顺序存储结构上线性表基本操作实现及应用

合集下载

实验一 线性表的基本操作实现及其应用

实验一 线性表的基本操作实现及其应用

实验一线性表的基本操作实现及其应用一、实验目的1、熟练掌握线性表的基本操作在两种存储结构上的实现。

2、会用线性链表解决简单的实际问题。

二、实验内容题目一、该程序的功能是实现单链表的定义和操作。

该程序包括单链表结构类型以及对单链表操作的具体的函数定义和主函数。

其中,程序中的单链表(带头结点)结点为结构类型,结点值为整型。

单链表操作的选择以菜单形式出现,如下所示:please input the operation:1.初始化2.清空3.求链表长度4.检查链表是否为空5.检查链表是否为满6.遍历链表(设为输出元素)7.从链表中查找元素8.从链表中查找与给定元素值相同的元素在表中的位置9.向链表中插入元素 10. 从链表中删除元素其他键退出。

其中黑体部分必做题目二、约瑟夫环问题:设编号为1,2,3,……,n的n(n>0)个人按顺时针方向围坐一圈,每个人持有一个正整数密码。

开始时任选一个正整数做为报数上限m,从第一个人开始顺时针方向自1起顺序报数,报到m时停止报数,报m的人出列,将他的密码作为新的m值,从他的下一个人开始重新从1报数。

如此下去,直到所有人全部出列为止。

令n最大值取30。

要求设计一个程序模拟此过程,求出出列编号序列。

struct node(一)1.进入选择界面后,先选择7,进行插入:2.选择4,进行遍历,结果为:3.选择2,得出当前链表长度.4.选择3,得出当前链表为.5.选择分别选择5、6进行测试.6.选择8,分别按位置和元素值删除.7.选择9,或非1-8的字符,程序结束.(二) 实验总结通过这次实验,我对线性链表有了更深的理解,深入明白了线性存储结构与链式存储结构在内存存储的不同特点,同时我还学会了用这些知识实际解决一些问题,能够更加熟练地将算法转化为实际程序。

同时,在写程序和调试程序的过程中,学会了一些书写技巧和调试技巧,这对于自己能在短时间高效的写出正确地程序有很大作用。

四、主要算法流程图及程序清单 1. 主要算法流程图:(1) 从单链表表中查找与给定元素值相同的元素在链表中的位置p=p->nextp&&!(p->data==xtrue调用函数,传入参数L ,xp=L->next2.程序清单:#include<iostream> using namespace std; #include<>#include<>/* 预处理命令 */#define OK 1;#define ERROR 0;#define OVERFLOW -1;/* 单链表的结点类型 */typedef struct LNode{int data;struct LNode *next;}LNode,*LinkedList;/*初始化单链表*/LinkedList LinkedListInit(){空"<<endl;cout<<"\t\t\t"<<"2.求链表长度"<<endl;cout<<"\t\t\t"<<"3.检查链表是否为空"<<endl;cout<<"\t\t\t"<<"4.遍历链表"<<endl;cout<<"\t\t\t"<<"5.从链表中查找元素 "<<endl;cout<<"\t\t\t"<<"6.从链表中查找与给定元素值相同的元素在表中的位置"<<endl;cout<<"\t\t\t"<<"7.向链表中插入元素"<<endl;cout<<"\t\t\t"<<"8.从链表中删除元素"<<endl;cout<<"\t\t\t"<<"9.退出"<<endl;}/*主函数*/int main(){链表长度case 2:{cout<<"\t\t\t链表长度为:"<<LinkedListLength(L)<<endl;getch();}break;查链表是否为空case 3:{if (!LinkedListEmpty(L)){cout<<"\t\t\t链表不为空!"<<endl;}else{cout<<"\t\t\t链表为空!"<<endl;}getch();}break;历链表case 4:{LinkedListTraverse(L);getch();}break;链表中查找元素case 5:{cout<<"\t\t\t请输入要查询的位置i:";int j;cin>>j;if (LinkedListGet(L,j)){cout<<"\t\t\t位置i的元素值为:"<<LinkedListGet(L,j)->data<<endl;}else{cout<<"\t\t\ti大于链表长度!"<<endl;}getch();}break;链表中查找与给定元素值相同的元素在表中的位置case 6:{cout<<"\t\t\t请输入要查找的元素值:";int b;cin>>b;if (LinkedListGet1(L,b)){cout<<"\t\t\t要查找的元素值位置为:"<<LinkedListGet1(L,b)<<endl;cout<<"\t\t\t要查找的元素值内存地址为:"<<LinkedListLocate(L,b)<<endl;}else{cout<<"\t\t\t该值不存在!"<<endl;}getch();}break;链表中插入元素case 7:{cout<<"\t\t\t请输入要插入的值:";int x; cin>>x;cout<<"\t\t\t请输入要插入的位置:";int k; cin>>k;if(LinkedListInsert(L,k,x)){cout<<"\t\t\t插入成功!"<<endl;}else{cout<<"\t\t\t插入失败!"<<endl;}getch();}break;链表中删除元素case 8:{cout<<"\t\t\t1.按位置删除"<<endl;cout<<"\t\t\t2.按元素删除"<<endl;int d;cout<<"\t\t请选择:";cin>>d;switch(d){case 1:{cout<<"\t\t\t请输入删除位置:";cin>>d;int y;if (LinkedListDel(L,d,y)){cout<<"\t\t\t"<<y<<"被删除!"<<endl;}else{cout<<"\t\t\t删除失败!"<<endl;}}break;case 2:{cout<<"\t\t\t请输入删除元素:";int y;cin>>y;if (LinkedListDel(L,y)){cout<<"\t\t\t"<<y<<"被删除!"<<endl;}else{cout<<"\t\t\t删除失败!"<<endl;}}}getch();}break;}}return 1;}题二约瑟夫环问题算法、思想为了解决这一问题,可以先定义一个长度为30(人数)的数组作为线性存储结构,并把该数组看成是一个首尾相接的环形结构,那么每次报m的人,就要在该数组的相应位置做一个删除标记,该单元以后就不再作为计数单元。

数据结构实验报告-线性表(顺序表实现)

数据结构实验报告-线性表(顺序表实现)

实验1:线性表(顺序表的实现)一、实验项目名称顺序表基本操作的实现二、实验目的掌握线性表的基本操作在顺序存储结构上的实现。

三、实验基本原理顺序表是由地址连续的的向量实现的,便于实现随机访问。

顺序表进行插入和删除运算时,平均需要移动表中大约一半的数据元素,容量难以扩充四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和一些预定义:2.定义顺序表:3.初始化:4.插入元素:5.查询元素:6.删除元素:7.销毁顺序表:8.清空顺序表:9.顺序表长度:10.判空:11.定位满足大小关系的元素(默认小于):12.查询前驱:13.查询后继:14.输出顺序表15.归并顺序表16.写测试程序以及主函数对顺序表的每一个操作写一个测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define error 0#define overflow -2#define initSize 100#define addSize 10#define compareTo <=typedef int ElemType;struct List{ElemType *elem;int len;int listsize;}L;void init(List &L){L.elem = (ElemType *) malloc(initSize * sizeof(ElemType)); if(!L.elem){cout << "分配内存失败!";exit(overflow);}L.len = 0;L.listsize = initSize;}void destroy(List &L){free(L.elem);L.len = L.listsize = 0;}void clear(List &L){L.len = 0;}bool empty(List L){if(L.len == 0) return true;else return false;}int length(List L){return L.len;}ElemType getElem(List L,int i){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}return L.elem[i - 1];}bool compare(ElemType a,ElemType b) {return a compareTo b;}int locateElem(List L,ElemType e) {for(int i = 0;i < L.len;i++){if(compare(L.elem[i],e))return i;}return -1;}int check1(List L,ElemType e){int idx = -1;for(int i = 0;i < L.len;i++)if(L.elem[i] == e)idx = i;return idx;}bool check2(List L,ElemType e){int idx = -1;for(int i = L.len - 1;i >= 0;i--)if(L.elem[i] == e)idx = i;return idx;}int priorElem(List L,ElemType cur_e,ElemType pre_e[]) {int idx = check1(L,cur_e);if(idx == 0 || idx == -1){string str = "";str = idx == 0 ? "无前驱结点" : "不存在该元素";cout << str;exit(error);}int cnt = 0;for(int i = 1;i < L.len;i++){if(L.elem[i] == cur_e){pre_e[cnt ++] = L.elem[i - 1];}}return cnt;}int nextElem(List L,ElemType cur_e,ElemType next_e[]){int idx = check2(L,cur_e);if(idx == L.len - 1 || idx == - 1){string str = "";str = idx == -1 ? "不存在该元素" : "无后驱结点";cout << str;exit(error);}int cnt = 0;for(int i = 0;i < L.len - 1;i++){if(L.elem[i] == cur_e){next_e[cnt ++] = L.elem[i + 1];}}return cnt;}void insert(List &L,int i,ElemType e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}if(L.len >= L.listsize){ElemType *newbase = (ElemType *)realloc(L.elem,(L.listsize + addSize) * sizeof(ElemType));if(!newbase){cout << "内存分配失败!";exit(overflow);}L.elem = newbase;L.listsize += addSize;for(int j = L.len;j > i - 1;j--)L.elem[j] = L.elem[j - 1];L.elem[i - 1] = e;L.len ++;}void deleteList(List &L,int i,ElemType &e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}e = L.elem[i - 1];for(int j = i - 1;j < L.len;j++)L.elem[j] = L.elem[j + 1];L.len --;}void merge(List L,List L2,List &L3){L3.elem = (ElemType *)malloc((L.len + L2.len) * sizeof(ElemType)); L3.len = L.len + L2.len;L3.listsize = initSize;if(!L3.elem){cout << "内存分配异常";exit(overflow);}int i = 0,j = 0,k = 0;while(i < L.len && j < L2.len){if(L.elem[i] <= L2.elem[j])L3.elem[k ++] = L.elem[i ++];else L3.elem[k ++] = L2.elem[j ++];}while(i < L.len)L3.elem[k ++] = L.elem[i ++];while(j < L2.len)L3.elem[k ++] = L2.elem[j ++];}bool visit(List L){if(L.len == 0) return false;for(int i = 0;i < L.len;i++)cout << L.elem[i] << " ";cout << endl;return true;}void listTraverse(List L){if(!visit(L)) return;}void partion(List *L){int a[100000],b[100000],len3 = 0,len2 = 0; memset(a,0,sizeof a);memset(b,0,sizeof b);for(int i = 0;i < L->len;i++){if(L->elem[i] % 2 == 0)b[len2 ++] = L->elem[i];elsea[len3 ++] = L->elem[i];}for(int i = 0;i < len3;i++)L->elem[i] = a[i];for(int i = 0,j = len3;i < len2;i++,j++) L->elem[j] = b[i];cout << "输出顺序表:" << endl;for(int i = 0;i < L->len;i++)cout << L->elem[i] << " ";cout << endl;}//以下是测试函数------------------------------------void test1(List &list){init(list);cout << "初始化完成!" << endl;}void test2(List &list){if(list.listsize == 0)cout << "线性表不存在!" << endl;else{int len;ElemType num;cout << "选择插入的元素数量:" << endl;cin >> len;cout << "依次输入要插入的元素:" << endl;for(int i = 1;i <= len;i++){cin >> num;insert(list,i,num);}cout << "操作成功!" << endl;}}void test3(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "请输入要返回的元素的下标" << endl;int idx;cin >> idx;cout << "线性表中第" << idx << "个元素是:" << getElem(L,idx) << endl;}}void test4(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{int idx;ElemType num;cout << "请输入要删除的元素在线性表的位置" << endl;cin >> idx;deleteList(L,idx,num);cout << "操作成功!" << endl << "被删除的元素是:" << num << endl; }}void test5(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{destroy(L);cout << "线性表已被销毁" << endl;}}void test6(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{clear(L);cout << "线性表已被清空" << endl;}}void test7(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else cout << "线性表的长度现在是:" << length(L) << endl;}void test8(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else if(empty(L))cout << "线性表现在为空" << endl;else cout << "线性表现在非空" << endl;}void test9(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num;cout << "请输入待判定的元素:" << endl;cin >> num;cout << "第一个与目标元素满足大小关系的元素的位置:" << locateElem(L,num) << endl;}}void test10(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = priorElem(L,num,num2);cout << num << "的前驱为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test11(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = nextElem(L,num,num2);cout << num << "的后继为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test12(List list){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "输出线性表所有元素:" << endl;listTraverse(list);}}void test13(){if(L.listsize == 0)cout << "初始线性表不存在!" << endl; else{List L2,L3;cout << "初始化一个新线性表" << endl;test1(L2);test2(L2);cout << "归并两个线性表" << endl;merge(L,L2,L3);cout << "归并成功!" << endl;cout << "输出合并后的线性表" << endl;listTraverse(L3);}}void test14(){partion(&L);cout << "奇偶数分区成功!" << endl;}int main(){std::ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int op = 0;while(op != 15){cout << "-----------------menu--------------------" << endl;cout << "--------------1:初始化------------------" << endl;cout << "--------------2:插入元素----------------" << endl;cout << "--------------3:查询元素----------------" << endl;cout << "--------------4:删除元素----------------" << endl;cout << "--------------5:销毁线性表--------------" << endl;cout << "--------------6:清空线性表--------------" << endl;cout << "--------------7:线性表长度--------------" << endl;cout << "--------------8:线性表是否为空----------" << endl;cout << "--------------9:定位满足大小关系的元素--" << endl;cout << "--------------10:查询前驱---------------" << endl;cout << "--------------11:查询后继---------------" << endl;cout << "--------------12:输出线性表-------------" << endl;cout << "--------------13:归并线性表-------------" << endl;cout << "--------------14:奇偶分区---------------" << endl;cout << "--------------15: 退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl; if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1(L);break;case 2:test2(L);break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:test12(L);break;case 13:test13();break;case 14:test14();break;case 15:cout << "测试结束!" << endl;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果1.初始化:2.插入元素3.查询元素(返回的是数组下标,下标从0开始)4.删除元素(位置从1开始)5.销毁顺序表6.清空顺序表7.顺序表长度(销毁或清空操作前)8.判空(销毁或清空操作前)9.定位满足大小关系的元素(销毁或清空操作前)说明:这里默认找第一个小于目标元素的位置且下标从0开始,当前顺序表的数据为:1 4 2 510.前驱(销毁或清空操作前)11.后继(销毁或清空操作前)12.输出顺序表(销毁或清空操作前)13.归并顺序表(销毁或清空操作前)七、思考讨论题或体会或对改进实验的建议通过本次实验,我掌握了定义线性表的顺序存储类型,加深了对顺序存储结构的理解,进一步巩固和理解了顺序表的基本操作,如建立、查找、插入和删除等。

线性表的基本操作实验报告

线性表的基本操作实验报告

实验一:线性表的基本操作【实验目的】学习掌握线性表的顺序存储结构、链式存储结构的设计与操作.对顺序表建立、插入、删除的基本操作,对单链表建立、插入、删除的基本操作算法。

【实验内容】1.顺序表的实践1)建立4个元素的顺序表s=sqlist[]={1,2,3,4,5},实现顺序表建立的基本操作.2) 在sqlist []={1,2,3,4,5}的元素4和5之间插入一个元素9,实现顺序表插入的基本操作。

3) 在sqlist []={1,2,3,4,9,5}中删除指定位置(i=5)上的元素9,实现顺序表的删除的基本操作。

2.单链表的实践3.1) 建立一个包括头结点和4个结点的(5,4,2,1)的单链表,实现单链表建立的基本操作。

2)将该单链表的所有元素显示出来。

3) 在已建好的单链表中的指定位置(i=3)插入一个结点3,实现单链表插入的基本操作。

4) 在一个包括头结点和5个结点的(5,4,3,2,1)的单链表的指定位置(如i=2)删除一个结点,实现单链表删除的基本操作。

5) 实现单链表的求表长操作.【实验步骤】1.打开VC++.2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK-〉finish。

至此工程建立完毕.3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File.给文件起好名字,选好路径,点OK。

至此一个源文件就被添加到了刚创建的工程之中.4.写好代码5.编译->链接->调试1、#include "stdio。

h”#include "malloc.h”#define OK 1#define OVERFLOW -2#define ERROR 0#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef int ElemType;typedef int Status;typedef struct {ElemType *elem;int length;int listsize;} SqList;Status InitList( SqList &L ) {int i,n;L。

数据结构实验报告-实验:1线性表的顺序存储和操作实现

数据结构实验报告-实验:1线性表的顺序存储和操作实现
System.exit(1);
}
for(inti=pos-1;i<length;i++)
if(listArray[i].equals(obj))returni+1;
return-1;
}
publicbooleanmodify(Object obj,intpos){
if(pos<1||pos>length){
List sort();
}
publicclasssequenceListimplementsList {
finalintmaxSize=10;
privateintlength;
privateObject[]listArray;
publicsequenceList(){//无参数的构造函数的定义
length=0;//线性表初始为空,即长度为0
System.out.println();
list2.preOrder();
System.out.println("线性表list2长度:"+list2.size());
}
}
publicinterfaceList {
Object value(intpos);
booபைடு நூலகம்eanadd(Object obj,intpos);
int[] a={20,16,38,42,29};
for(inti=0;i<a.length;i++) list1.add(a[i], i+1);
intn1=(Integer)list1.remove(2);
list1.add(80, 3);
intn2=(Integer)list1.value(4);

线性表的存储结构定义及基本操作(实验报告)

线性表的存储结构定义及基本操作(实验报告)

线性表的存储结构定义及基本操作(实验报告)线性表的存储结构定义及基本操作一掌握线性表的逻辑特征掌握线性表顺序存储结构的特点熟练掌握顺序表的基本运算熟练掌握线性表的链式存储结构定义及基本操作理解循环链表和双链表的特点和基本运算加深对顺序存储数据结构的理解和链式存储数据结构的理解逐步培养解决实际问题的编程能力二一基本实验内容顺序表建立顺序表完成顺序表的基本操作初始化插入删除逆转输出销毁置空表求表长查找元素判线性表是否为空1 问题描述利用顺序表设计一组输入数据假定为一组整数能够对顺序表进行如下操作创建一个新的顺序表实现动态空间分配的初始化根据顺序表结点的位置插入一个新结点位置插入也可以根据给定的值进行插入值插入形成有序顺序表根据顺序表结点的位置删除一个结点位置删除也可以根据给定的值删除对应的第一个结点或者删除指定值的所有结点值删除利用最少的空间实现顺序表元素的逆转实现顺序表的各个元素的输出彻底销毁顺序线性表回收所分配的空间对顺序线性表的所有元素删除置为空表返回其数据元素个数按序号查找根据顺序表的特点可以随机存取直接可以定位于第 i 个结点查找该元素的值对查找结果进行返回按值查找根据给定数据元素的值只能顺序比较查找该元素的位置对查找结果进行返回判断顺序表中是否有元素存在对判断结果进行返回编写主程序实现对各不同的算法调用2 实现要求对顺序表的各项操作一定要编写成为C C 语言函数组合成模块化的形式每个算法的实现要从时间复杂度和空间复杂度上进行评价初始化算法的操作结果构造一个空的顺序线性表对顺序表的空间进行动态管理实现动态分配回收和增加存储空间位置插入算法的初始条件顺序线性表L已存在给定的元素位置为i且1≤i ≤ListLength L 1操作结果在L中第i个位置之前插入新的数据元素eL的长度加1位置删除算法的初始条件顺序线性表L已存在1≤i≤ListLength L 操作结果删除L的第i个数据元素并用e返回其值L的长度减1逆转算法的初始条件顺序线性表L已存在操作结果依次对L的每个数据元素进行交换为了使用最少的额外空间对顺序表的元素进行交换输出算法的初始条件顺序线性表L已存在操作结果依次对L的每个数据元素进行输出销毁算法初始条件顺序线性表L已存在操作结果销毁顺序线性表 L置空表算法初始条件顺序线性表L已存在操作结果将L重置为空表求表长算法初始条件顺序线性表L已存在操作结果返回L中数据元素个数按序号查找算法初始条件顺序线性表 L 已存在元素位置为 i且 1≤i≤ListLength L 操作结果返回 L 中第 i 个数据元素的值按值查找算法初始条件顺序线性表 L 已存在元素值为 e 操作结果返回 L 中数据元素值为 e 的元素位置判表空算法初始条件顺序线性表 L 已存在操作结果若 L 为空表则返回 TRUE否则返回 FALSE分析修改输入数据预期输出并验证输出的结果加深对有关算法的理解二基本实验内容单链表建立单链表完成链表带表头结点的基本操作建立链表插入删除查找输出求前驱求后继两个有序链表的合并操作其他基本操作还有销毁链表将链表置为空表求链表的长度获取某位置结点的内容搜索结点1 问题描述利用线性表的链式存储结构设计一组输入数据假定为一组整数能够对单链表进行如下操作初始化一个带表头结点的空链表创建一个单链表是从无到有地建立起一个链表即一个一个地输入各结点数据并建立起前后相互链接的关系又分为逆位序插在表头输入 n 个元素的值和正位序插在表尾输入 n 个元素的值插入结点可以根据给定位置进行插入位置插入也可以根据结点的值插入到已知的链表中值插入且保持结点的数据按原来的递增次序排列形成有序链表删除结点可以根据给定位置进行删除位置删除也可以把链表中查找结点的值为搜索对象的结点全部删除值删除输出单链表的内容是将链表中各结点的数据依次显示直到链表尾结点编写主程序实现对各不同的算法调用其它的操作算法描述略2 实现要求对链表的各项操作一定要编写成为 C C 语言函数组合成模块化的形式还要针对每个算法的实现从时间复杂度和空间复杂度上进行评价初始化算法的操作结果构造一个空的线性表 L产生头结点并使 L 指向此头结点建立链表算法初始条件空链存在操作结果选择逆位序或正位序的方法建立一个单链表并且返回完成的结果链表位置插入算法初始条件已知单链表 L 存在操作结果在带头结点的单链线性表 L 中第 i 个位置之前插入元素 e链表位置删除算法初始条件已知单链表 L 存在操作结果在带头结点的单链线性表 L 中删除第 i 个元素并由 e 返回其值输出算法初始条件链表 L 已存在操作结果依次输出链表的各个结点的值三扩展实验内容顺序表查前驱元素查后继元素顺序表合并等1 问题描述根据给定元素的值求出前驱元素根据给定元素的值求出后继元素对已建好的两个顺序表进行合并操作若原线性表中元素非递减有序排列要求合并后的结果还是有序有序合并对于原顺序表中元素无序排列的合并只是完成 A A∪B 无序合并要求同样的数据元素只出现一次修改主程序实现对各不同的算法调用2 实现要求查前驱元素算法初始条件顺序线性表 L 已存在操作结果若数据元素存在且不是第一个则返回前驱否则操作失败查后继元素算法初始条件顺序线性表 L 已存在操作结果若数据元素存在且不是最后一个则返回后继否则操作失败无序合并算法的初始条件已知线性表 La 和 Lb操作结果将所有在线性表 Lb 中但不在 La 中的数据元素插入到 La 中有序合并算法的初始条件已知线性表 La 和 Lb 中的数据元素按值非递减排列操作结果归并 La 和 Lb 得到新的线性表 LcLc 的数据元素也按值非递减排列四扩展实验内容链表1 问题描述求前驱结点是根据给定结点的值在单链表中搜索其当前结点的后继结点值为给定的值将当前结点返回求后继结点是根据给定结点的值在单链表中搜索其当前结点的值为给定的值将后继结点返回两个有序链表的合并是分别将两个单链表的结点依次插入到第 3 个单链表中继续保持结点有序2 实现要求求前驱算法初始条件线性表 L 已存在操作结果若 cur_e 是 L 的数据元素且不是第一个则用 pre_e 返回它的前驱求后继算法初始条件线性表 L 已存在操作结果若 cur_e 是 L 的数据元素且不是最后一个则用 next_e 返回它的后继两个有序链表的合并算法初始条件线性表单链线性表 La 和 Lb 的元素按值非递减排列操作结果归并 La 和 Lb 得到新的单链表三实验环境和实验步骤实验环境利用CodeBlocks1005集成开发环境进行本实验的操作实验步骤――顺序表的定义与操作1启动CodeBlocks1052按Create a new project 通过file 按CC source选择c然后GO储存文件D\c语言\顺序表c3进行编代码4编好之后搞ctrlshiftF9进行编译然后按ctrlF105如果编译出问题然后进行调试实验步骤――链表的定义与操作1启动CodeBlocks1052按Create a new project 通过file 按CC source选择c然后GO储存文件D\c语言\单链表c3进行编代码4编好之后搞ctrlshiftF9进行编译然后按ctrlF105如果编译出问题然后进行调试四 includeinclude "stdlibh"includedefine LIST_INIT_SIZE 100define ok 1define ERROR 0define OVERFLOW -1define Num 3typedef int DataTypetypedef int Statustypedef structDataType elemint Lengthint ListsizeSeqListSeqList LStatus InitSeqList SeqList LL- elem Da。

顺序表的实现及应用实验报告

顺序表的实现及应用实验报告

顺序表的实现及应用实验报告序言顺序表是一种基本的线性数据结构,它采用物理上的连续存储结构,在数据元素的存储空间上也是连续的。

本文将阐述顺序表的实现及应用实验报告。

实验目的掌握顺序表的定义、实现及其应用。

实验内容1. 顺序表的定义顺序表是一种线性表的存储方法,它把线性表中的元素按其逻辑顺序依次存储在一段连续的存储区域中,也就是一维数组。

顺序表既可以用于存储静态数据,也可以用于存储动态数据。

2. 顺序表的实现顺序表的实现需要用到一维数组,当创建顺序表时,先要确定它的最大长度,然后根据长度创建相应大小的一维数组,接着插入数据时,依次将数据插入到数组中,需要注意的是,数组是从0开始储存的,而不是从1开始。

以下是顺序表的实现代码示例:```python# 设定最大长度为10MAX_SIZE = 10class SeqList:def __init__(self):self.seq = [None] * MAX_SIZEdef insert(self, index, value):# 检查是否超出最大长度,或者下标越界if index < 0 or index > MAX_SIZE or index >= len(self.seq): raise IndexError# 移动数组,腾出位置for i in range(MAX_SIZE - 1, index - 1, -1):self.seq[i] = self.seq[i - 1]# 插入数据self.seq[index] = valuedef pop(self, index):# 检查下标合法性if index < 0 or index >= len(self.seq):raise IndexError# 移动数组,删除数据for i in range(index, MAX_SIZE - 1):self.seq[i] = self.seq[i + 1]# 最后一位设为None,释放空间self.seq[-1] = Nonedef __repr__(self):return str(self.seq)```3. 顺序表的应用顺序表可以用于很多场景,比如存储学生成绩、成绩排名、图书管理等,以下是一个简单的例子:存储学生成绩并排序```pythonseq = SeqList()seq.insert(0, 89)seq.insert(1, 92)seq.insert(2, 76)seq.insert(3, 68)seq.insert(4, 100)print(seq)```输出:`[89, 92, 76, 68, 100, None, None, None, None, None]` 对学生成绩进行排序:```pythonseq.seq.sort(reverse=True)print(seq)```输出:`[100, 92, 89, 76, 68, None, None, None, None, None]` 结论通过本次实验,我们掌握了顺序表的定义、实现及其应用,顺序表在大多数情况下提供了比较高效的数据访问,因此在实际开发中非常有用。

线性表的存储结构定义及基本操作

线性表的存储结构定义及基本操作

一、实验目的:. 掌握线性表的逻辑特征. 掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算. 熟练掌握线性表的链式存储结构定义及基本操作. 理解循环链表和双链表的特点和基本运算. 加深对顺序存储数据结构的理解和链式存储数据结构的理解,逐步培养解决实际问题的编程能力二、实验内容:(一)基本实验内容(顺序表):建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空;1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作:. 创建一个新的顺序表,实现动态空间分配的初始化;. 根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表;. 根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除);. 利用最少的空间实现顺序表元素的逆转;. 实现顺序表的各个元素的输出;. 彻底销毁顺序线性表,回收所分配的空间;. 对顺序线性表的所有元素删除,置为空表;. 返回其数据元素个数;. 按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回;. 按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回;. 判断顺序表中是否有元素存在,对判断结果进行返回;. 编写主程序,实现对各不同的算法调用。

2.实现要求:对顺序表的各项操作一定要编写成为C(C++)语言函数,组合成模块化的形式,每个算法的实现要从时间复杂度和空间复杂度上进行评价;. “初始化算法”的操作结果:构造一个空的顺序线性表。

对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间;. “位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ;操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1;. “位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ;操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ;. “逆转算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换;. “输出算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行输出;. “销毁算法”初始条件:顺序线性表L 已存在;操作结果:销毁顺序线性表L;. “置空表算法”初始条件:顺序线性表L 已存在;操作结果:将L 重置为空表;. “求表长算法”初始条件:顺序线性表L 已存在;操作结果:返回L 中数据元素个数;. “按序号查找算法”初始条件:顺序线性表L 已存在,元素位置为i,且1≤i≤ListLength(L)操作结果:返回L 中第i 个数据元素的值. “按值查找算法”初始条件:顺序线性表L 已存在,元素值为e;操作结果:返回L 中数据元素值为e 的元素位置;. “判表空算法”初始条件:顺序线性表L 已存在;操作结果:若L 为空表,则返回TRUE,否则返回FALSE;分析: 修改输入数据,预期输出并验证输出的结果,加深对有关算法的理解。

线性表 定义顺序存储结构基本操作两种特殊的线性表栈队列

线性表 定义顺序存储结构基本操作两种特殊的线性表栈队列

Void SetNode(Node *front) { front->next=NULL; }
} …
Test1.c

#include “node.h” Void main() {
int i,j; Node front,*prevptr,*ptr; SetNode(&front); ptr=&front; for(i=1;i<5;i++)
} 线性结构
结点可以不连续存储,表可扩充
单向链表的存贮映像
指针操作
LNode *p,*q; p->data;p->next; q=new LNode; q=p; q=p->next; (q指向后继) p=p->next; (指针移动) p->next=q; (链指针改接) p->next= q->next; (?)
链表结点的基本运算
Void SetNode(LNode *front);//构造函数,结点 的next置NULL
Node *NextNode(LNode *ptr);//返回后继指针 Void InsertAfter(LNode *ptr,Datatype item);//
在结点*ptr插入 Void DeleteAfter(LNode *ptr);//删除结点后的
ptr=NextNode(ptr); ptr->data=item
}
循环链表
循环链表是单链表的变形。 循环链表最后一个结点的link指针不为NULL,
而是指向了表的前端 为简化操作,在循环链表中往往加入表头结点。 循环链表的特点是:只要知道表中某一结点的
地址,就可搜寻到所有其他结点的地址。

顺序表的基本操作与应用实验报告

顺序表的基本操作与应用实验报告

实验报告课程名称数据结构实验名称顺序表基本操作与应用姓名专业班级学号试验日期试验地点E3-502指导老师邹汉斌成绩一、实验目的1.学会定义线性表的顺序存储类型,实现C程序的基本结构,对线性表的一些基本操作和具体的函数定义。

2.掌握顺序表的基本操作,实现顺序表的插入、删除、查找以及求并集等运算。

3.掌握对多函数程序的输入、编辑、调试和运行过程。

二、实验要求1.预习C语言中结构体的定义与基本操作方法。

2.对顺序表的每个基本操作用单独的函数实现。

3.编写完整程序完成下面的实验内容并上机运行。

4.整理并上交实验报告。

三、实验内容:1.编写程序实现顺序表的下列基本操作:(1) 初始化顺序表La;(2) 将La置为空表;(3) 销毁La (4) 在La中插入一个新的元素;(5) 删除La中的某一元素;(6) 在La中查找某元素,若找到,则返回它在La中第一次出现的位置,否则返回0 ;(7) 打印输出La中的元素值。

2.定义一个包含学生信息(学号,姓名,成绩)的顺序表,使其具有如下功能:(1) 根据指定学生个数,逐个输入学生信息;(2) 逐个显示学生表中所有学生的相关信息;(3) 根据姓名进行查找,返回此学生的学号和成绩;(4) 根据指定的位置可返回相应的学生信息(学号,姓名,成绩);(5) 给定一个学生信息,插入到表中指定的位置;(6) 删除指定位置的学生记录;(7) 统计表中学生个数。

实验提示:第2题可在第1题的基础上将数据结构的定义修改成下面形式后,程序适当修改即可。

学生信息的定义:typedef struct {char no[8]; //8位学号char name[20]; //姓名int score; //成绩}Student;typedef Student ElemType;顺序表的定义typedef struct {ElemType *elem; //指向数据元素的基地址int length; //线性表的当前长度}SqList;四、思考与提高1.编写程序完成下面的操作:(每位同学必做)(1)构造两个顺序线性表La和Lb,其元素都按值非递减顺序排列;(2)实现归并La和Lb得到新的顺序表Lc,Lc的元素也按值非递减顺序排列;(3)假设两个顺序线性表La和Lb 分别表示两个集合A和B,利用union_Sq操作实现A=A∪B。

实验一--线性表基本操作的编程实现

实验一--线性表基本操作的编程实现

实验一--线性表基本操作的编程实现实验一线性表基本操作的编程实现【实验目的】线性表基本操作的编程实现要求:线性表基本操作的编程实现(2学时,验证型),掌握线性表的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找、逆序、排序等操作,存储结构可以在顺序结构或链表结构中任选,可以完成部分主要功能,也可以用菜单进行管理完成大部分功能。

还鼓励学生利用基本操作进行一些更实际的应用型程序设计。

【实验性质】验证性实验(学时数:2H)【实验内容】把线性表的顺序存储和链表存储的数据插入、删除运算其中某项进行程序实现。

建议实现键盘输入数据以实现程序的通用性。

为了体现功能的正常性,至少要编制遍历数据的函数。

【注意事项】1.开发语言:使用C。

2.可以自己增加其他功能。

【思考问题】1.线性表的顺序存储和链表存储的差异?优缺点分析?2.那些操作引发了数据的移动?3.算法的时间效率是如何体现的?4.链表的指针是如何后移的?如何加强程序的健壮性?【参考代码】(以下内容,学生任意选择一个完成即可)(一)利用顺序表完成一个班级学生课程成绩的简单管理1、预定义以及顺序表结构类型的定义(1) #include<stdio.h>#include<conio.h>#define ListSize 100 //根据需要自己设定一个班级能够容纳的最大学生数(2) typedef struct stu{int num; //学生的学号char name[10]; //学生的姓名float physics; //物理成绩float math; //数学成绩float english; //英语成绩}STUDENT; //存放单个学生信息的结构体类型typedef struct List{STUDENT stu[ListSize]; //存放学生的数组定义,静态分配空间int length; //记录班级实际学生个数}LIST; //存放班级学生信息的顺序表类型2、建立班级的学生信息void listcreate(LIST *Li,int m) //m为该班级的实际人数{int i;Li->length=0;for(i=1; ;i++) //输入m个学生的所有信息{printf("请输入第%d位学生的信息:\n",i);printf("学号=");scanf("%d",&Li->stu[i].num); //输入第i个学生的学号printf("姓名=");scanf("%s",&Li->stu[i].name); //输入第i个学生的姓名printf("物理成绩=");scanf("%f",&Li->stu[i].physics); //输入第i 个学生的物理成绩printf("数学成绩=");scanf("%f",&Li->stu[i].math); //输入第i个学生的数学成绩printf("英语成绩=");scanf("%f",&Li->stu[i].english); //输入第i 个学生的英语成绩; //学生人数加1}}3、插入一个学生信息int listinsert(LIST *Li,int i) //将学生插入到班级Li的第i个位置。

线性表的顺序表示和实现实验报告

线性表的顺序表示和实现实验报告

数学与计算科学学院实验报告实验项目名称线性表的顺序表示和实现所属课程名称数据结构A实验类型验证型实验日期2014年10月8日班级学号姓名成绩undeclared identifier is reported only once for each function it appears in.)| C:\Documents and Settings\Administrator\桌面\zxp\数据结构1.cpp||In function `Status ListInsert_Sq(SqList&, int, ElemType)':|C:\Documents and Settings\Administrator\桌面\zxp\数据结构1.cpp|39|error: `newbase' undeclared (first use this function)|C:\Documents and Settings\Administrator\桌面\zxp\数据结构 1.cpp||In function `int main()':|C:\Documents and Settings\Administrator\桌面\zxp\数据结构 1.cpp|67|error: `Initlist_Sq' undeclared (first use this function)|||=== Build finished: 4 errors, 0 warnings (0 minutes, 0 seconds) ===|(4).调试程序。

第一个和第二个错误都是由于粗心,将LIST_INIT_SIZE写成了LIST_INTI_SIZE;第三个错误newbase这个变量没有定义,应定义为ElemType *newbase;第四个错误是Initlist_Sq中L错将大写写成了小写字母。

将这些错误都改正过来后,编译通过了(5).验证程序。

实验一顺序表的基本操作实验报告

实验一顺序表的基本操作实验报告

元素之后的所有数据都前移一个位置,最将线性表长减1。

3.顺序表查找操作的基本步骤:要在顺序表中查找一个给定值的数据元素则可以采用顺序查找的方法,从表中第 1 个数据元素开始依次将值与给定值进行比较,若相等则返回该数据元素在顺序表中的位置,否则返回0 值。

线性表的动态分配顺序存储结构—C语言实现#define MaxSize 50//存储空间的分配量Typedef char ElemType;Typedef struct{ElemType data[MaxSize];int length; //表长度(表中有多少个元素)}SqList;动态创建一个空顺序表的算法:void InitList(SqList *&L) //初始化线性表{L=(SqList *)malloc(sizeof(SqList)); //分配存放线性表的空间L->length=0; //置空线性表长度为0}线性表的插入:status Sqlist_insert(Sqlist &L,int i,Elemtype x)/*在顺序表L中第i个元素前插入新元素x*/{ if (i<1||i>L.length+1) return ERROR; /*插入位置不正确则出错*/if (L.length>=MAXLEN)return OVERFLOW;/*顺序表L中已放满元素,再做插入操作则溢出*/for(j=L.length-1;j>=i-1;j--)L.elem[j+1]=L.elem[j]; /*将第i个元素及后续元素位置向后移一位*/L.elem[i-1]=x; /*在第i个元素位置处插入新元素x*/L.length++; /*顺序表L的长度加1*/return OK;}线性表的删除:status Sqlist_delete(Sqlist &L,int i,Elemtype &e)/*在顺序表L中删除第i个元素*{ if (i<1||i>L.length) return ERROR; /*删除位置不正确则出错*/for(j=i;j<=L.length-1;j++)L.elem[j-1]=L.elem[j]; /*将第i+1个元素及后继元素位置向前移一位*/L.length--;/*顺序表L的长度减1*/return OK;}线性表元素的查找:int LocateElem(SqList *L, ElemType e) //按元素值查找{int i=0;while (i<L->length && L->data[i]!=e)i++; //查找元素eif (i>=L->length) //未找到时返回0return 0;elsereturn i+1; //找到后返回其逻辑序号}输出线性表:void DispList(SqList *L) //输出线性表{int i;if (ListEmpty(L)) return;for (i=0;i<L->length;i++)printf("%c ",L->data[i]);printf("\n");}输出线性表第i个元素的值:bool GetElem(SqList *L,int i,ElemType &e)//求线性表中某个数据元素值{if (i<1 || i>L->length)return false; //参数错误时返回falsee=L->data[i-1]; //取元素值return true; //成功找到元素时返回true}代码:#include <stdio.h>#include <malloc.h>#define MaxSize 50typedef char ElemType;typedef struct{ElemType data[MaxSize];int length;} SqList;void InitList(SqList *&L);void DestroyList(SqList *L);bool ListEmpty(SqList *L);int ListLength(SqList *L);void DispList(SqList *L);bool GetElem(SqList *L,int i,ElemType &e);int LocateElem(SqList *L, ElemType e);bool ListInsert(SqList *&L,int i,ElemType e);bool ListDelete(SqList *&L,int i,ElemType &e);void InitList(SqList *&L)//初始化线性表{L=(SqList *)malloc(sizeof(SqList));//分配存放线性表的空间L->length=0;//置空线性表长度为0 }void DestroyList(SqList *L)//销毁线性表{free(L);}bool ListEmpty(SqList *L)//判线性表是否为空表{return(L->length==0);}int ListLength(SqList *L)//求线性表的长度{return(L->length);}void DispList(SqList *L)//输出线性表{int i;if (ListEmpty(L)) return;for (i=0;i<L->length;i++)printf("%c ",L->data[i]);printf("\n");}bool GetElem(SqList *L,int i,ElemType &e)//求线性表中某个数据元素值{if (i<1 || i>L->length)return false;//参数错误时返回falsee=L->data[i-1];//取元素值return true;//成功找到元素时返回true}int LocateElem(SqList *L, ElemType e)//按元素值查找{int i=0;while (i<L->length && L->data[i]!=e)i++;//查找元素eif (i>=L->length)//未找到时返回0return 0;elsereturn i+1;//找到后返回其逻辑序号}bool ListInsert(SqList *&L,int i,ElemType e)//插入数据元素{int j;if (i<1 || i>L->length+1)return false;//参数错误时返回falsei--;//将顺序表逻辑序号转化为物理序号for (j=L->length;j>i;j--)//将data[i]及后面元素后移一个位置L->data[j]=L->data[j-1];L->data[i]=e;//插入元素eL->length++;//顺序表长度增1return true;//成功插入返回true}bool ListDelete(SqList *&L,int i,ElemType &e)//删除数据元素{int j;if (i<1 || i>L->length)//参数错误时返回falsereturn false;i--;//将顺序表逻辑序号转化为物理序号e=L->data[i];for (j=i;j<L->length-1;j++)//将data[i]之后的元素前移一个位置L->data[j]=L->data[j+1];L->length--;//顺序表长度减1return true;//成功删除返回true}void main(){SqList *L;ElemType e;printf("顺序表的基本运算如下:\n");printf(" (1)初始化顺序表L\n");InitList(L);printf(" (2)依次采用尾插法插入a,b,c,d,e元素\n");ListInsert(L,1,'a');ListInsert(L,2,'b');ListInsert(L,3,'c');ListInsert(L,4,'d');ListInsert(L,5,'e');printf(" (3)输出顺序表L:");DispList(L);printf(" (4)顺序表L长度=%d\n",ListLength(L));printf(" (5)顺序表L为%s\n",(ListEmpty(L)?"空":"非空"));GetElem(L,3,e);printf(" (6)顺序表L的第3个元素=%c\n",e);实验结果:心得体会:通过本次实验,实现了数据结构在程序设计上的作用,了解了数据结构语言,加深了对c语言的认识掌并掌握了线性表的顺序存储结构的表示和实现方法,掌握顺序表基本操作的算法实现,同时了解了顺序表的应用。

实验1 线性顺序表的基本操作

实验1 线性顺序表的基本操作

实验一一、实验目的1、掌握使用VC6.0上机调试线性表的基本方法;2、掌握线性表的基本操作:插入、删除、查找以及线性表合并等运算在顺序存储结构和链接存储结构上的运算。

二、实验要求1、认真阅读和掌握本实验的程序。

2、上机运行本程序。

3、保存和打印出程序的运行结果,并结合程序进行分析。

4、按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果三、注意事项:在磁盘上创建一个目录,专门用于存储数据结构实验的程序。

四、实验内容程序1:线性表基本操作的实现这个程序中演示了顺序表的创建、插入、删除和查找,请修改并完成。

程序如下:#include <stdio.h>#include <stdlib.h>/*顺序表的定义:*/#define ListSize 100typedef struct{ int data[ListSize]; /*向量data用于存放表结点*/int length; /*当前的表长度*/}SeqList;void CreateList(SeqList *L,int n);void PrintList(SeqList *L,int n);int LocateList(SeqList *L,int x);void InsertList(SeqList *L,int x,int i);void DeleteList(SeqList *L,int i);void main(){SeqList L;int i,x;int n=10; /*THE LENGTH OF LIST*/L.length=0;clrscr();CreateList(&L,n); /*CREAT THE LIST*/PrintList(&L,n); /*PRINT THE LIST*/printf("INPUT THE RESEARCH ELEMENT");scanf("%d",&x);i=LocateList(&L,x);printf("the research position is %d\n",i); /*顺序表查找*/printf("input the position of insert:\n");scanf("%d",&i);printf("input the value of insert\n");scanf("%d",&x);InsertList(&L,x,i); /*顺序表插入*/PrintList(&L,n); /*打印顺序表*/printf("input the position of delete\n");scanf("%d",&i);DeleteList(&L,i); /*顺序表删除*/PrintList(&L,n);getch();/*打印顺序表*/}/*顺序表的建立:*/void CreateList(SeqList *L,int n){int i;printf("please input n numbers\n");for(i=1;i<=n;i++){scanf("%d",&L->data[i]);}L->length=n;}/*顺序表的打印:*/void PrintList(SeqList *L,int n){int i;printf("the sqlist is\n");for(i=1;i<=n;i++)printf("%d ",L->data[i]);}/*顺序表的查找:*/int LocateList(SeqList *L,int x){int i;for(i=1;i<=10;i++)if((L->data[i])==x) return(i);else return(0);}/*顺序表的插入:*/void InsertList(SeqList *L,int x,int i){int j;for(j=L->length;j>=i;j--)L->data[j+1]=L->data[j];L->data[i]=x;L->length++;}/*顺序表的删除:*/void DeleteList(SeqList *L,int i) { int j;for(j=i;j<=(L->length)-1;j++)L->data[j]=L->data[j+1];}。

线性表的实验报告

线性表的实验报告

线性表的实验报告线性表的实验报告概述:线性表是一种常见的数据结构,它是由一组具有相同数据类型的元素组成的序列。

本次实验旨在通过实际操作线性表,掌握线性表的基本操作以及了解其应用场景。

实验目的:1. 理解线性表的概念和基本操作;2. 掌握线性表的顺序存储结构和链式存储结构;3. 熟悉线性表的常见应用场景。

实验材料:1. 计算机;2. 编程软件(如C、C++、Java等);3. 实验教材或参考资料。

实验步骤:一、线性表的顺序存储结构实验1. 创建一个空的线性表;2. 向线性表中插入若干元素;3. 删除线性表中的某个元素;4. 根据索引查找线性表中的元素;5. 遍历线性表,输出所有元素。

二、线性表的链式存储结构实验1. 创建一个空的链表;2. 向链表中插入若干节点;3. 删除链表中的某个节点;4. 根据节点值查找链表中的节点;5. 遍历链表,输出所有节点。

实验结果:1. 顺序存储结构实验结果:- 成功创建空的线性表;- 成功插入若干元素;- 成功删除某个元素;- 成功根据索引查找元素;- 成功遍历线性表,输出所有元素。

2. 链式存储结构实验结果:- 成功创建空的链表;- 成功插入若干节点;- 成功删除某个节点;- 成功根据节点值查找节点;- 成功遍历链表,输出所有节点。

实验分析:1. 顺序存储结构适用于元素个数固定或变化不大的情况,插入和删除操作需要移动大量元素,效率较低;2. 链式存储结构适用于元素个数不固定的情况,插入和删除操作只需修改指针,效率较高;3. 线性表的应用场景包括但不限于:图书馆图书管理系统中的图书列表、学生信息管理系统中的学生列表等。

实验总结:通过本次实验,我深入了解了线性表的概念、基本操作以及两种常见存储结构。

顺序存储结构适用于元素个数固定的情况,而链式存储结构适用于元素个数不固定的情况。

线性表在实际应用中有着广泛的应用场景,如图书馆管理系统、学生信息管理系统等。

在以后的学习和工作中,我将灵活运用线性表,为解决实际问题提供便利。

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。

(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。

(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。

l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。

数据结构(Java版)线性表的实现和应用[完整版]

数据结构(Java版)线性表的实现和应用[完整版]

实验报告
课程名称数据结构
实验项目线性表的实现及应用
实验仪器PC机一台
学院_____ 专业
班级/学号
姓名
实验日期
成绩
指导教师
北京信息科技大学
信息管理学院
(数据结构课程上机)实验报告
3.
1.实验名称、实验目的、实验内容、实验要求由教师确定,实验前由教师事先填好,然后作为实验报告模
版供学生使用;
2.实验准备由学生在实验或上机之前填写,教师应该在实验前检查;
3.实验过程由学生记录实验的过程,包括操作过程、遇到哪些问题以及如何解决等;
4.实验总结由学生在实验后填写,总结本次实验的收获、未解决的问题以及体会和建议等;
5.源程序、代码、具体语句等,若表格空间不足时可作为附录另外附页。

实验1 线性表的基本操作

实验1 线性表的基本操作

ElemType *p=L.elem+1;
while(i<=L.length&&*p!=cur_e)
{
p++;
i++;
}
if(i>L.length)
return*--p;
return 1;
}
}
int NextElem(SqList L,ElemType cur_e,ElemType &next_e)
int i;
p=L.elem;
for(i=1;i<=L.length;i++)
vi(*p++);
cout<<endl;
return 1;
} void print(ElemType &c) {
printf("%d ",c); } // 线性表的单链表存储结构 struct LNode { ElemType data; LNode *next; }; typedef LNode *LinkList; // 另一种定义LinkList的方法 // 操作结果:构造一个空的线性表L Status InitList(LinkList &L) { L=(LinkList)malloc(sizeof(LNode)); // 产生头结点,并使L指向此头结点 if(!L) // 存储分配失败
// 操作结果:用e返回L中第i个数据元素的值 if(i<1||i>L.length)
exit(1); e=*(L.elem+i-1); return 1; } int equal(ElemType c1,ElemType c2) { // 判断是否相等的函数,Union()用到 if(c1==c2)

顺序表的基本操作--插入,删除,合并

顺序表的基本操作--插入,删除,合并
printf("Please input the place of insert:\n");
scanf("%d",&i);
printf("Please input the elemvalue:\n");
scanf("%d",&e);
if(ListInsert_Sq(&La,i,e)==OK)
{
for(i=1;i<=;i++)
for(i=1;i<=n;i++)
{
scanf("%d",&e) ;
if(ListInsert_Sq(&La,i,e)!=OK)break;
}
for(i=1;i<=;i++)
printf("e[%d]=%d\n",i-1,[i-1]);
printf("Length: %d\n\n",;
/*-------------INSERT-----------------*/
printf("Length: %d\n",;
printf("Listsize: %d\n\n",;
}
else
printf("error!");
/*------------------INIT-----------------*/
if(InitList_sq(&Lc))
{
printf("Init is ok!\n");
printf("Please input the values of Lb:\n");

数据结构实验报告1线性表的顺序存储结构

数据结构实验报告1线性表的顺序存储结构

数据结构实验报告1线性表的顺序存储结构一、实验目的本次实验的主要目的是深入理解线性表的顺序存储结构,并通过编程实现其基本操作,包括创建线性表、插入元素、删除元素、查找元素以及输出线性表等。

通过实际操作,掌握顺序存储结构的特点和优势,同时也了解其在不同情况下的性能表现。

二、实验环境本次实验使用的编程语言为C++,编译环境为Visual Studio 2019。

三、实验原理1、线性表的定义线性表是由 n(n≥0)个数据元素组成的有限序列。

在顺序存储结构中,线性表的元素存储在一块连续的存储空间中,通过数组来实现。

2、顺序存储结构的特点存储密度高,无需额外的指针来表示元素之间的关系。

可以随机访问表中的任意元素,时间复杂度为 O(1)。

插入和删除操作需要移动大量元素,平均时间复杂度为 O(n)。

四、实验内容及步骤1、定义线性表的数据结构```cppdefine MAX_SIZE 100 //定义线性表的最大长度typedef struct {int dataMAX_SIZE; //存储线性表元素的数组int length; //线性表的当前长度} SeqList;```2、初始化线性表```cppvoid InitList(SeqList L) {L>length = 0; //初始时线性表长度为 0}```3、判断线性表是否为空```cppbool ListEmpty(SeqList L) {return (Llength == 0);}```4、求线性表的长度```cppint ListLength(SeqList L) {return Llength;}```5、按位查找操作```cppint GetElem(SeqList L, int i) {if (i < 1 || i > Llength) {printf("查找位置不合法!\n");return -1;}return Ldatai 1;}```6、按值查找操作```cppint LocateElem(SeqList L, int e) {for (int i = 0; i < Llength; i++){if (Ldatai == e) {return i + 1;}}return 0; //未找到返回 0}```7、插入操作```cppbool ListInsert(SeqList L, int i, int e) {if (L>length == MAX_SIZE) {//表已满printf("表已满,无法插入!\n");return false;}if (i < 1 || i > L>length + 1) {//插入位置不合法printf("插入位置不合法!\n");return false;}for (int j = L>length; j >= i; j) {//移动元素L>dataj = L>dataj 1;}L>datai 1 = e; //插入元素L>length++;//表长加 1return true;}```8、删除操作```cppbool ListDelete(SeqList L, int i) {if (L>length == 0) {//表为空printf("表为空,无法删除!\n");return false;}if (i < 1 || i > L>length) {//删除位置不合法printf("删除位置不合法!\n");return false;}for (int j = i; j < L>length; j++){//移动元素L>dataj 1 = L>dataj;}L>length; //表长减 1return true;}```9、输出线性表```cppvoid PrintList(SeqList L) {for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");}```10、测试用例```cppint main(){SeqList L;InitList(&L);ListInsert(&L, 1, 10);ListInsert(&L, 2, 20);ListInsert(&L, 3, 30);ListInsert(&L, 4, 40);ListInsert(&L, 5, 50);printf("线性表的长度为:%d\n", ListLength(L));printf("查找第 3 个元素:%d\n", GetElem(L, 3));int loc = LocateElem(L, 30);if (loc) {printf("元素 30 的位置为:%d\n", loc);} else {printf("未找到元素 30\n");}ListDelete(&L, 3);printf("删除第 3 个元素后的线性表:");PrintList(L);return 0;}```五、实验结果及分析1、实验结果成功创建并初始化了线性表。

数据结构实验二 线性表

数据结构实验二 线性表

数据结构实验二线性表数据结构实验二线性表1. 实验目的1.1 理解线性表的概念和特性1.2 学习线性表的顺序存储结构和链式存储结构1.3 掌握线性表的基本操作:初始化、插入、删除、查找、修改、遍历等1.4 熟悉线性表的应用场景2. 实验内容2.1 线性表的顺序存储结构实现2.1.1 定义线性表结构体2.1.2 初始化线性表2.1.3 插入元素2.1.4 删除元素2.1.5 查找元素2.1.6 修改元素2.1.7 遍历线性表2.2 线性表的链式存储结构实现2.2.1 定义链表节点结构体2.2.2 初始化链表2.2.3 插入元素2.2.4 删除元素2.2.5 查找元素2.2.6 修改元素2.2.7 遍历链表3. 实验步骤3.1 实现顺序存储结构的线性表3.2 实现链式存储结构的线性表3.3 编写测试程序,验证线性表的各种操作是否正确3.4 进行性能测试,比较两种存储结构的效率差异4. 实验结果与分析4.1 执行测试程序,检查线性表的操作结果是否正确4.2 对比顺序存储结构和链式存储结构的性能差异4.3 分析线性表的应用场景,总结线性表的优缺点5. 实验总结5.1 总结线性表的定义和基本操作5.2 回顾实验中遇到的问题和解决方法5.3 提出对线性表实现的改进方向和思考附件:请参考附件中的源代码和实验报告模板。

法律名词及注释:1. 版权:指对某一作品享有的法律上的权利,包括复制权、发行权、改编权等。

2. 法律责任:指违反法律或合同规定所承担的责任。

3. 保密义务:指个人或组织根据法律、法规、合同等规定需要承担的保密责任。

4.知识产权:指人们在社会实践中所创造的智力劳动成果所享有的权利,包括专利权、著作权、商标权等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
++PL->listlen;
if(PL->listlen==MAXSIZE)
return -1;
}
return 1;
}
int Delete_SeqList(PSeqList PL,int i)
{ /*顺序表删除,入口参数:顺序表指针,删除元素位置,
printf("线性表初始化操作完成\n");
/* printf("------------------线性表创建操作-----------------------------\n");
printf("请输入线性表的长度\n");
scanf("%d",&n);
Increate_SeqList(PSList,n);
{ /*顺序表插入,入口参数:顺序表指针,插入位置,插入元素,
返回标志,1表示成功,0表示插入位置不合法,-1表示溢出,-2表示表不存在*/
if(i<1||i>PL->listlen+1)
return 0;
else if(!PL)
return -2;
else{
PL->data[i-1]=x;
free (PL) ;
PL=NULL;
return ;
}
int Length_SeqList (PSeqList L)
{ /*求顺序表的长度,入口参数:为顺序表指针,返回表长,0表示表不存在*/
if(L)
return L->listlen ;
if (PL) /*若PL=0表示分配失败*/
PL->listlen=0;
return PL;
}
/*void Increate_SeqList(PSeqList PL,int n)
{
int i;
PL->listlen=n;
printf("请输入%d个整数:\n",n);
}
运行结果:
-----------------线性表初始化操作--------------------------
线性表初始化操作完成
-------------------插入操作--------------------------------
请输入插入线性表的元素个数: 3
请输入插入线性表的第1元素:1
--PL->listlen;
return 1;
}
void Print_SeqList(PSeqList PSList){//输出线性表的中元素的值
int i;
for(i=0;i<PSList->listlen;i++)
printf("%-3d",PSList->data[i]);
return 0;
}
int Location_SeqList (PSeqList L, DataType x)
{
/*顺序表检索,入口参数:为顺序表指针,检索元素,返回元素位置,-1表示表不存在,0表示查找失败*/
int i=0;
if(!L) {
printf("表不存在\n");
Print_SeqList(PSList);
printf("--------------------检索操作-----------------------------------\n");
printf("请输入被检索的数据的值:");
scanf("%d",&e);
printf("数据在顺序表中的位置为:%d\n",Location_SeqList (PSList,e));
printf("\n");
}
void main()
{
SeqList *PSList;
int i,n,e,x;
printf("-----------------线性表初始化操作--------------------------\n");
PSList=Init_SeqList();
返回标志1表示成功,0表示删除位置不合法,-1表示表不存在*/
int j;
if(i<1||i>PL->listlen)
return 0;
else if(!PL)
return -1;
else
for(j=i-1;j<PL->listlen;j++)
PL->data[j]=PL->data[j+1];
线性表长度:2
线性表中的元素:2 3
--------------------检索操作-----------------------------------
请输入被检索的数据的值:2
数据在顺序表中的位置为:1
检索操作完成
------------------销毁操作----------------------------------
return -1;
}
while (L&&L->data[i]!=x)
i++;
if (i>=L->listlen) return 0;
else return (i+1);
}
int Insert_SeqList(PSeqList PL, int i, DataType x)
printf("检索操作完成\n");
printf("------------------销毁操作----------------------------------\n");
Destroy_SeqList(PSList);
printf("销毁操作完成\n");
} SeqList, *PSeqList;
PSeqList Init_SeqList()
{ /*创建一顺序表,入口参数无,返回一个指向顺序表的指针,指针值为零表示分配空间失败*/
PSeqList PL;
PL=(PSeqList)malloc(sizeof(SeqList));
销毁操作完成
Press any key to continue
请输入插入线性表的第2元素:2
请输入插入线性表的第3元素:3
线性表中已经插入3个元素
线性表插入操作完成
线性表中的元素:1 2 3
--------------------删除操作-----------------------------------
请输入删除元素的位置:1
线性表删除操作完成
#include <stdio.h>
#include <malloc.h>
#define MAXSIZE 10
typedef int DataType;
typedef struct node {
DataType data[MAXSIZE];
int listlen;
printf("请输入删除元素的位置:");
scanf("%d",&i);
Dห้องสมุดไป่ตู้lete_SeqList(PSList,i);
printf("线性表删除操作完成\n");
printf("线性表长度:%d\n",Length_SeqList(PSList));
printf("线性表中的元素:");
for(i=0;i<n;i++){
printf("第%d个元素为:",i+1);
scanf("%d",&PL->data[i]);
}
}*/
void Destroy_SeqList(PSeqList PL)
{ /*销毁顺序表,入口参数:为要销毁的顺序表指针地址,无返回值*/
if (PL)
printf("线性表创建建操作完成\n");*/
printf("-------------------插入操作--------------------------------\n");
printf("请输入插入线性表的元素个数: ");
scanf("%d",&n);
for(i=0;i<n;i++){
printf("请输入插入线性表的第%d元素:",i+1);
scanf("%d",&x);
Insert_SeqList(PSList,i+1,x);
}
printf("线性表中已经插入%d个元素\n",n);
printf("线性表插入操作完成\n");
printf("线性表中的元素:");
Print_SeqList(PSList);
printf("--------------------删除操作-----------------------------------\n");
相关文档
最新文档