材料科学基础作业六晶体结构.
材料科学基础习题

查看文本习题一、名词解释金属键; 结构起伏; 固溶体; 枝晶偏析; 奥氏体; 加工硬化; 离异共晶; 成分过冷; 热加工; 反应扩散二、画图1在简单立方晶胞中绘出()、(210)晶面及[、[210]晶向。
2结合Fe-Fe3C相图,分别画出纯铁经930℃和800℃渗碳后,试棒的成分-距离曲线示意图。
3如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。
试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图。
4画出简单立方晶体中(100)面上柏氏矢量为[010]的刃型位错与(001)面上柏氏矢量为[010]的刃型位错交割前后的示意图。
5画图说明成分过冷的形成。
三、Fe-Fe3C相图分析1用组织组成物填写相图。
2指出在ECF和PSK水平线上发生何种反应并写出反应式。
3计算相图中二次渗碳体和三次渗碳体可能的最大含量。
四、简答题1已知某铁碳合金,其组成相为铁素体和渗碳体,铁素体占82%,试求该合金的含碳量和组织组成物的相对量。
2什么是单滑移、多滑移、交滑移?三者的滑移线各有什么特征,如何解释?。
3设原子为刚球,在原子直径不变的情况下,试计算g-Fe转变为a-Fe时的体积膨胀率;如果测得910℃时g-Fe和a-Fe的点阵常数分别为0.3633nm和0.2892nm,试计算g-Fe转变为a-Fe的真实膨胀率。
4间隙固溶体与间隙化合物有何异同?5可否说扩散定律实际上只有一个?为什么?五、论述题τC结合右图所示的τC(晶体强度)—ρ位错密度关系曲线,分析强化金属材料的方法及其机制。
晶须冷塑变六、拓展题1 画出一个刃型位错环及其与柏士矢量的关系。
2用金相方法如何鉴别滑移和孪生变形?3 固态相变为何易于在晶体缺陷处形核?4 画出面心立方晶体中(225)晶面上的原子排列图。
综合题一:材料的结构1 谈谈你对材料学科和材料科学的认识。
2 金属键与其它结合键有何不同,如何解释金属的某些特性?3 说明空间点阵、晶体结构、晶胞三者之间的关系。
清华大学 材料科学基础——作业习题第六章

第六章目录6.1 要点扫描 (1)6.1.1 金属的弹性变形 (1)6.1.2 单晶体的塑性变形 (2)6.1.3 多晶体的塑性变形与细晶强化 (8)6.1.4 纯金属的塑性变形与形变强化 (10)6.1.5 合金的塑性变形与固溶强化和第二相强化 (14)6.1.6 冷变形金属的纤维强化和变形织构 (16)6.1.7 冷变形金属的回复与再结晶 (17)6.1.8 热变形、蠕变和超塑性 (20)6.1.9 断裂 (22)6.2 难点释疑 (25)6.2.1 从原子间结合力的角度了解弹性变形。
(25)6.2.2 从分子链结构的角度分析粘弹性。
(25)6.2.3 FCC、BCC和HCP晶体中滑移线的区别。
(25)6.2.4 Schmid定律与取向规则的应用。
(26)6.2.5 孪生时原子的运动特点。
(27)6.2.6 Zn单晶任意的晶向[uvtw]方向在孪生后长度的变化情况 (29)6.3 解题示范 (30)3.4 习题训练 (33)参考答案 (38)第六章 金属与合金的形变6.1 要点扫描6.1.1 金属的弹性变形1. 弹性和粘弹性所谓弹性变形就是指外力去除后能够完全恢复的那部分变形。
从对材料的力学分析中可以知道,材料受力后要发生变形,外力较小时发生弹性变形,外力较大时产生塑性变形,外力过大就会使材料发生断裂。
对于非晶体,甚至某些多晶体,在较小的应力时,可能会出现粘弹性现象。
粘弹性变形即与时间有关,又具有可恢复的弹性变形,即具有弹性和粘性变形两方面的特性。
2. 应力状态金属的弹性变形服从虎克定律,应力与应变呈线性关系:γτεσG E == 其中: yx G E εενν-==+,)1(2 E 、G 分别为杨氏模量和剪切模量,v 为泊松比。
工程上,弹性模量是材料刚度的度量。
在外力相同的情况下,E 越大,材料的刚度越大,发生弹性形变的形变量就越小。
3. 弹性滞后由于应变落后于应力,使得εσ-曲线上的加载线和卸载线不重合而形成一个闭合回路,这种现象称为弹性滞后。
材料科学基础 第三章 晶体缺陷(六)

ABCABCABC…
AB,BC,CA…
ABABAB…
……
BA, AC,CB… ……
面心立方晶体: ……
密排六方结构:……
面心立方晶体: ……
抽出型层错 A B C B C A …… ……
插入型层错 A B C B A B C A …… ……
问题:位错都以密排方向的平移矢量存在吗?
若柏氏矢量不是晶体的平移矢量,当这种位错 扫过后,位错扫过的面两侧必出现错误的堆垛,称 堆垛层错。若这些错排不导致增加很多能量,则这 种位错是可能存在的,称部分位错(不全位错)
伴随的新现象:
1) 部分位错必伴随有层错,即部分位错线是层 错的边界线。
2) 形成层错时几乎不产生点阵畸变,但它也能破 坏晶体的完整性和正常的周期性。
内在
positive Frank
a b 3 111
intrinsic stacking fault
extrinsic stacking fault
4. 位错反应
位错间的相互转化(合成或分解)过程。 4. 位错反应(dislocation 位错反应满足条件: reaction) : (1) 几何条件 伯氏矢量守恒性,即: b b b a (2) 能量条件 反应过程能量降低 即:
1 1 1 [ 1 10] [ 211] [ 1 2 1 ] 2 6 6
I unslipped
b1
II slipped (faulted) zones
III
unfaulted
1 [ 211] 6
1 [1 2 1] 6
b2
把一个全位错分解为两个不全位错,中间夹着一 个堆垛层错的整个位错组态称为扩展位错
清华材料科学基础习题与答案

清华材料科学基础习题与答案《晶体结构与缺陷》第⼀章习题及答案1-1.布拉维点阵的基本特点是什么?答:具有周期性和对称性,⽽且每个结点都是等同点。
1-2.论证为什么有且仅有14种Bravais点阵。
答:第⼀,不少于14种点阵。
对于14种点阵中的任⼀种,不可能找到⼀种连接结点的⽅法,形成新的晶胞⽽对称性不变。
第⼆,不多于14种。
如果每种晶系都包含简单、⾯⼼、体⼼、底⼼四种点阵,七种晶系共28种Bravais点阵。
但这28种中有些可以连成14种点阵中的某⼀种⽽对称性不变。
例如体⼼单斜可以连成底⼼单斜点阵,所以并不是新点阵类型。
1-3.以BCC、FCC和六⽅点阵为例说明晶胞和原胞的异同。
答:晶胞和原胞都能反映点阵的周期性,即将晶胞和原胞⽆限堆积都可以得到完整的整个点阵。
但晶胞要求反映点阵的对称性,在此前提下的最⼩体积单元就是晶胞;⽽原胞只要求体积最⼩,布拉维点阵的原胞都只含⼀个结点。
例如:BCC晶胞中结点数为2,原胞为1;FCC晶胞中结点数为4,原胞为1;六⽅点阵晶胞中结点数为3,原胞为1。
见下图,直线为晶胞,虚线为原胞。
BCC FCC 六⽅点阵1-4.什么是点阵常数?各种晶系各有⼏个点阵常数?答:晶胞中相邻三条棱的长度a、b、c与这三条棱之间的夹⾓α、β、γ分别决定了晶胞的⼤⼩和形状,这六个参量就叫做点阵常数。
晶系a、b、c,α、β、γ之间的关系点阵常数的个数三斜a≠b≠c,α≠β≠γ≠90o 6 (a、b、c 、α、β、γ) 单斜a≠b≠c,α=β=90≠γ或α=γ=90≠β 4 (a、b、c、γ或a、b、c、β) 斜⽅a≠b≠c,α=β=γ=90o 3 (a、b、c)正⽅a=b≠c,α=β=γ=90o 2 (a、c)⽴⽅a=b=c,α=β=γ=90o 1 (a)六⽅a=b≠c,α=β=90o,γ=120o 2 (a、c)菱⽅a=b=c,α=β=γ≠90o 2 (a、α)1-5.分别画出锌和⾦刚⽯的晶胞,并指出其点阵和结构的差别。
材料科学基础晶体结构缺陷课后答案

3-1纯金属晶体中主要点缺陷类型有肖脱基空位和弗兰克空位,还有和弗兰克空位等量的间隙原子。
点缺陷附近金属晶格发生畸变,由此会引起金属的电阻增加,体积膨胀,密度减小;同时可以加速扩散,过饱和点缺陷还可以提高金属的屈服强度。
3-2答:在一定的温度下总是存在一定浓度的空位,这是热力学平衡条件所要求的,这种空位浓度为空位平衡浓度。
影响空位浓度的主要因素有空位形成能和温度。
3-3解:由exp(/)E V C A E kT =-138502201exp(/)111051000exp[()] 6.9510exp(/)29311238.31E V E V C A E kT C A E kT -⨯==-⨯=⨯- 3-4解:6002300112exp(/)11exp[()]exp(/)E V V E V C A E kT E C A E kT kT kT -==-⨯- 56600300121111ln/()8.61710(ln10)/() 1.98573873E V E C E eV C kT kT -=-=⨯⨯-=或190kJ/mol 3-5解:exp(/)e V C A E kT =-exp(/)i i C A E kT '=-由题设,A A '=,0.76, 3.0v i E eV E eV ==, 所以当T=293K 时538exp(/)exp()/exp[(3.00.76)/(8.61710293)] 3.3910exp(/)e V i V i i C A E kT E E kT C A E kT --==-=-⨯⨯=⨯'-当T=773K 时514exp(/)exp()/exp[(3.00.76)/(8.61710773)] 4.0210exp(/)e V i V i i C A E kT E E kT C A E kT --==-=-⨯⨯=⨯'-3-6答:1为左螺旋位错,2为负刃型位错,3为右螺旋位错,4为正刃型位错。
材料科学基础课后作业及答案(分章节)

第一章8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e ---⨯=共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21(1.00 3.44)4[1]100%77.4%e---⨯=共价键比例为:1-77.4%=22.6%3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e --=-⨯=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:1、2.有一正交点阵的 a=b, c=a/2。
某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。
材料科学基础-第六章 金属材料的结构特征

kT
)] Q )]
式中K---比例常数 G*---形核功 Q-----原子越过液固界面的扩散激活能 K---波尔兹曼常数 T---热力学温度。
原子扩散的概率因子[exp( 因此形核率为 N K exp( G *
kT
)
kT
exp(
Q
kT
6.1
纯金属的凝固及结晶
由上式可知,要使Gv<0,必须使T>0,即T<Tm, 故T称 为过冷度。晶体凝固的热力学条件表明,实际凝固温度 应低于熔点,即需要有过冷度。
6.1
纯金属的凝固及结晶
6.1.1 晶体凝固的热力学条件
纯金属晶体的凝固是通过形核和长大两个过程进行的,成核 分成均匀成核和非均匀成核。
均匀形核:新相晶核是在母相中均匀生成的,即晶核 由液相中的一些原子团直接形成,不受杂质粒子或外 表面的影响。 非均匀(异质)形核:新相优先在母相中存在的异质 处形核,即依附于液相中的杂质或外来表面形核。
6.1
纯金属的凝固及结晶
6.1.1 晶体凝固的热力学条件 (一)均匀成核 1. 晶体形成时的能量变化和临界晶核 假定晶胚为球形,半径为r,当过冷液中出现一个晶胚时, 总的自由能变化G应为:
4 3 G r Gv 4r 2 3
式中,为比表面能,可用表面张力表示。
6.1
纯金属的凝固及结晶
其中NT是晶体在界面上可排列原子位置的数量 Tm是晶体的熔点 k是玻尔茨曼常数
6.1
纯金属的凝固及结晶
6.1.2 晶体长大 (一)液-固界面的构造
液-固界面的Jackson模型 ΔSm为熔化熵, ξ=η/ν,η为界面原子平均配位数 ν为晶体配位数, 所以ξ<1
材料科学基础第六章总结与思考题

第6、7章总结、思考题与作业题一、本章总结1、凝固与结晶、相变、固态相变、组元、系、相图、单元相图、相平衡、相律(及表达式)及应用2、纯金属凝固的过程和现象;过冷度对结晶过程和结晶组织的影响;3、结晶的热力学条件、动力学条件、能量条件和结构条件;包括:一些更要的公式,以其应用4、过冷现象、过冷度、理论凝固温度、实际凝固温度、临界过冷度、有效过冷度、动态过冷度;5、均匀形核与非均匀形核,二者有何异同点。
结构起伏(相起伏)、能量起伏、浓度起伏、晶胚、晶核、临界晶核、临界晶核半径、临界形核功,临界晶核半径、临界形核功的计算。
形核率及影响因素、变质处理。
非均匀形核时影响接触角θ的因素有哪些?选择什么样的异相质点可以大大促进结晶过程。
6、光滑界面、粗糙界面;正温度梯度、负温度梯度;平面长大、树枝长大。
晶体长大的条件和长大的机制。
界面的生长形态与L/S前沿的温度梯度有何关系?7、能用结晶理论说明实际生产问题。
如:变质处理和其它细化晶粒的工艺;单晶的制取和定向凝固技术。
(1).凝固理论的主要应用;(2).控制结晶组织的措施。
二、本章重要知识点1. 金属结晶的过程;结晶的热力学条件、动力学条件、能量条件和结构条件;2. 界面的生长形态与L/S前沿的温度梯度的关系。
三、思考题1. 简述金属结晶过程的热力学条件、动力学条件、能量条件和结构条件。
为什么需要这些条件?冷却速度与过冷度的关系是什么?能否说过冷度越大,形核率越高,为什么?2. 何谓正温度梯度和负温度梯度。
何谓粗糙界面和光滑界面。
分析纯金属生长形态与温度梯度的关系。
(简述纯金属枝晶的形成条件和长大过程。
)3. 在同样的负温度梯度下,为什么Pb结晶出树状晶,而Si结晶平面却是平整的?4. 何谓均匀形核?何谓非均匀形核(异质形核)?试比较二者有何异同?叙述异质形核的必要条件。
选择什么样的异相质点可以大大促进结晶过程?5. 指出形核过程的驱动力和阻力分别是什么?比较均匀形核和非均匀形核的临界形核功大小和形核率的大小,说明造成两者差异的原因。
《材料科学基础》习题及参考答案

答案
2.试从晶体结构的角度,说明间隙固溶体、间隙相及
间隙化合物之间的区别。
答案
返回
3. 何谓玻璃?从内部原子排列和性能上看,
非晶态和晶态物质主要区别何在?
答案
4.有序合金的原子排列有何特点?这种排列
和结合键有什么关系?为什么许多有序合金
在高温下变成无序?
答案
5. 试分析H、N、C、B在Fe和Fe中形成固熔
6.离异共晶
答案
7.伪共晶
答案
8.杠杆定理
答案
返回
二、综合题
1.在图4—30所示相图中,请指出: (1) 水平线上反应的性质; (2) 各区域的组织组成物; (3) 分析合金I,II的冷却过程; (4) 合金工,II室温时组织组成物的相对量表达式。
答案
返回
2.固溶体合金的相图如下图所示,试根据相图确定: ①成分为ω(B)=40%的合金首
答案
返回
7. 根据图7-9所示的A1-Si共晶相图,试分析图中(a),(b),(c)3个金相组 织属什么成分并说明理由。指出细化此合金铸态组织的途径。
答案
返回
8. 青铜( Cu-Sn)和黄铜C Cu--fin)相图如图7-15(a),(b)所示:
①叙述Cu-10% Sn合金的不平衡冷却过程,并指出室温时的 金相组织。
化时是否会出现过热,为什么?
答案
3.欲获得金属玻璃,为什么一般选用液相线很陡,
从而有较低共晶温度的二元系?
答案
4.比较说明过冷度、临界过冷度、动态过冷度等
概念的区别。
答案
5.分析纯金属生长形态与温度梯度的关系。 答案
返回
6.简述纯金属晶体长大的机制。
大连理工大学材料科学基础平时作业

一、晶体结构1. 解释名词:配位数、晶胞、致密度、合金、相、组织、固溶体、置换固溶体、间隙固溶体、电子浓度、电子化合物。
2. If the atomic radius of copper is 0.128nm, calculate the volume of this unit cell in cubic meters.3. Mn 的同素异构体有一为立方结构,其晶格常数为0.632nm ,密度ρ为7.26g/cm 3,原子半径r 为0.112nm 。
问Mn 晶胞中有几个原子,其致密度为多少?4. Mo 的晶体结构为体心立方结构,其晶格常数a = 0.3147nm ,试求Mo 的原子半径r 。
5. 试证明四方晶系中只有简单四方和体心四方两种点阵类型。
6. 在立方晶胞中画出下列晶向:]031[];321[];331[];210[];121[];101[7. 在立方晶胞中画出下列晶面:)321();221();131();210();211();110(8. 锆(Zr ,Zirconium )具有HCP 结构,密度为6.51 g/cm 3,M Zr =91.22 g/mol 。
(a )计算晶胞体积;(b )如果c/a 为1.593,计算c 和a 。
9. 试比较间隙固溶体和间隙相的结构和性能特点。
10. FeAl 为电子化合物,计算其电子浓度,Fe 、Al 的价电子贡献分别为0和+3。
11. 下列合金相为何种类型:Cr 7C 3、Mg 2Pb 、 WC 、FeAl 、Cu 3Al 、Fe 4N 、Fe 3C 。
二、晶体缺陷1. 解释名词:柏氏矢量、层错、空位、小角度晶界、共格相界、螺型位错2. 纯Cu 的空位形成能是1.5aJ/atom(1aJ = 10-18J),将纯Cu 加热到850℃后激冷到室温(20℃),如果高温下的空位全部保留,试求过饱和空位浓度与室温平衡空位浓度的比值。
3. 计算Fe 在 850o C 时,每立方米体积中的空位数。
(完整版)材料科学基础习题库第一章-晶体结构

(一).填空题1.同非金属相比,金属的主要特性是__________2.晶体与非晶体的最根本区别是__________3.金属晶体中常见的点缺陷是__________ ,最主要的面缺陷是__________ 。
4.位错密度是指__________ ,其数学表达式为__________ 。
5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。
6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。
7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。
一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。
8.实际金属存在有__________ 、__________ 和__________ 三种缺陷。
位错是__________ 缺陷。
实际晶体的强度比理想晶体的强度__________ 得多。
9.常温下使用的金属材料以__________ 晶粒为好。
而高温下使用的金属材料在一定范围内以__________ 晶粒为好。
‘10.金属常见的晶格类型是__________、__________ 、__________ 。
11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为__________ ,OC晶向指数为__________ ,OD晶向指数为__________ 。
12.铜是__________ 结构的金属,它的最密排面是__________ ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为__________ 。
13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有__________ ,属于面心立方晶格的有__________ ,属于密排六方晶格的有__________ 。
材料科学基础(上海交大)_第6章.答案

第6章 单组元相图及纯晶体凝固
6.1 单元系相变的热力学与相平衡
6.2 纯晶体的凝固
6.3 气固相变与薄膜生长
重点与难点:
• • • • • 结晶的热力学、结构和能量条件; 相律的应用; 克劳修斯——克拉珀龙方程的应用; 亚稳相出现的原因; 均匀形核的临界晶核半径和形核功的推 导; 润湿角的变化范围及其含义;
• 两条斜率不同的自由能曲线必然相交于一点
• 液、固两相的自由能相等 • 两相处于平衡而共存。 事实上, Tm—既不能完全结晶,也不能完全熔化 • 要发生结晶则体系必须降至低于Tm温度, • 而发生熔化则必须高于Tm 。
(2) 热力学条件
a △T>0, △Gv<0-过冷是结晶的
必要条件(之一)。
b △T越大, △Gv越小-过冷度越
图6.4
大, 越有利于结晶。
c △Gv的绝对值为凝固过程的驱 动力。
ΔT=Tm-T,是熔点Tm与实际凝固温度T之差 Lm是熔化热,
要使 ΔGv<0,必须使Δ T>0,即 T<Tm,故ΔT
称为过冷度。
晶体凝固的热力学条件——实际凝固温度应低于
熔点Tm,即需要有过冷度,其中热分析实验装置示 意图见图6.5。
如果外界压力保持恒定(例如一个标准大气 压),那么单元系相图只要一个温度轴来表示,如 水的情况见图6.1(b)。根据相律,在汽、水、冰
的各单相区内(f=1),温度可在一定范围内变动。
在熔点和沸点处,两相共存,f=0,故温度不能变
动,即相变为恒温过程。
在单元系中,除了可以出现气、液、固三相之
间的转变外,某些物质还可能出现固态中的同素异
构转变,见图6.2和图6.3。
• bcc • fcc
材料科学基础-作业参考答案

材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100}{110}{111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a)解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.晶面/晶向{100}{110}{111}<100><110><111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10° 时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳.答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大, 故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II 的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II 的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解(1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L→β;2时, 两相平衡共存, 0.50.9L βƒ;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+ƒ;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--. P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P中F相对量:F P 6.690.77100%9.38% 6.690.001w w-=⨯⨯=-.P中Fe3C相对量:3Fe C10.6%9.38% 1.22%w=-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d′中共晶渗碳体相对量:dCm L4.3 2.11100%41.27%6.69 2.11w w'-=⨯⨯=-共晶L d′中二次渗碳体相对量:dCm L6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w'--=⨯⨯⨯=--IIL d′中共析渗碳体相对量:dCm L6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w'---=⨯⨯⨯⨯=---共析4. 根据下列数据绘制Au-V二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V1522V V V(1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w ww w w=+===+==垐垐?噲垐?垐垐?噲垐?℃℃解根据已知数据绘制的Au-V二元相图参见附图4-3.附图4-3 Au-V二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂g 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯g最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯g第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222kscos,3001111cos,2001(1)01cos cos,60.646 1.57 MPa.mmϕλϕλτσ==++⨯++==++⨯-++====⨯=即至少需要1.57 MPa的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg中的最重要滑移系. 那种晶体的塑性最好, 为什么?答:滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为{110}<111>, 共有6×2 = 12个; Al具有面心立方结构, 其滑移系可表示为{111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs = τk / m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答:孪生与滑移的异同点如附表6-1所示.附表6-1 晶体滑移与孪生的比较锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104 J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭ 整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-B3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章 固态相变。
材料科学基础1-6章

1.金属中的与相互作用所构成的键合称为金属键。
2.由两个或多个相差不大的原子间通过而形成的化学键叫共价键。
3.决定材料性能的最根本的因素是组成材料的各元素的,其中又以对材料的性能影响最大。
4.化学键中既无方向性又无饱和性的是键。
NaCl是以键结合的。
5.属于物理键的是()。
A.共价键B.范德华力C.氢键6 原子Ca、Ar的电子结构表达?1.fcc结构的密排方向是,密排面是,致密度为 ,配位数是 ,晶胞中原子数为,把原子视为刚性球时,原子的半径r与点阵常数a的关系是: 。
2.bcc结构的密排方向是,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为,原子的半径r与点阵常数a的关系是: 。
3.hcp结构的密排方向是,密排面是,致密度为,配位数是,晶胞中原子数为。
4.根据溶质原子在溶剂点阵中所处的位置,可将固溶体分为和。
5.纯Al是结构,密排面是 ,晶胞致密度 ,晶胞中原子数为,原子的半径r与点阵常数a的关系是: 。
6.α-Fe是结构,密排面是 ,晶胞致密度为 ,晶胞中原子数为,原子的半径r与点阵常数a的关系是: 。
7.在晶面(110)和(111)所在的晶带,其晶带轴的指数为:()A.[1-10]B. [100]C. [011]D.[011];8.渗碳体是一种( )。
A.间隙相B.金属化合物C. 电子化合物D.固溶体9.晶体的本质特征是:( )A.内部质点在三维空间周期排列B.具有规则的几何外形C.具有对称性D.具有各向异性10.以[112]为晶带轴的共带面为:()A.(111)B.(111̅)C.(1̅1̅1̅)D.(1̅11̅)11.晶面(011)和(111)所在晶带轴。
( )A.[1̅10]B.[11̅0]C.[011̅]D.[1̅01]12.影响置换固溶体溶解度的因素表述正确的是。
( )A尺寸差,原子尺寸差越小,溶解度越小B电负性差,电负性差越小,溶解度越小C电子浓度,电子浓度越小,溶解度越小D晶体结构,晶格类型相同溶解度越大13.立方晶系中(110)和(211)同属于晶带。
《材料科学基础》作业

出位错分解的反应式。
5.在外力作用下,fcc结构的晶体在(11 )晶面上沿[ 10]方向滑移,试回答下列问题:
若晶体的滑移是由单位位错的运动引起的,写出该单位位错的柏氏矢量。
若此单位位错是纯刃型位错,写出位错线方向及在外力作用下滑移运动的方向。
1.画图并计算fcc和bcc结构晶体的八面体间隙半径大小。
2.画图并说明hcp结构不是一种空间点阵的原因,并计算 ≌1.633。
3.作图表示( 11)、(11 )、(112)晶面及[11 ]、[112]晶向。
4.求bcc结构(111)、(100)及(110)晶面的面间距大小,并指出面间距最大的晶面。
图中标出,并说明原因。图a)图b)
2.画图说明在fcc结构晶体的( 11)晶面上,可以运动的单位位错的柏氏矢量有哪些?
它们相应能在哪些晶面上运动?
3.在面心立方结构的晶体中,沿[ 01]晶向上有一单位位错与沿[12 ]晶向的一个肖克莱
部分位错反应合成一个弗兰克部分位错:
(1)求合成后的弗兰克部分位错的柏氏矢量。
5.在体心立方结构晶体内的(011)晶面上有一个b1= [1 1]刃型位错,在(01 )晶
面上有一个b2= [111]刃型位错,它们分别沿所在晶面进行滑移,当彼此相遇时,
能否发生位错反应?
第一章纯金属的晶ห้องสมุดไป่ตู้结构单元练习题
一.判断是非题,对的在括号中划“∨”,错的划“×”:
1.布拉非点阵与晶体结构是同一概念,因此不管离子晶体,分子晶体,还是原子晶体,
向和晶面。
5.在六方晶系中,画图表示(11 0)、( 010)晶面及[11 3]晶向。并用三坐标系写
材料科学基础 晶体结构

1.1 结晶学基础知识 1.2 晶体中质点的结合力与结合能 1.3 决定离子晶体结构的基本因素 1.4 单质晶体结构 1.5 晶体的结构与性质—无机化合物结构 1.6 硅酸盐晶体结构 1.7 高分子结构
1.1 结晶学基础知识
晶体结构的定性描述 晶体结构的定量描述—晶面指数、晶向指数
晶向:点阵可在任何方向上分解为相互平行的直线组, 位于一条直线上的结点构成一个晶向。
2.六方晶系的晶面指数和晶向指数 3.晶向与晶面的关系
1.晶面、晶向及其表征
晶面:晶体点阵在任何方向上可分解为相互平行的结点平面,这样 的结点平面称为晶面。 晶面上的结点,在空间构成一个二维点阵。 同一取向上的晶面,不仅相互平行、间距相等,而且结点的分 布也相同。不同取向的结点平面其特征各异。 任何一个取向的一系列平行晶面,都可以包含晶体中所有的质 点。
a=b=c ==90o
a=b=dc
(a=bc) ==90o =120o
简单三方 简单六方
阵点坐标
[0,0,0]
[0,0,0] [0,0,0] [1/2,1/2 ,0]
[0,0,0] [0,0,0] [1/2,1/2 ,1/2] [0,0,0] [1/2,1/2 ,0] [0,0,0] [1/2,1/2,0] [0,1/2 ,1/2] [0,0,0] [0,0,0] [1/2,1/2,1/2]
一、晶体结构的定性描述
1. 晶体及其特征 2. 晶体结构与空间点阵 3. 晶胞与晶胞参数 4. 晶系与点阵类型
1. 晶体及其特征
晶体:晶体是内部质点在三维空间成 周期性重复排列的固体,即晶体是具有格 子构造的固体。
晶体的特征
自范性:晶体具有自发地形成封闭的凸几何多面 体外形能力的性质,又称为自限性。
材料科学基础-第六章

B. 临界晶核
从图6.6中和式6.10分析,晶胚半径与△G关系。只有晶胚半径达到r*时 才能使晶胚成为稳定晶核(r*可通过极值求得): r* = -2σ/ △Gv,由△Gv =-Lm · △T/Tm ,得 r* = 2σTm/(Lm · ) △T ① r < r* 晶胚长大,△G升高, 晶胚不能长大,形成后立即消失。 ② r > r* 晶胚长大,△G下降,晶胚可能成为稳定晶核。称r*为临 界晶核半径(critical nucleus radius)。 C. 形核功 而r处于 r*~r0之间,即r*<r<r0时,△G>0,△GV的降低不足以补 充这部分能量,必须由外界提供,这部分能量称为形核功(nucleation energy)。 临界形核功(critical nucleation energy): 将r* = -2σ/ △Gv代 入△G=4/3.πr3 △Gv+4πr2σ 即:△G* = 16πσ3 /3(△Gv)2= 16πσ3 Tm2/3(Lm · 2 △T) A* = 4π(r*)2 =16πσ2 /(△Gv)2, 因此: △G* = A*. σ/3 > 0,仍是增加的,只有靠能量起伏来提供.
除了某些纯金属,如铁等具有同素异构 转变之外,在某些化合物中也有类似的 转变,称为同分异构转变或多晶型转变。
H2O的相图
(a)温度与压力都能变动的情况
(b)只有温度能变动的情况
10
纯铁的冷却曲线及晶体结构变化
2. 纯铁的相图分析(图6.2) 磁性转变点:A2 α-Fe与γ-Fe间晶型转变点:A3 γ-Fe与δ-Fe间晶型转变点:A4 δ-Fe与液相转变点(熔点):Tm 即:α-Fe←→γ-Fe←→δ-Fe ←→液相 对于金属而言,一般在常压下进行 转变(沸点以下) 。 A3、A4 为同素异构转变点
(完整版)材料科学基础习题库第一章-晶体结构

(一).填空题1.同非金属相比,金属的主要特性是__________2.晶体与非晶体的最根本区别是__________3.金属晶体中常见的点缺陷是__________ ,最主要的面缺陷是__________ 。
4.位错密度是指__________ ,其数学表达式为__________ 。
5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。
6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。
7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。
一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。
8.实际金属存在有__________ 、__________ 和__________ 三种缺陷。
位错是__________ 缺陷。
实际晶体的强度比理想晶体的强度__________ 得多。
9.常温下使用的金属材料以__________ 晶粒为好。
而高温下使用的金属材料在一定范围内以__________ 晶粒为好。
‘10.金属常见的晶格类型是__________、__________ 、__________ 。
11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为__________ ,OC晶向指数为__________ ,OD晶向指数为__________ 。
12.铜是__________ 结构的金属,它的最密排面是__________ ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为__________ 。
13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有__________ ,属于面心立方晶格的有__________ ,属于密排六方晶格的有__________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料科学基础》作业六:晶体结构
一.判断是非题,对的在括号中划“∨”,错的划“×”:
1.布拉非点阵与晶体结构是同一概念,因此不管离子晶体,分子晶体,还是原子晶体,晶体结构类型共有14种。
()
2.如果某晶面(hkl)平行于某晶向[uvw] ,晶向与晶面之间存在hu+kv+lw=1的关系()3.fcc结构中,四面体间隙数是单胞原子数的1倍。
()
4.温度相同时,碳原子在α-Fe中的溶解度小于在γ-Fe中的溶解度,这是因为α-Fe的致密度小于γ-Fe的致密度。
()
5.fcc结构的晶体中(111)晶面上含有[110]、[101]、[011]三个最密排方向。
()
二.填空题
1.<111>晶向族包括————————————————————————————————————————组晶向。
2.{110}晶面族包括————————————————————————————————————————组晶面。
3.晶面(123)和(101)为共带面,其晶带轴的晶向指数为————————————————。
4.fcc结构晶体的滑移面(密排晶面)是—————,滑移方向(密排晶向)是—————;bcc结构晶体的滑移面是——————,滑移方向为——————;hcp结构的滑移面是——————,滑移方向为————————。
5.某晶体的致密度为74%,该晶体的晶体结构为————————————————————。
三.问答题
1.画图并计算fcc和bcc结构晶体的八面体间隙半径大小。
a≌1.633 。
2.画图并说明hcp结构不是一种空间点阵的原因,并计算c
3.作图表示(111)、(111)、(112)晶面及[111]、[112]晶向。
4.求bcc结构(111)、(100)及(110)晶面的面间距大小,并指出面间距最大的晶面。