固体物理(第三章 晶格振动与晶体的热学性质)

合集下载

晶格振动和晶体的热学性质精品PPT课件

晶格振动和晶体的热学性质精品PPT课件

(q)
nn+)(00M
=c0q
2mcos+12aq m M2m2
ei12aq 2Mmcos
aq
q
光波: =c0q, c0为光速
对于实际晶体, +(0)在1013 ~ 1014Hz,对应于远 红外光范围。离子晶体中光学波的共振可引起对远红外 光在 +(0)附近的强烈吸收。
久期方程:
2
Mm
M
m
M
2
m2
2Mm
cos
aq

M Mm
m
1
1
4 Mm
M m2
sin 2
1 2
aq
q
a
a
两个色散关系即有两支格波:(+:光学波; -:声学波)
π nn
Aei12aq B
2cos 12aq ei12aq 2M2
M
2mcos12 aqei12aq m M2m22Mmcosaq
j
• 一种格波即一种振动模式称为一种声子, nj:声子数。

当电子或光子与晶格振动相互作用时,总是以
E
N j=1
nj
1 2
为 j
单元交换能量。
• 声子具有能量 q ,也具有准动量 Mn nn12n ,但它不能
脱离固体而单独存在,并不是一种真实的粒子, 只是一 种准粒子。
• 声子的作用过程遵从能量守恒和准动量守恒。
当q0时,+,原胞中两种原子振动位相完全相反。
i 1 aq
M
2
2mcos
1 2
aqe
2
m2 2Mmcosaq
M
m
Rei
离子晶体在某种光波的照射下,光波的电场可以激发这 种晶格振动,因此,我们称这种振动为光学波或光学支。

《固体物理基础》晶格振动与晶体的热学性质

《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。

固体物理-第3章-晶体振动与晶体热学性质-3.1

固体物理-第3章-晶体振动与晶体热学性质-3.1

第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
格波的意义
格波方程
un Aei(tnaq)
i(t 2 x )
对比连续介质波 Ae
A ei (t qx )
波数 q 2
—— 格波和连续介质波具有完全类似的形式
晶体中所有原子共同参与的一种频率相同的振动,不同 原子间有振动位相差,这种振动以波的形式在整个晶体 中传播,称为格波。
m
d 2un dt 2
(un1 un1 2un )
设方程解
un Aei(t naq)
naq — 第n个原子振动位相因子
un1 Aeitn1aq
un1 Aeitn1aq
得到 m2 (eiaq eiaq 2)
2 4 sin2 ( aq )
m
2
~ q —— 一维简单晶格中格波的色散关系,即振动频谱
—— N个原胞,有2N个独立的方程
方程解的形式
Aei[t(2na)q] 2n
and
Be 2n1
i [t ( 2 n 1) aq ]
两种原子振动的振 幅A和B一般不同
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
第2n+1个M原子 M &&2n1 (22n1 2n2 2n ) 第2n个m原子 m&&2n (22n 2n1 2n1)
要求 eiNaq 1 Naq 2h
q 2 h —— h为整数
Na
波矢的取值范围 q
a
a
N h N
2
2
h — N个整数值 q 取N个不同分立值
第三章 晶格振动与晶体热学性质 §3.1 一维晶格的振动
N h N

固体物理基础第3章-晶格振动与晶体的热学性质

固体物理基础第3章-晶格振动与晶体的热学性质

3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式

a
)

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

格波: 连续介质弹性波:
Ae
i t naq
i t xq
Ae
将 µ nq
Ae i t qna
i t naq
代入运动方程得
m 2 Ae
Ae
m 2 eiaq eiaq 2 2 cos aq 1
解 得
第三章 晶格振动与晶体的热学性质
布拉伐晶格晶体中的格点表示原子的平衡位置,原子在格点附近作热振动,由于晶体内 原子之间存在相互作用力,各个原子的振动不是孤立的,而是相互联系在一起的,因此在晶 体中形成各种模式的波,称为格波。只有当振动非常微弱时,原子间的相互作用可以认为是 简谐的,非简谐的相互作用可以忽略,在简谐近似下,振动模式才是独立的。由于晶体的平 移对称性,振动模式所取的能量值不是连续的,而是分立的。通常用一系列独立的简谐振子 来描述这些独立的振动模,它们的能量量子称为声子。
nj Aje
i jt naqj


频率为 j 的特解:
方程的一般解:
n

线性变换系数正交条件: 系统的总机械能化为:
Ae
j j
i jt naqj


Q q, t einaq Nm
q
1
1 N
=N=晶体链的原胞数 晶格振动格波的总数=N· 1 =晶体链的自由度数 三、格波的简谐性、声子概念
1 2 n m 2 n 2 1 U n 晶体链的势能: n 1 2 n
晶体链的动能:T

系 统 的总 机械 能 即 体系的哈密顿量为:
H

2 1 1 2 n m n n 1 2 n 2 n
1 d2V dV V a V a 2 2 d x a d x

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章

(2)计算与该频率相当的电磁波的波长,并与 Nacl 红外吸收频率的测量 值 61 μ 进行比较。
w
波矢取值 因此
3.6 计算一维单原子链的频率分布函数 ρ (ω )
解:设单原子链长度 L=Na
q=
w
. e h c 3 . w
-6-
m o c
α e2
r +
β
rn
其中
2π 2π Na q= ×h Na Na ,状态密度 2π 每个波矢的宽度


w
M M

us −1
d 2us = C (Vs −1 − us ) + 10C (Vs − us ) , dt 2 d 2Vs = 10C ( us − Vs ) + C ( us +1 − Vs ) , dt 2
w
a/2
o
vs −1
. e h c 3 . w
c 10c
m o c
o

o

us
vs
解:如上图所示,质量为 M 的原子位于 2n-1, 2n+1, 2n+3 ……
质量为 m 的原子位于 2n, 2n+2, 2n+4 …… 牛顿运动方程:
m μ 2 n = − β (2 μ 2 n − μ 2 n +1 − μ 2 n −1 ) M μ 2 n +1 = − β (2 μ 2 n +1 − μ 2 n + 2 − μ 2 n )
所以可以得到
w
μl +1,m = μ (0) exp{i[(l + 1)k x a + mk y a − ωt ]} μl −1,m = μ (0) exp{i[(l − 1)k x a + mk y a − ωt ]} μl ,m+1 = μ (0) exp[i (lk x a + (m + 1)k y a − ωt )] μl ,m−1 = μ (0) exp[i (lk x a + (m − 1)k y a − ωt )]

第三章晶格振动与晶体的热学性质PPT课件

第三章晶格振动与晶体的热学性质PPT课件

4ed
0
e
2
1
CV 1254NkBTD3T3
德拜 T3 定律 :CV 与 T3 成比例
注意:T3 定律一般只适用于大约
1 T 30 D
的范围
这表明,Debye模型可以很好地解释在很低 温度下晶格热容CV∝ T3的实验结果。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
的色散关系,称为晶格振动的振动谱。 (q )
利用波与格波的相互作用,以实验的方法直接
测定 (q)
一、格波振动使中子流的非弹性散射 二、(可见光)光子与晶格的非弹性散射 三、X光的非弹性散射
只讨论单声子过程
因而,光散射只能和长波声子,即接近布里渊区 心的声子发生相互作用。
用可见光散射方法只能测定原点附近的很小一 部分长波声子的振动谱,而不能测定整个晶格振 动谱,这是光可见散射法的最根本缺点。
<<1
(1)★ 声学波
2m m M M 11m 4 m M M 2si2n aq 1/2
2m m M M 11m 4 mM M2sin2aq1/2
简化
m4mMM2sin2aq1 1m 4 m M 2 M si2a n 1 q /2 11 2m 4 m M 2 M si2a nq
32
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal

固体物理晶格振动

固体物理晶格振动

3. 量子描述
1 3N 2 H = pi i2Qi2 2 i =1
根据经典力学写出的哈密顿量, 可以直接用来作为量子力学分 析的出发点, 只要把 pi 和 Qi 看作量子力学中的正则共轭算符
3N 1 2 2 2 2 i Qi (Q1 , Q2 ,, Q3 N ) 2 Qi i =1 2 = E (Q1 , Q2 ,, Q3 N )



方程的一般解: un = Aj e
j
i j t naq j

=
1 Nm
Q q, t einaq
q
Q(q, t ) = Nm A j e
i j t
线性变换系数正交条件:
1 N
e
n
ina q q
= q , q
系统的总机械能化为(详细推导过程见后面附录部分)
处理小振动问题时往往选用 位移矢量u (t) 的 3N 个分量 n 与平衡位置的偏离为宗量 写成ui (i=1,2,…,3N)
N 个原子体系的势能函数可以在平衡位置附近展开成泰勒级 数
V 1 3 N 2V V = V0 ui 2 i , j =1 ui u j i =1 ui 0
q=
2π s Na
晶格振动波矢只能取分立的值, 即是量子化的. 为了保证un的单值性, 限制q在一个周期内取值
< q
N N , 0, 1, 2, , 1), ( 2), ( 3), 1, 2 2
N N <s 2 2
2π q= s Na 波矢q也只能取 N 个不同的值, 即
1 2 晶体链的动能: T = mun 2 n 1 2 晶体链的势能: U = un un 1 2 n 1 1 2 2 系统的总机械能: H = mun un un1 2 n 2 n

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章 晶格振动与晶体热学性质

固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。

只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。

由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。

对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。

和光子的情形相似,这些谐振子的能量量子称为声子。

这样晶格振动的总体就可以看成声子系综。

若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。

当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。

晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。

ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。

这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。

若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。

23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。

固体物理第三章 晶格振动与晶体的热学性质

固体物理第三章 晶格振动与晶体的热学性质

注意:
(1)振子并不是组成固体的真实粒子,振子的振动代表简正坐标 的振动,并不是真实粒子的振动。格波的振动频率—简正坐标振 动的圆频率。 (2)简正变换的物理实质可以作以下解释: N个独立粒子——3N个无相互作用的简谐振子。 固体中每一个粒子受到其它N-1个粒子的作用。当作用力近似为 简谐力时,可将固体看成近似由3N个谐振子组成。条件: (a)简谐力近似,若不是,则格波不独立——声子由湮没,产生 (b)简正坐标的振动——集体运动的描述。
事实上:
晶格动力学的发展是在研究热学性质中建立起来的。 晶格动力学是固体物理学中的重要组成部分。晶格动力学 的前身就是比热理论。 从固体比热的发展阶段看: * 从Einstein模型 ,Debye模型,——格波模型,最后形成 晶格动力学,并用来进一步处理其它问题。 * 关于固体比热的研究,不单是解决固体比热的问题。而 是具有更重要的意义。 * 为使比热理论值与实验值相符合,能对固体晶格运动方 式有比较正确的认识,提出一些模型,而这些认识模型成 为固体许多领域的重要基础。 比如:声子的概念,元激发 概念等。在固体物理学的其他领域有更广泛的应用。 结论:晶格振动与固体的力、热、声、光、电、磁等各种性 质有着密切的关系。
mi i
Qi i2Qi 0
a
j
ij
Q j aij A sin( i t )
由此可见,全部原子都以一种频率运动,差别仅在于振幅和 相位的不同. 而且每个原子的真正位移是各种简正振动的叠加。 也可以这样理解:N个原子的热振动可看作是一个有3N个独 立简谐振动的叠加系统,系统总能量是3N个相互独立的谐振子的 能量和,即可以把N个粒子组成的相互作用能为V的固体看成是相 互独立的3N个谐振子的集合。

0301第三章晶格振动与晶体的热学性质

0301第三章晶格振动与晶体的热学性质

原子的振动 —— 晶格振动在晶体中形成了各种模式的波 —— 简谐近似下,系统哈密顿量是相互独立简谐振动哈密
顿量之和 —— 这些模式是相互独立的,模式所取的能量值是分立的 —— 用一系列独立的简谐振子来描述这些独立而又分立的
振 动模式 —— 这些谐振子的能量量子,称为声子 —— 晶格振动的总体可看作是声子的系综
—— 原子的坐标和简正坐标通过正交变换联系起来
3N
假设存在线性变换 mi i aijQj
j1
系统的哈密顿量
H123iN1Q i2123iN1
Q 2 2
ii
拉格朗日函数
LTV1 23 i N 1Q i21 23 i N 1
Q 2 2
ii
正则动量
pi
—— 谐振子方程
本征态函数 ni(Qi) i exp(22)Hni()
Qi i /
Hni () — 厄密多项式
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质 10 / 11
N个原子组成的晶体 系统薛定谔方程
[3 i N 11 2 ( 2 Q 2 i2 3 i N 1i2 Q i2 )] (Q 1 , Q 3 N ) E(Q 1 , Q 3 N )
取 V0 0
平衡位置
( V
i
)0

0
—— 不计高阶项
系统的势能函数
V
1 3N ( 2V
2i, j1 ij
)0ij
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质 05 / 11
系统的势能函数
V1
3N
(
2V
2i, j1 ij
)0ij
[3 i N 11 2 ( 2 Q 2 i2 3 i N 1i2 Q i2 )] (Q 1 , Q 3 N ) E(Q 1 , Q 3 N )

2015年固体物理第三章 晶格振动与晶体的热学性质(全部课件)

2015年固体物理第三章 晶格振动与晶体的热学性质(全部课件)

18
3
2015/4/13
3. 波数q:
nq Ae i (t naq)
(3-22)
所以: aq只需取值:
格波波数 q具有 2π/λ格式,量纲为 [L]-1。 aq改变 2π的整 数倍,即aq2→ n2π + aq1 时所有原子振动没有不同。 如: 格波1(红色): 2 q1 相位差aq1 4a 2 格波2(绿色):
:力常数
a
n-2 n-1
a
n
( n 1 n 1 2n )
(3-21)


n+1
n+2
由于每个原子对应一个上述方程,N个原子则有N个 方程。N个联立线性齐次方程代表原子链的运动。
I. 左边第(n-1)个原子与它的相对位移为: δ = μn - μn-1 ,作用力:-β ( μn - μn-1) II. 右边第(n+1)个原子与它的相对位移为: δ = μn+1- μ,作用力 -β( μn+1- μn )
Ae
i (t q x )
(3-24)
x: 任意一点,ω: 园频率,λ: 波长,2πx/λ: 位相
b) 格波
nq Ae i (t naq)
(3-22)
位置只取一系列周期性排列的格点na 。 格波解表示所有原子同时做频率为 ω的振动。不同原 子有位相差,相邻原子位相差为aq。 17
2

m
1 sin aq 2


a
q

a
N个不同值,共有
N
在q << π/a( q →0,意味波长很长), 也就是相当波 长 λ >> a 时,sin(aq/2)~ aq/2

第三章晶格振动和晶体的热学性质ppt课件

第三章晶格振动和晶体的热学性质ppt课件
总长为 L = Na , N为原胞总数。
质量为M的原子编号为:··· n-1,1、 n,1、n+1,1、···
质量为m的原子编号为:··· n-1,2、 n,2、n+1,2、···

u
n

,1
un
,
2是相应于原子M、m在沿链方向对其平衡位置的偏离
.
方程和解
和单原子链类似,若只考虑最近邻原子的相互作用,则有:
.
当δ很小时,作二级近似
恢复力 ------简谐近似
----胡克定律 ( 为倔强系数)
研究一维单原子链的振动
模型:设一维单原子链中,原子间距(晶格常量)为a, 总长为 L = Na , N为原子总数(晶胞数 ) ,原子质量为m。
.
第n个粒子的受力情况:
运动方程:
假设晶格足够长,可忽略边界。以行波作试探解,即
举例说明 un Aei(qn at)
第一布里渊区
(1) (2)
对格点振动有贡献的是原 子,两原子之间的振动在 物理上没有意义。
.
/aq/a 第一布里渊区(倒格子空间)
倒格子空间-波矢空间
.
(3)周期性边界条件、第一布里渊区中的模数
a
波恩-卡门边界条件 a
(周期性边界条件)
q的取值采用波恩-卡门边界条件(周期性边界条件)来定:
u1 uN1
N为晶格中的原子个数(晶胞数 )
即: A i(q e a t) A i[q (N e 1 )a t]
un Aei(qn at)
.
u1 uN1 A i(q e a t) A i[q (N e 1 )a t]
eiqNa1
得: qN a2l l =0,±1,±2……等整数

固体物理:第三章 晶格振动和晶体的热学性质

固体物理:第三章 晶格振动和晶体的热学性质
m
2 sin aq
m
2
2π / a π / a
0
π/ a
2π / a
是波矢q的周期性函数,且(-q)= (q)。
m
2 sin aq
m
2
2π a
π a
o
πa
2π a
当 q , q 2π s ( s为 整 数), a
(q) (q)

i t na ( q 2π s )
xn (q) Ae
x2n Beit2naq
其他原子位移可按下列原则得出:
(1)同种原子周围情况都相同,其振幅相同;原子不同,其振幅 不同。
(2)相隔一个晶格常数2a的同种原子,相位差为2aq。
x2n1 Aeit 2n1aq
x Be 2n2
[t ( 2n2 )aq]
..
x M 2n x2n1 x2n1 2 x2n
2
2
2
2
波矢 q
2π Na
s
也只能取N个不同的值。
晶格振动波矢只能取分立的值
波矢的数目(个数)=晶体原胞的数目
6. 长波极限:
q 2π 0
2 sin aq 2 aq a q
m2
m2
m
Vp q
vp a m
弹性波
m
2π a
π a
o
πa
Vp q
vp a m
由连续介质波
弹性模量
x
格波 不能在晶体中传播,实际上此时它是一种驻波。因为 此时相邻原子的振动位相相反,
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm

固体物理(第3章)讲解

固体物理(第3章)讲解
2
—— 每一个原子运动方程类似 —— 方程的数目和原子数相同
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
方程解和振动频率 设方程组的解 naq — 第n个原子振动相位因子
得到 应用三角公式
4 2 aq sin ( ) m 2
—— 常数
—— 平衡条件
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
dv 1 d v v (a ) v (a ) ( )a ( 2 )a 2 High items dr 2 dr
简谐近似 —— 振动很微弱,势能展式中只保留到二阶项
2 1 2 2 任意一个简正坐标 [ 2 i Qi ] (Qi ) i (Qi ) 2 2 Qi
1 能量本征值 i ( ni ) i 2
本征态函数
—— 谐振子方程
n (Qi )
i
i

exp(

2
2
) H ni ( )
— 厄密多项式
§3-1 简谐近似和简正坐标 ——
格波 波矢的取值和布里渊区 相邻原子相位差 格波1的波矢
—— 原子的振动状态相同
相邻原子相位差
§ 3-2简谐近似和简正坐标 一维单原子链 —— —— 晶格振动与晶体的热学性质 § 3-1 晶格振动与晶体的热学性质
格波 格波2的波矢
aq1 / 2
相邻原子的位相差
—— 两种波矢q1和q2的格波中,原子的振动完全相同
原子位移宗量
N个原子的位移矢量 —— 体系的势能函数在平衡位置按泰勒级数展开

第三章 晶格振动和晶体的热学性质

第三章 晶格振动和晶体的热学性质

第三章晶格振动和晶体的热学性质[引言]晶体中原子、离子实际上不是静止在晶格平衡位置上,而是围绕平衡位置作微振动,称为晶体振动。

对晶体振动的研究是从解释固体的热学性质开始的,最初把晶体中的原子看作是一组相互独立的振子,应用能量均分定理可以说明固体比热容服从杜隆-珀替定律,但与T=0K时的0C=的规律不符。

1906年爱因斯坦提出固体比热容的量子理论,V认为独立谐振子的能量是量子化的,可以得到T=0K时0C=的规律的结论,但与低温V下3C T的实验结果不符。

1912年德拜提出固体的比热容理论,把固体当成连续介质,~V晶格振动的格波看连续介质中的弹性波,得到低温下3~C T的结果。

随后,玻恩及玻V恩学派逐步建立和发展了比较系统的晶格振动理论成为最早发展的固体理论之一。

晶格振动理论不仅可以用来解释固体的热学性质、结构相变等许多物理性质都是极为重要的,是研究固体物理性质的基础。

因为固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由大量电子和离子组成的多粒子体系。

由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体问题是不可能的,但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多,可以近似地把电子的运动与离子运动分开考虑,变成一个在晶格周期场中运动的多电子问题;在考虑离子的运动时,则认为电子能够即时跟上离子位置的变化,变成离子或原子如何围绕平衡位置运动的问题。

这种近似称为绝热近似。

晶格振动理论就是在这个近似的基础上建立的。

本章首先从最简单的一维晶格出发,说明晶格振动的基本性质,然后推广到三维情况,最后讨论晶体的热学性质。

[本章重点]一维单原子链晶格振动,一维双原子链晶格振动,声子,晶格比热的德拜模型,晶格振动的模式密度,N 过程与U 过程§3-1一维单原子链考虑由N 个相同的原子组成的一维晶格,如图3-1-1所示,相邻原子间的平衡距离为a ,第j 原子的平衡位置用x 0j 来表示,它偏离平衡位置的位移用u j 来表示,第j 原子的瞬时位置就可以表示为:j j j u x x +=0………………………………………………(3-1-1) 原子间的相互作用势能设为)(ij x ϕ,如果只考虑晶体中原子间的二体相互作用,则晶体总的相互作用能可表示为:()∑≠=Nji ij x U ϕ21……………………………………………(3-1-2)式中ij ij i j ij u x x x x +=-=0是i 、j 原子的相对距离,i j ij u u u -=是i 、j 两原子的相对位移,在温度不太高时,原子在平衡位置附近作微振动,相邻原子的相对位移要比其平衡距离小得多,可将ϕ展开为:………………(3-1-3)于是有:()∑∑∑≠≠≠+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂+=j i ij ij j i ij ijj i ij u x u x x U 202200412121ϕϕϕ……………(3-1-4) 图3-1-1 一维单原子晶格()()()+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=+=2220021ij ij ij ijijij ijij u x u x xu x x ϕϕϕϕϕ式中第一项是所有原子处于平衡位置上时的总相互作用能,用U 0来表示,是U 的极小值,()∑≠=ji ij x U 0021ϕ…………………………………………………………………… (3-1-5) 第二项是i j u 的线性项,它的系数为:()∑≠⎪⎪⎭⎫⎝⎛∂∂i j ij x 0ϕ,是所有其它原子作用在i 原子的合力的负值,当所有原子处在平衡位置上时,晶体中任一原子所受到的净作用力应为零,所以在式(3-1-4)中不存在位移的线性项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

µi 之间,通过如下形式的正交变
mi µ i = ∑ aij Q j
j =1
3N
= ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
m1 µ1 = a11Q1 + a12Q2 + L + a13 N Q3 N
§3-1 简谐近似和简正坐标 8 / 17
& i2 µ
mi µ i = ∑ aij Q j = ai1Q1 + ai 2Q2 + L + ai 3 N Q3 N
15 / 17 11/11
§3-1 简谐近似和简正坐标
由上所述,只要能找到体系的简正坐标,或者说振动模, 问题就解决了。
§3-1 简谐近似和简正坐标
16 / 17
§3-1 简谐近似和简正坐标
17 / 17
Qi = A sin(ωi t + δ )
§3-1 简谐近似和简正坐标 10 / 17
任意简正坐标的解为:
Qi = A sin(ωi t + δ )
ωi
是振动的圆频率,ωi
= 2πν i
表明:一个简正振动是表示整个晶体所有原子都参与的振 动。而且它们的振动频率相同。一个简正振动并不是表示某一 个原子的振动。 由简正坐标所代表的体系中所有原子一起参与的共同振动 常常称为一个振动模。
能量本征值
ε i = (ni + )hωi
ϕ n (Qi ) =
i
1 2
本征态函数
ωi
ξ=
Qi h H ni (ξ ) 表示厄密多项式
14 / 17
ω
ξ2 exp H ni (ξ ) − 2 h
§3-1 简谐近似和简正坐标
N个原子组成的晶体,系统的薛定谔方程为:
3N 1 2 ∂ 2 2 2 − h + ω Q ∑ i i ψ (Q1 , L , Q3 N ) = Eψ (Q1 , L , Q3 N ) 2 2 ∂ Q = 1 i i
系统的能量本征值 E =
∑ ε = ∑ (n + 2 )hω
i =1 i i =1 i 3N i =1
3N
3N
1
i
系统的本征态函数
ψ (Q1 , Q2 , L, Q3 N ) = ∏ ϕ n (Qi )
i
ϕ n (Qi ) =
i
ωi
ξ2 exp H ni (ξ ) − 2 h
µ = AQ
A−1µ = A−1 AQ = Q Q = A −1 µ
1 3N & 2 T = ∑ Qi 2 i =1 1 3N 2 2 V = ∑ ωi Qi 2 i =1
由分析力学的一般方法,可以写出拉格朗日函数:
L = T −V
正则动量:
pi =
∂L & =Q i & ∂Qi
9 / 17
§3-1 简谐近似和简正坐标
固体物理学
侯识华(Hou Shi-hua) Tel: 020-88375257 手机: 13431002118 Email: shhou@ 2008 年 3 月 19 日
第三章 晶格振动与晶体的热学性质
晶体中的格点表示原子的平衡位置,晶格振动便是指原子 在格点附近的振动。 晶格振动是研究固体宏观性质和微观过程的重要基础。对 晶体的热学性质、电学性质、光学性质、超导电性、磁性、结 构相变,等一系列物理问题,晶格振动都有着很重要的作用。
3N 1 2 ∂ 2 2 2 − + h ω Q ∑ i i ψ (Q1 , L , Q3 N ) = Eψ (Q1 , L , Q3 N ) 2 ∂ 2 Q i i =1
§3-1 简谐近似和简正坐标 12 / 17
3N 1 2 ∂ 2 2 2 − + h ω Q ∑ i i ψ (Q1 , L , Q3 N ) = Eψ (Q1 , L , Q3 N ) 2 ∂ 2 Q i i =1
系统的哈密顿量: H
1 3N 2 = T + V = ∑ pi + ωi2Qi2 2 i =1
(
)
应用哈密顿正则方程: 得到:
∂H & = ∂H &i = − Q p i ∂Pi ∂Qi && + ω 2Q = 0 (i = 1,2, K ,3 N ) Q i i i
这是3N个相互无关的方程,表明各简正坐标描述独立的简谐振动, 其中,任意简正坐标的解为:
µi 的二次方项,称为简谐近似。
7 / 17
处理小振动问题一般都取简谐近似。
N个原子体系的动能函数为:
1 3N & i2 T = ∑ mi µ 2 i =1
为了使系统的势能函数和动能函数具有简单的形式,即化为平 方项之和而无交叉项,引入简正坐标。引入这种广义坐标能使T和V 同时表示为平方项之和的形式。 简正坐标与原子的位移坐标 换相互联系:
§3-1 简谐近似和简正坐标
11 / 17
根据经典力学写出的哈密顿量:
1 3N 2 H = T + V = ∑ ( pi + ωi2Qi2 ) 2 i =1
从量子力学出发:
pi = −ih
∂ ,得到波动方程: ∂Qi
1 3N 2 1 3N 2 2 2 ∑ pi + 2 ∑ ωi Qi ψ (Q1 , L, Q3 N ) = Eψ (Q1 , L, Q3 N ) i =1 i =1
1 // 2 f ( x0 )( x − x0 ) 2! 1 (n ) n + L + f ( x0 )( x − x0 ) + Rn ( x ) n!
6 / 17
§3-1 简谐近似和简正坐标
2 ∂V 1 3N ∂ V µ + V = V0 + ∑ ∑ i 2 i , j =1 i =1 ∂µ i 0 ∂µ i ∂µ j 3N
—— 杜隆-珀替经验规律
N为阿伏伽德罗常数 ,N=6.02×1023mol-1 k 为玻耳兹曼常数, k=1.3805×10-23J/K R为普适气体常数,R=8.31J/(mol·K)
杜隆-珀替定律在室温和更高的温度,对固体基本上是适 合的。
第三章 晶格振动与晶体的热学性质 2 / 17
实验表明,在较低温度,固体的热容量随着温度的降低而 下降,杜隆-珀替定律不适用。 为了解决这一矛盾,爱因斯坦发展了普朗克的量子假说, 第一次提出了量子热容量理论,得出热容量在低温范围下降, 并在T 0K时,CV 0的结论。 量子理论的热容量和经典不同,它与原子振动的具体频率 有关,从而推动了对固体原子振动进行具体的研究。 以后的研究确立了晶格振动采取“格波”的形式。本章的主 要内容是介绍“格波”的概念,并在相应的晶格振动理论的基础 上,扼要讲述晶体的宏观热学性质。
µ i µ j + 高阶项 0
取 V0 = 0 ,平衡位置:
∂V = 0 ,不计高阶项,则得到: ∂ µ i 0
2 ∂ 1 3N V V = ∑ 2 i , j =1 ∂µi ∂µ j
µi µ j 0
体系的势能函数只保留至
§3-1 简谐近似和简正坐标
j =1
3N
m1 µ1 = a11Q1 + a12Q2 + L + a13 N Q3 N
m1 µ1 a11 m2 µ 2 a21 M = M m3 N −1 µ3 N −1 a3 N −11 m µ a3 N 1 3N 3N a12 a22 M a3 N −12 a3 N 2 L a13 N −1 L a23 N −1 O M L a3 N −13 N −1 L a3 N 3 N −1 a13 N Q1 a23 N Q2 M M a3 N −13 N Q3 N −1 a3 N 3 N Q3 N
第三章 晶格振动与晶体的热学性质
1 / 17
1819年,法国科学家杜隆(P.L. Dulong)和珀替(A.T. Petit)提出:每摩尔固体有3N个振动自由度(一摩尔固体有N 个原子),按能量均分定律,每个自由度平均热能为kT,则摩 尔热容量为:
CV =
∂E ∂(3NkT ) = = 3Nk = 3R ∂T ∂T
第三章 晶格振动与晶体的热学性质
3 / 17
§3-1 简谐近似和简正坐标
从经典力学的观点,晶格振动是一个典型的小振动问题。 凡是力学体系自平衡位置发生微小偏移时,该力学体系的运动 都是小振动。 晶格振动是一个典型的小振动问题,因此,处理小振动问 题的理论方法和主要结果,可做为晶格振动的理论基础。
§3-1 简谐近似和简正坐标
2 ∂V ∂ V 1 3N + µ V = V0 + ∑ ∑ i 2 i , j =1 i =1 ∂µ i 0 ∂µ i ∂µ j 3N
µ i µ j + 高阶项 0
泰勒级数展开:
f ( x ) = f ( x0 ) + f / ( x0 )( x − x0 ) +
上述方程表示一系列相互独立的简谐振子,对于其中每一 个简正坐标有:
1 2 ∂2 2 2 + ω Qi ϕ (Qi ) = ε iϕ (Qi ) i − h 2 ∂Qi2
每一个简正坐标,对应一个谐振子方程。
§3-1 简谐近似和简正坐标
13; ω Qi ϕ (Qi ) = ε iϕ (Qi ) i − h 2 ∂Qi 2
4 / 17
设晶体包含N个原子,考虑第n 个原子: 平衡位置为: Rn
→ →
偏离平衡位置的位移矢量为: µ n (t ) 把位移矢量
相关文档
最新文档