材料科学基础晶体缺陷

合集下载

《材料科学基础》课件之第四章----04晶体缺陷

《材料科学基础》课件之第四章----04晶体缺陷

41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l


b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型

《材料科学基础》教学中的晶体缺陷

《材料科学基础》教学中的晶体缺陷

《材料科学基础》教学中的晶体缺陷
晶体缺陷是晶体中的异常结构,它可以影响晶体的物理性质和力学性质。

在《材料科学基础》教学中,学生需要了解以下关于晶体缺陷的内容:
1. 晶体缺陷的分类:晶体缺陷可以分为内部缺陷和表面缺陷,内部缺陷包括缺位缺陷、离子缺陷、晶界缺陷、层缺陷等,而表面缺陷则包括裂纹、气孔、氧化物等。

2. 晶体缺陷的形成机制:晶体缺陷的形成可以由晶体原子或离子的迁移、晶体原子或离子的排斥、晶体原子或离子的结晶不足、晶体原子或离子的结晶过度等机制来解释。

3. 晶体缺陷的影响:晶体缺陷可以影响材料的物理性质和力学性质,例如热导率、电导率、磁导率等,以及材料的强度、韧性、硬度等。

4. 晶体缺陷的检测方法:常用的晶体缺陷检测方法包括X射线衍射、扫描电子显微镜、拉曼光谱、热扩散系数测定等。

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。

材料科学基础--第2章晶体缺陷PPT课件

材料科学基础--第2章晶体缺陷PPT课件
辐照:在高能粒子的辐射下,金属晶体点阵上的原子 可能被击出,发生原子离位。由于离位原子的能量高, 在进入稳定间隙之前还会击出其他原子,从而形成大量 的间隙原子和空位(即弗兰克尔缺陷)。在高能粒子辐 照的情况下,由于形成大量的点缺陷,而会引起金属显 著硬化和脆化,该现象称为辐照硬化。
12
2.1.5点缺陷与材料行为
Or, there should be 2.00 – 1.9971 = 0.0029 vacancies per unit cell. The number of vacancies per cm3 is:
17
Other Point Defects
Interstitialcy - A point defect caused when a ‘‘normal’’ atom occupies an interstitial site in the crystal.
11
2.1.4 过饱和点缺陷
晶体中的点缺陷浓度可能高于平衡浓度,称为过饱和点 缺陷,或非平衡点缺陷。获得的方法:
高温淬火:将晶体加热到高温,然后迅速冷却(淬火 ),则高温时形成的空位来不及扩散消失,使晶体在低 温状态仍然保留高温状态的空位浓度,即过饱和空位。
冷加工:金属在室温下进行冷加工塑性变形也会产生 大量的过饱和空位,其原因是由于位错交割所形成的割 阶发生攀移。
6
2.1.1 分类
3.置换原子(Substitutional atom) 异类原子代换了原有晶体中的原子,而处于晶体点阵的结 点位置,称为置换原子,亦称代位原子。 各种点缺陷,都破坏了原有晶体的完整性。它们从电学
和力学这两个方面,使近邻原子失去了平衡。空位和直 径较小的置换原子,使周围原子向点缺陷的方向松弛, 间隙原子及直径较大的置换原子,把周围原子挤开一定 位置。因而在点缺陷的周围,就出现了一定范围的点阵 畸变区,或称弹性应变区。距点缺陷越远,其影响越小 。因而在每个点缺陷的周围,都会产生一个弹性应力场 。

《材料科学基础》 第03章 晶体缺陷

《材料科学基础》 第03章 晶体缺陷

第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。

无机材料科学基础 第三章晶体结构缺陷

无机材料科学基础 第三章晶体结构缺陷
2、造成晶体结构缺陷的原因:
实际晶体温度总是高于绝对零度(热缺陷) 实际晶体总是有限大小(表面/界面缺陷) 实际晶体总是含有或多或少的杂质(外来缺陷)
缺陷就是对于理想晶体结构的偏离
第三章晶体结构缺陷一
3、缺陷对于晶体的影响
影响晶体的电学以及力学性能 影响晶体内部质点的扩散 影响晶体的烧结和化学反应活性 形成非化学计量物质,改变材料的物理化学性能
杂质原子(掺杂原子)其量一般小于0.1%,进入主晶格后,因杂 质原子和原有的原子性质不伺,故它不仅破坏了原子有规则的 排列,而且在杂质原子周围的周期势场引起改变,因此形成一 种缺陷。
特点: A 杂质原子又可分为间隙杂质原子及置换杂质原子两种。前者
是杂质原子进入固有原子点阵的间隙中;后者是杂质原子替代 了固有原子。杂质原子在晶格中随机分布,不形成特定的结构。 B 晶体中杂质原子含量在未超过其固溶度时,杂质缺陷的浓度 与温度无关,这与热缺陷是不同的。
点缺陷的名称→
□←点缺陷所带的 有效电荷
× 中性 ● 正电荷
' 负电荷
○←点缺陷在晶体中占的位置
第三章晶体结构缺陷二
( X原1)子空空位位:。用VM和Vx分别表示M原子空位和
(2)填隙原子:用Mi和Xi表示。 (3)错放位置:Mx表示M原子错放在X位置。 (4)溶质原子: LM表示L溶质处在M位置。 (5)自由电子及电子空穴:有些电子不一定
(1)弗伦克尔缺陷: 弗伦克尔缺陷可以看作是正常格点 离子和间隙位置反应生成间隙离子和空位的过程。
正常格点离子+未被占据的间隙位置〓间隙离子+空位
第三章晶体结构缺陷二
•例如在AgBr中,弗伦克尔缺陷的生成可写成:AgAg+Vi=Agi´+VAg · •由质量作用定律,

材料科学基础第三章 晶体缺陷

材料科学基础第三章 晶体缺陷

贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY

晶体缺陷【材料科学基础】

晶体缺陷【材料科学基础】

14
大角度晶界
¾ ¾ 9 9
大角度晶界的结构较复杂,其中原子排列较不规则。 有关大角度晶界的结构,人们曾提出许多模型: 早期:认为晶界是由一层很薄(几个原子间距)的非晶 质组成。 后来: 过渡结构模型:晶界原子分布同时受两相邻晶粒位向的 影响,处于折中位置。 小岛结构模型:晶界中的一部分原子与其相邻两边界的 点阵匹配排列,成为好区;有的部分(岛屿)原子排列 较混乱,成为坏区。好区与坏区交替相间组成晶界。

相界能低(畸变非常小)。
36
半共格相界
定义:两相结构相近而原子 间距相差较大,在相界面上 出现了一些刃位错。(界面 上两相原子部分匹配) 相界能较高(有畸变)。相 界面上的原子共格关系主要 通过一组刃位错调整和维持。

37

半共格相界上位错间距D取决于相界处两相匹配晶 面的错配度(δ) 。 相界两侧原子的不匹配程度
19
晶界的性质
晶界能:形成单位面积晶界时所增加的能量。 ¾ 小角度晶界的晶界能: 小角度晶界的能量主要来自位错能量(形成位错的 能量和将位错排成有关组态所作的功),而位错密 度又决定于晶粒间的位向差,所以,小角度晶界能 也和位向差有关:

20
可见,小角度晶界的界面能随位向差增加而增大。
21
大角度晶界的晶界能: 9 基本恒定,约在0.25~1.0J/m2范围内,与晶粒 之间的位向差无关。 9 晶界能可以界面张力的形式来表现,且可以通过界 面交角的测定求出它的相对值。三个晶粒相交于一 点,界面张力达到平衡时:
9
界面结构:溶质原子在大角度晶界中偏聚严重。
27
¾ ¾ ¾ ¾ ¾
晶界的其它特性: 晶界的扩散激活能约为晶内的一半,晶界处原子的 扩散速度比在晶内快得多。 随温度升高,保温时间延长,晶界发生迁移,晶粒 要长大,晶界平直化;晶界可能熔化(过烧)。 新相易在晶界处优先形核(晶界能量高,原子活动 能力大)。 晶界具有较低的抗腐蚀能力。 晶界阻碍位错运动,使金属具有较高的塑变抗力。

材料科学基础 晶体缺陷

材料科学基础 晶体缺陷

二元离子晶体——不等径刚球密堆理论
.
12
2. 共价晶体结构(原子晶体)
典型共价晶体结构
金刚石型(单质型) ZnS型(AB型) SiO2型(AB2型)
.
13
第三节 原子的不规则排列
晶体中的缺陷——原子排列偏离完整性的区域
点缺陷——在三个方向上尺寸都很小 线缺陷——在二个方向上尺寸很小 面缺陷——在一个方向上尺寸很小
24
(1) 包含位错线做一封闭回路——柏氏回路 (2) 将同样的回路置于完整晶体中——不能闭合 (3) 补一矢量(终点指向起点)使回路闭合——柏氏矢量
43 21
1
2
2
1
1
3
1
1 23 4
b
43
2
1 2
1
1 23 4
.
25
2)柏氏矢量特性
(1) 满足右螺旋规则时,柏氏矢量与柏氏回路路径无关
二、金属晶体结构及几何特征
1. 常见的三种晶体结构
面心立方 体心立方
既是晶体结构,又是点阵
密排六方 —— 仅是晶体结构,不是点阵 — 简单六方
.
1
1) 面心立方(fcc 或 A1)
点 阵 常 数: R 2 a
4
最近原子间距:d 2 a 2
<110> 方向 晶胞原子数: 1/8×8 +1/2 ×6 = 4
1a 1b 0c a[11 ] 0
22
2
例:b 5a 2[11 0]、 b 6a 2[01] 1
b 5b 6a 2[11 0]a 2[01 ]1 a 2[11 ] 0
1) 刃位错


多出(或少了) 称为
半排原子面

大学材料科学基础第四章晶体缺陷

大学材料科学基础第四章晶体缺陷

Point defects: (a) vacancy, (b) interstitial atom, © small substitutional atom, (d) large substitutional atom, (e) Frenkel defect-ionic cystals (f) Schottky defect- ionic crystals. All of these defects disrupt the perfect arrangement of the surrounding atoms.
第一节 点缺陷
一、点缺陷的类型 1.点缺陷的概念 指在三维方向上尺寸都很小的原子错排区 域,不能理解为一个几何点。
(1) vacancy; (2) selfinterstitial; (3) interstitial impurity; (4), (5) substitutional impurities. The arrows show the local stresses introduced by the point defects.
3830 6480 10960 2630
0.786 0.49 2.75 0.393
2.位错学说的提出
图5 位错滑动模型
位错理论发展进程 1934年,Talay和Orowa 度低于理论强度的现象。 1939 1939年,Burgers提出用柏氏矢量来表征位错 Burgers 类型,为用数学方法处理位错奠定了基础。 1947年,Cottrell提出柯氏气团钉扎模型,成 功地解释了低碳钢的屈服现象。 1950年,Frank和Read提出金属塑性变形中位 错增殖机制,即Frank-Read位错源学说。
刃型位错柏氏矢量确定

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷
和缺陷数量变化呈非线与振动熵有关的常数玻尔兹曼常数变化每增加一个空位的能量阵点总数平衡空位数exp点缺陷并非固定不动而是处在不断改变位置的运动过程空位周围的原子由于热振动能量的起伏有可能获得足够的能量而跳入空位并占据这个平衡位置这时在这个原子的原来位置上就形成一个空位
材料科学基础第三章晶体缺陷
本章要求掌握的主要内容
b. 由于存在着这两个互为矛盾的因素,晶体中的点缺陷在一定温度下有一定的平衡数目,这时点 缺陷的浓度就称为它们在该温度下的热力学平衡浓度。
c. 在一定温度下有一定的热力学平衡浓度,这是点缺 陷区别于其它类型晶体缺陷的重要特点。
图 空位-体系能量曲线
1.形成缺陷带来晶格应变,内能U增加,一个缺陷带来的内能
过饱和点缺陷(如淬火空位、辐照缺陷)还提高了 金属的屈服强度。
例1:Cu晶体的空位形成能Ev为1.44×10-19J/atom, 材料常数A取为1,波尔兹曼常数为k=1.38×10-23J/K, 计算:
1)在500℃下,每立方米Cu中的空位数目; 2)500℃下的平衡空位浓度。 (已知Cu的摩尔质量63.54,500℃ Cu的密度为 8.96×106g/m3)
增加为u,所以内能增加
,故内能增加是线性的。
Unu
2.缺陷存在使体系的混乱度增加,引起熵值增加,缺陷存在使 体系排列方式增加,即熵值显著增加。和缺陷数量变化呈非线 性的。
C
n N
A exp( Ev / kT )
n 平衡空位数
N 阵点总数
Ev 每增加一个空位的能量 变化 K 玻尔兹曼常数
A 与振动熵有关的常数
晶体结构的特点是长程有序。结构基元或者构成物体的粒子(原子、离子或分子等)完全按照空间点阵 规则排列的晶体叫理想晶体。 在实际晶体中,粒子的排列不可能这样规则和完整,而是或多或少地存在着偏离理想结构的区域,出 现了不完整性。 把实际晶体中偏离理想点阵结构的区域称为晶体缺陷。 实际晶体中虽然有晶体缺陷存在,但偏离平衡位置很大的粒子数目是很少的,从总的来看,其结构仍 可以认为是接近完整的。

晶体缺陷【材料科学基础】

晶体缺陷【材料科学基础】

5
6
3.点缺陷的形成
晶体点阵中的原子以其平衡结点为中心不停地进 行热振动。随温度升高,振幅增大,振动频率也 增大。 晶体内原子的热振动能量不相同,存在能量起伏。 某些原子振动的能量高到足以克服周围原子的束 缚时,它们将有可能脱离原来的平衡位置,迁移 到一个新的位置,在原来的平衡位置上留下空位。 温度越高,原子脱位的几率越大。

7
离位原子的去处: ¾ 离位原子迁移至表面或晶界时形成的空位— —肖脱基空位; ¾ 离位原子迁移至点阵间隙处所形成的空位— —弗兰克空位; ¾ 离位原子迁移其它空位中,使空位发生移 位,不增加空位数目。

8
4.点缺陷导致一定范围内弹性畸变和能量增加
9
5.空位和间隙原子的形成与温度密切相关: 随温度升高,点缺陷数目增加,称为热缺陷。 6.高温淬火、冷变形加工、高能粒子轰击也可 产生点缺陷 (点缺陷并非都通过原子的热 振动产生)。
第二章 晶体缺陷
1
引言: 完整晶体:原子规则地存在于应在的位置上。 晶体缺陷:实际晶体中偏离理想结构的区域。
2
晶体缺陷分类(按几何特征分):
点缺陷(零维缺陷),在三维空间的各个方向上尺 寸都很小的缺陷。如:空位、间隙原子、杂质、溶 质原子等。 线缺陷(一维缺陷),在一个方向上尺寸较大,另 两个方向上尺寸较小。如:位错。 面缺陷(二维缺陷),在两个方向上尺寸较大,在 另一个方向上尺寸较小。如:晶体表面、晶界、相 界、孪晶界、堆垛层错等。

位错的观察
18
早期对位错观察的例子:
位错的电子显微镜观察 的例子:
氟化锂表面浸蚀出的位错露头 的浸蚀坑
锗晶体中位错的电子显微镜图象
19
GaN晶体中刃位错的高分辨电子显微像

无机材料科学基础第三章晶体结构缺陷

无机材料科学基础第三章晶体结构缺陷
• 点缺陷的存在会引起性能的变化: (1)物理性质、如V、ρ 等; (2)力学性能:采用高温急冷(如淬火 quenching),大 量 的 冷 变 形 (cold working), 高 能 粒 子 辐 照 (radiation)等方法可获得过饱和点缺陷,如使屈服强 度σS提高; ( 3 ) 影 响 固 态 相 变 , 化 学 热 处 理 (chemical heat treatment)等。
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。

材料科学基础第二章晶体缺陷

材料科学基础第二章晶体缺陷

金属 Al Ag Cu
α-Fe
Mg
理论切应力
3830 3980 6480 11000 2630
实验值
0.786 0.372 0.490 2.75 0.393
切变模量 24400 25000 40700 68950 16400
21
dislocation
一 般 金 属 的 G=104~105MPa, 理论剪切强 度应为103~104MPa,实际只有1~10MPa 理论强度比实测值大1000倍以上!! 1934年Taylor, Polanyi和Orowan几乎同 时提出晶体中存在易动的缺陷-位错, 借助于位错运动实现塑性变形。
12
设在温度T时,含有N个结点的晶体中形成n个空位, 与无空位晶体相比:
ΔF=n·ΔEV-T·ΔS
ΔS=ΔSC+n·ΔSV
n个空位引入,可能的原子排列方式:Wc

(N
N! n)!n!
利用玻尔兹曼关系SC=k·lnWC,并利用Stiring公式
令: (F ) 0
n T
13.00
12.75
12.50
12.25
Fe的 电 阻 率 随 淬 火 温 度 的 变 化
12.00
200
400
600
800 1000 1200 1400 1600
Tem perature / oC
17
2.2位错的基本概念 (1)位错理论产生强化材料的重要手段,但是对于变形的微观过 程、加工硬化等尚不能解释。 滑移带现象。当时,普遍认为金属塑性变形是 晶体刚性滑移的结果,滑移面两侧的晶体借助 于刚性滑动实现变形。 1926年弗兰克尔从刚性模型出发,估计了晶 体的理论强度。

材料科学基础第3-4章小结及习题课讲解

材料科学基础第3-4章小结及习题课讲解
表示 ,模的大小表示该晶向上原子间的距离。
b a u2 v2 w2 n
六方晶系中: b=(a/n)[uvtw]
同一晶体中,柏氏矢量愈大,表明该位错导致点阵畸变愈 严重,它所在处的能量也愈高。
3.2.3 位错的运动
基本形式:滑移和攀移
滑移(slip):三种位错的滑移过程 攀移(climb):在垂直于滑移面方向上运动,
第三章 晶体缺陷
晶体缺陷分类及特征(几何形态、相对于晶体的尺寸、影响范围) :
1. 点缺陷:特征是三维空间的各个方面上尺寸都很小,尺寸
范围约为一个或几个原子尺度,包括空位、间隙原子、杂质 和溶质原子。
2. 线缺陷:特征是在两个方向上尺寸很小,另外一个方面上
很大,如各类位错。
3. 面缺陷:特征是在一个方向上尺寸很小,另外两个方向上
晶界:属于同一固相但位向不同的晶粒之间的界面 称为晶界。
亚晶界:每个晶粒有时又由若干个位向稍有差异的 亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
确定晶界位置方法: (1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。
晶界分类(按θ的大小): 小角度晶界θ<10º 大角度晶界θ>10º
(3)刃型位错标记 正刃型位错用“⊥”表示,负刃型位错用“┬”表示;其
正负只是相对而言。
(4)刃型位错特征: ① 有一额外的半原子面,分正和负刃型位错;
② 可理解为是已滑移区与未滑移区的边界线,可是直线也 可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③ 只能在同时包含有位错线和滑移矢量的滑移平面上滑移; ④ 位错周围点阵发生弹性畸变,有切应变,也有正应变;
表面能(γ):产生单位面积新表面所做的功。 表示法:①γ= dw/ds ②γ= T/L (N/m) ③γ= [被割断的结合键数/形成单位新表面]×[能量/每个键] 影响γ的因素: (1)晶体表面原子排列的致密程度。 (2)晶体表面曲率。 (3)外部介质的性质。 (4)晶体性质。

814材料科学基础-第三章 晶体缺陷知识点讲解

814材料科学基础-第三章 晶体缺陷知识点讲解

北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛老师第三章晶体缺陷本章主要内容与要求:内容:(1)点缺陷;(2)线缺陷;(3)面缺陷要求:(1)熟悉三种缺陷的概念、特点;(2)掌握点缺陷中空位浓度的计算;(3)掌握线缺陷中位错的运动,增殖;(4)熟悉各种面缺陷。

知识点1 缺陷定义:实际晶体中原子的排列不可能那样规则、完整,常常存在各种偏离理想结构的情况,这种情况我们就称为晶体缺陷。

作用:晶体缺陷对晶体的性能,特别是对那些结构敏感的性能,如屈服强度、断裂强度、塑性等有很大的影响。

根据几何特征,可以分为:点缺陷、线缺陷、面缺陷三类。

知识点2 点缺陷定义:点缺陷是最简单的一种晶体缺陷,主要是结点上或者邻近的微观区域内偏离晶体的正常结构排列的一种缺陷。

主要包括:空位、间隙原子、杂质或溶质原子。

空位:当某一原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离原来的位置,使阵点中形成空结点,这种空的结点就是空位。

间隙原子:在晶格非结点的位置,往往是间隙,此时在间隙的位置出现了多余的原子,这种多余的原子就是间隙原子。

离开平衡位置的原子有三个去处:(1)肖脱基缺陷:迁移到表面—在内部形成空位(2)弗兰克尔缺陷:原子迁移到间隙中,在晶体中形成数目相等的空位-间隙原子;(3)跑到其他空位,使空位消失。

知识点3 空位平衡浓度空位形成能Ev:在晶体内取出一个原子放在晶体表面上所需要的能量。

通常材料的熔点越高,结合能越大,空位的形成能也越大。

间隙原子会使周围点阵产生弹性畸变,而且畸变程度要比空位引起的畸变大得多,也会改变其周围电子能量,因此,它的形成能大,在晶体中浓度一般很低。

空位的形成过程原子的热振动克服约束,迁移到新的位置成为空位、间隙原子引起局部点阵畸变少部分原子获得足够高的能量结果晶体中点缺陷的存在:(1)一方面造成点阵畸变,使晶体内能升高,降低了晶体热力学的稳定性;(2)另一方面,由于原子排列顺序的混乱程度,并改变了其周围原子的振动频率,引起熵值的增大,这又增加了热力学的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4) 改变材料的力学性能 空位移动到位错处可造成刃位 错的攀移,间隙原子和异类原子的存在会增加位错的 运动阻力。会使强度提高,塑性下降、
2021/2/21
10
第二节 点缺陷
三、空位的平衡浓度
空位形成能 空位的出现破坏了其周围的结合状态, 因而造成局部能量的升高,由空位的出现而高于没有 空位时的那一部分能量称为“空位形成能”。 空位的出现提高了体系的熵值
二、多晶体的组织 与性能:
组织:
性能: 组织敏感的性能 组织不敏感的性能
伪各向同性:多晶体材料中,尽管每个晶粒内部象单 晶体那样呈现各向异性,每个晶粒在空间取向是随机 分布,大量晶粒的综合作用,整个材料宏观上不出现 各向202异1/2/2性1 ,这个现象称为多晶体的伪各向同性。 6
第一节 材料的实际晶体结构
离原结点位置才能平衡,即造成小区域的晶格畸变。
效果
1) 提高材料的电阻 定向流动的电子在点缺陷处受到非 平衡力(陷阱),增加了阻力,加速运动提高局部温度 (发热)。
2) 加快原子的扩散迁移 空位可作为原子运动的周转站。
3) 形成其他晶体缺陷 过饱和的空位可集中形成内部的 空洞,集中一片的塌陷形成位错。
三、晶体中的缺陷概论
晶体缺陷:即使在每个晶粒的内部,也并不完全象 晶体学中论述的(理想晶体)那样,原子完全呈现 周期性的规则重复的排列。把实际晶体中原子排 列与理想晶体的差别称为晶体缺陷。晶体中的缺 陷的数量相当大,但因原子的数量很多,在晶体 中占有的比例还是很少,材料总体具有晶体的相 关性能特点,而缺陷的数量将给材料的性能带来 巨大的影响。
2021/2/21
13
第三节 位错的基本概念
线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),
另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。其 具体形式就是晶体中的位错Dislocation
一、位错的原子模型
将晶体的上半部分向左移动一个原子间距,再按原子的
结合方式连接起来(b)。除分界线附近的一管形区域例外,其
27
第三节 位错的基本概念
四、位错的观察
位错密度
表示晶体中含有位错数量的参数。
位错密度ρ用单位体积位错线的总长度表示。 在金属材料中,退火状态下,接近平衡状态所得
到的材料,这时位错的密度较低,约在106的数量级; 经过较大的冷塑性变形,位错的密度可达1010--12
的数量级。详细内容到塑性变形一章再论述。
三、位错的运动
滑移面:过位错线并和柏氏矢量平行的平面 (晶面)是该位错的滑移面。
位错的滑移运动:位错在滑移面上的运动。
2021/2/21
20
第三节 位错的基本概念
三、位错的运动
1. 刃型位错的滑移运动:在图示的晶体上施加一切应力,当
应力足够大时,有使晶体上部向有发生移动的趋势。假如
晶体中有一刃型位错,显然位错在晶体中发生移动比整个
晶体移动要容易。因此,①位错的运动在外加切应力的作
用下发生;②位错移动的方向和位错线垂直;③运动位错
扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动
(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏
矢2021量/2/2大1 小的台阶。
21
第三节 位错的基本概念
三、位错的运动
螺型位错的滑移:在图示的晶体上施加一切应力,当应力足够大 时,有使晶体的左右部分发生上下移动的趋势。假如晶体中有一 螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边 晶体向下移动一柏氏矢量。因此,①螺位错也是在外加切应力的 作用下发生运动;②位错移动的方向总是和位错线垂直;③运动 位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动 (滑移);④位错移过部分在表面留下部分台阶,全部移出晶体 的表20面21/2上/21 产生柏氏矢量大小的完整台阶。这四点同刃型位错22。
2021/2/21
7
第一节 材料的实际晶体结构
三、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation
2021/2/21
26
第三节 位错的基本概念
四、位错的观察
位错在晶体表面的露头 抛光后的
试样在侵蚀时,由于易侵蚀而出现 侵蚀坑,其特点是坑为规则的多边 型且排列有一定规律。只能在晶粒 较大,位错较少时才有明显效果。
2021/2/21
薄膜透射电镜观察 将试 样减薄到几十到数百个原 子层(500nm以下),利用透 射电镜进行观察,可见到 位错线。
2021/2/21
24
第三节 位错的基本概念
三、位错的运动
综合位错的运动:以位错环为例来说明。在一个滑移面上存在 一位错环,如图所示,简化为一多边型。前后为刃位错,在切 应力τ的作用下,后部的半原子面在上方向后移动;前部的半 原子面在下方,向前运动。左右为螺位错,但螺旋方向相反, 左边向左,右边向右运动;其他为混合位错,均向外运动。所 有运动都使上部晶体向后移动了一个原子间距。所有位错移出 晶体,整个晶体上部移动了一个原子间距。可见无论那种位错, 最后达到的效果是一样的。如果外加切应力相反,位错环将缩 小,最后消失。位错环存在时,环所在区间原子已经偏后一原 子间距,环缩小到消失,表明这个偏移的消失,而环扩大表明 其他区间向后移动。可见位错的运动都将使扫过的区间两边的 原子层发生柏氏矢量大小的相对滑动。
他部分基本都是完好的晶体。在分界线的上方将多出半个原
子2面021/,2/21这就是刃型位错。
14
第三节 位错的基本概念
一、位错的原子模型
若将上半部分向上移动一个原子间距,之间插入半个原子面, 再按原子的结合方式连接起来,得到和(b)类似排列方式(转 90度),这也是刃型位错。
2021/2/21
15
3. 面缺陷 在三维空间的两个方向上的尺寸很大(晶
粒数量级),另外一个方向上的尺寸很小(原子尺
寸大小)的晶体缺陷。
2021/2/21
8
第二节 点缺陷
点缺陷:在三维空间各方向上尺寸都很小,在原子尺寸大小
的晶体缺陷。
一、点缺陷的类型 :
1) 空位 在晶格结点位置应有原子的 地方空缺,这种缺陷称为“空位”。
第三节 位错的基本概念
三、位错的运动
刃、螺型位错滑移的比较:
①因为位错线和柏氏矢量平行,所以螺型位错可以有多个滑 移面,螺型位错无论在那个方向移动都是滑移。
②晶体两部分的相对移动量决定于柏氏矢量的大小和方向, 与位错线的移动方向无关。
2021/2/21
23
第三节 位错的基本概念
三、位错的运动
分析一位错环的运动
第三节 位错的基本概念
一、位错的原子模型
若将晶体的上半部分向后
移动一个原子间距,再按原子
的结合方式连接起来(c),同样
除分界线附近的一管形区域例
外,其他部分基本也都是完好
的晶体。而在分界线的区域形
成一螺旋面,这就是螺型位错。
2021/2/21
16
第三节 位错的基本概念
一、位错的原子模型
若将上半部分向上移动一个原子间距,之间插入半个原子 面,再按原子的结合方式连接起来,得到和(b)类似排列 方式(转90度),这也是刃型位错。
在位错线的周围存在内应力,例如刃型位错,在多余半原 子面区域为压应力,而缺少半原子面的区域存在着拉应力;在 螺位错周围存在的是切应力。所以位错周围存在弹性应变能。 可见由于位错的存在,在其周围存在一应力场,应力场的分布 有机会进一步学习时再分析。
螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错)
混合位错 柏氏矢量与位错线的夹角非0或90度。
柏氏矢量守恒:
①同一位错的柏氏矢量与柏氏回路的大小和走向无关。
②位错不可能终止于晶体的内部,只能到表面、晶界和其他位 错,在位错网的交汇点,必然
2021/2/21
19
第三节 位错的基本概念
位错的形式 :
2021/2/21
17
第三节 位错的基本概念
二、柏氏矢量
确定方法: 首先在原子排列基本正常区域作一个包含位错的 回路,也称为柏氏回路,这个回路包含了位错发生的畸变。 然后将同样大小的回路置于理想晶体中,回路当然不可能 封闭,需要一个额外的矢量连接才能封闭,这个矢量就称 为该位错的柏氏(Burgers)矢量。
2021/2/21
28
第四节 位错的弹性特征
一、位错的应变能
位错线周围的原子偏离了平衡位置,处于较高的 能量状态,高出的能量称为位错的应变能,或简称位 错能。
来源:位错应变能主要是弹性应变能。弹簧或其他弹性体的弹
性位能0.5kx2。同样在单位体积内弹性位能,正应力引起的为 0.5σε,而切应力引起的为0.5τγ。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首
先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方
向202。1/在2/2专1 门的位错理论中还会纠正。
18
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错)
材料科学基础晶体缺陷
2021/2/21
1
第二章 晶体缺陷
➢材料的实际晶体结构 ➢点缺陷 ➢位错的基本概念 ➢位错的弹性特征 ➢晶体中的界面
2021/2/21
2
第一节 材料的实际晶体结构
一、多晶体结构
单晶体:
一块晶体材料,其内部 的晶体位向完全一致时,即 整个材料是一个晶体,这块 晶体就称之为“单晶体”, 实用材料中如半导体集成电 路用的单晶硅、专门制造的 金须和其他一些供研究用的 材料。
相关文档
最新文档