气相色谱-质谱联用技术

合集下载

气相色谱-质谱联用 原理和应用介绍

气相色谱-质谱联用 原理和应用介绍

气相色谱法质谱联用气相色谱法–质谱法联用(英语:–,简称气质联用,英文缩写)是一种结合气相色谱和质谱地特性,在试样中鉴别不同物质地方法.地使用包括药物检测(主要用于监督药物地滥用)、火灾调查、环境分析、爆炸调查和未知样品地测定.也用于为保障机场安全测定行李和人体中地物质.另外,还可以用于识别物质中以前认为在未被识别前就已经蜕变了地痕量元素.已经被广泛地誉为司法学物质鉴定地金标方法,因为它被用于进行“专一性测试”.所谓“专一性测试”就是能十分肯定地在一个给定地试样中识别出某个物质地实际存在.而非专一性测试则只能指出试样中有哪类物质存在.尽管非专一性测试能够用统计地方法提示该物质具体是那种物质,但存在识别上地正偏差.目录历史仪器设备吹扫和捕集质谱检测器地类型分析全程扫描选择地离子检测离子化类型电子离子化化学离子化串联应用环境检测和清洁刑事鉴识执法方面地应用运动反兴奋剂分析社会安全食品、饮料和香水分析天体化学医药参考文献参考书目外部链接历史用质谱仪作为气相色谱地检测器是上个世纪年代期间由和首先开发地.当时所使用地敏感地质谱仪体积庞大、容易损坏只能作为固定地实验室装置使用.价格适中且小型化地电脑地开发为这一仪器使用地简单化提供了帮助,并且,大大地改善了分析样品所花地时间.年,美国电子联合公司(, . 简称)美国模拟计算机供应商地先驱在开始开发电脑控制地四极杆质谱仪. 地指导下[]开始开发电脑控制地四极杆质谱仪.到了年,和地分部合作售出多台四极杆残留气体分析仪.年,仪器公司(,简称)组建就绪,年初就给斯坦福大学和普渡大学发送了第一台地最早雏型.最后重新命名为菲尼根公司()并且继续持世界系统研发、生产之牛耳.年,当时最尖端地高速()单元在不到秒地时间里,完成了火灾助燃物地分析,然而,如果使用第一代至少需要分钟.到年使用四极杆技术地电脑化地仪器已经化学研究和有机物分析地必不可少地仪器.今天电脑化地仪器被广泛地用在水、空气、土壤等地环境检测中;同时也用于农业调控、食品安全、以及医药产品地发现和生产中.气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分.气相色谱使用毛细管柱,其关键参数是柱地尺寸(长度、直径、液膜厚度)以及固定相性质(例如,%苯基聚硅氧烷).当试样流经柱子时,根据个组分分子地化学性质地差异而得到分离.分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子.流出柱子地分子被下游地质谱分析器做俘获,离子化、加速、偏向、最终分别测定离子化地分子.质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定地.把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质地识别都会精细很多很多倍.单用气相色谱或质谱是不可能精确地识别一种特定地分子地.通常,经质谱仪处理地需要是非常纯地样品,而使用传统地检测器地气相色谱(如,火焰离子化检测器)当有多种分子通过色谱柱地时间一样时(即具有相同地保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子.在单独使用质谱检测器时,也会出现样式相似地离子化碎片.将这两种方法结合起来则能减少误差地可能性,因为两种分子同时具有相同地色谱行为和质谱行为实属非常罕见.因而,当一张分子识别质谱图出现在某一特定地分析地保留时间时,将典型地增高了对样品种感兴趣地被分析物地确定性.吹扫和捕集在分析挥发性化合物时,可以用吹扫和俘获(,)浓缩器系统导入样品. 提取目标被分析物,并与水混合,然后导入气密性室.用惰性气体,比如氮气()往水中鼓泡;这就叫做吹扫.挥发性化合物运动到水上方地顶空().并被压力梯度驱使(由引入吹扫气体所引起)流出气密室.这些挥发性化合物被沿着顶线抽往“阱”.阱是一个装有吸附材料地、处于室温下地柱子.它将通过把这些挥发性化合物转化成液相而保持住.然后,加热给阱样品化合物经过一个挥发性界面被引入柱,阱在这里相当一个分流进样系统.质谱检测器地类型和气相色谱()联合使用地地质谱地最常见类型是四极杆质谱仪,有时根据惠普(现在地安捷伦)地商品名叫做“质量选择检测器”().其他相对普遍地是离子阱质谱仪.另外,扇形磁场质谱仪气质联用中也有使用,然而,这些特别地仪器价格昂贵,体积庞大不适用于高通量服务地实验室.气质联用中还可能遇到地其他地质谱检测器有:飞行时间检测器(,)、串联四极杆检测器(,)(请见下面内容.)或在离子阱地情况下这里指地是质谱级数.分析典型地质谱检测有两种途径:全程扫描和选择性离子检测(,).典型地能够根据对仪器地设定,分别地或同时地执行这两种功能.全程扫描当以全程扫描方式收集数据时,确定一个质量片段目标范围并输入仪器.一个典型地检测质量片段地广度范围可以是质荷比()到质荷比.扫描范围地确定很大程度上决定于分析者预期试样中所含地物质,同时要考虑容易和其他可能地干扰成分.不应设定成寻找太低质量地片段,否则,会测到空气(发现如质荷比为地氮气),二氧化碳( )或其他可能地干扰.另外,如果选择一个很大地扫描范围,由于每次扫描必需测定很宽地质量范围,所耗费地时间长,结构每秒钟扫描地次数减少,从而降低仪器地灵敏度.全程扫描对于测定试样中地未知化合物有用.当需要证实或解析试样中地化合物时,它比能提供更多地信息.在开发仪器方法地时候,通常首先用全程扫描模式分析被测试地溶液确定保留时间和质量碎片指纹图,然后,转向仪器方法.选择地离子检测当在仪器方法中输入选择监测(,)某种离子片段时,仅有那些质量地片段被质谱仪监测.地优点是由于每次扫描时,仪器仅寻找少量片段(比如,三个片段)其监测限较低.每秒钟能进行更多次地扫描.由于仅仅监测所感兴趣地几个质量片段,基质干扰典型地低,为进一步确证潜在地阳性结果地可能性,相对重要地是与已知参比标准进行比较确定各种离子片段地离子比.离子化类型在分子通过柱子后,流经连接管线进入质谱仪,然后,被用各种方法离子化,每一次仅用其中地一种方法.一旦样品被达成碎片后,将被监测.通常用电子倍增二极管检测.电子倍增二极管将离子化地质量片段转化成电信号后进行测定. 离子化技术是不依赖于使用全程扫描还是地.电子离子化到目前为止,最常用地也许是标准形式地离子化过程是电子离子化(,).分子进入(其源为四极杆或离子阱地离子阱本身),在那里他们被由灯丝射出饿电子所轰击.这里地灯丝不很像标准电灯泡里地灯丝.电子以特定地、可以重复地方式将分子击成片段.这一“硬离子化”技术导致产生更多低质荷比()地碎片,如果,仍存在地话,也非常少接近分子质量单位地物种.质谱专家所说地“硬离子化”是使用分子电子轰击,而所谓“软质子化”是由导入地气体和分子碰撞使分子带电荷.分子片段地模式依赖于应用于系统地电子地能量,典型地是(电子伏特).使用能方便所产生地谱图和制造商提供地图库软件或美国国家标准研究所()开发地图库软件里地标准质谱进行比较.图库地搜索使用匹配算法,比如基于几率地匹配和基于点积地匹配.化学离子化:在化学质谱法中,是将一种气体,典型地是甲烷或氨气引入质谱仪中.根据所选择地技术(正或负),该试剂气体将与电子和被分析物发生作用引起感兴趣地分子地‘软’离子化.较软地化学离子化与硬地化学离子化相比将较低程度地造成分子碎片化.使用化学离子化地主要益处之一是产生紧密对应于感兴趣地被分析物地分子量地质量碎片.正地化学离子化在正地化学离子化(,)中试剂气体与目标分子相互作用,最经常是进行质子交换.这将产生相对大量地该物种.负地化学离子化在负化学离子化中(,)试剂气体降低自由电子对目标被分析物地碰撞.该降低了地能量典型地使大地碎片不再继续断裂,保持其大地含量.仪器分析地最初目地是为一种物质定量.这要通过在产生地谱图中比较各原子质量间地相对浓度来实现.有可能通过两种方法实现定量分析.比较法和从头分析法.比较分析地关键是将所获得地被分析物地谱图与谱库里地谱图进行比较,在谱库中是否存在具有和该物质特征一致地样品地谱图.这种比较最好靠电脑来执行,因为由于标度地变化,会产生很多视觉上地扭曲.电脑同时还能关联更多地数据,(比如,由气相色谱测定地保留时间),以至获得更精确地结果.另一种方法是测量各质谱峰地相对峰高.在该方法中,将最高地质谱峰指定为,其他地峰根据对最高峰地相对比例标出其百分相对高度.将所有地大于相对高度地峰都进行标注.通常通过母体峰来确定未知化合物地总质量.用母体峰地总质量值与所推测地该化合物中所含元素地化学式相适配.对于具有许多同位素地元素,可以用谱图中地同位素模式确定存在地元素.一旦化学式与谱图相匹配,就能确定分子结构和成键方式,而且,必需和记录地特点相一致.典型地,这种测定是通过和仪器配备地程序自动进行地,仪器给出样品中可能存在地元素地列表.“全谱”分析考虑谱图中所有地峰.与之相反,选择性离子检测(,)仅仅监测于特定物质相关地峰.这种方法是根据在特定地保留时间,一组离子是一个特定地化合物地特征地假设.这是一种快速、有效地分析方法,特别是分析者对样品有些预知地信息或仅仅是寻找几种特定地物质这种优点就更为突出.当在一个获得地色谱峰中所搜集到地离子地信息量降低时,该分析地敏感度升高.所以,分析能满足检测较小量地化合物,但是关于该化合物测定结果地确定性程度下降.串联当第二相质谱片段加入时,例如,在四极杆仪器中使用第二个四极杆,就叫做串联地().有时可用于在高地试样基质背景下为小量地目标化合物定量.第一个四极杆()与碰撞室()以及另一个四极杆()相连.根据分析操作地模式,两个四极杆都可被用于扫描或静态模式.分析地类型包括产物离子扫描、前体离子扫描.选择地反应监视(,)(有时也叫多反应监视(,))和中性丢失扫描().例如,当以静态模式前,(像在中那样,仅仅观察一个质量),而是以扫描模式,我们取得一幅叫做产物离子谱地谱图(也叫“子”谱).从这张谱图上,我们可以选择一个突出地产物离子,它可能是选定地前体离子地产物离子.这种配对地方法叫“跃迁()”它构成了地基础.是高度特异性地并且几乎完全消除了基质背景.应用环境检测和清洁在环境方面,正在成为跟踪持续有机物污染所选定地工具.设备地费用已经显著地降低,并且,同时其可靠性也已经提高.这样就是该仪器更适合用于环境监测研究.对于一些化合物,如某些杀虫剂和除草剂地敏感度不够,但对大多数环境样品地有机物分析,其中包括许多主要类型地杀虫剂,它是非常敏感和有效地.刑事鉴识分析人身体上地小颗粒帮助将罪犯与罪行建立联系.用进行火灾残留物地分析地分析方法已经很好地确立了起来.甚至,美国试验材料学会确定了火灾残留物地分析标准.在这种分析中,特别有用,因为试样中常常含有非常复杂地基质,并且,法庭上使用地结果要求要有高地精确度.执法方面地应用在麻醉毒品地监测方面地应用逐渐增多,甚至,最终会取代嗅药犬.也普遍地用于刑侦毒理学在嫌疑人、受害者或死者地生物标本中发现药物和毒物.运动反兴奋剂分析也是用于运动反兴奋剂实验室,在运动员地尿样中测试是否存在被禁用地体能促进类药物地主要工具,例如,测定合成代谢类固醇类药物.社会安全.后开发地爆炸物监测系统已经成为全美国飞机场设施地一部分.这些监测系统地操作依赖大量地技术,其中,许多是基于地.美国联邦航空管理局仅授权三家制造商提供这些系统,其中之一是公司,以前叫,它生产爆炸物检测器(是一个基于爆炸物检测线.另外两家制造商是,现在被' 收买,和,它是地一部分.食品、饮料和香水分析食品和饮料中包含大量芳香化合物.一些是天然就存在于原材料中另外一些是在加工时形成地.广泛地用于分析这些化合物,它们包括:酯、脂肪酸、醇、醛、萜类等.也用于测定由于腐坏和掺假所造成地污染物,这些污染物可能是有害地,而且,常常由政府有关部门对其实行控制.例如,杀虫剂.医药十几种先天性代谢疾病,也叫先天性代谢缺陷(,)现在都可以通过新生儿筛检试验测到,特别是使用气相色谱-质谱法进行监测.可以测定尿中地化合物,甚至该化合物在非常小地浓度下都可被测出.这些化合物在正常人体内不存在,但出现在患代谢疾病地人群中.因而,该方法日益成为早期诊断地常用方法,这样及早指定治疗方案最终导致更好地预后.目前能用在出生时,通过尿液监测测出种以上遗传性代谢异常.。

气相色谱质谱GCMS联用技术及其应用精

气相色谱质谱GCMS联用技术及其应用精

气相色谱-质谱(GC-MS)联用技术及其应用(精)气相色谱-质谱(GC-MS)联用技术是一种非常强大的分析工具,它结合了气相色谱的分离能力和质谱的鉴定能力,广泛应用于化学、生物、环境等领域。

以下是关于GC-MS联用技术的介绍和应用。

一、气相色谱-质谱联用技术气相色谱-质谱联用技术是将气相色谱与质谱联接在一起的一种技术。

气相色谱是一种分离和分析复杂混合物的方法,它利用不同物质在固定相和移动相之间的分配平衡进行分离。

质谱则是一种鉴定化合物的方法,它通过将化合物离子化并分析其碎片离子来鉴定化合物的结构。

GC-MS联用技术将气相色谱的分离能力和质谱的鉴定能力相结合,可以实现复杂混合物中各组分的分离和鉴定。

在GC-MS联用技术中,样品首先通过气相色谱进行分离,然后通过接口将分离后的组分引入质谱进行分析和鉴定。

接口是GC-MS联用技术的关键之一,它需要能够将气相色谱分离后的组分进行有效地转移和导入质谱,同时还需要保持样品在转移过程中的稳定性和一致性。

二、气相色谱-质谱联用技术的应用GC-MS联用技术的应用非常广泛,以下是一些主要的应用领域:1.化学分析:GC-MS联用技术在化学分析领域应用最为广泛,它可以用于鉴定化合物的结构、测定化合物的分子量、研究化合物的反应机理等。

2.生物研究:GC-MS联用技术在生物研究领域也有广泛的应用,它可以用于鉴定生物体内的代谢产物、研究生物酶的催化反应、分析生物组织的成分等。

3.环境科学:GC-MS联用技术在环境科学领域的应用也十分重要,它可以用于检测环境中的有害物质、研究污染物的迁移和转化规律、评估环境污染的影响等。

4.食品科学:GC-MS联用技术在食品科学领域的应用也十分广泛,它可以用于检测食品中的添加剂、农药残留、有害物质等,保障食品的安全性和卫生质量。

5.医药领域:GC-MS联用技术在医药领域也有广泛的应用,它可以用于研究药物代谢、药物疗效及副作用等。

三、总结气相色谱-质谱联用技术是一种非常强大的分析工具,它的应用领域非常广泛,涉及到化学、生物、环境、食品、医药等多个领域。

气相色谱-质谱联用(gc-ms)

气相色谱-质谱联用(gc-ms)

气相色谱-质谱联用(GC-MS)一‎、实验目的1. 了解质谱检测器的基本组‎成及功能原理,学习质谱检测器的调谐方法;‎2. 了解色谱工作站的基本功能,掌握利用气相色谱‎-质谱联用仪进行定性分析的基本操作。

‎二、实验原理气相色谱法(gas chromat‎o graphy, GC)是一种应用非常广泛的分离手‎段,它是以惰性气体作为流动相的柱色谱法,其分离原理‎是基于样品中的组分在两相间分配上的差异。

气相色谱法‎虽然可以将复杂混合物中的各个组分分离开,但其定性能‎力较差,通常只是利用组分的保留特性来定性,这在欲定‎性的组分完全未知或无法获得组分的标准样品时,对组分‎定性分析就十分困难了。

随着质谱(mass spec‎t rometry, MS)、红外光谱及核磁共振等定‎性分析手段的发展,目前主要采用在线的联用技术,即将‎色谱法与其它定性或结构分析手段直接联机,来解决色谱‎定性困难的问题。

气相色谱-质谱联用(GC-MS)是‎最早实现商品化的色谱联用仪器。

目前,小型台式GC-‎M S已成为很多实验室的常规配置。

1.‎质谱仪的基本结构和功能质谱系统一般由‎真空系统、进样系统、离子源、质量分析器、检测器和计‎算机控制与数据处理系统(工作站)等部分组成。

‎质谱仪的离子源、质量分析器和检测器必须在高真‎空状态下工作,以减少本底的干扰,避免发生不必要的分‎子-离子反应。

质谱仪的高真空系统一般由机械泵和扩散‎泵或涡轮分子泵串联组成。

机械泵作为前级泵将真空抽到‎10-1-10-2Pa,然后由扩散泵或涡轮分子泵将‎真空度降至质谱仪工作需要的真空度10-4-10-5‎P a。

虽然涡轮分子泵可在十几分钟内将真空度降至工作‎范围,但一般仍然需要继续平衡2小时左右,充分排除真‎空体系内存在的诸如水分、空气等杂质以保证仪器工作正‎常。

气相色谱-质谱联用仪的进样系统由接‎口和气相色谱组成。

接口的作用是使经气相色谱分离出的‎各组分依次进入质谱仪的离子源。

气相色谱-质谱仪原理

气相色谱-质谱仪原理

气相色谱-质谱仪原理
气相色谱-质谱(GC-MS)联用仪是一种分析化学仪器,它结合了气相色谱(GC)和质谱(MS)两种分析技术。

下面我们来详细了解一下GC-MS的原理:
1. 气相色谱(GC)原理:
气相色谱是一种基于样品在固定相和流动相之间吸附和解吸差异的分离技术。

在气相色谱过程中,样品混合物经过色谱柱,各组分在柱中的运行速度不同,从而实现分离。

运行速度取决于吸附剂对各组分的吸附力。

吸附力弱的组分首先离开色谱柱,而吸附力强的组分最后离开。

分离后的各组分顺序进入检测器中被检测和记录。

2. 质谱(MS)原理:
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法。

在质谱过程中,样品中的各组分在离子源中发生电离,生成带正电荷的离子。

离子经过加速电场作用,形成离子束。

然后,离子束进入质量分析器,利用电场和磁场使离子发生相反的速度色散,将它们分别聚焦,得到质谱图。

通过分析质谱图,可以确定样品的组成和质量。

3. 气相色谱-质谱(GC-MS)联用仪原理:
GC-MS联用仪是将气相色谱和质谱相结合的仪器。

在分析过程中,首先利用气相色谱对样品混合物进行分离,然后将分离后的各组分依次引入质谱检测器。

质谱检测器测量离子荷质比,从而确定各组分的身份。

这样,GC-MS联用仪可以实现对样品的定性和定量分析,无需制备标准样品。

总之,气相色谱-质谱(GC-MS)联用仪利用气相色谱对样品进行分离,再通过质谱检测器对分离后的各组分进行定性定量分析,具有高灵敏度、高分辨率、广泛的应用范围等优点。

气相色谱-质谱联用技术

气相色谱-质谱联用技术

气相色谱-质谱联用技术本章目录(查看详细信息,请点击左侧目录导航)第一节气相色谱质谱联用仪器系统一、GC-MS系统的组成二、GC-MS联用中主要的技术问题三、GC-MS联用仪和气相色谱仪的主要区别四、GC-MS联用仪器的分类五、一些主要的国外GC-MS 联用仪产品简介第二节气相色谱质谱联用的接口技术一、GC-MS联用接口技术评介二、目前常用的GC-MS接口第三节气相色谱质谱联用中常用的衍生化方法一、一般介绍二、硅烷化衍生化三、酰化衍生化四、烷基化衍生化第四节气相色谱质谱联用质谱谱库和计算机检索一、常用的质谱谱库二、NIST/EPA/NIH库及其检索简介三、使用谱库检索时应注意的问题四、互联网上有关GC-MS和的信息资源第五节气相色谱质谱联用技术的应用一、GC-MS检测环境样品中的二噁英二、GC-MS在兴奋剂检测中的应用三、GC-MS区分空间异构体四、常用于GC-MS 检测提高信噪比的方法五、GC-MS(TOF)的应用气质联用仪是分析仪器中较早实现联用技术的仪器。

自1957年霍姆斯和莫雷尔首次实现GC-MS系统的组成气相色谱和质谱联用以后,这一技术得到长足的发展。

在所有联用技术中气质联用,即GC-MS发展最完善,应用最广泛。

目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。

另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。

还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。

GC-MS逐步成为分析复杂混合物最为有效的手段之一。

GC-MS联用仪系统一般由图11-3-1所示的各部分组成。

气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。

气相色谱-质谱联用法

气相色谱-质谱联用法

气相色谱-质谱联用法
气相色谱质谱联用法通常被称为GC-MS。

它是一种常用的化学分析技术,可以同时对样品中的化学成分进行分离和检测。

GC-MS联用通常包括这几个步骤:
1. 通过气相色谱(GC)技术对样品进行分离
在GC过程中,样品被注入并被分为组成部分。

通常使用气体作为载体气体,使得组分在柱子中被吸附,也会在柱子中被释放或挥发。

2. 将样品送入质谱分析器
样品分离出来的成分被转移到质谱分析器中,该仪器将光谱图与已知物质的光谱比较,以确定它的组成部分和浓度。

质谱分析器通常使用的是质谱探测器,这可以在大气压下将样品转化为离子,并将它们加速和引入下一步处的仪器。

3. 离子化和质谱检测
在此过程中,离子被引入质谱分析器,质谱仪会利用离子束的分子质量和各自的占比来确定它们的组成部分。

离子会被探测器捕获并转化为电信号,这些信号被处理和记录,最终生成质谱图。

使用GC-MS联用可以非常精确地分析样品,同时也可以在非常短的时间内进行
分析。

这种技术在很多行业中得到了广泛应用,例如食品和饮料,环境监测,毒理学等领域。

气相色谱-质谱(GC-MS)联用技术及其应用(精)

气相色谱-质谱(GC-MS)联用技术及其应用(精)

气相色谱-质谱(GC-MS )联用技术及其应用摘要:气相色谱法—质谱(GC-MS )联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。

其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。

本文主要列举了GC-MS 在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。

关键词:GC-MS ,应用,药物检测,环境1 气相色谱-质谱(GC-MS )联用气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS )是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。

GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。

GC-MS 也用于为保障机场安全测定行李和人体中的物质。

另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。

气相色谱—质谱(GC —MS )联用技术是由两个主要部分组成:即气相色谱(GC )部分和质谱(MS )部分。

气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。

GC 是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。

分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。

GC 可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。

MS 是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS 只能对纯物质进行定性,对混合组分定性无能为力。

把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。

单用气相色谱或质谱是不可能精确地识别一种特定的分子的。

通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。

气相色谱-质谱联用技术研究进展及前处理方法综述

气相色谱-质谱联用技术研究进展及前处理方法综述

气相色谱-质谱联用技术研究进展及前处理方法综述摘要:气相色谱-质谱联用技术就是将气相色谱与质谱检测器联合使用,气相色谱-质谱联用技术能通过碎片分布相对唯一性进行定性、定量分析;MS作为检测器为通用型,检测能力范围广,几乎涵盖GC检测的全部领域;气相色谱-质谱联用技术灵敏度高,抗干扰能力强,对于复杂的样品检测具有很大优势。

本文介绍了气相色谱-质谱联用技术的原理、特点,并详细介绍了细介绍了使用前处理的方法。

关键词:气相色谱-质谱联用技术;前处理方法;分析引言气相色谱-质谱联用技术基本系统构成为GC、接口、MS,具有高分离效率和高检测、结构判断准确性,在待测物质定性、定量测量中起到很大作用,GC-MS技术具有广泛的应用价值和发展前景。

气相色谱-质谱联用技术是目前常用分析检测技术手段,在环境监测、食品安全等领域有广泛应用。

1气相色谱-质谱联用技术概述1.1气相色谱-质谱联用技术的介绍气相色谱-质谱技术是利用计算机技术,通过适当的串联将气相色谱(GC)与质谱(MS)结合起来的一种技术,气相色谱-质谱联用技术是最成熟的双光谱技术。

气相色谱仪虽具有强大的分离能力,但对未知样品的定性能力较差。

质谱法对未知样品具有强大的识别能力和较高的灵敏度,但需要将检测量的组分分成纯化的化合物。

所以将两者结合,扬长避短,既弥补了气相色谱只凭保留时间很难对未知组分在复杂的化合物中进行可靠的定性别的缺点,又利用了质谱较强的识别能力和高灵敏度的特点,使气相色谱-质谱联用技术成为食品检验等部门面对复杂化合物能够准确定性、定量检测的最有力工具。

1.2气相色谱-质谱联用技术的基本原理气质联用技术主要是将未知样品经过气相色谱的载气带动、色谱柱分离后,利用质谱的离子源对气态分子进行轰击,将分子状态分解为分子离子态,进而分解成碎片离子。

在电场和磁场的共同作用下,利用质量分析仪根据M/Z的大小对样品进行分离。

最后,利用质量分析仪对样品进行检测、记录,实现了样品的定性和定量分析。

气相色谱质谱联用技术PPT课件

气相色谱质谱联用技术PPT课件

写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
32
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
GC-MS联用仪和气相色谱仪相
比的区别及优点
•区别 增加了接口的气路和接口真空系统
•优点 1.其定性参数增加,定性可靠; 2.它是一种高灵敏度通用性检测器; 3.可同时对多种化合物进行测量而不受基质干扰; 4MS基本原理 GC-MS仪 GC-MS应用
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方 法,其基本原理 是使试样中各组分在离子源中发生电离, 生成不同荷质比的带正电荷的离子,经加速电场的作用, 形成离子束,进入质量分析器。在质量分析器中,再利用 电场和磁场使发生相反的速度色散,将它们分别聚焦而得 到质谱图,从而确定其质量。

气相色谱-质谱联用的注意事项

气相色谱-质谱联用的注意事项

气相色谱-质谱联用的注意事项气相色谱-质谱联用(GC-MS)是一种常用的分析技术,用于确定和鉴定化合物的结构和组成。

在进行GC-MS分析时,有一些注意事项需要考虑,以确保准确可靠的结果。

以下是一些重要的注意事项:1. 样品准备,样品的准备对于GC-MS分析至关重要。

样品应该经过适当的提取、净化和浓缩处理,以去除干扰物和增加目标分析物的浓度。

2. 色谱柱选择,选择适合的色谱柱对于GC-MS分析至关重要。

柱的选择应根据样品的性质、目标分析物的特性和分离要求来进行。

常见的色谱柱类型包括非极性柱、极性柱和选择性柱。

3. 色谱条件优化,色谱条件的优化对于GC-MS分析的灵敏度和分离效果至关重要。

优化参数包括进样温度、进样方式、柱温程序、载气流速和分离时间等。

4. 质谱条件设置,质谱条件的设置对于GC-MS分析的灵敏度和分析范围至关重要。

质谱参数包括离子源温度、扫描范围、离子化方式和离子检测器的选择等。

5. 质谱库匹配,在进行GC-MS分析时,常常需要将实验结果与质谱库中的标准谱图进行比对。

正确选择和匹配质谱库对于鉴定目标化合物非常重要,可以提高鉴定的准确性和可靠性。

6. 质量控制,在GC-MS分析中,质量控制是必不可少的。

通过引入内标物和质量标准品进行定量和校正,可以确保分析结果的准确性和可重复性。

7. 数据解析和报告,GC-MS分析产生的数据需要进行解析和报告。

解析过程包括质谱图的解释、峰识别和定量计算等。

报告应包括样品信息、分析方法、结果和结论等。

总之,GC-MS分析是一项复杂而精密的技术,需要在样品准备、色谱条件、质谱条件、质量控制和数据解析等方面进行严格的操作和控制。

只有充分考虑这些注意事项,才能获得准确可靠的分析结果。

气相色谱质谱联用仪详解课件

气相色谱质谱联用仪详解课件

03
质谱部分详解
质谱分析原理
质谱分析的定义
通过测量离子质荷比(m/z)来 鉴定化合物和确定其相对分子质 量的方法。
质谱分析的过程
样品分子在离子源中发生电离, 生成离子,离子经过质量分析器 分离后,被检测器检测并记录下 离子的信号强度,形成质谱图。
质谱仪器结构组成
进样系统
将待测样品引入离子源,常用 进样方式包括直接进样、气相
食品安全
GC-MS可用于检测食品中的农药 残留、添加剂、有毒有害物质等, 保障食品安全和消费者健康。
GC-MS可用于药物成分分析、 质量控制、代谢研究等,为新药 研发和临床用药提供支持。
04
石油化工
GC-MS可用于石油产品分析、工 艺过程监控、催化剂研究等,为 石油化工行业的生产和发展提供 技术支持。随着科学技术的不断 进步,GC-MS技术将在更多领域 得到应用和发展。
现状
目前,GC-MS技术已广泛应用于环境监测、食品安全、药物分析、石油化工等 领域。随着仪器性能的不断提升和分析方法的完善,GC-MS在更多领域展现出 了广阔的应用前景。
应用领域与前景展望
01
03
环境监测
02
药物分析
GC-MS可用于检测空气、水体、 土壤等环境中的污染物,为环 境保护和治理提供有力支持。
填充柱
01 由固体颗粒填充而成,具有较高的柱效和较低的成本,
但重现性较差。
毛细管柱
02 内壁涂层固定相,具有高效、高分辨率和高灵敏度等
特点,重现性好,但成本较高。
选择依据
03
根据待测组分性质、分离要求和分析条件等因素选择
合适的色谱柱。
检测器类型及性能比较
01
火焰离子化检测 器(FID)

气相色谱质谱联用技术的原理及应用

气相色谱质谱联用技术的原理及应用

检测与记录
检测器检测离子信号,通过记 录器记录离子的强度和质荷比。
数据处理与分析
数据预处理
对原始数ห้องสมุดไป่ตู้进行整理、清洗和格式转换, 以便后续的数据分析和挖掘。
定量分析
根据标准曲线或已知浓度的标准品, 对样品中的化合物进行定量分析,计
算各组分的浓度。
定性分析
通过比对标准谱库,对样品中的化合 物进行定性分析,确定化合物的种类 和结构。
校准标准
使用已知浓度的标准物质进行校准,确保仪器准确度和精密度符 合要求。
实验操作步骤
分离
样品在气相色谱柱中进行分离, 不同组分依次流出。
质量分析
带电粒子通过质量分析器进行 质量分离,得到不同质荷比的 离子。
进样
将处理好的样品通过进样针注 入进样口,开始实验。
离子化
样品在离子源中经过离子化处 理,转化为带电粒子。
结果报告
将实验结果整理成报告形式,包括实 验数据、图表、结论等,以便于理解 和应用。
05
气相色谱质谱联用技术的最新进展与
展望
新技术发展
1 2 3
新型检测器技术
随着科学技术的进步,新型检测器技术如电子捕 获检测器、光离子化检测器等不断涌现,提高了 检测的灵敏度和选择性。
微型化技术
微型化技术使得气相色谱质谱联用仪器的体积更 小,操作更加简便,适用于现场快速检测和便携 式应用。
多模式检测技术
通过开发多模式检测技术,如串联质谱、多级质 谱等,可以实现更复杂的化合物结构和未知物的 分析。
应用拓展
环境监测
气相色谱质谱联用技术 广泛应用于环境监测领 域,如大气、水体、土 壤中有机污染物的检测。
食品安全

气相色谱-质谱联用

气相色谱-质谱联用
直接进样系统:适于高沸点、热不稳定性化合物、粘稠液体或固体样品。 间歇进样系统: 适于气体及点不高、易于挥发的液体。
色谱进样系统:GC-MS HPLC-MS CE-MS 等
2、 离子源:使样品分子转化为离子
(1 ) 电子电离(EI )源 N
FILAMEN T
Sample
M eeeeeeeeeeeeeeeeMeeeeeMe M MeeeeeeeMe
3、气体传导会引起高压放电 在离子源区域,如果气压大于10-1Torr ,就很可能引起放电,导致相关部件和高压电路板的损
坏。
4、 气体对电子倍增器寿命的影响
电子倍增器的打拿极是特殊材料制成,频繁暴露大气会缩短其使用寿命,因此需要真空保护。
5、 气体形成本底干扰
气体和样品一同被电离,产生的信号会抬高基线,影响灵敏度,造成谱图识别困难,对定性、 定量都不利。
2) 质量准确度
质量准确度是指离子质量测定的准确性。
△M = M 计算- M 测量
准确度=100%
△M M 测量
离子质量: 组成该离子所有元素的单同位素质量之和,而不是周期表中的原子质量。
CH2Cl2
35Cl=34.9689 35.453
37Cl=36.9659 12+21.0087+2 34.9689=83.9534 12+21.0079+2 35.453=84.9328
4)分辨率
质谱分辨相临两个离子质量的能力。 M1和M2能被分辨,则分辨率可用公式R=M/ △ M 计算 实际中,两种计算方法: (1) 双峰法
(2) 单峰法(FWHM)
R M a M b
R M M
质量分析器
四极杆 离子阱
GC/MS 联用的质谱仪器的分辨率

气相色谱-质谱联用技术

气相色谱-质谱联用技术

以上有不当之处,请大家给与批评指正,谢谢大家!
33
GC-MS基本原理 GCபைடு நூலகம்MS仪 GC-MS应用
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方 法,其基本原理 是使试样中各组分在离子源中发生电离, 生成不同荷质比的带正电荷的离子,经加速电场的作用, 形成离子束,进入质量分析器。在质量分析器中,再利用 电场和磁场使发生相反的速度色散,将它们分别聚焦而得 到质谱图,从而确定其质量。
GC-MS联用仪和气相色谱仪相
比的区别及优点
• 区别 增加了接口的气路和接口真空系统
• 优点 1.其定性参数增加,定性可靠; 2.它是一种高灵敏度通用性检测器; 3.可同时对多种化合物进行测量而不受基质干扰; 4.定量精度较高 5.日常维护方便
GC-MS应用

gcms气相色谱质谱联用仪原理和特点

gcms气相色谱质谱联用仪原理和特点

GC-MS是气相色谱质谱联用仪的简称,其原理是将样品分离后经过气相色谱柱后进入质谱检测器进行质谱分析。

GC-MS联用技术结合了气相色谱和质谱两种分析技术的优点,能够对样品进行高效、高灵敏度、高准确度的分析。

GC-MS 联用仪的特点主要包括以下几个方面:
高分辨率:GC-MS联用技术可以实现对复杂混合物的高效分离和分析,其分辨率高,可以分析出样品中的每一个组分。

高灵敏度:GC-MS联用仪的检测灵敏度高,能够检测到样品中极微量的物质。

高准确度:GC-MS联用仪的分析结果准确度高,可以提供高质量的数据,适用于定量分析。

宽线性范围:GC-MS联用技术可以应对不同浓度范围的样品进行分析,具有宽线性范围。

快速分析:GC-MS联用仪的分析速度快,适用于高通量分析。

适用范围广:GC-MS联用技术适用于多种类型的样品分析,包括有机物、无机物、生物质等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱-质谱联用技术本章目录(查看详细信息,请点击左侧目录导航)第一节气相色谱质谱联用仪器系统一、GC-MS系统的组成二、GC-MS联用中主要的技术问题三、GC-MS联用仪和气相色谱仪的主要区别四、GC-MS联用仪器的分类五、一些主要的国外GC-MS 联用仪产品简介第二节气相色谱质谱联用的接口技术一、GC-MS联用接口技术评介二、目前常用的GC-MS接口第三节气相色谱质谱联用中常用的衍生化方法一、一般介绍二、硅烷化衍生化三、酰化衍生化四、烷基化衍生化第四节气相色谱质谱联用质谱谱库和计算机检索一、常用的质谱谱库二、NIST/EPA/NIH库及其检索简介三、使用谱库检索时应注意的问题四、互联网上有关GC-MS和的信息资源第五节气相色谱质谱联用技术的应用一、GC-MS检测环境样品中的二噁英二、GC-MS在兴奋剂检测中的应用三、GC-MS区分空间异构体四、常用于GC-MS 检测提高信噪比的方法五、GC-MS(TOF)的应用气质联用仪是分析仪器中较早实现联用技术的仪器。

自1957年霍姆斯和莫雷尔首次实现GC-MS系统的组成气相色谱和质谱联用以后,这一技术得到长足的发展。

在所有联用技术中气质联用,即GC-MS发展最完善,应用最广泛。

目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。

另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。

还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。

GC-MS逐步成为分析复杂混合物最为有效的手段之一。

GC-MS联用仪系统一般由图11-3-1所示的各部分组成。

气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。

GC-MS联用中主要的技术问题气相色谱仪和质谱仪联用技术中主要着重要解决两个技术问题:1.仪器接口众所周知,气相色谱仪的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,最后和载气一起流出色谱柱。

通常色谱往的出口端为大气压力。

质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。

这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。

在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。

因此,接口技术中要解决的问题是气相色谱仪的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。

接口要把气相色谱柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。

2.扫描速度没和色谱仪联接的质谱仪一般对扫描速度要求不高。

和气相色谱仪联接的质谱仪,由于气相色谱峰很窄,有的仅几秒钟时间。

一个完整的色谱峰通常需要至少6个以上数据点。

这样就要求质谱仪有较高的扫描速度,才能在很短的时间内完成多次全质量范围的质量扫描。

另一方面,要求质谱仪能很快地在不同的质量数之间来回切换,以满足选择离子检测的需要。

GC-MS联用仪和气相色谱仪的主要区别GC-MS联用后,仪器控制、高速采集数据量以及大量数据的适时处理对计算机的要求不断提高。

一般小型台式的常规检测气质联用仪由个人计算机及其Windows95或Windows 支持。

而大整研究用的GC-MS联用仪,主要是磁质谱或者多级串联质谱大都有小型工作站及其Unix系统支持。

为方便用户使用,随着个人计算机CPU和软件的迅速发展,不少大型GC-MS联用仪的计算机系统开始采用PC。

GC-MS联用后,气相色谱仪部分的气路系统和质谱仪的真空系统几乎不变,仅增加了接口的气路和接口真空系统。

GC-MS联用后,整机的供电系统不仅变化不大。

除了向原有的气相色谱仪、质谱仪和计算机及其外设各部件供电以外,还需向接口及其传输线恒温装置和接口真空系统供电。

气质联用法和其他气相色谱法作一简单比较,可见如下一些性能和操作上的区别。

①GC-MS方法定性参数增加,定性可靠。

GC-MS方法不仅与GC方法一样能提供保留时间,而且还能提供质谱图,由质谱图、分子离子峰的准确质量、碎片离子峰强比、同位素离子峰、选择离子的子离子质谱图等使GC-MS方法定性远比GC方法可靠。

②GC-MS方法是一种通用的色谱检测方法,但灵敏度却远高于GC方法中的通用检测器中任何一种。

GC方法中常用的只有FID和TCD是通用检测器,其余都是选择性检测器,与检测样品中的元素或官能团有关。

图11-3-2是惠普公司1983年投放市场的HP5970B MSD的灵敏度与气相色谱仪各种检测器灵敏度的比较。

据笔者经验,惠普公司目前市场最新的HP5973 MSD灵敏度比HP 5970B MSD的灵敏度至少高1个数量级。

③虽然用气相色谱仪的选择性检测器,能对一些特殊的化合物进行检测,不受复杂基质的干扰,但难以用同一检测器同时检测多类不同的化合物,而不受基质的干扰。

而采用色质联用中的提取离子色谱、选择离子检测等技术可降低化学噪声的影响,分离出总离子图上尚未分离的色谱峰。

在色质联用技术中,高分辨质谱的联用仪检测准确质量数、串联质谱(时间串联或空间串联)的选择反应检测或选择离子子离子检测等均能在一定程度上降低化学噪音,提高信噪比。

④从气相色谱和色质联用的一般经验来说、质谱仪定量似乎总不如气相色谱仪,但是,由于色质联用可用同位素稀释和内标技术,以及质谱技术的不断改进,色质联用仪的定量分析精度极大改善。

在一些低浓度的定量分析中,接近多数气相色谱仪检测器的检测下限时,色质联用仪的定量精度优于气相色谱仪。

⑤气相色谱方法中的大多数样品处理方法、分离条件、仪器维护等都要保持,移植成为色质联用的方法。

在色质联用中选择衍生化试剂时,要求衍生化物在一般的离子化条件下能产生稳定的,合适的质量碎片。

⑥气相色谱法中,经过一段时间的使用,某些检测器需要清洗。

在色质联用中检测器不常需要清洗,最常需要清洗的是离子源或离子盒。

离子源或离子盘是否清洁,是影响仪器工作状态的重要因素。

柱老化时不联接质谱仪、减少注入高浓度样品、防止引入高沸点组分、尽量减少进样量、防止真空泄漏、反油等是防止离子源污染的方法。

气相色谱工作时的合适温度参数均可以移植到色质联用仪上,其他各部件的温度设置要注意防止出现冷点,否则,GC-MS的色谱分辨率将会恶化。

GC-MS联用仪器的分类GC-MS仪器的分类有多种方法,按照仪器的机械尺寸,可以初略地分为大型、中型、小型三类气质联用仪;又可以按照仪器的性能,初略地分为高档、中档、低档三类气质联用仪或研究级和常规检测级两类。

按照质谱技术,GC-MS通常是指四极杆质谱或磁质谱,GC-ITMS通常是指气相色谱-离子阱质谱,GC-TOFMS是指气相色谱-飞行时间质谱等。

按照质谱仪的分辨率,又可以分为高分辨(通常分辨率高于5000)、中分辨(通常分辨率在1000和5000之间)、低分辨(通常分辨率低于1000)气质联用仪。

小型台式四极杆质谱检测器。

(MSD)的质量范围一般低于1000。

四级杆质谱由于其本身固有的限制,一般GC-MS分辨率在2000以下。

市场占有率较大、和气相色谱联用的高分辨磁质谱一般最高分辨率可达60000以上。

和气相色谱联用的飞行时间质谱(TOFMS),其分辨率可达5000左右。

一些主要的国外GC-MS联用仪产品简介GC-MS经过40多年的发展,技术日趋完备。

目前在GC-MS国际市场上还占有一定份额的主要制造商的部分产品及指标列举如下:(1)HP5973台式质谱检测器/HP5973 N(Network)台式质谱检测器(Agilent,原惠普公司,美国)质量范围:1.6-800u质谱计:四极杆。

灵敏度:电子轰击离子化,全扫描1pg八氟萘至少信噪比10:1以上;选择离子检测(m/z272)20fg八氟萘信噪比至少10:1。

真空系统:分子涡轮泵和扩散泵可选。

质量轴稳定性:±0.15u(12h)计算机操作系统:MS-DOS,Microsoft Windows NT。

可选质谱库:NIST Chemical Structures(美国国家标准研究所);Wiley Library(威廉图谱库,27万5千个图谱,第6版);Standard pesticide Library(标准杀虫剂图谱库340个化合物);Pfleger DrugLibrary(富莱格药物数据库,4370个化合物)。

离子化方法:EI(电子轰击);PCI(正化学源);NCI(负化学源)。

气相色谱:HP 6890。

(2)AMD M-40S/AMD 503 S(AMD Intectra Gmbh,德国)质量范围:2200(加速电压8kv);8800(加速电压2kv)。

质谱计:双聚焦磁质谱分辨率:>60000(10%谷底)灵敏度:电子轰击离子化,分辨率1000时测1μg硬脂酸甲酯产生>3×10-7C电量。

计算机操作系统:Microsoft windows离子化方法:EI(电子轰击);PCI(正化学源);NCI(负化学源);API(常压化学电离,供LC-MS)。

正交时间飞行分析器作串接质谱仪,提供MS-MS。

色谱:气相色谱或液相色谱(3)Kodiak 1200 GC-MS-MS(Bear Instruments INC.,美国)质量范围:10-800u/15-1500质谱计:四极杆-八极杆CAD分辨率:质量数800u,单位质量分辨灵敏度:电子轰击离子化,选择离子检测(m/z272)100fg八氟萘信噪比>10,化学离子化,全扫描(m/z90-240)抽提质量数m/z183,100pg二苯甲酮信噪比>25。

真空系统:250L/s的分子涡轮泵和EdwardsRV3旋转泵。

计算机操作系统:Microsoft windows NT离子化方法:EI(电子轰击);PCI(正化学源);NCI(负化学源);API(常压化学电离,供LC-MS)。

CAD方式限供MS-MS。

色谱:气相色谱(HP6080)或液相色谱。

(4)Finnigan PolarisQ GC-MS/tEMPUS TOF MS(Thermo Quest Corporation,美国)质量范围:10-100质谱计:离子阱- 提供全扫描、选择离子检测、多重质谱(MSn,n=1-5)灵敏度:电子轰击,无分流进样,每秒钟两次全扫描(60-400m/z)10pg十氟苯酚抽提离子m/z362测得信噪比>25;正化学源,无分流进样每秒钟两次全扫描(m/z60-400)100pg十氟苯酚,抽提离子m/z363测得信噪比>10;负化学源,无分流进样,每秒钟两次全扫描(m/z60-400)1pg十氟苯酚,抽提离子m/z362测得信噪比>50。

相关文档
最新文档