玻璃膨胀系数检测

玻璃膨胀系数检测
玻璃膨胀系数检测

膨胀系数

一、仪器

1、煤气喷灯一个

2、千分尺带铁座,精度0.01mm

3、特制钢夹一把

4、测量玻璃板

5、标准玻璃:取生产正常时的优质玻璃,用膨胀仪精密测定膨胀系数(取2—3个样品结果的平均值)留样(一捆)做标准玻璃。

二、制样

1、将标准玻璃一端烧软,用夹子夹扁,再烧软,拉长20—30mm再次烧软,拉去前面尖头,使成宽6㎜,长20㎜左右,厚1㎜铲形;

2、取一小块被测试样,沾于玻璃棒上,按上法做成铲形,要求两个铲形宽度、厚度一致,不得有玻璃缺陷;

3、将两个铲形重叠,烧在一起,不许有气泡,把沾有被测样品的棒端烧掉;

4、将烧在一起的铲形玻璃拉成直径为0.10mm—0.14㎜,长约600㎜的丝,拉时两手平行。防止玻璃丝扭曲。丝冷却后截断,观察判断丝弯曲方向。

5、每个铲形可拉制5—6条丝,供选择测试,见图1拉丝步骤:

1、标准玻璃棒烧软夹扁

2、第一次拉长

3、第二次拉长

4、拉掉前面的尖

5、侧面

6、试样同样拉成铲形叠烧

7、叠烧完毕 8、拉丝后可以看出试样的线热膨胀

系数比标准玻璃大

图1 拉丝过程

1)标准玻璃棒烧软、夹扁、成铲形。

2)拉成、拉掉前面的尖。

三、测量与计算:

拉制好的玻璃丝冷却后,向膨胀系数大的一方弯曲,弯曲的程度与两玻璃的膨胀系数之差值成正比。如向被测玻璃方向弯,则标准玻璃的α

加上△α,向

减去△α,即为被测玻璃膨胀系数。

标准方向弯,则标准玻璃的α

测量:用千分尺选取丝径在0.1—0.14㎜范围内的丝,截取220—230㎜长,如弯曲度大,应取长些,在截取的长度内中点和两端的直径差不应大于0.02㎜。把截好的玻璃丝放在玻璃板上,移动玻璃板,使玻璃丝上两点正对下面镜面坐标纸的相距200㎜的点上,读出中间弯曲高度h,以毫米计。弯曲度高要多测几次,取平均值。如图2。

图2 丝的弯曲度测量

四、计算:

α=α0±△α

式中:α——被测玻璃的线热膨胀系数;

α

——标准玻璃的线热膨胀系数;

△α——标准玻璃与被测玻璃的线热膨胀系数之差。

当h≤20㎜时

△α=1.4h d×10-6K-1 (1)

当h>20㎜时

△α=1.4h d/1+h2×10-4×10-6K-1 (2)

式中:h——弯曲高度;

D——丝的直径;

每个样品至少测量三条丝,求平均值,三个数值误差应小于0.02×10-6K-1,为简化计算,可预先计算出各种弯曲、各种直径之数值列成表格,查表即可直接出结果。

五、测量玻璃板制作

由250mm×300mm大小的玻璃板和玻璃镜各一块组成,镜面上贴有坐标纸,横向相距200mm处两个点周围和竖线两侧各切除3mm纸,露出镜面,竖线两侧切去部分上下各60mm。如图3所示。

图3 测量玻璃板

建筑物围护结构传热系数的检测

建筑物围护结构传热系数的检测 一适用范围 适用于严寒和寒冷地区设置集中采暖的居住建筑及节能技术措施的节能效果检验。 二引用标准 JGJ 132-2001 《采暖居住建筑节能检验标准》 三仪器设备 建筑热工温度热流巡回检测仪 四检测条件 检测期间室内平均温度应保持基本稳定,热流计不得受阳光直射,围护结构被测区域的外表面宜避免雨雪侵袭和阳光直射,检测持续时间不应少于96h。 五建筑物围护结构主体部位的传热系数应符合设计要求。 六试验步骤 1 测点位置的确定 测量主体部位的传热系数时,测点位置不应靠近热桥,裂缝和有空气渗漏的部位,不应受加热、制冷装置和风扇的直接影响。

2 热流计和温度传感器的安装 ① 热流计应直接安装在被测围护结构的内表面上,且应与表面完全接触。 ② 温度传感器应在被测围护结构两侧表面安装。内表面温度传感器应靠近热流计安装,外表面温度传感器宜在与热流计相对应的的位置安装。温度传感器连同0.1m 长引线应与被测表面紧密接触,传感器表面的辐射系数应与被测表面基本相同。 3 记录数据 检测期间,应逐时记录热流密度和内、外表面温度。可记录多次采样数据的平均值,采样间隔宜短于传感器最小时间常数的二分之一。 七 数据处理 1 数据分析可采用算术平均法 采用算术平均法进行数据分析时,应按下式计算围护结构的热阻,并符合下列规定。 ∑ ∑ ===n j 1 j n 1 j Ej Ij q ) -(R θθ

式中:R——围护结构的热阻(m2·K/W); θIj——围护结构内表面温度的第j次测量值; θEj——围护结构外表面温度的第j次测量值; q j——热流密度的第j次测量值; ①对于轻型围护结构(单位面积比热容小于20KJ/(M2·K)),宜使用夜间采集的数据(日落后1h至日出)计算围护结构的热阻。当经过连续四个夜间测量之后,相邻两测量的计算结果相差不大于5%时,方可结束测量; ②对于重型围护结构(单位面积比热容大于等于20KJ/(m2·K)),应使用全天数据(24h的整数倍)计算围护结构的热阻,且只有在下列条件得到满足时方可结束测量。 a 末次R计算值与24h之前的R计算值相差不大于5%。 b 检测期间内第一个INT(2×DT/3)天内与最后一个同样长的天数内的R计算值相差不大于5%。 注:DT为检测持续天数,INT表示取整数部分。 2. 围护结构的传热系数计算: 按下式计算: K=1/(Ri+R+Re)

物理金属线膨胀系数测量实验报告

实验 (七) 项目名称:金属线膨胀系数测量实验 一、实验目的 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 二、实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即: t L L ???α=? (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在) , (21t t 温度区域的线胀系数为:) t L (L ???= α(2) 其物理意义是固体材料在)t , t (21温度区域内,温度每升高一度时材料的相对伸长量,其单位为1 )C (-。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若 mm 250L =,温度变化C 100t t 0 12≈-,金属的α数量级为105)C (10--?,则估算出 mm 25.0t L L ≈???α=?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验用千分表(分度值为mm 001.0)测微小的线胀量。 三、实验主要仪器设备和材料

6+9A+6Low-E玻璃传热系数

6+9A+6Low-E 中空玻璃热传导系数U 值 玻璃热阻:W K m r /11?=;普通玻璃表面的校正辐射率:1ε=0.837;Low-E 玻璃表面的校正辐射率:2ε=0.1;外侧玻璃表面温差:K T 15=?;玻璃的平均温度:K T m 283=;Stefan-Boltzmann 常数:428/1067.5K m W ??=-σ;室外玻璃表面热交换系数:)/(232K m W h e ?=;室内玻璃表面热交换系数:)/(82K m W h i ?=;中空玻璃的气层厚度:m s 009.0=;玻璃片厚度:m f f 006.021==。 空气性能参数(T=283K ) 密度:3/232.1m kg =ρ;动态黏度:)/(10761.15s m kg ??=-μ;热传导系数:)/(10496.22K m W ??=-λ;比热容:)/(10008.13K kg J c ??=。 Prandtl 系数 711.010496.210008.110761.12 3 5--????==λμc P r Granshof 系数 1855) 10761.1(283232.115009.081.981.9252 3223=?????=?=-μρm r T T s G Nusselt 系数 536.0)711.01855(035.0)(035.038.038.0=??=?=r r u P G N 取1 中空玻璃中气体导热 )/(77.2009.010496.2122 K m W s N h u g ?=??==-λ 中空玻璃中气体辐射导热 )/(5.0283)11 .01837.01(1067.54)111 (423183121K m W T h m T ?=?-+???=?-+=---εεσ 中空玻璃中气体的总导热 )/(27.35.077.22K m W h h h T g s ?=+=+= 中空玻璃的导热 W K m r f f h h s t /318.0012.027.31)(112121?=+=?++= 中空玻璃的传热系数 W K m h h h U t i e /486.0318.0812*******?=++=++= 计算结果 6+9A+6Low-E 中空玻璃的传热系数U 值为2.1)/(2K m W ?。

线膨胀系数测量的讲义

金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪表的失灵,以及加工焊接中的缺陷和失败等等。 一.实验目的 学习测量金属线膨胀系数的一种方法。 二.实验仪器 金属线膨胀系数测量实验装置、YJ-RZ-4A数字智能化热学综合实验仪、 游标卡尺、千分表、待测金属杆(铜杆、铁杆) 金属线膨胀系数测量的实验装置如图1所示 内有加热引线和温度传感器引线 图1 YJ-RZ-4A数字智能化热学综合实验仪面板如图2所示 图2 三.实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?T近似成正比,与原长L亦成正比,即

?L = T L ?α (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔凝石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1T 时杆长L (一般,杆在1T 时的长度L 可以近似等于杆在常温时的长度)、受热后温度达2T 时的伸长量?L 和受热前后的温度1T 及2T ,则该材料在(1T ,2T )温区的线胀系数为: α = ) (12T T L L -? (2) 其物理意义是固体材料在(1T ,2T )温区内,温度每升高一度时材料的相对伸长量,其单位为1)(-?C 。 测线胀系数的主要问题是如何测伸长量?L 。而?L 是很微小的,如当L ≈250mm,温度变化12T T -≈100℃,金属的a 数量级为10 5 -1)(-?C 时,可估算出?L ≈0.25mm 。对于这么 微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。 千分表是一种通过齿轮的多极增速作用,把一微小的位移,转换为读数圆盘上指针的读数变化的微小长度测量工具,它的传动原理如图3所示,结构如图4所示, 千分表在使用前,都需要进行调零,调零方法是:在测头无伸缩时,松开“调零固定旋钮”,旋转表壳,使主表盘的零刻度对准主指针,然后固定“调零固定旋钮”。调零好后,毫米指针与主指针都应该对准相应的0刻度。 千分表的读数方法:本实验中使用的千分表,其测量范围是0-1mm 。当测杆伸缩0.1mm 时,主指针转动一周,且毫米指针转动一小格,而表盘被分成了100个小格,所以主指针可以精确到0.1mm 的1/100,即0.001mm ,可以估读到0.0001mm 。即: 千分表读数=毫米表盘读数+ ?1000 1 主表盘读数 (单位:mm ) (毫米表盘读数不需要估读,主表盘读数需要估读) 例如:图5中千分表读数为:0.2+ ?1000 1 59.8=0.2598 mm

线膨胀系数实验报告参考

线胀系数测量实验报告参考稿 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪一台,千分表(1-0-0.001mm )一个,待测铜管一根。 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 如图所示,待测铜管的线胀系数为: () t L L ???= α 式中L 为温度为1t 摄氏度时的管长,L ?为管受热后温度从1t 升高到2t 时的伸长量,t ?为管受热前后的温度升高量 (12t t t -=?) 。 该式所定义的线胀系数的物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 【实验内容和步骤】 1.把样品铜管安装在测试架上。连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。 4.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。 5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为mm 2.0左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。) 6.正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到C 50?左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如C 35?)。.

幕墙中空玻璃传热系数计算方法

幕墙中空玻璃传热系数计算方法如下: 1.公式P r=μc /λ 式中μ——动态黏度,取1.761×10-5kg/(m?s); c——比热容,空气取1.008×103J/(kg?K)、氩气取0.519×103J/(kg?K); λ——导热系数,空气取2.496×10-2W/(m?K)、氩气取1.684×10-2W/(m?K)。 G r=9.81s 3ΔTρ2/Tmμ2 式中s——中空玻璃的气层厚度(m); ΔT ——外片玻璃表面温差,取15K; ρ——密度,空气取1.232kg/m3、氩气取1.669 kg/m3; T m——玻璃的平均温度,取283K; μ——动态黏度,空气取1.761×10-5kg/(m?s)、氩气取2.164×10-5kg/(m?s)。 N u= 0.035(G r Pr)0.38,如计算结果Nu<1,取Nu=1。 H g= N u λ/s W/(m2?K) H T =4ζ(1/ε1+1/ε2-1)-1×Tm 3 式中ζ——常数,取5.67×10-8 W/(m2?K4); ε1 ——外片玻璃表面的校正辐射率; ε2 ——内片玻璃表面的校正辐射率; ε1、ε2取值: 普通透明玻璃ην>15% 0.837 (GB/T2680表4)真空磁控溅射镀膜玻璃ην≤15% 0.45 (GB/T2680表4) ην>15% 0.70 (GB/T2680表4) LOW-E镀膜玻璃ην>15% 应由试验取得,如无试验资料时可取 0.09~0.115。 h s = h g + h T 1/h t=1/h s+δ/ r1 式中δ——两片玻璃总厚度; r1——玻璃热阻,取1(m?K)/W。 1/U=1/h e +1/h i+1/h t 式中h e——玻璃外表面换热系数,取23(19)W/(m2?K); h i——玻璃内表面换热系数,取8(8.7)W/(m2?K)。括号中数字为GB50176有关规定。 2. 例题 例1 求12mm白玻+12mm(空气)+ 12mm白玻中空玻璃的传热系数。 解P r=μc/λ=1.761×10-5×1.008×103 /2.496×10-2 =0.711 G r=9.81s3ΔTρ2/Tmμ2=9.81×0.0123×15×1.2322/283× (1.761×10-5)2= 4398 N u 0.035(G r Pr)0.38= 0.035(0.711×4398)0.38=0.745 取Nu=1 H g= N u λ/s =1×2.496×10-2/0.012=2.08 W/(m2?K)

建筑围护结构传热系数现场检测方法

建筑围护结构传热系数现场检测方法 研究总结。 1. 引言 随着能源和环境形势日益严峻,建筑节能将是我国的一项长期国策。传热系数是建筑热工节能设计中的重要参数。建筑构件(如门、窗等)的传热系数,可在实验室条件下对其进行测试。而建筑围护结构是在建造过程中形成的,其传热系数需要现场检测才能确定。通过检测建筑的实际传热性能,来判定建筑保温隔热系统的产品、技术是否符合节能设计要求,以此来鉴定新系统的产品、技术的优缺点等,同时对分析建筑物实际运行中的能耗状况和施工过程的偏差也起着非常重要的作用。本文对传热系数现场检测方法进行综述,注重对热流计法研究总结。 2. 围护结构传热系数现场检测方法 目前对围护结构的传热系数现场检测的方法主要有四种,即热流计法、热箱法、控温箱热流计法和常功率平面热源法。 2.1热流计法。 (1)热流计法原理[1]。 热流计法是利用温差和热流量之间的对应关系进行传热系数的测

定。通常的做法是用热流计、热电偶在现场检测出被测围护结构的热流密度以及内、外表面温度,通过数据处理计算得出建筑物围护结构各部分的传热系数(如图1)。计算公式如下: (2)热流计法特点。 热流计法的核心是测量通过被测对象的热流,并假定传热为一维。否则,热流有分量,计算出的被测物的热阻偏小,传热系数就偏大。该方法是国家检测标准首选的方法,在国际上也是公认的方法,但是这种方法用在现场测试有严重的局限性。因为使用该方法的前提条件是必须在采暖期才能进行测试,我国的现实情况是有些地区基本不采暖、采暖地区的有些工程又在非采暖期竣工等,这样就限制了它的使用。在计算时所用到的内外墙表面换热系数受环境(温度、风速、辐射等)的影响显著。 如文献[2]对实验用房进行了不同风速的情况下,外墙表面换热系数A 的研究,结果表明外环境(风速)对外墙表面换热系数的影响很大(如表1)。文献[3][4]就其它环境(如雨水和太阳辐射等)条件对围护结构传热系数的影响也作了研究和分析,结果表明也有较大的影响。 (3)双面热流计法。 它是改进的热流计法,一般的热流计法是在墙体内表面(环境相对

固体热膨胀系数的测量实验报告图文稿

固体热膨胀系数的测量 实验报告 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 ()12t t L L -=?α (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: 当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时()12t t L L -?= α

有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节 中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记 录每升高10度时标尺读数直至温度升高到90度止 8.单击卷尺,分别测量l、D, 9.以t为横轴,b为纵轴作b-t关系曲线,求直线斜率。 10.代入公式计算线膨胀系数值。 由图得k=0.3724 五、实验数据记录与处理 六、思考题 1.对于一种材料来说,线胀系数是否一定是一个常数为什么 答:不是。因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果的事实可证明。 2.你还能想出一种测微小长度的方法,从而测出线胀系数吗? 答:目前想不到更好地方法。 3. 引起测量误差的主要因素是什么? 答:仪器的精准度,操作过程中的不可避免性的失误,温度变化的控制,铜棒受热不均匀等。

中空玻璃可行性分析报告

中空玻璃可行性分析报告 目录 一、建筑节能与中空玻璃市场情况 二、中空玻璃加工企业的明显特点 三、中空玻璃产品利润分析

一、建筑节能与中空玻璃市场情况 中空玻璃的概念出现在国内市场已经有很长时间了,Low-E玻璃的出现也已经有10年左右的时间。尽管这些产品具有很好的节能、保温和隔音等显著改善居住条件的优良性能,但是这些好产品更多地是使用在公共建筑和高档建筑上,绝大部分民用建筑至今依然较少看到中空玻璃,更谈不上Low-E玻璃,许多消费者至今还以为中空玻璃就是两片玻璃的简单组合。造成中空玻璃和Low-E 玻璃贵族化问题的主要原因有两方面:一是国内房地产市场发展速度过快,许多地产商根本无心关注门窗和玻璃性能等细节;二是门窗企业和加工玻璃企业更多地关注高档楼盘而忽视了民用建筑市场的推广。 可喜的是,从贵族化转向平民化的过程正在开始。伴随着国内房地产业逐步进入常规发展轨道,开发商和购房者开始共同关注楼盘品质和部品细节,加之经过10余年的市场推广,中空玻璃和Low-E玻璃的优良性能已被市场所认识和接受。中空玻璃进入寻常百姓家,不仅是节能的需要,更是提高人们生活品质的需要。 1建筑节能形势与政策 1.1减少门窗能耗,提高建筑节能水平 随着社会经济发达程度的提高,建筑能耗在社会总能耗中的所占比例越来越大,目前西方发达国家为30%~45%,尽管我国经济发展水平和生活水平都还不高,但这一比例已达到20%~25%,正逐步上升到30%。在一些大城市,夏季空调已成为电力高峰负荷的主要组成部分。不论西方发达国家还是我国,建筑能耗状况是牵动社会经济发展全局的大问题。按照1986年制定的我国建筑节能分三步走的计划,当前政府各级节能管理部门为了启动第三步节能65%的目标,正在积极地进行标准编制工作。而在影响建筑能耗的门窗、墙体、屋面、地面四大围护部件中,门窗的绝热性能最差,是影响室内热环境质量和建筑节能的主要因素之一。就我国目前典型的围护部件而言,门窗的能耗占建筑围护部件总能耗的40%~50%,其能耗是墙体的4倍、屋顶的5倍、地面的20多倍。我国既有建筑面积约400亿m2,95%以上是高能耗建筑,而透过门窗的能耗则占到了整个建筑的一半,堪称耗能大户。能耗比同等气候条件下的发达国家高2倍。如果按照我国现有发展的趋势,2020年以后,建筑耗能将超过我国终端能耗的1/3,

建筑物围护结构传热系数现场检测技术

建筑物围护结构传热系数现场检测技术 范宏武,邢大庆,王吉霖,李德荣,曹亮,曹毅然 上海市建筑科学研究院 为改善居住建筑室内热环境质量,提高人民居住水平,提高采暖、空调能源利用效率,贯彻执行国家可持续发展战略,2001 年《夏热冬冷地区居住建筑节能设计标准》颁布实施[1]。该标准在提出节能50% 的同时,对建筑物围护结构的热工性能也进行了相应规定。虽然《节能标准》在设计阶段保证了建筑物围护结构的热工性能达到目标要求,但并不能保证建筑物 建造完后也能达到节能要求,因为建筑的施工质量同样非常关键。因此,判定建筑物围护结构热工性能是否达到标准要求,仅靠资料并不能给出结论,需要现场实测。 但我国建筑节能工作起步较晚,至今尚无一套完善、先进、适合我国国情的建筑节能现场检测技术,在某种程度上限制了建筑节能工作的规范发展。这使得建筑节能现场检测技术的研究开发就显得尤为迫切和重要。 围护结构传热系数是表征围护结构传热量大小的一个物理量,是围护结构保温性能的评价指标,也是隔热性能的指标之一[2],因此本文主要针对围护结构传热系数的现场检测技术进行分析与探讨。 1 现有围护结构传热系数现场检测方法 1.1 热流计法[3] 热流计是建筑能耗测定中常用仪表,该方法采用热流计及温度传感器测量通过构件的热流值和表面温度,通过计算得出其热阻和传热系数。其检测基本原理为:在被测部位布置热流计,在热流计周围的内外表面布置热电偶,通过导线把所测试的各部分连接起来,将测试信号直接输入微机,通过计算机数据处理,可打印出热流值及温度读数。当传热过程稳定后,开始计量。为使测试结果准确,测试时应在连续采暖(人为制造室内外温差亦可)稳定至少7d 的房间中进行。 般来讲,室内外温差愈大(要求必须大于20C),其测量误差相对愈小,所得结果亦较为精 确,其缺点是受季节限制。该方法是目前国内外常用的现场测试方法,国际标准和美国ASTM 标准都对热流计法作了较为详细的规定。

建筑物围护结构传热系数的检测

建筑物围护结构传热系数的检测 一适用围 适用于严寒和寒冷地区设置集中采暖的居住建筑及节能技术措施的节能效果检验。 二引用标准 JGJ 132-2001 《采暖居住建筑节能检验标准》 三仪器设备 建筑热工温度热流巡回检测仪 四检测条件 检测期间室平均温度应保持基本稳定,热流计不得受直射,围护结构被测区域的外表面宜避免雨雪侵袭和直射,检测持续时间不应少于96h。 五建筑物围护结构主体部位的传热系数应符合设计要求。 六试验步骤 1 测点位置的确定 测量主体部位的传热系数时,测点位置不应靠近热桥,裂缝和有空气渗漏的部位,不应受加热、制冷装置和风扇的直接影响。

2 热流计和温度传感器的安装 ① 热流计应直接安装在被测围护结构的表面上,且应与表面完 全接触。 ② 温度传感器应在被测围护结构两侧表面安装。表面温度传感 器应靠近热流计安装,外表面温度传感器宜在与热流计相对应的的位置安装。温度传感器连同0.1m 长引线应与被测表面紧密接触,传感器表面的辐射系数应与被测表面基本相同。 3 记录数据 检测期间,应逐时记录热流密度和、外表面温度。可记录多次采 样数据的平均值,采样间隔宜短于传感器最小时间常数的二分之一。 七 数据处理 1 数据分析可采用算术平均法 采用算术平均法进行数据分析时,应按下式计算围护结构的热阻,并符合下列规定。 ∑ ∑ ===n j 1j n 1 j Ej Ij q ) -(R θθ

式中: R——围护结构的热阻(m2·K/W); θIj——围护结构表面温度的第j次测量值; θEj——围护结构外表面温度的第j次测量值; q j——热流密度的第j次测量值; ①对于轻型围护结构(单位面积比热容小于20KJ/(M2·K)),宜使用夜间采集的数据(日落后1h至日出)计算围护结构的热阻。当经过连续四个夜间测量之后,相邻两测量的计算结果相差不大于5%时,方可结束测量; ②对于重型围护结构(单位面积比热容大于等于20KJ/(m2·K)),应使用全天数据(24h的整数倍)计算围护结构的热阻,且只有在下列条件得到满足时方可结束测量。 a 末次R计算值与24h之前的R计算值相差不大于5%。 b 检测期间第一个INT(2×DT/3)天与最后一个同样长的天数的R 计算值相差不大于5%。 注:DT为检测持续天数,INT表示取整数部分。 2. 围护结构的传热系数计算: 按下式计算: K=1/(Ri+R+Re)

金属线膨胀系数测量实验报告

梧州学院学生实验报告 成绩: 指导教师: 专业: 班别: 实验时间: 实验人: 学号: 同组实验人: 实验名称:金属线膨胀系数测量 实验目的:1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 实验仪器: 型号规格 单位 数量 备注 FB7 1 2型金属线膨 胀系数测定仪 台 1 被测件测试架 台 1 千分表 只 1 传感器连接线 根 2 L=80c m 红黑各一根 小漏斗 只 1 电源线 根 1 实验讲义(说明书)] 本 1 注意事项:1、做实验前必须精读FB712型金属线膨胀系数测定仪的使用说明书,正规操作 2 、注意千分表的使 用规范。 FB712型金属线膨胀系数测量仪实验装置示意图 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。 特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为 L 的物体, 受热后其伸长量厶L 与其温度的增加量△ t 近似成正比,与原长L 亦成正比,即: △ L=a ? L ?△ t (1) 式中的比例系数a 称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数 不同,塑料的 47 -J?V 叱-■: <■:"負号 ■'a ^_A s'.Vi Pf jW 丹 >¥ -i~ ■ "I irtf I - *■ 4 !■":■_! 牡二盂:J 豪迂二辽山输咤或典: &::?,、性%世*巴电冷忙即卜亠:.豆凳;其 応宓云I 恣心加[文 图&匹丁型金属线勝胀無数测定仪实物黑片 强制风冷 低速如撰 高速&]壇 盥控设齧 放水阀 H 水fr 匕 千分表 铝骨 FT1碱度传感黯 循环水管 削* 口 金廉管温度扬示 甥管 爲虔倩号践 S 度 指

中空玻璃传热系数计算

6mm+9A+6mmLow-e中空玻璃K(U)值计算书 1、计算公式及取值 P r=μc /λ 式中μ——动态黏度,取1.761×10-5kg/(m?s); c——比热容,空气取 1.008×103J/(kg?K)、氩气取0.519×103J/(kg?K); λ——导热系数,空气取2.496×10-2W/(m?K)、氩气取1.684×10-2W/(m?K)。 G r=9.81s 3ΔTρ2/Tmμ2 式中s——中空玻璃的气层厚度(m); ΔT ——外片玻璃表面温差,取15K; ρ——密度,空气取1.232kg/m3、氩气取1.669 kg/m3; T m——玻璃的平均温度,取283K; μ——动态黏度,空气取1.761×10-5kg/(m?s)、氩气取2.164×10-5kg/(m?s)。 N u= 0.035(G r Pr)0.38,如计算结果Nu<1,取Nu=1。 H g= N u λ/s W/(m2?K) H T =4σ(1/ε1+1/ε2-1)-1×Tm 3 式中σ——常数,取5.67×10-8 W/(m2?K4); ε1 ——外片玻璃表面的校正辐射率; ε2 ——内片玻璃表面的校正辐射率;

ε1、ε2取值: 普通透明玻璃τν>15% 0.837 (GB/T2680表4) 真空磁控溅射镀膜玻璃τν≤15% 0.45 (GB/T2680表4) τν>15% 0.70 (GB/T2680表4) LOW-E镀膜玻璃τν>15% 应由试验取得,如无试验资料时可取 0.09~0.115。 h s = h g + h T 1/h t=1/h s+δ/ r1 式中δ——两片玻璃总厚度; r1——玻璃热阻,取1(m?K)/W。 1/U=1/h e +1/h i+1/h t 式中h e——玻璃外表面换热系数,取21(19)W/(m2?K); h i——玻璃内表面换热系数,取8(8.7)W/(m2?K)。括号中数字为GB50176有关规定。 2、计算 P r=μc/λ=1.761×10-5×1.008×103 /2.496×10-2 =0.711 G r=9.81s3ΔTρ2/Tmμ2=9.81×0.0063×15×1.2322/283× (1.761×10-5)2= 550 N u 0.035(Gr Pr)0.38= 0.035(0.711×550)0.38=0.09 取Nu=1 H g= Nu λ/s =1×2.496×10-2/0.006=4.16 W/(m2?K) HT=4σ(1/ε1+1/ε2-1)-1×Tm 3=4×5.67×10-8×(1/0.837+1/0.10-1)-1×2833=0.504 W/(m2?K)

建筑节能检测方法综述

建筑节能检测方法综述 The Standardization Office was revised on the afternoon of December 13, 2020

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架

中空玻璃性能检测指南

中空玻璃性能检测指南 1、依据标准 GB/T11944-2002 《中空玻璃》 GB/T21086-2007 《建筑幕墙》 JGJ102-2003 《玻璃幕墙工程技术规范》 JGJ/T139-2001 《玻璃幕墙工程质量检验标准》 型式检验项目包括:密封性能、露点、耐紫外线辐照性能、气候循环耐久性能和高温高湿耐久性能试验。力学性能:抗拉强度、脆性、弯曲试验、拉伸试验、冲击应力等。正常生产每两年应进行一次封样抽检。幕墙用中空玻璃必须先进行结构胶相容性试验。 中空玻璃产品检验分为门窗用中空玻璃和幕墙用中空玻璃产品(推荐使用Low-e中空玻璃)。 2、检测程序 ①企业将封样产品、样品交接单及相关资料送省建机检测中心进行检验; ②企业在省建机检测中心办理相关检验手续; ③企业领取检验报告和取回检测样品; ④企业领取的检验报告是产品鉴定、备案和节能认定等工作的重要材料,应妥善保管。 3、检测样品准备 企业需提供中空玻璃剖面图,注明玻璃厚度、规格,胶的型式、产地,所充气体型式。 ⑴性能试验:试样为510mm×360mm的样品20块; ⑵传热系数:试样为1000mm×1000mm的样品1块; ⑶对幕墙用中空玻璃首先必须进行结构胶相容性试验。试验样品应按 ①结构胶相容性和剥离粘结性试验 a、结构胶:2支 (批号应清晰); b、基材: 玻璃:150mm×75mm,2块; c、附件:隔条,丁基胶1支(批号应清晰)。 ②标准状态下拉伸粘结强度试验: 须另外提供玻璃:50mm×50mm,10块(外形尺寸应准确,偏差±1mm)。 ③邵氏硬度:须另外提供玻璃:150mm×75mm,1块。

4、中空玻璃产品检验主要项目及控制指标见表19。表19 中空玻璃产品检验主要项目及控制指标

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定 【实验目的】 材料的线膨胀指的是材料受热后一维长度的伸长。当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。热膨胀是物质的基本热学性质之一。物体的热膨胀不仅与物质种类有关。对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。它们的线膨胀在各个方向均相同。 虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。 1. 掌握测量固体线热膨胀系数的基本原理。测量铁、铜、铝棒的线热膨胀系数。 2. 学会使用千分表,掌握温度控制仪的操作。 3. 学习图解图示法处理实验数据。 【实验原理】 设为物体在温度时的长度,则该物体在时的长度可由下式表示: (1) 其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。将式(23-1)改写为: (2) 可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。 实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有: (3) 由式(6)即可求得物体在温度之间的平均线膨胀系数。其 中,微小长度变化量可直接用千分表测量。本实验对金属铁、铜、 铝进行测量求出不同金属的线膨胀系数。 【实验仪器】 FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分 表、温控仪)金属棒、电源线、加热线、传感器及电缆 仪器介绍 1.千分表是一种测定微小长度变化量的仪表,其外形结构如图

传热系数检测方法之热箱法

传热系数检测方法之热箱法 甘肃省建材科研设计院 兰州瑞洋建筑节能检测咨询有限公司 田斌守 2、功率法(就是俗称的热箱法) 2.1热箱法原理 热箱法是基于一维稳态传热的原理,在试件两侧的箱体(热箱和冷箱)内,分别建立所需的温度、风速和辐射条件,达到稳定状态后,测量空气温度、试件和箱体内壁的表面温度及输入到计量箱的功率,就可以根据公式(2)计算出试件的热传递性质——传热系数。因为要检测通过被测对象的热量,因此要把传向别处的热量进行剔除,这样根据处理方式的不同又分为标定热箱法和防护热箱法。 ) (e i T T A Q k -= (2) 其中: K 为传热系数,W/(m 2.K); Q 为通过试件功率,W ; A 为热箱开口面积,m 2; Ti 热箱空气温度,K 或℃; Te 冷箱空气温度,K 或℃。 2.1.1标定热箱法原理 检测原理示意图如图2所示。将标定热箱法的装置置于一个温度受到控制的空间内,该空间的温度可与计量箱内部的温度不同。采用高比热阻的箱壁使得流过箱壁的热流量Q 3尽量小。输入的总功率Q p 应根据箱壁热流量Q 3和侧面迂回热损Q 4进行修正。Q 3 和Q 4应该用已知比热阻的试件进行标定,标定试件的厚度、比热阻范围应同被测试件的范围相同,其温度范围亦应与被测试件试验的温度范围相同。用公式(3)计算被测试件的热阻、传热阻和传热系数。 ?? ???-=-=--=)(//)(11431ne ni se si p T T A Q K Q T T A R Q Q Q Q (3) 式中 Q p 为输入的总功率,W ;

Q 1为通过试件的功率,W ; Q 2为试件内不平衡热流,W ; Q 3为箱壁热流量,W ; Q 4为侧面迂回热损,W ; A 为热箱开口面积,m 2; T si 为试件热侧表面温度,K T se 为试件冷侧表面温度,K ; T ni 为试件热侧环境温度,K ; T ne 为试件冷侧环境温度,K 图2 实验室标定热箱法原理示意图 2.1.2防护热箱法原理 防护热箱法检测原理示意图如图3所示。在防护热箱法中,将计量箱置于防护箱内。控制防护箱内温度与计量箱内温度相同,使试件内不平衡热流量Q 2和流过计量箱壁的热流量Q 3减至最小可以忽略。按公式(4)计算被测试件的热阻、传热阻和传热系数, ?????-=-=--=)(//)(11231ne ni se si p T T A Q K Q T T A R Q Q Q Q (4)

玻璃 平均线热膨胀系数的测定(标准状态:现行)

I C S81.040.01 N64 中华人民共和国国家标准 G B/T16920 2015 代替G B/T16920 1997 玻璃平均线热膨胀系数的测定 G l a s s D e t e r m i n a t i o no f c o e f f i c i e n t o fm e a n l i n e a r t h e r m a l e x p a n s i o n (I S O7991:1987,N E Q) 2015-12-31发布2016-07-01实施

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准代替G B/T16920 1997‘玻璃平均线热膨胀系数的测定“三 本标准与G B/T16920 1997的主要技术性差异为: 增加了仪器性能试验用标准材料三 本标准使用重新起草法参考I S O7991:1987‘玻璃平均线热膨胀系数的测定“编制,与I S O7991:1987的一致性程度为非等效三 本标准由中国轻工业联合会提出三 本标准由全国玻璃仪器标准化技术委员会(S A C/T C178)归口三 本标准起草单位:国家轻工业玻璃产品质量监督检测中心三 本标准主要起草人:袁春梅二杨建新二梁叶三 本标准所代替标准的历次版本发布情况为: G B/T16920 1997三

玻璃 平均线热膨胀系数的测定 1 范围 本标准规定了弹性固体玻璃的平均线热膨胀系数测定方法三 本标准适用于各种材质玻璃平均线热膨胀系数的测定三 2 规范性引用文件 下列文件对于本文件的应用是必不可少的三凡是注日期的引用文件,仅注日期的版本适用于本文件三凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件三 G B /T1216 外径千分尺 G B /T21389 游标二 带表和数显卡尺3 术语和定义 下列术语和定义适用于本文件三 3.1 平均线热膨胀系数 c o e f f i c i e n t o fm e a n l i n e a r t h e r m a l e x p a n s i o n α(t 0;t )在一定的温度间隔内,试样的长度变化与温度间隔及试样初始长度之比三用式(1)表示:α(t 0;t )=1L 0?L -L 0t -t 0 (1) 式中:t 0 初始温度或基准温度,单位为摄氏度(?);t 试样加热后的温度,单位为摄氏度(?);L 0 试样在温度t 0时的长度, 单位为毫米(mm );L 试样在温度t 时的长度,单位为毫米(mm ) 三本标准规定标称基准温度t 0是2 0?,因此平均线热膨胀系数表示为α(20?;t )三3.2转变温度 t r a n s f o r m a t i o n p o i n t t g 玻璃由脆性状态向黏滞状态的转变时相应于热膨胀曲线高温部分和低温部分两切线交点的温度三该温度时,玻璃动态黏度为1012.4P a 四s 三4 仪器设备 4.1 测量设备精度 应符合G B /T1216或G B /T21389的要求三

常用中空玻璃K值

常用中空玻璃K值 2010-09-27 23:34:16| 分类:建筑|字号订阅 常用中空玻璃K值 所谓K值就是材料的传热系数,用以表示材料的热绝缘性能的大小,K 值越大,传递的热量愈多,热绝缘性能愈差。反之,K值愈小,传递的热量愈少,热绝缘性能愈好。就像我们穿同样厚薄纯棉衣服和化纤衣服,前者因传热系数小就感到暖和而后者因传热系数大就感到冷一样。 在实践中,在具体测试影响中空玻璃节能性能的指标即传热系数K值时,有的认为中空玻璃的K值应该是中央部位玻璃的值,有的认为中空玻璃K值应该是中空玻璃上几处不同点的平均值。结果对同一中空玻璃,采用不同方法测试所得到的K值却是不同的。目前我国采用计算方法得到建筑门窗传热系数K的机构很少,主要通过测试。 中空玻璃具有突出的保温隔热性能,是提高门窗节能水平的重要材料,近些年已经在建筑上得到了极其广泛的使用。但随着节能标准的不断提高和一些用户的特殊要求,普通的中空玻璃已不能完全满足。所以我们应该了解中空玻璃节能性能的各个影响因素,从玻璃原片、间隔组成和使用环境等方面保证中空玻璃能够发挥它最佳的节能性能使其K值减少。 从目前的情况看,对中空玻璃节能的改进不外乎采用Low-E玻璃、充填惰性气体、暖边密封技术及热隔断等技术的使用。 一、不同配片的中空玻璃的K值比较: 表一

二、不同间隔气体对中空玻璃K值的影响: 表二 中空玻璃的导热系数比单片玻璃低1半左右,这主要是气体间隔层的作用。中空玻璃内部充填的气体除空气以外,还有氩气、氪气等惰性气体。由于气体的导热系数很低(空气0.024W/mK;氩气0.016W/mK),因此也提高了中空玻璃的热阻性能。 三、不同间隔条对中空玻璃K值的影响: 表三 K值(w/m2k) 玻璃种类 玻璃 中央 玻 璃边缘 边缘密 封 综合值 双道密封弹性硅酮胶隔条A 2.79 2.9 1 3.38 2.86 双道密封玻璃纤维隔条 A 2.79 2.9 4 3.52 2.87 单道密封不锈钢U型间隔条A 2.79 3.0 6 4.05 2.92 双道密封强化塑料/金属合成隔条A 2.79 3.0 5 4.02 2.93 双道密封不锈钢U型间隔条A 2.79 3.0 7 4.13 2.94

相关文档
最新文档