量分离,最后离子通过离子接收器被检测出来。

当GC和MS联合起来使用时,样品首先通过气相色谱柱进行分离,然后化合物被一个热表面所蒸发,并通过离子源进行电离。

之后,离子被进一步分离和检测。

质谱仪会生成一个质谱图,其中每个化合物的质量代表了质谱图上的一个峰。

GCMS因其高分辨率、高灵敏度和广泛的应用领域而广受欢迎。

以下是一些GCMS的应用领域:1.环境分析:GCMS可用于分析空气、水和土壤等环境样品中的污染物,如挥发性有机物、农药、重金属等。

2.食品安全:GCMS可以分析食品样品中的残留农药、添加剂、污染物等,确保食品的安全性和质量。

3.药物分析:GCMS可用于药物代谢物的鉴定、药物残留物的检测以及药物分解产物的分析。

4.毒理学研究:GCMS可以用于毒理学研究中的生物标志物的分析,包括血液、尿液和毛发中的化合物分析。

gcms的原理及应用精讲

gcms的原理及应用精讲

GC-MS的原理及应用精讲一、引言气相色谱-质谱联用技术(GC-MS)是一种重要的分析技术,它将气相色谱和质谱这两种传统分析技术结合起来,具有高分辨率、高灵敏度和高选择性等优点。

本文将全面介绍GC-MS的原理和应用。

二、GC-MS的原理1.气相色谱(GC)原理:–GC主要基于样品分子在固定相填充的色谱柱中发生吸附和解吸的过程,通过不同样品分子在色谱柱中的保留时间差异来实现分离。

2.质谱(MS)原理:–质谱是一种离子化技术,主要通过将分析物分子转化成离子,并根据离子在质谱仪中的运动轨迹和质量-荷质比(m/z)来进行分析。

3.GC-MS联用原理:–GC-MS联用技术将GC和MS两种分析技术紧密结合起来,实现了对复杂样品的高效分离和准确定性分析。

三、GC-MS的应用GC-MS广泛应用于许多领域,以下是其中的几个应用领域的简要介绍:1.环境监测:–GC-MS可以用于分析大气中的挥发性有机物(VOCs)和气相中的多种有毒和有害化合物,如苯、甲醛等。

2.食品安全:–GC-MS可以用于检测食品中的农药残留、添加剂、污染物等有害物质,保障食品安全。

3.医药研发:–GC-MS可用于分析药物的组成和结构,研究药物的代谢途径和药物相互作用等,对药物研发起到重要作用。

4.毒物分析:–GC-MS是一种常用的毒物分析技术,可用于检测尿液、血液和组织中的毒物,对毒物中毒事件的调查和诊断具有重要意义。

5.石油化工:–GC-MS可用于分析石油和石油化工产品中的各种成分,如烃类、芳香化合物、杂质等。

四、GC-MS的优势和不足1.优势:–高分辨率:GC-MS具有很高的分离能力,可以有效分离复杂的混合样品。

–高灵敏度:GC-MS能够检测到很低浓度的目标分析物。

–高选择性:GC-MS对分析物具有较高的选择性,能够准确确定目标分析物。

–定性和定量分析:GC-MS可以同时进行目标物的定性和定量分析。

2.不足:–离子化技术的选择性:质谱分析中使用的不同离子化技术对不同化合物的离子化效果可能存在差异。

气相色谱-质谱联用 原理和应用介绍

气相色谱-质谱联用 原理和应用介绍

气相色谱法质谱联用气相色谱法–质谱法联用(英语:–,简称气质联用,英文缩写)是一种结合气相色谱和质谱地特性,在试样中鉴别不同物质地方法.地使用包括药物检测(主要用于监督药物地滥用)、火灾调查、环境分析、爆炸调查和未知样品地测定.也用于为保障机场安全测定行李和人体中地物质.另外,还可以用于识别物质中以前认为在未被识别前就已经蜕变了地痕量元素.已经被广泛地誉为司法学物质鉴定地金标方法,因为它被用于进行“专一性测试”.所谓“专一性测试”就是能十分肯定地在一个给定地试样中识别出某个物质地实际存在.而非专一性测试则只能指出试样中有哪类物质存在.尽管非专一性测试能够用统计地方法提示该物质具体是那种物质,但存在识别上地正偏差.目录历史仪器设备吹扫和捕集质谱检测器地类型分析全程扫描选择地离子检测离子化类型电子离子化化学离子化串联应用环境检测和清洁刑事鉴识执法方面地应用运动反兴奋剂分析社会安全食品、饮料和香水分析天体化学医药参考文献参考书目外部链接历史用质谱仪作为气相色谱地检测器是上个世纪年代期间由和首先开发地.当时所使用地敏感地质谱仪体积庞大、容易损坏只能作为固定地实验室装置使用.价格适中且小型化地电脑地开发为这一仪器使用地简单化提供了帮助,并且,大大地改善了分析样品所花地时间.年,美国电子联合公司(, . 简称)美国模拟计算机供应商地先驱在开始开发电脑控制地四极杆质谱仪. 地指导下[]开始开发电脑控制地四极杆质谱仪.到了年,和地分部合作售出多台四极杆残留气体分析仪.年,仪器公司(,简称)组建就绪,年初就给斯坦福大学和普渡大学发送了第一台地最早雏型.最后重新命名为菲尼根公司()并且继续持世界系统研发、生产之牛耳.年,当时最尖端地高速()单元在不到秒地时间里,完成了火灾助燃物地分析,然而,如果使用第一代至少需要分钟.到年使用四极杆技术地电脑化地仪器已经化学研究和有机物分析地必不可少地仪器.今天电脑化地仪器被广泛地用在水、空气、土壤等地环境检测中;同时也用于农业调控、食品安全、以及医药产品地发现和生产中.气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分.气相色谱使用毛细管柱,其关键参数是柱地尺寸(长度、直径、液膜厚度)以及固定相性质(例如,%苯基聚硅氧烷).当试样流经柱子时,根据个组分分子地化学性质地差异而得到分离.分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子.流出柱子地分子被下游地质谱分析器做俘获,离子化、加速、偏向、最终分别测定离子化地分子.质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定地.把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质地识别都会精细很多很多倍.单用气相色谱或质谱是不可能精确地识别一种特定地分子地.通常,经质谱仪处理地需要是非常纯地样品,而使用传统地检测器地气相色谱(如,火焰离子化检测器)当有多种分子通过色谱柱地时间一样时(即具有相同地保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子.在单独使用质谱检测器时,也会出现样式相似地离子化碎片.将这两种方法结合起来则能减少误差地可能性,因为两种分子同时具有相同地色谱行为和质谱行为实属非常罕见.因而,当一张分子识别质谱图出现在某一特定地分析地保留时间时,将典型地增高了对样品种感兴趣地被分析物地确定性.吹扫和捕集在分析挥发性化合物时,可以用吹扫和俘获(,)浓缩器系统导入样品. 提取目标被分析物,并与水混合,然后导入气密性室.用惰性气体,比如氮气()往水中鼓泡;这就叫做吹扫.挥发性化合物运动到水上方地顶空().并被压力梯度驱使(由引入吹扫气体所引起)流出气密室.这些挥发性化合物被沿着顶线抽往“阱”.阱是一个装有吸附材料地、处于室温下地柱子.它将通过把这些挥发性化合物转化成液相而保持住.然后,加热给阱样品化合物经过一个挥发性界面被引入柱,阱在这里相当一个分流进样系统.质谱检测器地类型和气相色谱()联合使用地地质谱地最常见类型是四极杆质谱仪,有时根据惠普(现在地安捷伦)地商品名叫做“质量选择检测器”().其他相对普遍地是离子阱质谱仪.另外,扇形磁场质谱仪气质联用中也有使用,然而,这些特别地仪器价格昂贵,体积庞大不适用于高通量服务地实验室.气质联用中还可能遇到地其他地质谱检测器有:飞行时间检测器(,)、串联四极杆检测器(,)(请见下面内容.)或在离子阱地情况下这里指地是质谱级数.分析典型地质谱检测有两种途径:全程扫描和选择性离子检测(,).典型地能够根据对仪器地设定,分别地或同时地执行这两种功能.全程扫描当以全程扫描方式收集数据时,确定一个质量片段目标范围并输入仪器.一个典型地检测质量片段地广度范围可以是质荷比()到质荷比.扫描范围地确定很大程度上决定于分析者预期试样中所含地物质,同时要考虑容易和其他可能地干扰成分.不应设定成寻找太低质量地片段,否则,会测到空气(发现如质荷比为地氮气),二氧化碳( )或其他可能地干扰.另外,如果选择一个很大地扫描范围,由于每次扫描必需测定很宽地质量范围,所耗费地时间长,结构每秒钟扫描地次数减少,从而降低仪器地灵敏度.全程扫描对于测定试样中地未知化合物有用.当需要证实或解析试样中地化合物时,它比能提供更多地信息.在开发仪器方法地时候,通常首先用全程扫描模式分析被测试地溶液确定保留时间和质量碎片指纹图,然后,转向仪器方法.选择地离子检测当在仪器方法中输入选择监测(,)某种离子片段时,仅有那些质量地片段被质谱仪监测.地优点是由于每次扫描时,仪器仅寻找少量片段(比如,三个片段)其监测限较低.每秒钟能进行更多次地扫描.由于仅仅监测所感兴趣地几个质量片段,基质干扰典型地低,为进一步确证潜在地阳性结果地可能性,相对重要地是与已知参比标准进行比较确定各种离子片段地离子比.离子化类型在分子通过柱子后,流经连接管线进入质谱仪,然后,被用各种方法离子化,每一次仅用其中地一种方法.一旦样品被达成碎片后,将被监测.通常用电子倍增二极管检测.电子倍增二极管将离子化地质量片段转化成电信号后进行测定. 离子化技术是不依赖于使用全程扫描还是地.电子离子化到目前为止,最常用地也许是标准形式地离子化过程是电子离子化(,).分子进入(其源为四极杆或离子阱地离子阱本身),在那里他们被由灯丝射出饿电子所轰击.这里地灯丝不很像标准电灯泡里地灯丝.电子以特定地、可以重复地方式将分子击成片段.这一“硬离子化”技术导致产生更多低质荷比()地碎片,如果,仍存在地话,也非常少接近分子质量单位地物种.质谱专家所说地“硬离子化”是使用分子电子轰击,而所谓“软质子化”是由导入地气体和分子碰撞使分子带电荷.分子片段地模式依赖于应用于系统地电子地能量,典型地是(电子伏特).使用能方便所产生地谱图和制造商提供地图库软件或美国国家标准研究所()开发地图库软件里地标准质谱进行比较.图库地搜索使用匹配算法,比如基于几率地匹配和基于点积地匹配.化学离子化:在化学质谱法中,是将一种气体,典型地是甲烷或氨气引入质谱仪中.根据所选择地技术(正或负),该试剂气体将与电子和被分析物发生作用引起感兴趣地分子地‘软’离子化.较软地化学离子化与硬地化学离子化相比将较低程度地造成分子碎片化.使用化学离子化地主要益处之一是产生紧密对应于感兴趣地被分析物地分子量地质量碎片.正地化学离子化在正地化学离子化(,)中试剂气体与目标分子相互作用,最经常是进行质子交换.这将产生相对大量地该物种.负地化学离子化在负化学离子化中(,)试剂气体降低自由电子对目标被分析物地碰撞.该降低了地能量典型地使大地碎片不再继续断裂,保持其大地含量.仪器分析地最初目地是为一种物质定量.这要通过在产生地谱图中比较各原子质量间地相对浓度来实现.有可能通过两种方法实现定量分析.比较法和从头分析法.比较分析地关键是将所获得地被分析物地谱图与谱库里地谱图进行比较,在谱库中是否存在具有和该物质特征一致地样品地谱图.这种比较最好靠电脑来执行,因为由于标度地变化,会产生很多视觉上地扭曲.电脑同时还能关联更多地数据,(比如,由气相色谱测定地保留时间),以至获得更精确地结果.另一种方法是测量各质谱峰地相对峰高.在该方法中,将最高地质谱峰指定为,其他地峰根据对最高峰地相对比例标出其百分相对高度.将所有地大于相对高度地峰都进行标注.通常通过母体峰来确定未知化合物地总质量.用母体峰地总质量值与所推测地该化合物中所含元素地化学式相适配.对于具有许多同位素地元素,可以用谱图中地同位素模式确定存在地元素.一旦化学式与谱图相匹配,就能确定分子结构和成键方式,而且,必需和记录地特点相一致.典型地,这种测定是通过和仪器配备地程序自动进行地,仪器给出样品中可能存在地元素地列表.“全谱”分析考虑谱图中所有地峰.与之相反,选择性离子检测(,)仅仅监测于特定物质相关地峰.这种方法是根据在特定地保留时间,一组离子是一个特定地化合物地特征地假设.这是一种快速、有效地分析方法,特别是分析者对样品有些预知地信息或仅仅是寻找几种特定地物质这种优点就更为突出.当在一个获得地色谱峰中所搜集到地离子地信息量降低时,该分析地敏感度升高.所以,分析能满足检测较小量地化合物,但是关于该化合物测定结果地确定性程度下降.串联当第二相质谱片段加入时,例如,在四极杆仪器中使用第二个四极杆,就叫做串联地().有时可用于在高地试样基质背景下为小量地目标化合物定量.第一个四极杆()与碰撞室()以及另一个四极杆()相连.根据分析操作地模式,两个四极杆都可被用于扫描或静态模式.分析地类型包括产物离子扫描、前体离子扫描.选择地反应监视(,)(有时也叫多反应监视(,))和中性丢失扫描().例如,当以静态模式前,(像在中那样,仅仅观察一个质量),而是以扫描模式,我们取得一幅叫做产物离子谱地谱图(也叫“子”谱).从这张谱图上,我们可以选择一个突出地产物离子,它可能是选定地前体离子地产物离子.这种配对地方法叫“跃迁()”它构成了地基础.是高度特异性地并且几乎完全消除了基质背景.应用环境检测和清洁在环境方面,正在成为跟踪持续有机物污染所选定地工具.设备地费用已经显著地降低,并且,同时其可靠性也已经提高.这样就是该仪器更适合用于环境监测研究.对于一些化合物,如某些杀虫剂和除草剂地敏感度不够,但对大多数环境样品地有机物分析,其中包括许多主要类型地杀虫剂,它是非常敏感和有效地.刑事鉴识分析人身体上地小颗粒帮助将罪犯与罪行建立联系.用进行火灾残留物地分析地分析方法已经很好地确立了起来.甚至,美国试验材料学会确定了火灾残留物地分析标准.在这种分析中,特别有用,因为试样中常常含有非常复杂地基质,并且,法庭上使用地结果要求要有高地精确度.执法方面地应用在麻醉毒品地监测方面地应用逐渐增多,甚至,最终会取代嗅药犬.也普遍地用于刑侦毒理学在嫌疑人、受害者或死者地生物标本中发现药物和毒物.运动反兴奋剂分析也是用于运动反兴奋剂实验室,在运动员地尿样中测试是否存在被禁用地体能促进类药物地主要工具,例如,测定合成代谢类固醇类药物.社会安全.后开发地爆炸物监测系统已经成为全美国飞机场设施地一部分.这些监测系统地操作依赖大量地技术,其中,许多是基于地.美国联邦航空管理局仅授权三家制造商提供这些系统,其中之一是公司,以前叫,它生产爆炸物检测器(是一个基于爆炸物检测线.另外两家制造商是,现在被' 收买,和,它是地一部分.食品、饮料和香水分析食品和饮料中包含大量芳香化合物.一些是天然就存在于原材料中另外一些是在加工时形成地.广泛地用于分析这些化合物,它们包括:酯、脂肪酸、醇、醛、萜类等.也用于测定由于腐坏和掺假所造成地污染物,这些污染物可能是有害地,而且,常常由政府有关部门对其实行控制.例如,杀虫剂.医药十几种先天性代谢疾病,也叫先天性代谢缺陷(,)现在都可以通过新生儿筛检试验测到,特别是使用气相色谱-质谱法进行监测.可以测定尿中地化合物,甚至该化合物在非常小地浓度下都可被测出.这些化合物在正常人体内不存在,但出现在患代谢疾病地人群中.因而,该方法日益成为早期诊断地常用方法,这样及早指定治疗方案最终导致更好地预后.目前能用在出生时,通过尿液监测测出种以上遗传性代谢异常.。

气质联用色谱仪的原理及应用

气质联用色谱仪的原理及应用

气质联用色谱仪的原理及应用
气质联用色谱仪的原理及应用:
一、气质联用的原理:
气相色谱-质谱联用技术,简称气质联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术。

气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。

质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。

二、基本应用:
气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。

质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。

接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。

GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。

GCMS的原理与应用

GCMS的原理与应用

GCMS的原理与应用GCMS是气相色谱-质谱联用技术(Gas Chromatography-Mass Spectrometry)的简称。

它是将气相色谱(GC)和质谱(MS)两种技术结合起来,常用于化学、环境、食品、药物等领域中物质的分析鉴定。

1.样品制备:待测样品首先经过适当的预处理,如提取、萃取、稀释等,以获得适合于GC分析的样品。

2.进样:经过制备的样品通过自动进样器进入色谱柱,通常使用静态头空进样或注射进样器进行进样。

3.色谱分离:样品进入气相色谱柱,不同组分由于其化学性质的差异,在柱中持有不同的时间,完成分离。

4.离子化:柱出口的化合物进入质谱仪中,通过离子源(通常采用电子轰击离子化)将化合物转化为离子。

5.质谱分析:离子被加速和分离,进入质谱分析区分析质量/电荷比。

离子的相对丰度记录下来,形成母离子谱图和质谱图。

6.数据处理:通过比对数据库中的质谱图和物质库中的质谱图进行对比,确定样品中各个化合物的成分和含量。

1.环境监测:GCMS可以用于环境空气、水体、土壤等样品中对有机污染物进行分析,如挥发性有机化合物(VOCs)、多环芳烃(PAHs)等的检测与定量;同时可以用来监测不同环境条件下的气体排放和水体污染等。

2.食品安全:GCMS可以用于食品中的风味与香气组分分析、添加剂、农残、防腐剂、有毒物质和致癌物质等的检测,如残留农药、重金属、酸价、脂肪酸等的分析与定量。

3.药物分析:GCMS可以用于药物的有效成分分析和药物代谢产物的分析。

可用于药物残留、药物代谢物的分析、药物研究和药物质量控制等方面。

4.石油化工:GCMS可以用于石油化工产品的分析与鉴定,如石油及其衍生物、石油醚、环境中的石油污染等的分析。

5.化学研究:GCMS可以用于化学研究中的物质分离、分析和定量,如异构体分析、反应活性物质的鉴定等。

总之,GCMS作为一种重要的分析技术,广泛应用于多个领域,能够对复杂样品中的化合物进行有效分离、鉴定和定量分析,具有高灵敏度、高选择性和快速分析的优点,为科学研究和实际应用提供了重要的技术支持。

气相色谱-质谱联用原理及应用介绍

气相色谱-质谱联用原理及应用介绍

气相色谱法-质谱联用气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。

GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。

GC-MS也用于为保障机场安全测定行李和人体中的物质。

另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。

GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。

所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。

而非专一性测试则只能指出试样中有哪类物质存在。

尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。

目录1 历史2 仪器设备2.1 GC-MS吹扫和捕集2.2 质谱检测器的类型3 分析3.1 MS全程扫描3.2 选择的离子检测3.3 离子化类型3.3.1 电子离子化3.3.2 化学离子化3.4 GC-串联MS4 应用4.1 环境检测和清洁4.2 刑事鉴识4.3 执法方面的应用4.4 运动反兴奋剂分析4.5 社会安全4.6 食品、饮料和香水分析4.7 天体化学4.8 医药5 参考文献6 参考书目7 外部链接历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。

当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。

价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。

1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。

气相色谱质谱原理

气相色谱质谱原理

气相色谱质谱原理气相色谱质谱(GC-MS)是一种联用技术,结合了气相色谱(GC)和质谱(MS)两种分析方法,能够对复杂混合物中的化合物进行高效、高灵敏度的分析和鉴定。

在气相色谱质谱原理中,GC负责分离混合物中的化合物,而MS则负责对分离后的化合物进行检测和鉴定。

本文将详细介绍气相色谱质谱原理及其应用。

首先,气相色谱(GC)是一种基于化合物在固定相和流动相之间分配系数不同而实现分离的方法。

在气相色谱质谱原理中,样品首先被注入到气相色谱柱中,然后通过加热,样品中的化合物被蒸发成气态,并在固定相中进行分离。

不同化合物会根据其在固定相和流动相之间的分配系数不同而在柱中被分离。

这样,混合物中的化合物就被分离出来,为后续的质谱分析提供了单一化合物的基础。

其次,质谱(MS)是一种通过对化合物进行碎裂并测量其碎片离子质荷比来进行分析和鉴定的方法。

在气相色谱质谱原理中,分离出来的化合物首先进入质谱仪器,然后通过电子轰击或化学离子化等方式被激发成离子。

这些离子会根据其质荷比被分离并被检测。

通过测量这些离子的质荷比,可以得到化合物的质谱图谱,进而对化合物进行鉴定和定量分析。

最后,气相色谱质谱原理在实际应用中具有广泛的用途。

例如,在环境监测中,可以用于检测大气中的有机污染物;在食品安全领域,可以用于鉴定食品中的添加剂和农药残留;在生物医学研究中,可以用于分析生物样品中的代谢产物等。

由于气相色谱质谱原理具有高分辨率、高灵敏度和高特异性等优点,因此在各个领域都得到了广泛的应用。

综上所述,气相色谱质谱原理是一种高效、高灵敏度的分析方法,能够对复杂混合物中的化合物进行准确的分离和鉴定。

通过对气相色谱质谱原理的深入了解,可以更好地应用该技术进行实际分析,并取得准确可靠的结果。

气相色谱质谱联用技术的原理及应用

气相色谱质谱联用技术的原理及应用

检测与记录
检测器检测离子信号,通过记 录器记录离子的强度和质荷比。
数据处理与分析
数据预处理
对原始数ห้องสมุดไป่ตู้进行整理、清洗和格式转换, 以便后续的数据分析和挖掘。
定量分析
根据标准曲线或已知浓度的标准品, 对样品中的化合物进行定量分析,计
算各组分的浓度。
定性分析
通过比对标准谱库,对样品中的化合 物进行定性分析,确定化合物的种类 和结构。
校准标准
使用已知浓度的标准物质进行校准,确保仪器准确度和精密度符 合要求。
实验操作步骤
分离
样品在气相色谱柱中进行分离, 不同组分依次流出。
质量分析
带电粒子通过质量分析器进行 质量分离,得到不同质荷比的 离子。
进样
将处理好的样品通过进样针注 入进样口,开始实验。
离子化
样品在离子源中经过离子化处 理,转化为带电粒子。
结果报告
将实验结果整理成报告形式,包括实 验数据、图表、结论等,以便于理解 和应用。
05
气相色谱质谱联用技术的最新进展与
展望
新技术发展
1 2 3
新型检测器技术
随着科学技术的进步,新型检测器技术如电子捕 获检测器、光离子化检测器等不断涌现,提高了 检测的灵敏度和选择性。
微型化技术
微型化技术使得气相色谱质谱联用仪器的体积更 小,操作更加简便,适用于现场快速检测和便携 式应用。
多模式检测技术
通过开发多模式检测技术,如串联质谱、多级质 谱等,可以实现更复杂的化合物结构和未知物的 分析。
应用拓展
环境监测
气相色谱质谱联用技术 广泛应用于环境监测领 域,如大气、水体、土 壤中有机污染物的检测。
食品安全

气相色谱质谱联用在食品检验中的应用

气相色谱质谱联用在食品检验中的应用

气相色谱质谱联用在食品检验中的应用作者:杜娟来源:《中国食品》2024年第14期食品检验是确保食品不含有害化学物质和生物污染物的重要手段,检测内容包括食品中的农药残留、食品添加剂、有害化学物质,以及食品中自然存在的有害成分等。

气相色谱质谱联用技术(GC-MS)因其高效、精准的特性,成为检测食品中复杂成分的理想选择,在食品安全监管中发挥着重要作用。

本文主要探讨了气相色谱质谱联用技术在食品检验中的具体应用,并归纳了应用过程中的几点注意事项。

一、氣相色谱质谱联用技术概述(一)基本原理气相色谱质谱联用技术的气相色谱部分借助色谱柱及固定相的化学性质分离样品中的各挥发性组分。

这些组分在载气(如氦、氮等)的带动下,依据其与固定相的相互作用程度以不同速率通过色谱柱,实现时间上的分离。

随后,色谱柱出口的组分会被引入到质谱仪中,电离化合物使其生成带电的离子,离子在电磁场作用下会根据其质荷比被加速并分离,生成一个质谱图。

该图记录了不同质荷比的离子的相对丰度,提供了化合物的分子质量及其结构信息。

常用的电离方法包括电子撞击和化学电离。

电子撞击法是利用高能电子束轰击样品分子,使其电离断裂成多个片段,从而为化合物的结构分析提供参考;化学电离法则是引入一个反应离子源,使样品分子在较为温和的条件下电离,从而获得分子整体的质荷比信息。

(二)优势分析气相色谱质谱联用技术具有分离能力强、灵敏度高、结构信息丰富和多组分分析等优势。

气相色谱柱采用了特殊涂层的毛细管,这种涂层可根据不同化学性质优化分离过程。

每种化合物在通过色谱柱时,由于其独有的沸点和极性差异,与固定相的相互作用程度会有所不同,因此在柱中的迁移速度也会存在差异。

这使得复杂的样品混合物被有效地分离为单一组分,进而为后续的质谱分析提供清晰的目标物质。

通过调整色谱柱的长度、直径、温度,以及载气的流速等参数,可对分离过程进行优化调整,以确保气相色谱在处理极为复杂的样品混合物时依然能保持高效的分离性能,减少样品间的交叉污染和峰的重叠。

化学分析中的质谱联用技术应用

化学分析中的质谱联用技术应用

化学分析中的质谱联用技术应用质谱联用技术是一种将质谱与其它分析技术联用的技术。

该技术可以用于化学分析中的许多领域,例如环境分析、食品分析和药学等。

随着技术的不断发展和改进,质谱联用技术在这些领域中的应用也越来越广泛。

一、质谱联用技术的基本原理质谱联用技术基本原理是将另一种分析技术与质谱连接起来,将两种分析技术的优点结合起来,互相弥补缺点。

该技术主要分为三种:气相色谱-质谱联用技术、液相色谱-质谱联用技术和毛细管电泳-质谱联用技术。

其中,气相色谱-质谱联用技术是最常用的一种。

在质谱联用技术中,样品通过荧光检测器、紫外检测器等分析技术预处理后,再送入质谱仪进行分析。

样品分子通过荧光检测器等离子源与电子发生碰撞,从而形成分子离子。

接着,质谱仪将分子离子进行检测和分析。

二、质谱联用技术在环境分析中的应用环境分析是质谱联用技术最常见的应用之一。

为了评估环境污染的程度和环境变化, 这种技术常常采用气相色谱-质谱联用技术。

气相色谱-质谱联用技术结合了气相色谱的分离能力和质谱的检测能力来分析环境中存在的化学物质。

因为气相色谱只能检测分子的相对分子质量,而质谱提供了详细的分子结构信息,所以两种技术结合起来可以对分析物进行更加准确的定量和定性分析。

该技术可应用于环境中重金属、农药、有机物等污染物的检测和分析,可帮助人们了解不同区域的环境污染情况。

另外,质谱联用技术还可应用于土壤和水体中有毒化合物的分析。

三、质谱联用技术在食品分析中的应用该技术还可应用于食品分析中,以检测和分析食品中存在的化学成分和添加剂。

质谱联用技术在食品分析中的主要应用是检测食品中的残留物和添加剂。

例如,该技术可用于检测农药残留,以保证食品安全。

另外,该技术还可用于检测食品中的抗生素、激素、防腐剂等物质残留,并确定其浓度和来源。

四、质谱联用技术在药学中的应用质谱联用技术在药学中的应用也非常广泛,可以用于检测药品的含量、质量和纯度。

在制药工业中,质谱联用技术被广泛应用于药物分离和鉴定过程中,它可以检测到微量的化合物,并能够进行定量分析。

气相色谱质谱联用原理

气相色谱质谱联用原理

气相色谱质谱联用原理
气相色谱质谱联用原理是将气相色谱和质谱两种技术相结合,通过联用仪器实时采集和分析气相色谱柱出口的样品分子,获得样品的化学组成和结构信息。

气相色谱(Gas Chromatography,GC)是一种基于样品在气相流动载气中分配行为的分离技术,常用于分离有机物和其它挥发性化合物。

气相色谱具有高分离能力、快速分析速度和广泛的应用范围。

而质谱(Mass Spectrometry,MS)是一种能够将样品分子分
成离子并根据质荷比选择性地分析的技术。

质谱具有高灵敏度和分析精确度的特点,可以提供分子的结构信息、分子量以及分子的分子式、含量等。

气相色谱质谱联用技术的原理是将气相色谱柱的出口与质谱仪的进样口相连接,将色谱柱分离得到的化合物逐个进入质谱仪进行离子化及质谱分析。

通常采用的方法有两种:正向离子化(EI)和化学离子化(CI)。

正向离子化是通过高能电子束轰击样品分子,将其离子化成分子离子,然后在质谱仪中根据质荷比进行分析。

正向离子化可以提供较强的分子碎片信息,有助于化合物的鉴定和结构推断。

化学离子化是通过在进样口中加入反应气体,在离子化过程中与样品分子发生化学反应,形成化学离子。

然后在质谱仪中进行质荷比选择性的分析。

化学离子化可以提供分子离子峰或产
物离子峰,有助于化合物的鉴定和定量分析。

通过气相色谱质谱联用,可以将气相色谱的分离能力与质谱的分析能力相结合,实现对复杂混合物的分析。

联用技术具有高灵敏度、高选择性和高分辨率的特点,可以用于食品、环境、药物、毒理学等领域的分析和检测。

气相色谱质谱联用的原理及应用

气相色谱质谱联用的原理及应用
现状
目前,GC-MS技术已经广泛应用于各个领域,如食品、药品、环境监测、生物医学等。随着科技的不断进步, GC-MS技术也在不断发展,如提高检测灵敏度、降低检测限等。
未来发展趋势
自动化和智能化
随着机器人技术和人工智能的发展, 未来GC-MS技术将更加自动化和智能 化,提高分析效率和质量。
微型化和便携化
与液相色谱技术结合
通过与液相色谱技术结合,气相色谱质谱联用技术可以实 现对复杂样品中极性化合物、热不稳定化合物等的有效分 联用技术还可以与光谱技术(如红外光谱、 拉曼光谱等)结合,实现对化合物结构信息的获取,提高 鉴定的准确性。
技术在各领域的应用拓展
环境监测领域
特点
GC-MS具有高分离效能、高灵敏度、 高可靠性等优点,广泛应用于化学、 生物、环境等领域。
发展历程与现状
发展历程
自20世纪50年代气相色谱技术的发明以来,经过多年的发展,气相色谱技术逐渐成熟。1957年,美国科学家斯 宾塞和雷德首次将质谱仪与气相色谱仪联用,实现了对复杂混合物的分离和检测。经过60多年的发展,GC-MS 技术已经成为一种成熟的分析方法。
THANKS
感谢观看
水质检测
通过气相色谱质谱联用技术可以 检测水中的农药残留、重金属、 内分泌干扰物质等有害物质,保 障水质安全。
在食品检测中的应用
食品添加剂的检测
气相色谱质谱联用技术可以用于检测食品中的防腐剂、色素、抗氧化剂等添加 剂,确保食品的安全性。
农药残留的检测
该技术可以检测果蔬、谷物等农产品中的农药残留,保障消费者的健康权益。
气相色谱质谱联用技术可用于环 境样品中挥发性有机物、半挥发 性有机物等的检测,为环境监测
提供有力支持。

气相色谱质谱联用仪原理和应用

气相色谱质谱联用仪原理和应用

气相色谱质谱联用仪原理和应用
气相色谱质谱联用仪(GC-MS)是通过将气相色谱仪和质谱
仪联用而形成的分析仪器。

它的原理是首先将待分析的样品通过气相色谱分离成不同的组分,然后将这些组分引入质谱仪进行分析和识别。

气相色谱质谱联用仪的主要组成部分包括样品进样系统、气相色谱柱、色谱分离柱、检测器、质谱分析系统等。

在分析过程中,样品首先被进样系统引入气相色谱柱中,通过气相色谱柱的分离作用,将样品中的各个组分分离出来。

然后,这些分离出来的组分依次进入质谱分析系统中。

质谱分析系统通过碎裂样品中的分子,测量和记录它们的质量-荷质谱图谱,根据分离出的分子的质谱图谱可以进行精确的组分鉴定和定量分析。

气相色谱质谱联用仪的应用非常广泛。

它在环境监测、食品安全、药物检测、毒品鉴定等领域发挥着重要作用。

例如,在环境监测中,可以用来检测大气中的有机污染物、土壤和水中的有害物质等。

在食品安全领域,可以用于检测食品中的农药残留、有害物质和食品添加剂等。

在药物检测和毒品鉴定中,可以用来鉴定药物或毒品中的成分和含量。

总而言之,气相色谱质谱联用仪通过将气相色谱和质谱两种分析技术有效结合,提高了分析的灵敏度、选择性和可靠性,广泛应用于化学、生物、环境等领域的分析和研究工作中。

gc ms的分析原理

gc ms的分析原理

gc ms的分析原理
GC-MS(气相色谱质谱联用)是一种广泛应用于化学分析的技术。

它将气相色谱和质谱两种方法结合起来,以提高化合物的分离和鉴定能力。

GC-MS的分析原理基于化合物在气相色谱柱中的分离和质谱仪器中的离子化及检测。

首先,样品被注入气相色谱柱,在高温和惰性气体的作用下,它们被分离成单个化合物,各自在柱上占据不同的位置。

然后,这些化合物进入质谱仪的质谱室。

在质谱室,分子进入电子轰击源,通常使用电子束来使它们离子化。

离子化的分子进入质谱仪的质量分析器,在磁场和电场的作用下,离子按它们的质荷比进行曲线运动。

最终,离子被探测器探测到,产生质谱图。

通过与已知的标准物质进行比对,质谱图可以用于鉴定样品中的化合物。

每个化合物都具有其独特的质谱图,这样的识别可以用于确定化合物的确切身份。

GC-MS是一种高灵敏度和高选择性的分析技术,它被广泛应用于环境、食品、药物、化妆品等领域。

它可以用于定量分析和定性分析,对于识别复杂混合物中的化合物非常有用。

gcms的原理及应用

gcms的原理及应用

GC-MS的原理及应用前言气相色谱-质谱联用仪器(GC-MS)是一种广泛应用于化学分析领域的分析技术,它结合了气相色谱和质谱技术的优点,能够提供高灵敏度、高选择性和高分辨率的化学分析结果。

本文将介绍GC-MS的原理及其在不同领域的应用。

1. GC-MS的原理1.1 气相色谱(GC)原理气相色谱是一种基于物质在固定相和流动相之间分配系数差异而进行分离的技术。

样品在流动相中被输送到柱中,柱中的固定相通过柱温控制下与流动相相互作用,从而使不同组分在柱中停留时间不同,实现分离。

1.2 质谱(MS)原理质谱是一种测量化学物质质量的技术,它利用质谱仪将化学物质分子转化为离子,并通过离子的质量和相对丰度来确定化学物质的组成。

1.3 GC-MS联用原理GC-MS联用仪器将气相色谱和质谱相结合,实现了气相色谱分离和质谱检测的一体化。

GC-MS联用的基本原理是将气相色谱柱的输出直接连接到质谱仪,通过固定相的分离和质谱的检测相结合,实现对样品的高效分离和灵敏的化学分析。

2. GC-MS的应用2.1 环境分析GC-MS在环境监测中广泛应用,例如大气中的有机污染物和挥发性有机物的测定、水体中的环境激素和有机污染物的分析等。

通过GC-MS的高灵敏度和高选择性,可以对环境中微量有害物质进行快速准确的鉴定和测定。

2.2 食品安全检测食品安全是一个全球性的关注点,GC-MS在食品安全检测领域起着重要的作用。

例如,通过GC-MS可以对食品中的农药残留、食品添加剂和禁用物质进行分析和检测,保障食品质量和人们健康。

2.3 药物分析GC-MS在药物分析中具有广泛应用。

它可以用于药物中有害物质的检测和纯度的鉴定,对药物的质量进行评估。

同时,GC-MS也可以用于药物代谢产物的分析,了解药物在体内的转化过程,为药物的研发和治疗提供重要的参考。

2.4 毒物分析毒物分析是GC-MS的另一个重要应用领域。

通过GC-MS可以对人体内的毒物或化学物质进行鉴定和定量分析,起到重要的法医学和毒理学作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱质谱联用原理和应用WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】气相色谱-质谱联用测定农药多残留摘要:本文研究了气相色谱-质谱联用(GS-MS)仪检测农药残留的方法,辅助以样品前处理技术,对蔬菜、水果、食用油、土壤中的农药多残留的检测方法进行了研究,取得了比较理想的效果。

关键词:气相色谱-质谱联用仪;农药多残留;检测1引言当前人类环境持续恶化,世界各国在工业、民用、科技、商业和军事防御等领域都面临着严重的环境污染问题。

随着人们对环境污染、食品安全的关注,环境、食品中有机污染物检测方面的规范越来越严格,相应的检测技术也越来越先进。

在各种有机物检测技术中,色谱仪器与质谱仪器联用作为一种比较成熟的检测手段,既可发挥色谱法的高分离能力,又兼具质谱准确鉴定化合物结构的优点,即可定性又可定量,尤其适用于环境样品中微量、痕量有机污染物的分析检测工作。

1979 年美国环保局(EPA)将GC-MS(Gas Chromatography-Mass Spectrometry)联用技术列为检测饮用水、地表水中有机物的标准分析方法。

随着仪器的不断完善与发展,检测技术的成熟与推广,GC-MS 法应用范围越来越广。

除了在传统挥发油、脂肪油等的分析测定方面不断发展与普及外,在环境有机污染物检测、食品安全、农药残留、化妆品禁用成分研究等方面的应用也得到了广泛开展。

近年来,由于农药的大量使用引起的食品安全问题已被人们广泛的认识、关注和重视。

人们食用了受到农药严重污染的蔬菜水果,而造成人体急性中毒或者慢性中毒的事件屡有发生。

为保证食品的质量,世界卫生组织和世界各国制订了严格的限量标准,与此同时,许多国家也借此施行技术壁垒,使得农药残留问题不仅是影响人的身体健康,而且也严重影响到国家的对外贸易。

由于各类食品组成成分复杂,不同农药品种的理化性质存在较大差异,并且近年来高效、低毒、低残留农药品种不断涌现,给农药残留检测技术提出了更高的要求。

发展快速、可靠、灵敏和实用的农药残留分析技术无疑是控制农药残留、保证食品安全和避免国际间有关贸易争端的基础。

目前,我国农药残留限量标准制定工作滞后,残留监测体系不健全,残留检测能力有限、覆盖面窄。

因此,我国应该根据自己的技术条件及农产品市场制定相应的多残留分析方法。

食品中的农药残留污染影响着人民生活质量的提高和食品贸易的顺利进行。

日常食用的果蔬施用的农药种类繁多,常见的农药如有机磷类农药、氨基甲酸酯类农药、菊酯类农药和除草剂,抑菌剂等。

由于果蔬中往往同时残留不同种类的农药,这对多残留同时检测条件提出很高要求。

由于气相色谱-质谱联用( GC-MS) 具有灵敏度高、分析速度快、鉴别能力强等特点,可同时完成待测组分的分离和鉴定,特别适用于多组分混合物的定性定量分析,目前被广泛应用于农药多残留检测。

2气相色谱-质谱联用原理基本原理气相色谱法(Gas Chromatography)是英国科学家1952年创立的一种经典的分析方法,是色谱技术仪器化、成套化的先驱[1]。

如图 1所示,气相色谱利用样品在色谱柱中气相和固定相间分配系数的不同,经过反复多次分配从而实现分离。

气相色谱具有高效能、高选择性、高灵敏度、高分辨率、样品用量少、分析速度快等特点,主要用于沸点低、易挥发成分的定性定量分析。

由于与普通的填充柱相比,毛细管色谱柱具有更高的分离度,在传统填充柱上难分离的物质可在毛细管色谱柱上达到轻松分离目的,近年来毛细管气相色谱法在环境有机污染物、食品农药残留等的分析检测上独树一帜[2]。

此外新型检测器的产生、与其他分析技术如 IR、MS 的联用,使气相色谱法成为环境污染、食品质量安全等检测的有力工具。

图1 气相色谱法基本原理[3]质谱法(Mass Spectrometry)是一种通过测定被测样品离子的质荷比(M/e)来进行分析的方法。

质谱法检测灵敏度高,无需标样,可通过谱库检索来定性,也可根据目标化合物质谱的特征峰来确定分子结构。

如图 2 所示,质谱中采用高速电子束撞击气态分子,把电离出的离子加速导入质量分析器中,然后按碎片离子质荷比大小的顺序进行收集和记录,即得到质谱图。

根据质谱峰的位置可以进行定性和结构分析,根据质谱峰的相对强度可以进行定量分析,灵敏度可达到ppb 级。

世界上第一台质谱在1912年制成的,早期质谱仪主要用于测定原子量,直至20世纪60年代以后,它才开始应用于复杂化合物的鉴定和结构分析。

由于质谱仪无法分离混合物,目前环境监测很少单独使用质谱仪作为检测手段,更多的是与其他一些分析手段如气相色谱、液相色谱等联用,以获得相互补充的效果。

图2 质谱法基本原理[3]在气相色谱中,被逐次洗脱出来的组分在色谱图中是以峰的形式来记录。

有关组分的信息通过测量色谱图中该组分峰的峰高和峰面积来确定,这些对应着检测到的组分量以及该组分通过色谱柱的时间。

色谱图上某个组分峰最高点对应的时间(以进样作为时间起点)被定义为保留时间。

通常利用该组分的特定保留时间对其定性,但这种定性方式并不绝对准确,组分的确定经常会模糊或根本无法识别该组分。

与气相色谱形成鲜明对比的是,质谱监测器对混合物的检测毫无办法。

如果一个单独的组分进入质谱监测器,它的质谱图可以通过各种离子化检测方法而获得。

确定了该物质的质谱图通常来说就可以准确的鉴别该物质为何物并可以确定它的分子结构。

显然,如果是混合物质进入质谱检测器,所获得的质谱图就会是该混合物中所有组分谱图的总和。

物质的质谱图可能会相当的复杂以至于准确的鉴别混合物中的多种组分几乎是不可能的。

一方面气相色谱能够高效的分离混合物但并不善于鉴定各个组分;另一方面质谱监测器善于鉴别单一的组分却难以鉴别混合物。

因此,人们致力于研究如何将两种方法联合在一起使用,组成了气相色谱-质谱联用仪。

气相色谱-质谱(GC-MS)仪包括:GC 模块、MS 模块、GC-MS 接口模块、仪器控制模块以及软件模块。

典型的 GC-MS 系统的如图3所示,待分析样品通过载气(氢气或氦气)经过 GC 色谱柱得到初步分离,从色谱柱流出的各组分经过 GC-MS 接口模块传输进入 MS 模块的离子源单元,在这里各组分被离子化形成离子,进而被 MS 模块中的质量分析分析,分析获得的数据由 GC-MS 平台的数据处理模块进行处理、显示,并进行数据库搜索和比对。

整个分析过程所涉及到的流程处理顺序均由 GC-MS 平台的仪器控制模块进行控制和协调。

图3 GM-MS系统示意图[4]气相色谱作为进样系统,充分发挥其高效的分离能力和高的灵敏度,对样品进行有效分离。

同时满足质谱分析对样品单一性的要求,避免了样品受污染,有效控制质谱进样量,减少对质谱仪器的污染,极大的提高了对混合物的分离,定性,定量分析效率。

质谱作为检测器,检测的是离子质量,获得化合物的质谱图,解决了气相色谱定性的局限性,而且质谱的多种扫描方式和质量分析技术,可以有选择的只检测所需要的目标化合物的特征离子(SIM,选择离子模式),具有专一的选择性,不仅能排除基质和杂质峰的干扰,还极大的提高检测灵敏度。

气相色谱-质谱联用法结合了气相色谱和质谱的优点,弥补了各自的缺陷,因而具有灵敏度高、分析速度快、鉴别能力强等特点,可同时完成待测组分的分离和鉴定,特别适用于多组分混合物中未知组分的定性定量分析、化合物的分子结构判别、化合物分子量测定。

气相色谱-质谱联用仪能将一切可气化的混合物有效的分离并准确的定性、定量其组分。

气质联用仪在现在生活和研究中的许多领域都得到了广泛的应用,大到行星间的探测,小到环境中二氧化氮的检测,是目前能够为 pg 级试样提供结构信息的最主要分析工具。

2.2常见GM-MS前处理方法农药残留检测是一种对复杂化合物组分的痕量检测方法。

在测定之前,必须找到适合待测样品和目标化合物理化性质的萃取、净化、浓缩等处理步骤。

建立多种农药的前处理方法要充分考虑其理化性质、基质干扰等因素,否则往往会使得待测物的分离、定性及定量变得困难,甚至产生错误的结论。

样品前处理技术的发展就是要求提高待测物的提取效率,达到较好的回收率和精密度;实现更好的净化效果,消除基质干扰;简化前处理步骤,实现快速、有效、简单的样品制备过程[5]。

2.2.1 液-液萃取(LLE)技术液-液萃取(Liquid-Liquid Extraction, LLE)技术,又称溶剂萃取,是样品净化中的经典净化方法,是利用目标化合物与样品基质在互不相容的两相溶液中溶解度的差异,将目标化合物从一种溶剂相(被萃取相)转移到另一种溶剂相(萃取相)以达到净化的目的。

影响LLE萃取效果的因素有萃取溶剂,溶液pH值、离子对试剂、盐析等。

2.2.2 固相萃取(SPE)技术固相萃取(Solid Phase Extraction, SPE)技术是20世纪70年代发展起来的一种样品前处理技术,由液固萃取和液相色谱技术结合发展而来。

其原理是固体吸附剂将液体样品中的目标化合物吸附,从而与样品基质及干扰化合物分离开,再利用洗脱液洗脱或加热解吸附,以达到分离、净化和富集的目的,被广泛应用于环境、制药、临床医学、食品等领域。

上世纪80年代,SPE技术开始应用于农药残留分析的样品前处理过程中。

SPE对样品的净化,一般包括4步:(l)SPE活化:有机溶剂活化后,再用水或适当的缓冲液活化;(2)转移样品于SPE; (3)淋洗:选择适当量的溶剂,淋洗SPE,去除杂质;(4)洗脱:选择适当的溶剂作为洗脱液,将保留在固定相中的样品洗脱下来,同时,尽可能减少在固定相中比样品保留更强的杂质流出。

根据SPE柱中填料的不同,SPE可分三种类型:反相萃取、正相萃取和离子交换萃取。

(1)正相SPE的填料是极性的,如氧化招、娃镁吸附剂等,通常用来萃取极性物质。

(2)反相SPE所用的填料通常是非极性的或是弱极性物质,如Ci8. Q、苯基柱等,通常用来萃取中等极性到非极性的化合物。

(3)离子交换型SPE使用的填料为带电荷的离子交换树脂,萃取的物质多为带电荷的化合物。

对液体样品,在选择了合适的萃取填料和洗脱液并优化其他条件后,可以使萃取、富集和净化一步完成,然后可以直接进行气相色谱法或高效液相色谱法分析。

与经典的液-液萃取相比,SPE具有无可比拟的优势:(1)萃取更快,节省溶剂;(2)回收率高,重现性好;(3)同时完成样品富集与净化,提高检测灵敏度;(4)样品用量少,有一定的选择性,无乳化现象。

2.2.3基质固相分散(MSPD)技术基质固相分散(Matrix Solid-Phase Dispersion, MSPD)萃取是在SPE的基础上,由美国Louisiana州立大学的Bark教授于1989年首次提出并给予理论解释的一种快速样品处理技术。

相关文档
最新文档