初三数学二次函数知识点总结及经典习题附答案
【人教版】初中数学九年级知识点总结 26二次函数和经典题型(附答案)
【人教版】初中数学九年级知识点总结:26二次函数摘要:二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.在讲解内容时应注重培养学生数形结合的思想和独立思考问题的能力。
一、知识框架四、知识点、概念总结 1.二次函数:一般的,形如y=ax 2+bx+c (a ≠0的函数叫二次函数。
自变量(通常为x 和因变量(通常为y 。
右边是整式,且自变量的最高次数是2。
2.二次函数的解析式三种形式。
一般式 y=ax 2 +bx+c(a ≠0顶点式 2(y a x h k =-+ 224(24b ac b y a x a a-=-+ 交点式 12((y a x x x x =--3.二次函数图像与性质对称轴:2b x a=- 顶点坐标:24(,24b ac b a a --,与y 轴交点坐标(0,c4.增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小5.二次函数图像画法:勾画草图关键点:○1开口方向○2对称轴○3顶点○4与x 轴交点○5与y 轴交点6.图像平移步骤(1配方 2(y a x h k =-+,确定顶点(h,k(2对x 轴左加右减;对y 轴上加下减7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x += 8.根据图像判断a,b,c 的符号a ——开口方向 9. 求根公式x 是自变量,y 是x 的二次函数x1,x2=[-b ±(√(b 2-4ac]/2a(即一元二次方程求根公式求根的方法还有因式分解法和配方法二次函数与X 轴交点的情况当△=b 2-4ac>0时, 函数图像与x 轴有两个交点。
当△=b 2-4ac=0时,函数图像与x 轴有一个交点。
初三数学二次函数知识点总结与经典习题含答案
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)
九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。
初中数学《二次函数》知识点归纳及相关练习题
九上数学二次函数知识点归纳及相关练习题(一)定义:一般地,如果y =ax 2+bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.【名师推荐你做】1.判断下列函数是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项:(1)d =12n 2-32n ;(2)2y x =-;(3)y =1-x 2.2.判断①y =5x -4,②t =23x 2-6x ,③y =2x 3-8x 2+3,④y =38x 2-1,⑤y =2312x x-+是否为二次函数,如果是,指出其二次项系数、一次项系数和常数项.3.已知2(1)31k ky k x x +=-++是关于x 的二次函数,求k 的值.【答案与解析】1.【解析】(1)d =12n 2-32n 是二次函数,二次项系数、一次项系数和常数项分别为12、32-、0;(2)2y x =-是一次函数,不是二次函数;(3)y =1-x 2是二次函数,二次项系数、一次项系数和常数项分别为-1、0、1.2.【解析】①y =5x -4,③y =2x 3-8x 2+3,⑤y =2312x x-+不符合二次函数解析式,②t =23x 2-6x ,④y =38x 2-1符合二次函数解析式,②t =23x 2-6x 的二次项系数、一次项系数和常数项分别为23、-6、0,④y =38x 2-1的二次项系数、一次项系数和常数项分别为38、0、-1.3.【答案】-2.【解析】∵函数2(1)31k ky k xx +=-++是关于x 的二次函数,∴2102k k k -≠⎧⎨+⎩=,解得k =-2.(二)二次函数y =ax 2的性质(1)抛物线y =ax 2的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 2的图像与a 的符号关系.①当a >0时⇔抛物线开口向上⇔顶点为其最低点;②当a <0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax 2(a ≠0).【名师推荐你做】1.观察函数y =3x 2与y =-3x 2的图像,回答:抛物线的开口方向,对称轴,顶点坐标及函数的单调性.【解析】(1)抛物线y =3x 2的开口方向是向上,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴上方;当x >0时,曲线自左向右逐渐上升,当x <0时,曲线自左向右逐渐下降;二次函数y =-3x 2的开口方向是向下,对称轴是y 轴,顶点坐标是(0,0),当x ≠0时,抛物线上的点都在x 轴下方;当x >0时,曲线自左向右逐渐下降,当x <0时,曲线自左向右逐渐上升.(三)二次函数c bx ax y ++=2、k ax y +=2、()2h x a y -=、()kh x a y +-=2A.二次函数c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.B.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中a b ac k abh 4422-=-=,.C.二次函数由特殊到一般,可分为以下几种形式:①y =ax 2;②y =ax 2+k ;③y =a (x -h )2;④y =a (x -h )2+k ;⑤y =ax 2+bx +c .【名师推荐你做】1.将抛物线y =-2x 2向右平移3个单位,再向上平移5个单位,得到的抛物线解析式是()A.y =-2(x -3)2-5B.y =-2(x +3)2-5C.y =-2(x +3)2+5D.y =-2(x-3)2+5【答案与解析】1.【答案】D【解析】由“左加右减”的原则将函数y =-2x 2的图象向右平移3个单位,所得二次函数的解析式为:y =-2(x -3)2;由“上加下减”的原则将函数y =-2(x-3)2的图象向上平移5个单位,所得二次函数的解析式为:D.y =-2(x -3)2+5.所以选D.(四)抛物线A.抛物线的三要素:开口方向、对称轴、顶点.(1)a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)
中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析) 知识点总结1. 二次函数与一元二次方程:①若二次函数()02≠++=a c bx ax y 与x 轴有两个交点⇔一元二次方程02=++c bx ax 有两个不相等的实数根⇔042>ac b −=∆。
②若二次函数()02≠++=a c bx ax y 与x 轴只有一个交点⇔一元二次方程02=++c bx ax 有两个相等的实数根⇔042=−=∆ac b 。
③若二次函数()02≠++=a c bx ax y 与x 轴没有交点⇔一元二次方程02=++c bx ax 没有实数根⇔042<ac b −=∆。
④若二次函数()02≠++=a c bx ax y 与直线m y =相交,则一元二次方程为m c bx ax =++2。
交点情况与方程的解的情况同与x 轴相交时一样。
2. 二次函数与不等式(组)若二次函数()02≠++=a c bx ax y 与一次函数()0≠+=k b kx y 存在交点,则不等式:b kx c bx ax +++>2的解集取二次函数图像在上方的部分所对应的自变量取值范围;b kx c bx ax +++<2的解集取二次函数图像在下方的部分所对应的自变量取值范围。
3. 二次函数的一些特殊的自变量的函数值:①当1=x 时所对应的函数值为c b a y ++=。
②当1−=x 时所对应的函数值为c b a y +−=。
③当2=x 时所对应的函数值为c b a y ++=24。
④当2−=x 时所对应的函数值为c b a y +−=24。
4. 对称轴的特殊值:①若对称轴为直线1=x 时,则02=+b a 。
②若对称轴为直线1−=x 时,则02=−b a 。
③判断b a +2与0的大小关系时,看对称轴与1=x 的位置关系。
④判断b a −2与0的大小关系时,看对称轴与1−=x 的位置关系。
练习题1、(2022•巴中)函数y =|ax 2+bx +c |(a >0,b 2﹣4ac >0)的图像是由函数y =ax 2+bx +c (a >0,b 2﹣4ac >0)的图像x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①2a +b =0;②c =3;③abc >0;④将图像向上平移1个单位后与直线y =5有3个交点.A .①②B .①③C .②③④D .①③④【分析】根据函数图像与x 轴交点的横坐标求出对称轴为,进而可得2a +b =0,由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,由抛物线y =ax 2+bx +c 的开口方向,对称轴位置和抛物线与y 轴交点位置可得abc 的符号,求出二次函数y =ax 2+bx +c 的顶点式,可得图像向上平移1个单位后与直线y =5有3个交点【解答】解:∵图像经过(﹣1,0),(3,0),∴抛物线y =ax 2+bx +c 的对称轴为直线x =1,∴﹣=1,∴b =﹣2a ,即2a +b =0,①正确.由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,∴c<0,②错误.由抛物线y=ax2+bx+c的开口向上可得a>0,∴b=﹣2a<0,∴abc>0,③正确.设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),代入(0,3)得:3=﹣3a,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),∵点(1,4)向上平移1个单位后的坐标为(1,5),∴将图像向上平移1个单位后与直线y=5有3个交点,故④正确;故选:D.2、(2022•资阳)如图是二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】①:根据二次函数的对称轴,c=1,即可判断出abc>0;②:结合图像发现,当x=﹣1时,函数值大于1,代入即可判断;③:结合图像发现,当x=1时,函数值小于0,代入即可判断;④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.【解答】解:∵二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1),∴,c=1,∴ab>0,∴abc>0,故①正确;从图中可以看出,当x=﹣1时,函数值大于1,因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,即a﹣b+c>1,故②正确;∵,∴b=2a,从图中可以看出,当x=1时,函数值小于0,∴a+b+c<0,∴3a+c<0,故③正确;∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),∴设二次函数的解析式为y=a(x+1)2+2,将(0,1)代入得,1=a+2,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+2,∴当x=1时,y=﹣2;∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;综上所述,①②③④均正确,故有4个正确结论,故选A.3、(2022•黄石)已知二次函数y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图像经过点(1,3)时,方程ax2+bx+c ﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=﹣1时有最小值可对②进行判断;由于二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),从而得到x1=﹣3,x2=1,则可对③进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣1,即﹣=﹣1,∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤at 2+bt +c (t 为任意实数),即a ﹣bt ≤at 2+b ,所以②正确;∵图像经过点(1,3)时,得ax 2+bx +c ﹣3=0的两根为x 1,x 2(x 1<x 2),∴二次函数y =ax 2+bx +c 与直线y =3的一个交点为(1,3),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =3的另一个交点为(﹣3,3),即x 1=﹣3,x 2=1,∴x 1+3x 2=﹣3+3=0,所以③正确.故选:D .4、(2022•日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,对称轴为x =23,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(21,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由对称轴为x=即可判断①;根据点(,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=﹣=,得出a=﹣b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【解答】解:∵对称轴x=﹣=,∴b=﹣3a,∴3a+b=0,①正确;∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(﹣1,0),∴a﹣b+c=0,∵对称轴x=﹣=,∴a=﹣b,∴﹣b﹣b+c=0,∴3c=4b,∴4b﹣3c=0,故③错误;∵对称轴x=,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.5、(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故选:B.6、(2022•绵阳)如图,二次函数y=ax2+bx+c的图像关于直线x=1对称,与x轴交于A (x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b >0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点以及x=﹣1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a﹣b+c<0,即可判断④.【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,∴3<x2<4,①正确,∵﹣=1,∴b=﹣2a,∴3a+2b=3a﹣4a=﹣a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,由题意可知x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∵a>0,∴b=﹣2a<0,∴a+c<0,∴b2﹣4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a﹣b+c<0,b=﹣2a,∴3a+c<0,∴c<﹣3a,∴b=﹣2a,∴b>c,所以④错误;故选:B.7、(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x 轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c <0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1 B.2 C.3 D.4【分析】根据函数图像的开口方向、对称轴、图像与y轴的交点即可判断①;根据对称轴x =﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y =0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;【解答】解:①观察图像可知:a>0,b>0,c<0,∴abc<0,故①错误;②∵对称轴为直线x=﹣2,OA=5OB,可得OA=5,OB=1,∴点A(﹣5,0),点B(1,0),∴当x=1时,y=0,即a+b+c=0,∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,∴b=4a,∵a+b+c=0,∴5a+c=0,∴c=﹣5a,∴9a+4c=﹣11a,∵a >0,∴9a +4c <0,故③正确;④当x =﹣2时,函数有最小值y =4a ﹣2b +c ,由am 2+bm +c ≥4a ﹣2b +c ,可得am 2+bm +2b ≥4a ,∴若m 为任意实数,则am 2+bm +2b ≥4a ,故④正确;故选:C .8、(2022•烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,其对称轴为直线x =﹣21,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .①③B .②④C .③④D .②③【分析】根据对称轴、开口方向、与y 轴的交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称轴可知a =b .图像过(﹣2,0)代入二次函数中可得4a ﹣2b +c =0.再由二次函数最小值小于0,从而可判断ax 2+bx +c =1有两个不相同的解.【解答】解:①由图可知:a >0,c <0,<0,∴b >0,∴abc <0,故①不符合题意.②由题意可知:=﹣,∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c ,∴4a ﹣2b +c =0,∵a =b ,∴2a +c =0,故③符合题意.④由图像可知:二次函数y =ax 2+bx +c 的最小值小于0,令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意.故选:D .9、(2022•广安)已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图像如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (34,y 1)、C (31,y 2)、D (﹣31,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4【分析】①正确,根据抛物线的位置,判断出a ,b ,c 的符号,可得结论;②③错误,利用对称轴公式,抛物线经过A (3,0),求出b ,c 与a 的关系,判断即可; ④正确.利用图像法判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是直线x=1,∴1=﹣,∴b=﹣2a,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵抛物线y=ax2﹣2ax+c经过(3,0),∴9a﹣6a+c=0,∴c=﹣3a,∴2c﹣3b=﹣6a+6a=0,故②错误,5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,观察图像可知,y1<y2<y3,故④正确,故选:B.10、(2022•辽宁)抛物线y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x 有最大值.其中正确的个数是( )A .2B .3C .4D .5【分析】利用图像的信息与已知条件求得a ,b 的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1,∴﹣=﹣1,∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.11、(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x 的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图像知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图像看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.12、(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b =2a ,∴3a +c =0,⑤错误.故答案为:①②③.13、(2022•内江)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④不等式ax 2+bx +c >﹣1x c x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .4B .3C .2D .1【分析】利用二次函数的图像和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴, ∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线过点(2,0),∴4a+2b+c=0,∴b=﹣2a﹣,∵a+b+c<0,∴a﹣2a﹣+c<0,∴2a﹣c>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.14、(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【解答】解:①由抛物线的开口方向向下,则a<0,故①正确;②∵抛物线的顶点为P(1,m),∴﹣=1,b=﹣2a,∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故②错误;③∵抛物线经过点A(2,1),∴1=a•22+2b+c,即4a+2b+c=1,故③正确;④∵抛物线的顶点为P(1,m),且开口方向向下,∴x>1时,y随x的增大而减小,即④正确;⑤∵a<0,∴at2+bt﹣(a+b)=at 2﹣2at ﹣a +2a=at 2﹣2at +a=a (t 2﹣2t +1)=a (t ﹣1)2≤0,∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故选:C .15、(2022•达州)二次函数y =ax 2+bx +c 的部分图像如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >31;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(21,y 2),(2,y 3)在该函数图像上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .5【分析】①正确,判断出a ,b ,c 的正负,可得结论;②正确.利用对称轴公式可得,b =﹣2a ,当x =﹣1时,y >0,解不等式可得结论; ③错误.当m =1时,m (am +b )=a +b ;④错误.应该是y 2<y 3<y 1,;⑤错误.当有四个交点或3个时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4,当有两个交点时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为3,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.。
初三数学上册(人教版)第二十二章二次函数22.1知识点总结含同步练习及答案
描述:2.二次函数的图象与性质()的图象与性质()的图象与性质(、、 是常数,)的图象与性质所以 .m =2y =a x 2a ≠0y =a (x −h +k )2a ≠0y =a +bx +c x 2a b c a ≠函数 ()在上的最值问题:y =a +bx +c a ≠0y =a +bx +c x 2a >0m <x <n描述:例题:3.二次函数图象的变换平移“上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.对称旋转函数图象旋转可以看成先把原图象上的点(通常我们选择顶点)绕着旋转中心旋转,得到旋转后的点的坐标,即可得到新的函数.x (1) 将二次函数 的图象向右平移 个单位,再向上平移 个单位后,所得图象的函数表达式是______.(2) 如果保持抛物线 的图象不动,把 轴、 轴分别向上、向右平移 个单位,那么在新坐标系下该抛物线的解析式是_____.解:(1) ;(2) .(1) “上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是 进行加减.(2) 把 轴、 轴分别向上、向右平移 个单位,就相当于把函数分别向下、向左平移 个单位.y =x 212y =2x 2x y 2y =(x −1+2)2y =2(x +2−2)2x x y 22将二次函数 的图象绕坐标原点 旋转 ,则旋转后的图象对应的解析式为______.y =−2x −1x 2O 180∘y =−−2x +12描述:例题:4.二次函数的解析式设一般式 ()若已知条件或根据已知可推出图象上三个点,可以设成一般式,将已知条件代入解析式,得出关于 、、 的三元一次方程组,解方程即可.设顶点式 ()若已知条件或根据已知可推出函数的顶点或对称轴与最值时,可以设成顶点式,将已知条件代入解析式,求出待定系数.设交点式 ()若已知条件或根据已知可推出图象上纵坐标相同的两个点的坐标为 和 时,可以设交点式,将已知条件代入解析式,求出待定系数.解:.可以看成先把原图象上的点绕着坐标原点 旋转 ,得到旋转后的点的坐标,即可得到新的函数.y =−−2x +1x 2O 180∘(1) 抛物线 关于 轴对称的图象为______.(2) 在平面直角坐标系中,先将抛物线 关于 轴作轴对称变换,再将所得的抛物线关于 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为____.(3) 将抛物线 的图象绕它的顶点 旋转 ,则旋转后的抛物线的函数关系式为______.解:(1) ;(2) ;(3) .y =−2x −3x 2x y =+x −2x 2x y y =−2x +1x 2A 180∘y =−+2x +3x 2y =−+x +2x 2y =−+2x −1x 2y =a +bx +c x 2a ≠0a b c y =a (x −h +k )2a ≠0y =a (x −)(x −)+m x 1x 2a ≠0(,m )x 1(,m )x 2二次函数的图象经过 ,, 三点,求该二次函数的解析式.分析:已知条件中给出三个点,所以可以设一般式.解:设二次函数的解析式为 ().将 ,, 三点代入,得解得即二次函数的解析式为 .A (1,2)B (0,−1)C (−2,5)y =a +bx +c x 2a ≠0A (1,2)B (0,−1)C (−2,5)⎧⎩⎨a +b +c =2,c =−1,4a −2b +c =5.⎧⎩⎨a =2,b =1,c =−1.y =2+x −1x 2已知二次函数的图象的顶点为 ,且过点 ,求该二次函数的解析式.分析:已知一个顶点和另一个点,所以可以设顶点式.解:设二次函数的解析式为 .将点 的坐标代入,解得 .所以二次函数的解析式为 .A (−1,4)B (2,−5)y =a (x +1+4)2B (2,−5)a =−1y =−(x +1+4=−−2x +3)2x 2已知抛物线与 轴的交点坐标是 ,,且抛物线经过 ,求抛物线的解析x A (−2,0)B (1,0)C (2,8)四、课后作业 (查看更多本章节同步练习题,请到快乐学)高考不提分,赔付1万元,关注快乐学了解详情。
初中数学二次函数知识点总复习附答案解析
初中数学二次函数知识点总复习附答案解析一、选择题1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ; ②c =a+3; ③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( ) A .-12<t ≤3 B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C 【解析】 【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1, ∴b =−2, ∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.4.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D 【解析】 【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形, ∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D . 【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.5.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( )A .3122m -+B .0C .1D .2【答案】D 【解析】 【分析】根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ), ∵y =a (x ﹣m ﹣1)2+c (a≠0) ∴抛物线的对称轴为直线x =m+1,∴232x x +=m+1, ∴x 2+x 3=2m+2,∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m ,∴x 1+x 2+x 3=﹣2m+2m+2=2, 故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.6.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C 【解析】 【分析】 【详解】解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2ba=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.7.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【分析】 【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B .8.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
(完整版)史上最全初三数学二次函数知识点归纳总结,推荐文档
二次函数知识点归纳及相关典型题第一部分基础知识1.定义:一般地,如果y =ax 2 +bx +c(a, b, c 是常数,a ≠ 0) ,那么y 叫做x 的二次函数.2.二次函数y =ax 2 的性质(1)抛物线y =ax 2 的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 2 的图像与a 的符号关系.①当a > 0 时⇔抛物线开口向上⇔顶点为其最低点;②当a < 0 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax 2(a ≠ 0).3.二次函数y =ax 2 +bx +c 的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数y =ax 2+bx +c 用配方法可化成:y =a(x -h)2 +k 的形式,其中h =- b,k =2a4ac -b 2.4a5.二次函数由特殊到一般,可分为以下几种形式:① y =ax 2 ;② y =ax 2 +k ;③ y =a(x -h)2 ;④ y =a(x -h)2 +k ;⑤ y =ax 2+bx +c .6.抛物线的三要素:开口方向、对称轴、顶点.① a 的符号决定抛物线的开口方向:当a > 0 时,开口向上;当a < 0 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作x =h .特别地,y 轴记作直线x = 0 .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法⎛ b ⎫24ac -b 2 b 4ac -b 2(1)公式法:y =ax 2 +bx +c =a +x ⎪+,∴顶点是(-,),⎝2a ⎭4a 2a 4a对称轴是直线x =-b .2a(2)配方法:运用配方的方法,将抛物线的解析式化为y =a(x -h)2 +k 的形式,得到顶点为( h , k ),对称轴是直线x =h .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y =ax 2 +bx +c 中,a, b, c 的作用(1)a 决定开口方向及开口大小,这与y =ax 2 中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线y =ax 2 +bx +c 的对称轴是直线x = - b2a,故:① b = 0 时,对称轴为 y 轴;② b > 0 (即a 、b 同号)时,a 对称轴在 y 轴左侧;③ b< 0 (即a 、b 异号)时,对称轴在 y 轴右侧.a(3) c 的大小决定抛物线 y = ax 2 + bx + c 与 y 轴交点的位置.当 x = 0 时, y = c ,∴抛物线 y = ax 2 + bx + c 与 y 轴有且只有一个交点(0,c ):① c = 0 ,抛物线经过原点; ② c > 0 ,与 y 轴交于正半轴;③ c < 0 ,与 y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 y 轴右侧,则 b< 0 .a10. 几种特殊的二次函数的图像特征如下:11. 用待定系数法求二次函数的解析式(1) 一般式: y = ax 2 + bx + c .已知图像上三点或三对 x 、 y 的值,通常选择一般式.(2) 顶点式: y = a (x - h )2 + k .已知图像的顶点或对称轴,通常选择顶点式.(3) 交点式:已知图像与 x 轴的交点坐标 x 1 、 x 2 ,通常选用交点式: y = a (x - x 1 )(x - x 2 ). 12. 直线与抛物线的交点(1) y 轴与抛物线 y = ax 2 + bx + c 得交点为(0, c ).(2)与 y 轴平行的直线 x = h 与抛物线 y = ax 2 + bx + c 有且只有一个交点( h ,ah 2 + bh + c ).(3)抛物线与 x 轴的交点二次函数 y = ax 2 + bx + c 的图像与 x 轴的两个交点的横坐标 x 1 、 x 2 ,是对 应一元二次方程ax 2 + bx + c = 0 的两个实数根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔ ∆ > 0 ⇔ 抛物线与 x 轴相交;②有一个交点(顶点在 x 轴上) ⇔ ∆ = 0 ⇔ 抛物线与 x 轴相切;③没有交点⇔ ∆ < 0 ⇔ 抛物线与 x 轴相离.(4)平行于 x 轴的直线与抛物线的交点同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2 +bx +c =k 的两个实数根.(5)一次函数y =kx +n(k ≠ 0)的图像l 与二次函数y =ax 2 +bx +c(a ≠ 0)的图像y =kx +nG 的交点,由方程组的解的数目来确定:①方程组有两y =ax 2 +bx +c组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线y =ax 2 +bx +c 与x 轴两交点为A(x ,0),B(x ,0),由于x 、x是方程ax 2 +bx +c = 0 的两个根,故1 2 1 2第二部分典型习题1.抛物线y=x2+2x-2 的顶点坐标是( D )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)2.已知二次函数y =ax 2 +bx +c 的图象如图所示,则下列结论正确的是( C )A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0D.ab<0,c<0第2,3题图第4 题图3.二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是(D)A.a>0,b<0,c>0 B.a<0,b<0,c>0C .a <0,b >0,c <0D .a <0,b >0,c >04.如图,已知 中,BC=8,BC 上的高 ,D 为 BC 上一点, ,交AB 于点 E ,交AC 于点 F (EF 不过 A 、B ),设 E 到 BC 的距离为 ,则 的面积 关于 的函数的图象大致为( D )5.抛物线 y = x 2 - 2x - 3 与 x 轴分别交于 A 、B 两点,则 AB 的长为 4 .6. 已知二次函数 y =kx 2+(2k -1)x -1与 x 轴交点的横坐标为 x 1、 x 2 ( x 1<x 2 ),则对于下列结论:①当 x =-2 时,y =1;②当 x >x 2 时,y >0;③方程kx 2+(2k -1)x -1=0 有两个不相等的实数根 x 、 x ;④ x <- 1, x >-1 ;⑤1212x -x,其中所有正确的结论是 ①③④ (只需填写序号).21k7. 已知直线 y = -2x + b (b ≠ 0)与 x 轴交于点 A ,与 y 轴交于点 B ;一抛物线的解析式为 y = x 2 - (b + 10)x + c .(1) 若该抛物线过点 B ,且它的顶点 P 在直线 y = -2x + b 上,试确定这条抛物线的解析式;(2) 过点 B 作直线 BC⊥AB 交x 轴交于点 C ,若抛物线的对称轴恰好过 C 点,试确定直线 y = -2x + b 的解析式. 解:(1) y = x 2 - 10 或 y = x 2 - 4x - 6将(0, b ) 代入,得c = b .顶点坐标为(b +10, - b 2 +16b +100 ) ,由题意得2 4-2 ⨯ b +10 + b = - b 2 +16b +100 ,解得b= -10, b = -6 . 2 41 2⎩ ⎩ ⎨ ⎨ ⎨b (2) y = -2x - 28. 有一个运算装置,当输入值为 x 时,其输出值为 y ,且 y 是 x 的二次函数,已知输入值为- 2 ,0,1时, 相应的输出值分别为 5, - 3 , - 4 .(1) 求此二次函数的解析式;(2) 在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值 x 的取值范围.解:(1)设所求二次函数的解析式为 y = ax 2 + bx + c ,⎧a (-2) 2 + b (-2) + c = 5⎧c = -3 ⎧a = 1则 a ⋅ 02 + b ⋅ 0 + c = -3 ,即⎪2a - b = 4 ,解得⎪= -2 ⎪a + b + c = -4 ⎪a + b = -1 ⎪c = -3⎩故所求的解析式为: y = x 2 - 2x - 3 .(2)函数图象如图所示.由图象可得,当输出值 y 为正数时, 输入值 x 的取值范围是 x < -1 或 x > 3 .9. 某生物兴趣小组在四天的实验研究中 发现:骆驼的体温会随外部环境 温度 的变化而变化,而且在这四天中 每昼 夜的体温变化情况相同.他们将一头 骆驼前两昼夜的体温变化情况绘下图.请根据图象回答:第 9 题制成1⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天 12 时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中 10 时到22 时的曲线是抛物线,求该抛物线的解析式.解:⑴第一天中,从 4 时到 16 时这头骆驼的体温是上升的它的体温从最低上升到最高需要 12 小时⑵第三天 12 时这头骆驼的体温是 39℃⑶ y = - x 2 + 2x + 24(10 ≤ x ≤ 22)1610. 已知抛物线 y = ax 2 + ( 4+ 3a )x + 4 与 x 轴交于3A 、B 两点,与 y 轴交于点C .是否存在实数 a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说明理由.解:依题意,得点 C 的坐标为(0,4).BO 2 + OC 2 | - 4 |2 +423a设点 A 、B 的坐标分别为( x 1 ,0),( x 2 ,0),由ax 2 + (4 + 3a )x + 4 = 0 ,解得 x = -3 , x = - 4.3 1 23a∴ 点 A 、B 的坐标分别为(-3,0),( - 4 3a,0).∴ AB =| - 4+ 3 |, AC = 3a= 5 ,BC = =.∴ AB 2 =| - 4+ 3 |2 = 16- 2 ⨯ 3⨯ 4 + 9 = 16 - 8 + 9 ,3a 9a 2 3a9a 2 aAC 2 = 25 , BC 2 = 169a 2+16 .〈ⅰ〉当 AB 2 = AC 2 + BC 2 时,∠ACB=90°.由 AB 2 = AC 2 + BC 2 , 得16 - 8 + 9 = 25 + ( 16+16) . 9a 2解得a a = - 1. 49a 2∴ 当a = - 1 时,点 B 的坐标为( 16 ,0), AB 2 =625 , AC 2 = 25 ,439BC 2 =400 .9于 是 AB 2 = AC 2 + BC 2 .∴ 当a = - 1时,△ABC 为直角三角形.4〈ⅱ〉当 AC 2 = AB 2 + BC 2 时,∠ABC=90°. 由 AC 2 = AB 2 + BC 2 ,得25 = (16 - 8 + 9) + ( 16+ 16) . 9a 2 a 9a 2AO 2 + OC 25 5解 得 a = 49 当a = 4时, - 49 3a=44 3⨯9= -3 ,点 B (-3,0)与点 A 重合,不合题意.〈ⅲ〉当BC 2 = AC 2 + AB 2 时,∠BAC=90°.由BC 2 = AC 2 + AB 2,得 169a 2解得 a = 4.不合题意.9+16 = 25 + ( 16 9a 2 - 8 + 9) . a 综合〈ⅰ〉、〈ⅱ〉、〈ⅲ〉,当a = - 1时,△ABC 为直角三角形.411. 已知抛物线 y =-x 2+mx -m +2.(1) 若抛物线与 x 轴的两个交点 A 、B 分别在原点的两侧,并且 AB = ,试求 m 的值;(2) 设 C 为抛物线与 y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且 △MNC 的面积等于 27,试求 m 的值.解: (1)A(x 1,0),B(x 2,0) . 则 x 1 ,x 2 是方程 x 2-mx +m -2=0 的两根.∵x 1 + x 2 =m , x 1·x 2 =m -2 <0 即 m <2 ;又 AB =∣x 1 — x 2∣= (+ )x 2 - 4x x =,121 2∴m 2-4m +3=0 .解得:m=1 或 m=3(舍去) , ∴m 的值为 1 ..2 - m 2 -m 2 - m (2)M(a ,b),则 N(-a ,-b) .∵M、N 是抛物线上的两点,∴ ⎨⎪-a 2 + ma - m + 2 = b , ①-a 2 - ma - m + 2 = -b . ②⎪①+②得:-2a 2-2m +4=0 . ∴a 2=-m +2 .∴当 m <2 时,才存在满足条件中的两点 M 、N.∴ a = .这时 M 、N 到 y又点 C 坐标为(0,2-m ),而 S △M N C= 27 ,1∴2× ×(2-m =27 .2∴解得 m=-7 .12. 已知:抛物线 y =ax 2+4ax +t 与 x 轴的一个交点为 A (-1,0).(1) 求抛物线与 x 轴的另一个交点 B 的坐标;(2)D 是抛物线与 y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形 ABCD 的面积为 9,求此抛物线的解析式;(3)E 是第二象限内到 x 轴、y 轴的距离的比为 5∶2 的点,如果点 E 在(2) 中的抛物线上,且它与点 A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点 P ,使△APE 的周长最小?若存在,求出点 P 的坐标; 若不存在,请说明理由.0 0解法一:(1) 依题意,抛物线的对称轴为 x =-2.∵ 抛物线与 x 轴的一个交点为 A (-1,0),∴由抛物线的对称性,可得抛物线与 x 轴的另一个交点 B 的坐标为(-3,0).(2) ∵ 抛物线 y =ax 2+4ax +t 与 x 轴的一个交点为 A (-1, 0),∴ a (-1)2+4a (-1)+t =0.∴ t=3a .∴ y =ax 2+4ax +3a .∴D (0,3a ).∴ 梯形 ABCD 中,AB∥CD,且点 C 在抛物线y =ax 2+4ax +3a 上,∵ C (-4,3a ).∴ AB =2,CD =4.∵ 梯形 ABCD 的面积为 9,∴1 ( AB + CD ) ⋅OD =9 .∴ 21 (2+4) 3a =9 . 2∴ a±1.∴所求抛物线的解析式为 y =x 2+4x +3 或.(3) 设点 E 坐标为( x 0 , y 0 ).依题意, x 0<0 ,y =- x 2 - 4ax -y 0<0,且 y = 5 .∴ y =- 5x .x 22 0⎨ ①设点 E 在抛物线 y =x 2+4x +3 上,∴ y =x 2+4x +3 .⎧5 ⎧x '=- 1⎪ y 0=- x 0 , ⎨⎧x =- 6,⎨0 2解方程组⎪⎨y =x 2+2 4x +3得 ⎩0 y 0=15;⎪ y '=5. ⎩ 0 0 0⎪ 0 4∵ 点 E 与点 A 在对称轴 x =-2 的同侧,∴ 点 E 坐标为( - 125 , ).4设在抛物线的对称轴 x =-2 上存在一点 P ,使△APE 的周长最小.∵ AE 长为定值,∴ 要使△APE 的周长最小,只须 PA +PE 最小.∴ 点 A 关于对称轴 x =-2 的对称点是 B (-3,0), ∴ 由几何知识可知,P 是直线 BE 与对称轴 x =-2 的交点. 设过点 E 、B 的直线的解析式为 y =mx +n ,⎧ 15 ⎧m =1 , ⎪- m +n = ,∴ 解得 2⎨ 24 ⎩-3m +n =0.⎪n = 3 . ⎩ 2点 P 坐标为(-2, ).②设点 E 在抛物线 y =- x 2 - 4x - 3 上,∴ y =- x 2 - 4x - 3 .⎧y =- 5 x , 解方程组⎪ 02 0消去 y3 ,得x 2 + x 0+3=0 .⎪⎨ y =- x 2 - 4x - 3. ⎩ 0 0 02∴ 直线 BE 的解析式为 y = 1 x + 3 .∴ 把 x =-2 代入上式,得 y = 1.222∴ 1 2∴△<0 . ∴此方程无实数根.1综上,在抛物线的对称轴上存在点 P(-2,),使△APE 的周长最小.2解法二:(1)∵抛物线y=ax2+4ax+t 与x 轴的一个交点为A(-1,0),∴a(-1)2+4a(-1)+t=0.∴t=3a.∴.y=ax2+4ax+3a令y=0,即ax2+4ax+3a=0 .解得x =-1,x =-3 .1 2∴ 抛物线与 x 轴的另一个交点 B 的坐标为(-3,0).(2)由y=ax2+4ax+3a ,得 D(0,3a).∵ 梯形 ABCD 中,AB∥CD,且点 C 在抛物线y=ax2+4ax+3a 上,∴ C(-4,3a).∴AB=2,CD=4.∵梯形ABCD 的面积为9,∴1( AB+CD) OD=9 .解得 OD=3.2∴ 3a=3 .∴ a±1.∴ 所求抛物线的解析式为y=x2+4x+3 或y=-x2-4x-3 .(3)同解法一得,P 是直线 BE 与对称轴 x=-2 的交点.∴如图,过点E 作EQ⊥x轴于点Q.设对称轴与x 轴的交点为 F.由PF∥EQ,可得BF=PF.∴1=PF .∴PF=1 BQ EQ.1点P 坐标为(-2,).2 以下同解法一.5 5 2 2 413.已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点 M 的坐标.(2)若点 N 为线段 BM 上的一点,过点 N 作 x 轴的垂线,垂足为点 Q.当点 N 在线段 BM 上运动时(点 N 不与点 B,点 M 重合),设 NQ 的长为 l,四边形 NQAC 的面积为 S,求S 与t 之间的函数关系式及自变量 t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点 P,使△PAC为直角三角形?若存在,求出所有符合条件的点 P 的坐标;若不存在,请说明理由;(4)将△OAC补成矩形,使△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需∴- , P 要计算过程).解:(1)设抛物线的解析式 y = a (x + 1)(x - 2) , ∴ - 2 = a ⨯1⨯ (-2) .∴a = 1 .∴ y = x 2 - x -2 . 其顶点 M 的坐标是⎛ 1 ,- 9 ⎫ .⎪ ⎝ 2 4 ⎭(2)设线段 BM 所在的直线的解析式为 y = kx + b ,点 N 的坐标为 N (t ,h ),∴ ⎨ ⎧0 = 2k + b ,3 ⎪ 9= 1k + b . .解得k = 2 ,b = -3 . ⎪ 4 2∴ 线段 BM 所在的直线的解析式为 y = 3x - 3 .2∴ h = 3 t - 3 ,其中 1 < t < 2 .∴ s = 1 ⨯1⨯ 2 + 1 (2 + 2 t - 3)t = 3 t 2 - 1t +1.222 2342∴s 与t 间的函数关系式是S = 3t 2 - 1 t +1,自变量 t 的取值范围是42 1< t < 2 . 2(3) 存在符合条件的点 P ,且坐标是P⎛ 5 7⎫ , ⎪ ⎛ 3 ,- 5 ⎫ .1 2⎝ 4 ⎭2 ⎝ 2 4 ⎭⎪设点 P 的坐标为 P (m ,n ) ,则n = m 2 - m - 2 .PA 2 = (m +1)2 + n 2 , PC 2 = m 2 + (n + 2)2,AC 2 = 5 . 分以下几种情况讨论:i ) 若∠PAC=90°,则PC 2 = PA 2 + AC 2 .⎪n = m 2 - m - 2,∴⎪⎩m 2 + (n + 2)2 = (m + 1)2 +n 2 + 5. 解得: m = 5 , m = -1(舍去). ∴ 点P ⎛ 5 7 ⎫.1 221 , ⎪ ⎝2 4 ⎭ii ) 若∠PCA=90°,则PA 2 = PC 2 + AC 2 .⎪n = m 2 - m - 2,∴⎪⎩(m +1)2 + n 2 = m 2 + (n + 2)2 + 5.解得: m = 3 ,m = 0 (舍去).∴ 点P ⎛ 3 ,- 5⎫ .3242 ⎝4 ⎪⎭iii ) 由图象观察得,当点 P 在对称轴右侧时, PA > AC ,所以边 AC 的对角∠APC 不可能是直角.(4) 以点 O ,点 A (或点 O ,点 C )为矩形的两个顶点,第三个顶点落在矩形这边 OA (或边 OC )的对边上,如图 a ,此时未知顶点坐标是点D (-1,-2),以点 A ,点 C 为矩形的两个顶点,第三个顶点落在矩形这一边 AC 的对边上,如图 b ,此时未知顶点坐标是 E ⎛- 12 ⎫ ,F ⎛ 4 , ⎪ 8 ⎫ .⎪ ⎝ 5 5 ⎭⎝ 55 ⎭图 a图 b14. 已知二次函数 y =ax 2-2 的图象经过点(1,-1).求这个二次函数的解析式,并判断该函数图象与 x 轴的交点的个数. 解:根据题意,得 a -2=-1.2,-2∴ a =1. ∴ 这个二次函数解析式是 y =x 2- 2 .因为这个二次函数图象的开口向上,顶点坐标是(0,-2),所以该函数图象与 x 轴有两个交点.15. 卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面 1∶11000 的比例图上,跨度 AB =5 cm ,拱高 OC =0.9 cm ,线段 DE 表示大桥拱内桥长,DE∥AB,如图(1).在比例图上,以直线 AB 为 x 轴,抛物线的对称轴为 y 轴,以 1 cm 作为数轴的单位长度,建立平面直角坐标系,如图(2).(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果 DE 与 AB 的距离 OM =0.45 cm ,求卢浦大桥拱内实际桥长(备用数据: ≈ 1.4 ,计算结果精确到 1 米).解:(1)由于顶点 C 在 y 轴上,所以设以这部分抛物线为图象的函数解析式为y =ax 2+ 9 .10因为点 A ( - 5 ,0)(或 B ( 5 ,0) 在抛物线上, 所以0=a ⋅(- 5 )2+ 9,2 2 得a =- 18.1252 10因此所求函数解析式为 y =-18x 2+ 9 (- 5 ≤ x ≤ 5) .(2) 因为点 D 、E 的纵坐.所以点 D 的坐标为( 125 10 2 2标为 9 , 所 以 9 =- 18 x 2+ 9 ,得 x = 20 , 9 ), 20 125 点 E 的坐标为(10 , 9 ). 20 203 2 c所以DE = 5 2-(-52) 5 2 . = 44 2因此卢浦大桥拱内实际桥长为 5 2⨯11000 ⨯ 0.01=275 ≈ 385 (米). 216. 已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数 y =ax 2+bx +c (a≠0)的图象经过点A 、B ,与 y 轴相交于点C .(1) a 、c 的符号之间有何关系?(2) 如果线段 OC 的长度是线段 OA 、OB 长度的比例中项,试证a 、c 互为倒数;(3) 在(2)的条件下,如果 b =-4, AB =4 ,求 a 、c 的值. 解:(1) a 、c 同号. 或当 a >0 时,c >0;当 a <0 时,c <0.(2) 证明:设点 A 的坐标为( x 1 ,0),点 B 的坐标为( x 2 ,0),则0<x 1<x 2 .∴ OA = x 1 , OB = x 2 , OC = c .据题意, x 1 、 x 2 是方程ax 2+bx +c = 0(a ≠ 0) 的两个根. ∴ x 1 ⋅ x 2 = .a由题意,得OA ⋅OB =OC 2 ,即 c=c 2=c 2 .a所以当线段 OC 长是线段 OA 、OB 长的比例中项时,a 、c 互为倒数.(x 1+x 2)2 - 4x 1x 22 3 33 3 (3)当b = -4 时,由(2)知, x +xb 40 ,∴ a >0.12=- a = a >解法一:AB =OB -OA = x -x =,21∴ AB =∵ AB = 4=, ∴ 2 = . a 3 =4 .得a = 1.∴ c =2. a 2 解法二:由求根公式, x 2 ± 3 , a ∴ x = x = 2 + 3 .12∴ AB =OB -OA =x -x =2 +3 .21a∵ AB =4 ,∴2 3 =4 ,得a = 1.∴ c=2. a 217. 如图,直线 y = -A 、B 两点. 3 x + 3分别与 x 轴、y 轴交于点 A 、B ,⊙E 经过原点 O 及(1)C 是⊙E 上一点,连结 BC 交 OA 于点 D ,若∠COD=∠CBO,求点 A 、B 、C的坐标;(2) 求经过 O 、C 、A 三点的抛物线的解析式:(3) 若延长 BC 到P ,使 DP =2,连结 AP ,试判断直线 PA 与⊙E 的位置关系,并说明理由.16 - 4ac a 2 ( 4 )2-4( c ) a a 3 33 3 3 解:(1)连结 EC 交x 轴于点 N (如图).∵ A 、B 是直线 y = - 3 x +3分别与 x 轴、y 轴的交点.∴ A (3,0),B又∠COD=∠CBO. ∴ ∠CBO=∠ABC.∴ C 是的中点. ∴ EC⊥OA.∴ ON = 1 OA = 3 , EN = OB = .22 2 23,- 2 连结 OE .∴ ). 2 EC = OE = . ∴ NC = EC - EN = 3.∴ C 点的坐标为(2 (2)设经过 O 、C 、A 三点的抛物线的解析式为 y = ax (x - 3).∵ C( 3 ,- 2 ). ∴ - 3 = a ⋅ 3 ( 3 - 3) .∴ a =2 3 . 2 2 2 2 9∴ y = 2 3 x 2 - 9 2 3 x 为所求. 8(3)∵ tan ∠BAO = 3 , ∴ ∠BAO=30°,∠ABO=50°.由(1)知∠OBD=∠ABD.∴ ∠OBD = 1 ∠ABO - 1 ⨯ 60︒ = 30︒ .2 2∴ OD=OB·tan30°-1.∴ DA=2.∵ ∠ADC=∠BDO=60°,PD =AD =2.∴ △ADP 是等边三角形.∴ ∠DAP=60°.∴ ∠BAP=∠BAO+∠DAP=30°+60°=90°. 即PA⊥AB. 即直线 PA 是⊙E 的切线.(0, 3) .3 33“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
初三数学二次函数知识点总结材料及经典习题含问题详解
初三数学 二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y a x b x c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;九矿新概念辅导班 二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
人教版初中九年级数学上册第二十二章《二次函数》知识点总结(含答案解析)(1)
一、选择题1.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:) A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .3x y =⎧⎨=⎩D .43x y =⎧⎨=⎩A 解析:A 【分析】根据二次函数的对称性知:抛物线的对称轴为直线x =2,且抛物线的开口向上,由此确定答案. 【详解】∵x =1和x =3时,y =0; ∴抛物线的对称轴为直线x =2, ∴顶点坐标为(2,﹣1), ∴抛物线的开口向上,∴x =0和x =4的函数值相等且大于0, ∴x =0,y =﹣3错误. 故选:A . 【点睛】此题考查抛物线的对称性,抛物线的性质,读懂表格掌握二次函数的对称性解决问题是解题的关键. 2.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x ax x++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8C .4D .3C解析:C 【分析】由二次函数的性质可先确定出a 的范围,再由二次函数的性质可确定出a 的范围,解分式方程确定出a 的取值范围,从而可确定出a 的取值,可求得答案. 【详解】 解:∵二次函数2112y x ax =-+, ∴抛物线开口向上,对称轴为x =a , ∴当x <a 时,y 随x 的增大而减小,∵当x≤1时,y 随x 的增大而减小, ∴a≥1, 解分式方程4311x ax x ++=--可得x =72a -, ∵关于x 的分式方程4311x ax x++=--有正整数解, ∵x≠1,∴满足条件的a 的值为1,3,∴所有满足条件的整数a 的值之和是1+3=4, 故选:C . 【点睛】本题考查了二次函数的性质、分式方程的解,通过解分式方程以及二次函数的性质,找出a 的值是解题的关键.3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B 【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确. 【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2ba=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误; 综上,正确的有①②④. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键. 4.根据下列表格中的对应值:x1.98 1.992.00 2.01 2y ax bx c =++-0.06-0.05-0.030.01判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)一个根x 的范围是( ) A .1.00 1.98x << B .1.98 1.99x << C .1.99 2.00x << D .2.00 2.01x <<D解析:D 【分析】根据二次函数的性质、二次函数与一元二次方程的联系即可得. 【详解】由表格可知,在1.98 2.01x ≤≤内,y 随x 的增大而增大, 当 2.00x =时,0.030y =-<, 当 2.01x =时,0.010y =>,∴在2.00 2.01x <<内,必有一个x 的值对应的函数值0y =,∴方程20ax bx c ++=(0a ≠,,,a b c 为常数)一个根x 的范围是2.00 2.01x <<,故选:D . 【点睛】本题考查了二次函数的性质、二次函数与一元二次方程的联系,熟练掌握二次函数的性质是解题关键.5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( )A .3B .2C .1D .0A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断. 【详解】 解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >>C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5, ∴y 2>y 1>y 3, 故选C. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.7.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( ) A .123y y y >> B .132y y y >> C .321y y y >> D .312y y y >>A解析:A 【分析】根据二次函数的对称性、增减性即可得. 【详解】由二次函数的性质可知,当1x ≥-时,y 随x 的增大而减小, 抛物线2(1)y x =-+的对称轴为1x =-,∴0x =时的函数值与2x =-时的函数值相等,即为1y ,∴点()10y ,在此抛物线上,又点()21,B y ,()32,C y 在此抛物线上,且1012-<<<,123y y y ∴>>,故选:A . 【点睛】本题考查了二次函数的对称性、增减性,熟练掌握二次函数的性质是解题关键. 8.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x = B .22(-1)-3y x = C .2(21)-3y x =+ D .22(1)-3y x =+B解析:B 【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可. 【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B 【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.9.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .C解析:C 【分析】分a >0与a <0两种情况考虑两函数图象的特点,再对照四个选项中图形即可得出结论. 【详解】解:①当a >0时,二次函数y=ax 2-a 的图象开口向上、对称轴为y 轴、顶点在y 轴负半轴,一次函数y=ax-a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y 轴同一点;②当a <0时,二次函数y=ax 2-a 的图象开口向下、对称轴为y 轴、顶点在y 轴正半轴,一次函数y=ax-a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y 轴同一点. 对照四个选项可知C 正确. 故选:C . 【点睛】本题考查了一次函数的图象以及二次函数图象与系数的关系,根据二次函数及一次函数系数找出其大概图象是解题的关键. 10.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-D解析:D 【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可. 【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0),∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3, ∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022,当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3). 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.二、填空题11.如图,已知二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论:①当x <-1时,y <0;②30a b +>;③2-13a ≤≤-;④248ac ab ->;其中正确的结论有_________.①③【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为由图像可得开口向下则有对称轴为直线即由此可进行求解问题【详解】解:由二次函数二次函数的图像与x 轴交于点A (30)对称轴为直线x =1可得抛物线解析:①③ 【分析】由二次函数的对称性可得与x 轴的另一个交点坐标为()1,0-,由图像可得开口向下,则有0a <,240b ac ->,对称轴为直线1x =,即20a b +=,由此可进行求解问题.【详解】解:由二次函数二次函数()20y ax bx c a =++≠的图像与x 轴交于点A (3,0)对称轴为直线x =1,可得抛物线与x 的另一个交点坐标为()1,0-,开口向下,即0a <,当1x ≤时,y 随x 的增大而增大, ∴当1x <-时,y <0,故正确;∵对称轴为直线1x =,即20a b +=,0a <, ∴300a b a a +=+=<,故②错误;设抛物线的解析式为()()13y a x x =+-,则223y ax ax a =--,令x=0时,则有y=-3a ,∵抛物线与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点), ∴233a ≤-≤,解得:213a -≤≤-,故③正确; ∵23c ≤≤,240b ac ->,由248ac b a ->得248ac a b ->, ∵0a <,∴224b c a-<,∴20c -<,∴2c <,与23c ≤≤矛盾,故④错误; 所以正确的结论有①③; 故答案为①③. 【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 12.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.【分析】根据二次函数的对称性求出二次函数图象与轴的另一个交点再写出x 轴下方部分的x 的取值范围即可【详解】由图可知对称轴为直线所以二次函数图象与x 轴的另一个交点坐标为(0)由图象可知:函数值大于0的的 解析:13x【分析】根据二次函数的对称性求出二次函数图象与x 轴的另一个交点,再写出x 轴下方部分的x 的取值范围即可. 【详解】由图可知,对称轴为直线1x =,所以,二次函数图象与x 轴的另一个交点坐标为(1-,0), 由图象可知:函数值大于0的x 的取值范围为:13x ,所以,220x x m -++>的解集为13x .故答案为:13x .【点睛】本题考查了二次函数与不等式,主要利用了二次函数的对称性以及数形结合的思想,难点在于先求出函数图象与x 轴的另一个交点坐标. 13.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.2013【分析】分别过B1B2B3作y 轴的垂线垂足分别为ABC 设A0A1=aA1A2=bA2A3=c 则AB1=aBB2=bCB3=c 再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013 【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C , 设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 2211312233BA BB b b ==⨯=,则23,22b B b a ⎛⎫+ ⎪ ⎪⎝⎭, 3331233CA c ===,则33,2c B a b ⎫++⎪⎪⎝⎭,在正011A B A △中,13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 代入223y x =中,得223234a a =⨯,解得1a =,即011A A =, 在正122A B A △中,23,122b B b ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =, 在正233A B A △中,33,322c B c ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =, …,依此类推由此可得201220132013A B A △的边长2013=.故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.14.已知抛物线y =x 2+9的最小值是y =_____.9【分析】直接利用二次函数的最值问题求解【详解】解:∵y =x2+9∴当x =0时y 有最小值最小值为9故答案为:9【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h 当a >0时x=ky 有解析:9【分析】直接利用二次函数的最值问题求解.【详解】解:∵y =x 2+9,∴当x =0时,y 有最小值,最小值为9.故答案为:9.【点睛】本题考查了二次函数的最值:对于二次函数y=a (x-k )2+h ,当a >0时,x=k ,y 有最小值h ;当a <0时,x=k ,y 有最大值h .15.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________【分析】根据二次函数的平移规律上加下减左加右减即可求解【详解】解:抛物线先向上平移1个单位再向左平移1个单位所得的抛物线为故答案为:【点睛】本题考查抛物线的平移掌握二次函数的平移规律上加下减左加右减解析:()2311y x =++【分析】根据二次函数的平移规律“上加下减,左加右减”即可求解.【详解】解:抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为()2311y x =++,故答案为:()2311y x =++.【点睛】本题考查抛物线的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键. 16.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).>【分析】根据抛物线y =﹣(x+1)2+3得到开口向下对称轴为直线x =﹣1然后根据二次函数的性质判断函数值的大小【详解】解:∵抛物线y =﹣(x+1)2+3的开口向下对称轴为直线x =﹣1∴当x >﹣1时 解析:>【分析】根据抛物线y =﹣(x +1)2+3得到开口向下,对称轴为直线x =﹣1,然后根据二次函数的性质判断函数值的大小.【详解】解:∵抛物线y =﹣(x +1)2+3的开口向下,对称轴为直线x =﹣1,∴当x >﹣1时,y 随x 的增大而减小,∵1<2,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质是解题的关键.17.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.18.二次函数2y x bx =+的对称轴为直线2x =,若关于x 的一元二次方程20x bx t +-=(t 为实数)在1-<x <4的范围内有解,则t 的取值范围是________.-4≤t<5【分析】先由对称轴求b 的值则二次函数关于的一元二次方程(为实数)在<<的范围内有解△=16+4t≥0在<<在x=-1时y=5当x=4时y=0用y=t 与有交点t 的范围即可求出【详解】∵二次解析:-4≤t<5.【分析】先由对称轴求b 的值,则二次函数2-4y x x =,关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解,△=16+4t≥0,在1-<x <4()22-424y x x x ==--在x=-1时,y=5,当x=4时,y=0,用y=t 与()22-424y x x x ==--有交点,t 的范围即可求出.【详解】∵二次函数2y x bx =+的对称轴为直线2x =, ∴222b b x a =-=-=,∴b =-4,∴二次函数2-4y x x =,∵关于x 的一元二次方程240x x t --=(t 为实数)在1-<x <4的范围内有解, ∴△=16+4t≥0,∴t≥-4,∵()22-424y x x x ==--,在x=-1时,y=5,当x=4时,y=0, ∴y=t 与()22-424y x x x ==--有交点,t 满足条件为-4≤t<5, 则t 的取值范围是-4≤t<5.故答案为:-4≤t<5.【点睛】本题考查二次函数与一元二次方程的关系,掌握二次函数的性质,与一元二次方程的解的条件,利用对称轴会求b 的值,关于x 的一元二次方程240x x t --=(t 为实数)有解,会用△=16+4t≥0,会用y=t 与()22-424y x x x ==--有交点,求t 满足条件是解决问题的关键.19.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____. ()【分析】根据抛物线y =x2﹣3x+2与x 轴交于AB 两点与y 轴交于点C 得A (10)B (20)C (02)过点B 作BM ⊥BC 交CD 延长线于点M 过点M 作MG ⊥x 轴于点G 易证等腰直角三角形OCB ∽等腰直角解析:(715,24) 【分析】 根据抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,得A (1,0),B (2,0),C (0,2),过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,易证等腰直角三角形OCB ∽等腰直角三角形GBM ,可得M (8,6),再求得直线CM 的解析式为y =12x +2,联立直线和抛物线,解方程组即可得点D 的坐标. 【详解】 解:∵抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,∴解得A (1,0),B (2,0),C (0,2),∴OB =OC∴∠OBC =45°,如图,过点B 作BM ⊥BC 交CD 延长线于点M ,过点M 作MG ⊥x 轴于点G ,∴∠COB =∠MGB =90°∴∠CBO +∠MBG =90°∴∠MBG =45°∴MG =BG∴等腰直角三角形OCB ∽等腰直角三角形GBM ∴BC BM =OC BG ∵tan ∠DCB =MB BC =3 ∴123BG= ∴BG =6∴MG =6 ∴M (8,6)设直线CM 解析式为y =kx +b ,把C (0,2),M (8,6)代入,解得k =12,b =2 所以直线CM 的解析式为y =12x +2 联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24) 故答案为(715,24). 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.20.抛物线y =x²-x 的顶点坐标是________【分析】先把函数解析式配成顶点式得到然后根据顶点式即可得到顶点坐标【详解】解:所以抛物线的顶点坐标为故答案为:【点睛】本题考查了二次函数的性质解题的关键是熟练掌握将二次函数的一般形式化为顶点式 解析:11,24⎛⎫- ⎪⎝⎭【分析】 先把函数解析式配成顶点式得到21124()y x =--,然后根据顶点式即可得到顶点坐标. 【详解】 解:2211()24y x x x =-=--, 所以抛物线的顶点坐标为11,24⎛⎫- ⎪⎝⎭, 故答案为:11,24⎛⎫- ⎪⎝⎭. 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握将二次函数的一般形式化为顶点式.三、解答题21.某商场销售一批名牌衬衫,平均每天可售出10件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件.(1)若商场平均每天赢利600元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?解析:(1)每件衬衫应降价20元;(2)每件衬衫降价15元时,商场平均每天赢利最多 .【分析】(1)设每件衬衫应降价x 元,由题意可以得到关于x 的一元二次方程,解方程即可得到问题解答;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式,然后根据函数的性质可以得到问题解答 .【详解】解:(1)设每件衬衫应降价x 元,由题意可以得到:(10+x )(40-x )=600,解之得:x=10或x=20,因为尽快减少库存,∴每件衬衫降价20元时,商场平均每天赢利600元;(2)把每件衬衫的降价看成自变量x ,商场平均每天赢利看成因变量y ,由题意可以得到y 与x 之间的函数关系式为:y=(10+x )(40-x ),配方得:()215625y x =--+,∴当x=15时,y 取得最大值625,即当每件衬衫降价15元时,商场平均每天赢利最多,且赢利为625元.【点睛】本题考查一元二次方程与二次函数的综合运用,根据题意列出一元二次方程或函数关系式,并根据方程的解或函数的性质作答是解题关键.22.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能卖出500件;若销售单价每涨1元,每周销量就减少10件.设每件涨价(0)x x ≥元. (1)写出一周销售量y (件)与x (元)的函数关系式.(2)设一周销售获得毛利润w 元,写出w 与x 的函数关系式,并确定当x 在什么取值范围内变化时,毛利润w 随x 的增大而增大.(3)超市扣除销售额的20%作为该商品的经营费用,为使得纯利润(纯利润=毛利润-经营费用)最大,超市对该商品售价为______元,最大纯利润为______元.解析:(1)50010y x =-;(2)2104005000w x x =-++,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)75,5000.【分析】(1)根据每件涨价x 元,每周销量就减少10x 件即可得;(2)根据“毛利润=(每件的售价-每件的成本)⨯销售量”可得w 与x 的函数关系式,再根据二次函数的性质即可得;(3)设一周销售获得的纯利润为Q 元,先根据纯利润的计算公式求出Q 与x 的函数关系式,再利用二次函数的性质求解即可得.【详解】(1)由题意,每件涨价x 元,每周销量就减少10x 件,则50010y x =-;(2)由题意得:(5040)(10)(50010)w x y x x =+-=+-,整理得:2104005000w x x =-++,将此二次函数的解析式化成顶点式为210(20)9000w x =--+,由二次函数的性质可知,当020x ≤≤时,毛利润w 随x 的增大而增大;(3)设一周销售获得的纯利润为Q 元,则220%(50)1040050000.2(50)(50010)Q w x y x x x x =-+=-++-+-,整理得:28400Q x x =-+,即28(25)5000Q x =--+,由二次函数的性质可知,当25x =时,Q 取得最大值,最大值为5000,则此时该商品售价为50502575x +=+=(元),故答案为:75,5000.【点睛】本题考查了一次函数与二次函数的应用、二次函数的性质,熟练掌握二次函数的性质是解题关键.23.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标解析:(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.24.某片果园有果树60棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树与树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克)与增种果树x (棵)之间的函数关系如图所示.(1)求每棵果树产果y (千克)与增种果树x (棵)之间的函数关系式;(2)设果园的总产量为w (千克),求w 与x 之间的函数表达式;(3)试说明(2)中总产量w (千克)随增种果树x (棵)的变化而变化的情况,并指出增种果树x 为多少棵时获得最大产量,最大产量w 是多少?解析:(1)1802y x =-+;(2)215048002w x x =-++ ;(3)当x=50时,w 的最大值为6050.【分析】 (1)由图像可得坐标()()12,74,28,66,设y kx b =+,然后代入求解即可; (2)根据(1)及题意可直接进行求解;(3)由(2)及二次函数的性质可进行求解.【详解】解:(1))由图像可得坐标()()12,74,28,66,则设y kx b =+,把点()()12,74,28,66代入得:12742866k b k b +=⎧⎨+=⎩,解得:1280k b ⎧=-⎪⎨⎪=⎩, ∴1802y x =-+; (2)由(1)及题意得:()()16060802w x y x x ⎛⎫=+⋅=+⋅-+ ⎪⎝⎭215048002x x =-++; (3)由(2)得:()221150480050605022w x x x =-++=--+, ∴102a =-<,开口向下,对称轴为直线50x =, ∴当50x ≤时,y 随x 的增大而增大,当50x ≥时,y 随x 的增大而减小,∴当50x =时,w 取最大,最大值为6050.【点睛】本题主要考查二次函数的实际应用,熟练掌握二次函数的应用是解题的关键. 25.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.解析:(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤ 【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m-=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.26.已知抛物线的顶点为()1,4-,且过点()2,5-.(1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).解析:(1)()214y x =--或223y x x =--; (2)1x <-或3x > 【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x−1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.27.为了在体育中考中取得更好地成绩,小明积极训练.在某次试投中,实心球经过的路线是如图所示的抛物线的一部份.已知实心球出手处A 距离地面的高度是169米,当实心球运行的水平距离为3米时,达到最大高度259米的B 处,实心球的落地点为C . (1)如图,已知AD CD ⊥于D ,以D 为原点,CD 所在直线为x 轴建立平面直角坐标系,在图中画出坐标系,点B 的坐标为________;(2)小明此次投掷的成绩是多少米?解析:(1)253,9B ⎛⎫ ⎪⎝⎭;(2)8米 【分析】 (1)根据题意直接写出坐标即可;(2)求出二次函数表达式,求C 点横坐标即可;【详解】(1)坐标系253,9B ⎛⎫ ⎪⎝⎭(2)设抛物线的表达式为225(3)(0)9y a x a =-+≠ 由抛物线经过点160,9A ⎛⎫ ⎪⎝⎭ 得21625(3)99a =-+解得19a =- 2125(3)99y x =--+ 0y =时,18x =,22x =-(舍)答:小明此次投掷的成绩是8米【点睛】此题考查利用二次函数解决实际问题,理解函数定义是关键28.某超市销售一款洗手液,这款洗手液成本价为每瓶16元,当销售单价定为每瓶20元时,每天可售出60瓶.市场调查反应:销售单价每上涨1元,则每天少售出5瓶.若设这款洗手液的销售单价上涨x 元,每天的销售量利润为y 元.(1)每天的销售量为___瓶,每瓶洗手液的利润是___元;(用含x 的代数式表示) (2)若这款洗手液的日销售利润y 达到300元,则销售单价应上涨多少元?(3)当销售单价上涨多少元时,这款洗手液每天的销售利润y 最大,最大利润为多少元? 解析:(1)()605x -,()4x +;(2)应上涨2元或6元;(3)当销售单价上涨4元时,这款洗手液每天的销售利润y 最大,最大利润为320元.。
初中数学-初三数学二次函数知识点总结及经典习题含答案
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y a x b x c =++的比较 a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a < 向下 ()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.3 6. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =--B. 22y x x =-++C. 22y x x =--或22y x x =-++D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
九下数学-二次函数(超经典例题讲解,习题含答案)
3.若正比例函数y=(1-2m)x的图像经过点A( , )和点B( , ),当 < 时 > ,则m的取值范围是()
(A)m<0(B)m>0(C)m< (D)m>
4.函数y= kx+ 1与函数 在同一坐标系中的大致图象是( )
(A) (B) (C) (D)
5.下列各图是在同一直角坐标系内,二次函数 与一次函数y=ax+c的大致图像,有且只有一个是正确的,正确的是()
(A) , ,
(B) , ,
(C) , ,
(D) , ,
11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()
12.二次函数y=x2-2x+2有()
A.最大值是1 B.最大值是2 C.最小值是1 D.最小值是2
(A)(B)(C)(D)
6.抛物线 的顶点坐标是( )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)
7.函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是( )
A.ab>0,c>0 B.ab<0,c>0
C.ab>0,c<0 D.ab<0,c<0
8.已知a,b,c均为正数,且k= ,在下列四个点中,正比例函数
三、解答题:
(1) (2)
解:(1)如图,建立直角坐标系,设二次函数解析式为y=ax2+c
∵D(-0.4,0.7),B(0.8,2.2),∴
∴ ∴绳子最低点到地面的距离为0.2米.
(2)分别作EG⊥AB于G,FH⊥AB于H,
初中数学二次函数知识点总结
初中数学二次函数知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学二次函数知识点总结初中数学二次函数知识点总结(精选30篇)初中数学二次函数知识点总结篇11、定义与定义表达式一般地,自变量X和因变量y之间存在如下关系:y=aX^2+bX+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a 二次函数表达式的右边通常为二次三项式。
初三数学九上二次函数所有知识点总结和常考题型练习题.doc
二次函数知识点1.表达式:①•般式:y = ax 2+hx+c (GH O );②顶点式:y = «(x-h )2 + /r (GH O )③交点式:y=a (x-xi )(x-x 2) (t#O )2•顶点坐标:①(-2,仏")②(力,O2a 4a3•顶点意义:①当"-2时,a>0, y 有最小值为皱二兰;«<0,'有最大值为迴二^ 2a4a 4a②当时,a>0, y 有最小值为k; a<0, y 有最大值为JI4・a 的意义:a>0,图象开口向上;avO,图象开口向下;a 严±勺两函数图線大小形状相同•(即间相等的抛物线为全等型抛物线)5•对称轴:®x = -—;②③兀=卫竺(其中小、及为抛物线I :对称点的横坐标) 2a 2 6•对称轴位置分析:①〃 =0,对称轴为y 轴;② ab<0,即a 、力异号,对称轴在y 轴的右侧;③ 亦>0,即a 、乃同号,对称轴在y 轴的左侧;(左同右异)7 •增减性:①“>0, x>—(或 Q 力)时,y 随X 的增大而増大;x<~ (或尤<力) 2a 2a时,y 随兀的增大而减小; ②d<0,--—(或x>/i )时,y 随x 的增犬而减小;.Y ——(或xV?)时,2a " 2ay 随x 的増大而增大&抛物线y = a 孑+加+c 与y 轴的交点为(0, c ), c 值为抛物线在y 轴上的截距.9. 抛物线与尤轴的交点:①△=沪-4皿=0时,抛物线与x 轴冇一个交点:②△=戸-4必>0时,抛物线与x 轴有两个交点;③A = ^-4ac<0lbt ,抛物线与x 轴没有交点.10.图象的平移:化成顶点式y =上加下减:k±m;左加右减:h±m11・设抛物线与兀轴交于A 、B 两点,则AE = ^ 1412.二次函数的性质或AB = |石_七| = J (召+花)‘ -4兀七2. 3. 4.函数y=x 2-2x+3的图彖的顶点坐标是() A.(l, -4)B.(-l, 2)C. (1, 抛物线y=2(x-3)2的顶点在()A.第一象限B.第二象限B.(-b 2)C.x 轴上D.(0, 3)D. y 轴上y =—« +H -4抛物线 4的对称轴是(D. x=4A. x=-2B.x=2C. x=-4已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是()图 yy/t y彖\ L/T /\0 \ xTx(1)抛物线开口向上,并向 上无限延伸 (1)抛物线开口向下,并向下无限延伸(i )抛物线开口向 上,并向上无限 延伸 (1)抛物线开口向下,并向下无限延伸性bb⑵对称轴是x= 2a , (2)对称轴是x= 2a ,顶点是顶点是⑵对称轴是x= h,顶点是(h, k) ⑵对称轴是x= h,顶点是(h, k)b 4ac-b 2b 4ac-b 2(2a '4a )(2a'4a )质b X V⑶当2d 时,y 随x bX V⑶当2。
中考复习专题二次函数分类讲解复习以及练习题含答案
1、二次函数的定义定义: y=ax2 + bx + c a 、 b 、 c 是常数, a ≠ 0 定义要点:①a ≠ 0 ②最高次数为2 ③代数式一定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5 x2,y=3 x2-2x3+5,其中是二次函数的有____个;2.当m_______时,函数y=m+1χ - 2χ+1 是二次函数2、二次函数的图像及性质例2:已知二次函数1求抛物线开口方向,对称轴和顶点M 的坐标;2设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C,A,B 的坐标;抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax2+bx+ca>0y=ax 2+bx+ca<0由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而在对称轴的左侧,y 随着x 的增大而⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线23212-+=x x y3x为何值时,y随的增大而减少,x为何值时,y有最大小值,这个最大小值是多少4x为何值时,y<0x为何值时,y>03、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为________________y=ax2+bx+ca≠02,顶点式:已知抛物线顶点坐标h, k,通常设抛物线解析式为_______________求出表达式后化为一般形式.y=ax-h2+ka≠03,交点式:已知抛物线与x 轴的两个交点x1,0、x2,0,通常设解析式为_____________求出表达式后化为一般形式.y=ax-x1x-x2 a≠0练习:根据下列条件,求二次函数的解析式;1、图象经过0,0, 1,-2 , 2,3 三点;2、图象的顶点2,3, 且经过点3,1 ;3、图象经过0,0, 12,0 ,且最高点的纵坐标是3 ;例1已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点3,-6;求a、b、c;解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为 1 , 2∴设二次函数的解析式为y=ax-12+2又∵图象经过点3,-6∴-6=a 3-12+2 ∴a=-2∴二次函数的解析式为y=-2x-12+2即: y=-2x2+4x4、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:1a的符号:由抛物线的开口方向确定2C的符号:由抛物线与y轴的交点位置确定.3b的符号:由对称轴的位置确定4b2-4ac的符号:由抛物线与x轴的交点个数确定5a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y值决定;当x=1时,y>0,则a+b+c>0当x=1时,y<0,则a+b+c<0当x=1时,y=0,则a+b+c=06a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c的符号由x=-1时,对应的y值决定;当x=-1,y>0,则a-b+c>0当x=-1,y<0,则a-b+c<0当x=-1,y=0,则a-b+c=0练习1、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c的符号为A、a<0,b>0,c>0B、a<0,b>0,c<0C、a<0,b<0,c>0D、a<0,b<0,c<02、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c的符号为A、a>0,b>0,c=0B、a<0,b>0,c=0C、a<0,b<0,c<0D、a>0,b<0,c=03、二次函数y=ax2+bx+ca≠0的图象如图所示,则a、b、c 、△的符号为A、a>0,b=0,c>0,△>0B、a<0,b>0,c<0,△=0C、a>0,b=0,c<0,△>0D、a<0,b=0,c<0,△<0熟练掌握a,b, c,△与抛物线图象的关系上正、下负左同、右异4.抛物线y=ax2+bx+ca≠0的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a 0,b 0,c 0.5.抛物线y=ax2+bx+ca≠0的图象经过原点,且它的顶点在第三象限,则a、b、c满足的条件是:a 0,b 0,c 0.6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,那么这个二次函数图象的顶点必在第象限先根据题目的要求画出函数的草图,再根据图象以及性质确定结果数形结合的思想7.已知二次函数的图像如图所示,下列结论;⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷b=2a其中正确的结论的个数是A 1个B 2个C 3个D 4个要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x轴、y轴的交点的位置,注意运用数形结合的思想;5、抛物线的平移左加右减,上加下减 练习⑴二次函数y=2x2的图象向 平移 个单位可得到y=2x2-3的图象; 二次函数y=2x2的图象向 平移 个单位可得到y=2x-32的图象; ⑵二次函数y=2x2的图象先向 平移 个单位,再向 平移 个单位可得到函数y=2x+12+2的图象;引申:3由二次函数y=x2的图象经过如何平移可以得到函数y=x2-5x+6的图象.y=x2-5x+66二次函数与一元二次方程的关系一元二次方程根的情况与b2-4ac 的关系我们知道:代数式b2-4ac 对于方程的根起着关键的作用.二次函数y=ax2+bx +c 的图象和x 轴交点的横坐标,便是对应的一元二次方程ax2+bx +c=0的解;二次函数y=ax2+bx+c 的图象和x 轴交点有三种情况: 1有两个交点b2 – 4ac > 0 2有一个交点b2 – 4ac= 0 3没有交点 b2 – 4ac< 0若抛物线y=ax2+bx+c 与x 轴有交点,则b2 – 4ac ≥0例1如果关于x 的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线 y=x2-2x+m 与x 轴有____个交点.2已知抛物线 y=x2 – 8x +c 的顶点在 x 轴上,则c=____.y=x 24125(2--=x y .2422,1aacb b x -±-=∴3一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是____.7二次函数的综合运用1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x轴的距离为5,请写出满足此条件的抛物线的解析式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同a=1或-1又顶点在直线x=1上,且顶点到x轴的距离为5,顶点为1,5或1,-5所以其解析式为:1 y=x-12+52 y=x-12-53 y=-x-12+54 y=-x-12-5 展开成一般式即可.2.若a+b+c=0,a0,把抛物线y=ax2+bx+c 向下平移 4个单位,再向左平移5个单位所到的新抛物线的顶点是-2,0,求原抛物线的解析式. 分析:1由a+b+c=0可知,原抛物线的图象经过1,0 2 新抛物线向右平移5个单位, 再向上平移4个单位即得原抛物线练习题1.直线y =3 x -1与y =x -k 的交点在第四象限,则k 的范围是………………A k <31 B 31<k <1 C k >1 D k >1或k <1 提示由⎩⎨⎧-=-=k x y x y 13,解得⎪⎪⎩⎪⎪⎨⎧-=-=.23121k y k x 因点在第四象限,故21k ->0,231k -<0.∴ 31<k <1.答案B .点评本题应用了两函数图象交点坐标的求法,结合了不等式组的解法、象限内点的坐标符号特征等.2.二次函数y =ax 2+bx +c 的图象如图,则下列各式中成立的个数是…………1abc <0; 2a +b +c <0; 3a +c >b ; 4a <-2b . A1 B2 C3 D4 提示由图象知a <0,-ab2>0,故b >0,而c >0,则abc <0.当x =1时,y >0,即a +c -b >0;当x =-1时,y <0,即a +c -b <0. 答案B .点评本题要综合运用抛物线性质与解析式系数间的关系.因a <0,把4a <-2b 两边同除以a ,得1>-ab 2,即-a b 2<1,所以4是正确的;也可以根据对称轴在x =1的左侧,判断出-a b 2<1,两边同时乘a ,得a <-2b ,知4是正确的.3.若一元二次方程x 2-2 x -m =0无实数根,则一次函数y =m +1x +m -1的图象不经过………………………………………………………………………………… A 第一象限 B 第二象限 C 第三象限 D 第四象限提示由=4+4 m <0,得m +1<0,则m -1<0,直线过第二、三、四象限. 答案A .点评本题综合运用了一元二次方程根的判别式及一次函数图象的性质.注意,题中问的是一次函数图象不经过的象限.4.如图,已知A ,B 是反比例函数y =x2的图象上两点,设矩形APOQ 与矩形MONB 的面积为S 1,S 2,则……………………………………………………………… A S 1=S 2 B S 1>S 2 C S 1<S 2 D 上述A 、B 、C 都可能 提示因为S APOQ =|k |=2,S MONB =2,故S 1=S 2. 答案A .点评本题可以推广为:从双曲线上任意一点向两坐标轴引垂线,由这点及两个垂足和原点构成的矩形的面积都等于|k |.5.若点A 1,y 1,B 2,y 2,C ,y 3在反比例函数y =-xk 12+的图象上,则A y 1=y 2=y 3B y 1<y 2<y 3C y 1>y 2>y 3D y 1>y 3>y 2提示因-k 2+1<0,且-k 2+1=y 1=2 y 2=y 3,故y 1<y 2<y 3.或用图象法求解,因-k 2+1<0,且x 都大于0,取第四象限的一个分支,找到在y 轴负半轴上y 1,y 2,y 3 的相应位置即可判定. 答案B .点评本题是反比例函数图象的性质的应用,图象法是最常用的方法.在分析时应注意本题中的-k 2+1<0.6.直线y =ax +c 与抛物线y =ax 2+bx +c 在同一坐标系内大致的图象是……A B C D提示两个解析式的常数项都为c ,表明图象交于y 轴上的同一点,排除A,B .再从a 的大小去判断. 答案D .点评本题综合运用了一次函数、二次函数的性质.B 错误的原因是由抛物线开口向上,知a >0,此时直线必过第一、三象限.7.已知函数y =x 2-1840 x +1997与x 轴的交点是m ,0n ,0,则m 2-1841 m +1997n 2-1841 n +1997的值是…………………………………………… A1997 B1840 C1984 D1897提示抛物线与x 轴交于m ,0n ,0,则m ,n 是一元二次方程x 2-1840 x +1997=0的两个根.所以m 2-1840 m +1997=0,n 2-1840 n +1997=0,mn =1997.原式=m 2-1840 m +1997-mn 2-1840 n +1997-n =mn =1997. 答案A .点评本题揭示了二次函数与一元二次方程间的联系,应用了方程的根的定义、根与系数的关系等知识点,并要灵活地把所求代数式进行适当的变形. 8.某乡的粮食总产量为aa 为常数吨,设这个乡平均每人占有粮食为y 吨,人口数为x ,则y 与x 之间的函数关系为……………………………………………A B C D 提示粮食总产量一定,则人均占有粮食与人口数成反比,即y =xa.又因为人口数不为负数,故图象只能是第一象限内的一个分支. 答案D .点评本题考查反比例函数图象在实际问题中的应用.A 错在画出了x <0时的图象,而本题中x 不可能小于0. 二填空题每小题4分,共32分9.函数y =12-x +11-x 的自变量x 的取值范围是____________. 提示由2 x -1≥0,得x ≥21;又x -1≠0,x ≠1.综合可确定x 的取值范围.答案x ≥21,且x ≠1.10.若点Pa -b ,a 位于第二象限,那么点Qa +3,ab 位于第_______象限. 提示由题意得a >0,a -b <0,则b >0.故a +3>0,ab >0. 答案一.11.正比例函数y =kk +112--k k x 的图象过第________象限.提示由题意得k 2-k -1=1,解得k 1=2,k 2=-1舍去,则函数为y =6 x . 答案一、三.点评注意求出的k =-1使比例系数为0,应舍去.12.已知函数y =x 2-2m +4x +m 2-10与x 轴的两个交点间的距离为22,则m =___________.提示抛物线与x 轴两交点间距离可应用公式||a ∆来求.本题有∆=)10(4)42(22--+m m =5616+m =22,故m =-3. 答案-3.点评抛物线与x 轴两交点间距离的公式为||a ∆,它有着广泛的应用.13.反比例函数y =xk的图象过点Pm ,n ,其中m ,n 是一元二次方程x 2+kx +4=0的两个根,那么P 点坐标是_____________.提示Pm ,n 在双曲线上,则k =xy =mn ,又mn =4,故k =4. 答案-2,-2.点评本题是反比例函数、一元二次方程知识的综合应用.由题意得出k =mn =4是关键.14.若一次函数y =kx +b 的自变量x 的取值范围是-2≤x ≤6,相应函数值y 的范围是-11≤y ≤9,则函数解析式是___________.提示当k >0时,有⎩⎨⎧+=+-=-b k b k 69211,解得⎪⎩⎪⎨⎧-==.625b k当k <0时,有⎩⎨⎧+-=+=-b k b k 29611,解得⎪⎩⎪⎨⎧=-=.425b k答案y =25x -6或y =-25x +4.点评因k 是待定字母,而k 的不同取值,导致线段分布象限不一样,自变量的取值与函数取值的对应关系也就不同.故本例要分k >0时自变量最大值对应函数最大值,与k <0时自变量最大值对应函数最小值两种情形讨论. 15.公民的月收入超过800元时,超过部分须依法缴纳个人收入调节税,当超过部分不足500元时,税率即所纳税款占超过部分的百分数相同.某人本月收入1260元,纳税23元,由此可得所纳税款y 元与此人月收入x 元(800<x <1300)间的函数关系为____________. 提示因1260-800=460,46023=5%,故在800<x <1300时的税率为5%. 答案y =5%x -800.点评本题是与实际问题相关的函数关系式,解题时应注意并不是每个人月收入的全部都必须纳税,而是超过800元的部分才纳税,故列函数式时月收入x 须减去800. 16.某种火箭的飞机高度h 米与发射后飞行的时间t 秒之间的函数关系式是h =-10 t 2+20 t ,经过_________秒,火箭发射后又回到地面.提示火箭返回地面,即指飞行高度为0,则-10 t 2+20 t =0,故t =0或t =20. 答案20.点评注意:t =0应舍去的原因是此时火箭虽在地面,但未发射,而不是返回地面. 三解答题17.6分已知y =y 1+y 2,y 1 与x 成正比例,y 2 与x 成反比例,并且x =1时y =4,x =2时y =5,求当x =4时y 的值.解设y 1=k 1x ,y 2=xk 2,则y =k 1x +xk 2.把x =1时y =4,x =2时y =5分别代入上式,得⎪⎩⎪⎨⎧+=+=22542121k k k k ,解得∴ 函数解析式为y =2 x +x 2. 当x =4时,y =2×4+42=217.∴ 所求的y 值为217.点评本题考查用待定系数法求函数解析式.关键在于正确设出y 1,y 2 与x 的函数解析式.注意两个比例系数应分别用k 1,k 2 表示出来,而不能仅用一个k 值表示.18.6分若函数y =kx 2+2k +1x +k -1与x 轴只有一个交点,求k 的值. 提示本题要分k =0,k ≠0两种情况讨论.解当k =0时,y =2 x -1,是一次函数,此时,直线与x 轴必有一个交点.当k ≠0时,函数为二次函数,此时,=4k +12-4 kk -1=12 k +4=0.∴ k =-31. ∴ 所求的k 值为0或-31. 点评注意,当问题中未指明函数形式,而最高次项系数含字母时,要注意这个系数是否为0.函数图象与x 轴有一个交点包括两种情形:当函数是一次函数时,直线与x 轴必只有一个交点;当函数是二次函数时,在=0的条件下,图象与x 轴只有一个交点.19.8分已知正比例函数y =4 x ,反比例函数y =xk.1当k 为何值时,这两个函数的图象有两个交点k 为何值时,这两个函数的图象没有交点2这两个函数的图象能否只有一个交点若有,求出这个交点坐标;若没有,请说明理由. 解由y =4 x 和y =xk ,得 4 x 2-k =0,=16 k .1当>0,即k >0时,两函数图象有两个交点;当<0,即k <0时,两函数图象没有交点;2∵ 比例系数k ≠0,故≠0.∴ 两函数图象不可能只有一个交点.20.8分如图是某市一处十字路口立交桥的横断面在平面直角坐标系中的一个示意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的D ′GD 部分为一段抛物线,顶点G 的高度为8米,AD 和AD ′是两侧高为米的立柱,OA 和OA ′为两个方向的汽车通行区,宽都为15米,线段CD 和CD ′为两段对称的上桥斜坡,其坡度为1∶4.1求桥拱DGD ′所在抛物线的解析式及CC ′的长.2BE 和B ′E ′为支撑斜坡的立柱,其高都为4米,相应的AB 和A ′B ′为两个方向的行人及非机动车通行区,试求AB 和A ′B ′的宽.3按规定,汽车通过桥下时,载货最高处和桥拱之间的距离不可小于米,今有一大型运货汽车,装载上大型设备后,其宽为4米,车载大型设备的顶部与地面的距离为7米,它能否从OAOA ′安全通过请说明理由.分析欲求函数的解析式,关键是求出三个独立的点的坐标,然后由待定系数法求之.所以关键是由题中线段的长度计算出D 、G 、D ′的坐标,当然也可由对称轴x =0解之.至于求CC ′、AB 、A ′B ′的数值,则关键是由坡度的定义求解之;到底能否安全通过,则只需在抛物线的解析式中令x =4,求出相应的y 值,即可作出明确的判断.解1由题意和抛物线的对称轴是x =0,可设抛物线的解析式为y =ax 2+c .由题意得G 0,8,D 15,∴ ⎩⎨⎧=+=.5.52258c a c∴ ⎪⎩⎪⎨⎧=-=.8901c a∴ y =2901x -+8.又 AC AD =41且AD =, ∴ AC =×4=22米.∴ CC ′=2C =2×OA +AC =2×15+22=74米.∴ CC ′的长是74米.2∵ BC EB =41,BE =4, ∴ BC =16.∴ AB =AC -BC =22-16=6米.A ′B ′=AB =6米.3此大型货车可以从OAOA ′区域安全通过.在y =2901x -+8中,当x =4时,y =-901×16+8=45377,而 45377-7+=4519>0, ∴ 可以从OA 区域安全通过. 21.8分已知二次函数y =ax 2+bx +c 的图象抛物线G 经过-5,0,0,25,1,6三点,直线l 的解析式为y =2 x -3.1求抛物线G 的函数解析式;2求证抛物线G 与直线l 无公共点;3若与l 平行的直线y =2 x +m 与抛物线G 只有一个公共点P ,求P 点的坐标.分析1略;2要证抛物线G 与直线l 无公共点,就是要证G 与l 的解析式组成的方程无实数解;3直线y =2 x +m 与抛物线G 只有一个公共点,就是由它们的解析式组成的二元二次方程组有一个解,求出这组解,就得P 点的坐标.解1∵ 抛物线G 通过-5,0,0,25,1,6三点, ∴ ⎪⎪⎩⎪⎪⎨⎧++==--=cb ac c b a 6255250,解得 ⎪⎪⎩⎪⎪⎨⎧===.25321c b a∴ 抛物线G 的解析式为y =21x 2+3 x +25. 2由⎪⎩⎪⎨⎧++=-=25321322x x y x y , 消去y ,得21x 2+x +211=0, ∵ =12-4×21×211=-10<0, ∴ 方程无实根,即抛物线G 与直线l 无公共点.3由⎪⎩⎪⎨⎧++=+=2532122x x y m x y ,消去y ,得21x 2+x +25-m =0. ① ∵ 抛物线G 与直线y =2 x +m 只有一个公共点P ,∴ =12-4×21×25-m =0. 解得m =2. 把m =2代入方程①,解得x =-1. 把x =-1代入y =21x 2+3 x +25,得y =0. ∴ P -1,0.点评本题综合运用了二次函数解析式的求法.抛物线与直线的交点等知识,其关键是把函数问题灵活转化为方程知识求解.。
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
九年级数学上册第二十二章二次函数知识点总结归纳(带答案)
九年级数学上册第二十二章二次函数知识点总结归纳单选题1、定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1C .4,0D .5+√172,-1 答案:D分析:分别讨论当对称轴位于y 轴左侧、位于y 轴与正方形对称轴x =1之间、位于直线x =1和x =2之间、位于直线x =2右侧共四种情况,列出它们有交点时满足的条件,得到关于m 的不等式组,求解即可. 解:由正方形的性质可知:B (2,2);若二次函数y =(x −m )2−m 与正方形OABC 有交点,则共有以下四种情况:当m ≤0时,则当A 点在抛物线上或上方时,它们有交点,此时有{m ≤0m 2−m ≤2, 解得:−1≤m <0;当0<m ≤1时,则当C 点在抛物线上或下方时,它们有交点,此时有{0<m ≤1(2−m )2−m ≥0, 解得:0<m ≤1;当1<m ≤2时,则当O 点位于抛物线上或下方时,它们有交点,此时有{1<m ≤2m 2−m >0, 解得:1<m ≤2;当m >2时,则当O 点在抛物线上或下方且B 点在抛物线上或上方时,它们才有交点,此时有{m >2m 2−m ≥0(2−m )2−m ≤2 ,解得:2<m≤5+√17;2,−1.综上可得:m的最大值和最小值分别是5+√172故选:D.小提示:本题考查了抛物线与正方形的交点问题,涉及到列一元一次不等式组等内容,解决本题的关键是能根据图像分析交点情况,并进行分类讨论,本题综合性较强,需要一定的分析能力与图形感知力,因此对学生的思维要求较高,本题蕴含了分类讨论和数形结合的思想方法等.2、如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点,若−2< x1<−1,则下列四个结论:①3<x2<4,②3a+2b>0,③b2>a+c+4ac,④a>c>b.正确结论的个数为()A.1个B.2个C.3个D.4个答案:B分析:根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.∵对称轴为直线x=1,-2<x1<-1,∴3<x2<4,①正确,∵−b= 1,2a∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2 -4ac > a+ c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B小提示:本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.3、抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对答案:D分析:根据二次函数图象及性质,即可判定.∵抛物线y=x2+3开口向上,在其图象上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2,或x2<x1≤0,或x2>0,x1≤0且x2+x1>0,或x2<0,x1>0且x2+x1<0,故选:D.小提示:本题考查了二次函数的图象及性质,熟练掌握和运用二次函数的图象及性质是解决本题的关键.4、如图,某公司准备在一个等腰直角三角形ABC的绿地上建造一个矩形的休闲书吧PMBN,其中点P在AC上,点NM分别在BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,若NP在一定范围内变化,则y与x,S与x满足的函数关系分别是()A.反比例函数关系,一次函数关系B.二次函数关系,一次函数关系C.一次函数关系,反比例函数关系D.一次函数关系,二次函数关系答案:D分析:先求出AM=PM,利用矩形的性质得出y=﹣x+m,最后利用S=S△ABC-S矩形PMBN得出结论.设AB=m(m为常数).在△AMP中,∠A=45°,AM⊥PM,∴△AMP为等腰直角三角形,∴AM=PM,又∵在矩形PMBN中,PN=BM,∴x+y=PM+PN=AM+BM=AB=m,即y=﹣x+m,∴y与x成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.5、二次函数y =x 的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限答案:A分析:由抛物线解析式可得抛物线开口方向及顶点坐标,进而求解.∵y =x 2, ∴抛物线开口向上,顶点坐标为(0,0),∴抛物线经过第一,二象限.故选:A .小提示:本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.6、关于x 的方程ax 2+bx +c =0有两个不相等的实根x 1、x 2,若x 2=2x 1,则4b −9ac 的最大值是( )A .1B .√2C .√3D .2答案:D分析:根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.解:由方程ax 2+bx +c =0有两个不相等的实根x 1、x 2可得,a ≠0,x 1+x 2=−b a ,x 1x 2=c a ∵x 2=2x 1,可得3x 1=−b a ,2x 12=c a ,即2(−b 3a )2=c a 化简得9ac =2b 2 则4b −9ac =−2b 2+4b =−2(b 2−2b)=−2(b −1)2+2故4b −9ac 最大值为2故选D小提示:此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.7、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.8、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.9、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.10、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O与水面的距离CO是2m,则当水位上升1.5m时,水面的宽度为()A.0.4mB.0.6mC.0.8mD.1m答案:C分析:根据题意可建立平面直角坐标系,然后设函数关系式为y=ax2,由题意可知A(−0.8,−2),代入求解函数解析式,进而问题可求解.解:建立如图所示的坐标系:设函数关系式为y=ax2,由题意得:A(−0.8,−2),∴−2=0.8×0.8×a,,解得:a=−258∴y=−25x2,8x2,当y=-0.5时,则有−0.5=−258解得:x=±0.4,∴水面的宽度为0.8m;故选C.小提示:本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.填空题11、已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式−3m2+3m+2022的值为______.答案:2019分析:先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.所以答案是:2019.小提示:本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.12、如图,在平面直角坐标系中,抛物线y=−x2+2mx+m−2(m为常数,且m>0)与直线y=2交于A、B两点.若AB=2,则m的值为______.答案:√21−12分析:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得x2−2mx−m+4=0,利用根与系数关系求得AB,可建立关于m的方程并解出即可.解:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得:−x2+2mx+m−2=2,即:x2−2mx−m+4=0∴x1+x2=2m,x1x2=−m+4,∴AB=|x2−x1|=√(x2+x1)2−4x1x2=√(2m)2−4(−m+4)=2,∴m2+m−5=0,解得:m1=√21−12,m2=−√21−12(舍去),所以答案是:√21−12.小提示:本题考查了抛物线与x轴的交点、二次函数与一元二次方程的关系、二次函数图象上点的坐标特征,熟练掌握这三个知识点的综合应用是解题关键.13、平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数y=x2+2x+c(c为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.答案:y=(x−3)2−2分析:将(1,2)代入y=x2+2x+c,解得c=-1,设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,然后将(1,2)代入得到关于m的方程,通过解方程求得m的值即可.解:将(1,2)代入y=x2+2x+c,得12+2×1+c=2,解得c=-1.设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,将(1,2)代入,得(1+1-m)2-2=2.整理,得2-m=±2.解得m1=0(舍去),m2=4.故新抛物线的表达式为y=(x-3)2-2.故答案是:y=(x−3)2−2.小提示:本题主要考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数关系式,解题的关键是理解“关联点”的含义.14、如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.则当水位下降m=________时,水面宽为5m?答案:1.125分析:以抛物线的顶点为原点建立坐标系,则可以设函数的解析式是y=ax2,然后求得水面与抛物线的交点坐标,利用待定系数法求解抛物线的解析式,再利用点的坐标特点即可求解.解:如图,建立如下的坐标系:水面与抛物线的交点坐标是(-2,-2),(2,−2),设函数的解析式是y=ax2,则4a=-2,解得a=−12,则函数的解析式是y=−12x2.当水面宽为5米时,把x=52代入抛物线的解析式可得:y=12×(52)2=258=3.125,∴3.125−2=1.125(米),所以答案是:1.125.小提示:本题考查了待定系数法求二次函数的解析式,二次函数的性质,建立合适的平面直角坐标系,求得水面与抛物线的交点是解题的关键.15、根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是ℎ=−5t2+20t,当飞行时间t为___________s时,小球达到最高点.答案:2分析:将函数关系式转化为顶点式即可求解.根据题意,有ℎ=−5t2+20t=−5(t−2)2+20,当t=2时,ℎ有最大值.所以答案是:2.小提示:本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.解答题16、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.答案:(1)y=−3x+300;(2)售价60元时,周销售利润最大为4800元;(3)m=5分析:(1)①依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得W=(−3x+300)(x−a),再由表格数据求出a=20,得到W=(−3x+300)(x−20)=−3(x−60)2+4800,根据二次函数的顶点式,求出最值即可;(3)根据题意得W=−3(x−100)(x−20−m)(x⩽55),由于对称轴是直线x=60+m2>60,根据二次函数的性质即可得到结论.解:(1)设y=kx+b,由题意有{40k+b=180 70k+b=90,解得{k=−3b=300,所以y关于x的函数解析式为y=−3x+300;(2)由(1)W=(−3x+300)(x−a),又由表可得:3600=(−3×40+300)(40−a),∴a=20,∴W=(−3x+300)(x−20)=−3x2+360x−6000=−3(x−60)2+4800.所以售价x=60时,周销售利润W最大,最大利润为4800;(3)由题意W=−3(x−100)(x−20−m)(x⩽55),其对称轴x=60+m2>60,∴0<x⩽55时上述函数单调递增,所以只有x=55时周销售利润最大,∴4050=−3(55−100)(55−20−m).∴m=5.小提示:本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.17、“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+ c,部分对应值如表:221.③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=1 4t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.答案:(1)a=−15,c=9(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元分析:(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价−x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.(1)把{x=3,y=7.2,{x=4,y=5.8代入y需求=ax2+c可得{9a+c=7.2,①16a+c=5.8.②②-①,得7a=−1.4,解得a=−15,把a=−15代入①,得c=9,∴a=−15,c=9.(2)设这种蔬菜每千克获利w元,根据题意,有w=x售价−x成本=12t+2−(14t2−32t+3),化简,得w=−14t2+2t−1=−14(t−4)2+3,∵−14<0,t=4在1≤t≤7的范围内,∴当t=4时,w有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y供给=y需求,得x−1=−15x2+9,化简,得x2+5x−50=0,解得x1=5,x2=−10(舍去),∴售价为5元/千克.此时,y供给=y需求=x−1=4(吨)=4000(千克),把x=5代入x售价=12t+2,得t=6,把t=6代入w=−14t2+2t−1,得w=−14×36+2×6−1=2,∴总利润=w⋅y=2×4000=8000(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.小提示:此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.18、一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少? 答案:(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14分析:(1)根据题意和函数图象,可以设出抛物线的解析式,然后根据抛物线过点F 和点M 即可求得该抛物线的解析式;(2)先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度,便可判断该车辆能安全通过.(3)射出H 的坐标,用n 表示出L ,利用二次函数的性质求解即可.解:(1)由题意得M (0,4),F (4,0)可设抛物线的解析式为y=ax 2+4,将F (4,0)代入y=ax 2+4中,得a=-14, ∴抛物线的解析式为y=-14x 2+4; (2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (n 2,−n 216+4),∴GH+GA+BH=n+(−n 216+4)×2+2×2=−18n 2+n +12,∴L=−18n 2+n +12,∵a <0,抛物线开口向下,∴当n=-b=4时,L有最大值,最大值为14.2a小提示:本题考查了二次函数的实际应用,解题的关键是要注意自变量的取值范围必须使实际问题有意义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. y ax2 c 的性质:
.
上加下减。
精品文档
a 的符号 a0
开口方向 向上
顶点坐标 0 ,c
对称轴 y轴
性质 x 0 时, y 随 x 的增大而增大; x 0 时, y 随
x 的增大而减小; x 0 时, y 有最小值 c .
a0
向下
0 ,c
x 0 时, y 随 x 的增大而减小; x 0 时, y 随 y轴
a 0 ,而 b ,c 可以为零.二次函数的
2. 二次函数 y ax2 bx c 的结构特征:
⑴ 等号左边是函数,右边是关于自变量 x 的二次式, x 的最高次数是 2. ⑵ a ,b,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.
(二)二次函数的基本形式
1. 二次函数基本形式: y ax2 的性质: a 的绝对值越大,抛物线的开口越小。
到前者,即 y a x b 2 4ac b 2 ,其中 h
2a
4a
b ,k
4ac b2 .
2a
4a
( 五) 二次函数 y ax2 bx c的性质
1. 当 a 0 时,抛物线开口向上,对称轴为
b
x
,顶点坐标为
2a
b ,4ac b2 . 2a 4a
当 x b 时, y 随 x 的增大而减小; 2a
当 x b 时, y 随 x 的增大而增大; 2a
x 的增大而增大; x 0 时, y 有最大值 c .
2
3. y a x h 的性质:
左加右减。 a 的符号 开口方向
a0
向上
顶点坐标 h ,0
对称轴 X=h
性质
x h 时, y 随 x 的增大而增大; x h 时, y 随 x 的增大而减小; x h 时, y 有最小值 0 .
a0
向下
h ,0
x h 时, y 随 x 的增大而减小; x h 时, y 随 X=h
一、选择题
.
1. 二次函数 y
2
x
4x 7 的顶点坐标是 ( )
A.(2, - 11)
B.
(- 2, 7) C. ( 2, 11) D.
2. 把抛物线 y
2
2 x 向上平移 1 个单位,得到的抛物线是(
)
A. y 2( x 1)2 B. y 2( x 1)2 C. y 2 x2 1 D.
( 2,- 3)
6. 已知二次函数 y
2
ax
bx
c 的图象如图所示,则点 ( ac,bc) 在(
)
A.第一象限
B.第二象限
C.第三象限
D .第四象限
7. 方程 2x x2
2
的正根的个数为(
)
x
A.0 个
B.1
个
C.2
个.
3
个
8. 已知抛物线过点 A(2,0),B(-1,0), 与 y 轴交于点 C, 且 OC=2.则这条抛物线的解析式为
(2)在爆竹点燃后的 1.5 秒至 1.8 秒这段时间内,判断爆竹是上升,或是下降,并说明理由
.
二次函数专题复习 图像特征与 a、b、c、△符号的关系
1、已知二次函数 y ax2 bx c ,如图所示,若 a 0 ,c 0 ,那么它的图象大致是 ( )
y
y
y
y
x
x
x
x
A
B
C
D
2、已知二次函数 y ax2 bx c 的图象如图所示,则点 (ac, bc) 在 ( )
精品文档
人教版九年级下册数学 二次函数知识点总结 教案
主讲人: 李霜霜
.
精品文档
一、教学目标:
(1) 了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函
数解析式,并能解决简单的实际问题.
(2) 通过练习及提问,复习二次函数的基础知识;通过对典型例题的分
析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数
在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴. (同左异右 b 为 0 对称轴为 y 轴) 3. 常数项 c
⑴ 当 c 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵ 当 c 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为 0 ; ⑶ 当 c 0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与 y 轴交点的纵坐标为负.
y 2x2 1
3. 函数 y
2
kx
k和 y
k (k
0) 在同一直角坐标系中图象可能是图中的
()
x
精品文档
4. 已知二次函数 y ax 2 bx c(a 0) 的图象如图所示 , 则下列结论 : ① a,b 同号 ; ②
当 x 1 和 x 3 时 , 函数值相等 ; ③ 4a b 0 ④当 y 2 时 , x 的值只能取 0. 其中正
y=ax 2+ k
向右 (h>0)【或左 (h<0)】 平移 |k|个单位
y=a (x-h)2
向右 (h>0)【或左 ( h<0)】 平移 |k|个单位
向上 (k >0)【或下 ( k<0) 】 平移 |k|个单位
向右 (h>0) 【或左 (h<0)】 平移 |k|个单位
向上 (k>0) 【或下 (k<0) 】平移 |k|个单位
5
).
2
第 15 题图
17. 如图,抛物线 y x2 bx c 经过直线 y x 3 与坐标轴的两个交 点 A、B,此抛物线与 x 轴的另一个交点为 C,抛物线顶点为 D.
( 1)求此抛物线的解析式;
( 2)点 P 为抛物线上的一个动点,求使 S APC : S ACD 5 :4 的点 P
的坐标。
二次函数对应练习试题
A .第一象限
B.第二象限
C.第三象限
D.第四象限
y
.
0
x
3、已知二次函数 y = ax 2 + bx + c 的图象如下, 则下列结论正确的是 ( )
A ab < 0
B bc < 0
C a + b+ c > 0 D a- b+ c < 0
4、二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① a>0;② c>0;?③b2-4ac>0,其中正确的个数是( )
学思想.
二、教学重点、难点
教学重点:二次函数的图像,性质和应用
教学难点:运用二次函数知识解决较综合性的数学问题.
三、教学过程
复习巩固
(一)二次函数概念:
1.二次函数的概念:一般地,形如 y ax2 bx c ( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数 定义域是全体实数.
确的个数是 ( )
A.1 个 B.2 个 C. 3
个
D. 4
个
5. 已知二次函数 y
2
ax
bx
c(a
0) 的顶点坐标( -1 ,-3.2 )及部分图象 ( 如图 ),
由图象可知关于 x 的一元二次方程 ax 2 bx c 0 的两个根分别是 x1 1.3和 x2
(
)
A.-1 . 3
B.-2.3 C.-0.3 D.-3.3
2. 抛物线 y ax2 bx c 的图象与 y 轴一定相交,交点坐标为 (0 , c) ;
例题讲解:
15. 已知二次函数图象的对称轴是 x 3 0 , 图象经过 (1,-6), 且与 y 轴的交点为 (0,
(1) 求这个二次函数的解析式 ; (2) 当 x 为何值时 , 这个函数的函数值为 0?
(3) 当 x 在什么范围内变化时 , 这个函数的函数值 y 随 x 的增大而增大 ?
x 的增大而增大; x h 时, y 有最大值 0 .
2
4. y a x h k 的性质:
a 的符号 a0 a0
开口方向 向上
顶点坐标 h ,k
对称轴 X=h
性质
x h 时, y 随 x 的增大而增大; x h 时, y 随 x 的增大而减小; x h 时, y 有最小值 k .
向下
h ,k
x h 时, y 随 x 的增大而减小; x h 时, y 随 X=h
总结起来, c 决定了抛物线与 y 轴交点的位置.
(八)二次函数与一元二次方程:
.
精品文档
1. 二次函数与一元二次方程的关系(二次函数与 一元二次方程 ax2 bx c 0 是二次函数 y
图象与 x 轴的交点个数:
x 轴交点情况): ax2 bx c 当函数值 y
0 时的特殊情况 .
① 当 b 2 4ac 0 时,图象与 x 轴交于两点 A x1 ,0 ,B x2 ,0 ( x1 x2 ) ,其中的 x1 ,x2 是一元二
A.0 个
B.1、二次函数 y=ax2+bx+c 的图像如图 1,则点 M(b, a )在
()
A .第一象限
B.第二象限
C.第三象限
D.第四象限
6、二次函数 y ax 2 bx c 的图象如图所示,则(
)
A 、 a 0 , b2 4ac 0
B、 a 0 , b2 4ac 0
.
精品文档
16. 某种爆竹点燃后,其上升高度
h(米)和时间 t (秒)符合关系式 h v0t 1 gt 2 ( 0<t ≤ 2),其 2
中重力加速度 g 以 10 米 / 秒 2 计算.这种爆竹点燃后以 v 0=20 米 / 秒的初速度上升,