激光拉曼光谱详解

合集下载

激光拉曼光谱法

激光拉曼光谱法

激光拉曼光谱法激光拉曼光谱法(LaserRamanSpectroscopy,LRS)是一项非常重要的光谱技术,它是利用比较强的激光光束来测定物质的结构和化学性质。

技术的基本原理是利用激光照射被检测物质,使其中的原子能量升高,从而产生拉曼散射,通过测量散射光,可以获得有关物质结构和化学性质的信息。

简而言之,激光拉曼光谱法是利用激光光束使物质发射出拉曼散射,从而获得物质的结构和化学属性的一种光谱技术。

激光拉曼光谱法的优点主要有四:首先,它是一种非破坏性的检测方法,可以测量微量样品;其次,它具有良好的空间分辨率,可以对多种材料进行非破坏性检测;再次,它具有较强的抗噪声能力,并且测量精度高;最后,它可以用来测量几乎所有物质,涵盖了生物、化学和物理学等多个领域。

激光拉曼光谱法的应用非常广泛,它可以用来测量有机物、无机物、晶体以及液体的物理性质、结构和化学性质,同时可以用于对分子的排序和重组、纳米结构的测量以及蛋白质的结构分析,等等。

例如,激光拉曼光谱法可以用来分析有机材料、无机材料以及半导体材料,也可以用来测量液体、固体、粉体等材料的某些特性。

激光拉曼光谱法的精度取决于多种因素,主要有激光束能量、激光束精度、样品大小、样品分布和测量环境等。

因此,在实际使用时,必须按照规定的标准来选择合适的激光束、样品大小以及测量环境,以确保能够获得准确的测量结果。

除此之外,在使用激光拉曼光谱法测量样品时,为了避免环境温度和湿度等外界因素的影响,最好在封闭空间中进行测量。

总之,激光拉曼光谱法是一种非常实用的光谱技术,它可以用来检测有机物、无机物、晶体以及液体的物理性质、结构和化学性质,为分析物质的组成和结构提供了一种简洁、准确的方法。

当然,要想获得准确的测量结果,就必须根据测量样品的特性,选择合适的激光束、样品大小以及测量环境,严格按照规定的标准来进行测量。

激光拉曼光谱仪原理

激光拉曼光谱仪原理

激光拉曼光谱仪原理
激光拉曼光谱仪是一种基于拉曼散射原理的仪器,用于研究和分析样品的分子结构。

它利用激光光源照射样品,将激光光子与样品分子相互作用的结果,通过光学系统收集、分析和解读后,得到样品的拉曼散射光谱。

激光拉曼光谱仪的工作原理如下:
1. 激光源:使用可调谐激光源,通常是单色激光器,产生具有特定波长的单色激光光源。

常用的激光波长包括532 nm和
785 nm。

2. 光学系统:激光光源经过准直、聚焦等光学元件,使光线在样品上聚焦成一个细小的光斑点。

同时,收集样品上产生的拉曼散射光。

3. 样品与激光相互作用:激光光斑照射在样品上,激发样品分子的振动、转动等运动。

一部分激光能量被样品吸收,剩余的能量以散射光的形式发出。

激光散射光中,有一部分与样品分子的振动、转动等运动信息相关,称为拉曼散射光。

4. 光谱分析:拉曼散射光由光学系统收集后,经过分光装置进行波长分离,最后通过光电探测器转化为电信号。

通过记录和分析这些电信号,可以得到样品的拉曼光谱。

激光拉曼光谱仪的优点是非常灵敏、无需样品处理,能够在非破坏性条件下对样品进行分析。

它广泛应用于化学、材料科学、生物分析等领域,可以用于表征样品的组分、结构、反应动力学等信息。

激光拉曼光谱

激光拉曼光谱

激光拉曼光谱激光拉曼光谱(Laser-RamanSpectroscopy,简称LRS)是一种利用激光来分析物质结构的一种光谱技术,它利用一个发射激光光束,并用它强烈聚焦在分析物的表面上,使之发射出一个与激光光束频率不同的被称为拉曼散射的光束,从而得到拉曼光谱,从而分析和判断物质的分子结构、晶体结构等。

激光拉曼光谱技术由Laser Raman Spectroscopy隐含在其中,是一种把激光光束投影到物体表面,并对物体表面反射出的光线进行分析、测定其频率特征来达到分析物体结构的一种技术。

激光拉曼光谱有着广泛的研究应用,它既可以用于分析固体,也可以用于分析液体,还可以用于分析气体,用于研究物体的结构,用于研究物体的性能以及用于研究物体的分子组成或结构的研究。

激光拉曼光谱的基本原理是利用激光对物体表面发射的光线进行发射分析,因此拉曼光谱仪是一种采用双光路,一个使用激光发射光束,另一个使用拉曼散射分析激光发射光束反射回来的信号,从而分析该物体的光谱特性的仪器。

通过概率分析拉曼散射信号,可以推断出分子或晶体结构特性,从而获得其结构信息,进而研究物体的性能。

例如,在材料科学领域,可以通过激光拉曼光谱技术分析出晶体的结构信息,从而了解晶体的性质和物理特性,并获得晶体的分子结构参数,进而研究其特性。

激光拉曼光谱技术具有品质检测简便、快速、稳定、可靠、耗能低等优点,已经广泛应用在航天、航空、军事、制造业、生物、化学、电子等诸多领域。

此外,激光拉曼光谱技术的应用涉及的领域还不断扩大,例如,在汽车制造业和医疗领域,激光拉曼光谱技术应用也越来越广泛。

激光拉曼光谱技术具有很高的研究和应用价值,它是一种测定物体结构的有效方法。

但是,激光拉曼光谱技术仍然有一定的局限性,因为其分析效率低,容易受到环境噪声的干扰,还可能因为激光发射时的频率不够均匀而影响分析结果。

激光拉曼光谱技术是一种重要的光谱技术,正得到越来越多的研究与应用,也应得到相应的重视。

拉曼光谱解析教程

拉曼光谱解析教程

拉曼光谱解析教程拉曼光谱是一种非常有效的光谱分析技术,可用于分析分子和材料的结构、组成和状态。

以下是拉曼光谱解析的教程:1. 原理:拉曼效应是指分子或材料在受激光照射时,部分光子与分子或晶体格子内原子发生相互作用,导致光的散射现象。

拉曼光谱通过测量样品散射光的频率差异,从而提供有关样品成分、结构和状态的信息。

2. 实验设备:进行拉曼光谱分析需要一台拉曼光谱仪,通常包括一个激光器、一个样品台、一个光学系统和一个光学探测器。

激光器会产生单色的激光光束,样品台用于支撑和定位待测样品,光学系统用于收集和分析散射光,光学探测器将光信号转换成电信号。

3. 样品准备:将待测样品放置在样品台上,确保样品表面光洁,没有表面污染或杂质。

拉曼光谱可以对几乎所有类型的样品进行分析,包括液体、固体和气体。

4. 数据采集:使用拉曼光谱仪进行光谱采集,通过调整激光功率、扫描范围和积分时间等参数进行实验优化。

通常会采集多个波数点的拉曼光谱数据,越多的数据点可以提供更多信息,但也需要更长的采集时间。

5. 数据分析:通过对采集到的拉曼光谱数据进行分析,可以获得样品的结构、组成和状态信息。

常见的数据处理方法包括光谱峰拟合、数据平滑和峰位校准等。

6. 数据解释:根据拉曼光谱的特征峰位和峰形,结合已知的拉曼光谱库,可以对样品进行定性和定量分析。

可以通过比较待测样品和标准品的拉曼光谱,或者使用化学计量学方法进行定量分析。

7. 应用领域:拉曼光谱广泛应用于材料科学、生物医学、环境监测和药物研发等领域。

例如,可以用于分析化学反应中的中间产物和催化剂,检测食品和药品中的污染物,研究生物分子的结构和功能等。

希望以上的教程可以帮助您了解拉曼光谱解析的基本知识和步骤。

开展拉曼光谱实验前,请确保已熟悉仪器的操作和数据处理方法,以获得可靠的结果。

激光拉曼光谱分析

激光拉曼光谱分析
•2
2 拉曼效应(1) 1)瑞利散射
一个频率为 的单色光(一般为可见光),当
不被物体吸收时,大部分将保持原来的方向穿过 物体,但大约有1/105——1/103的光被散射到各 个方向。并且在与入射光垂直的方向,可以看到 这种散射光。1871年科学家Rayleigh发现了这种 现象,因此称之为瑞利散射。该种散射为弹性碰 撞,光的频率不变。
•11
2 拉曼效应(10)
拉曼散射的多个不同的波数
•12
2 拉曼效应(11)
拉曼散射的多个不同的波数
•13
3 拉曼光谱仪(1)
1)激光光源:氩离子激光器,激光波长 514.5nm(绿光), 氦氖激光器,激光波长 488.0nm(紫光)。
激光的特点:偏振光,强度大,可聚集成很 细的一束。 照射在样品上的一个点(1微米区域),因 此把激光拉曼光谱又称之外激光拉曼微探 针:Laser Raman Microscopy (LRM)
•5
2 拉曼效应(4)
若入射光的波数为0,则拉曼散射的0i 。 又称之为拉曼位移。
E1为分子的基态; E2为除基态以外的某
一能级(如某一振 动态) E3和E3’为该分子的受 激虚态之能级。
•6
2 拉曼效应(5)
1)处于基态E1的分子受入射 光子h0的激发,跃迁到受 激虚态E3,而后又回到基 态E1。或者E2的分子激发 到E3’,很快又回到E2,这 两种情况下,能量都没有 改变,这种弹性碰撞称之 为瑞利散射,散射光的波 数等于入射光的波数。
散射波的波数等于0+’
•9
2 拉曼效应(8)
斯托克斯散射和反斯 托克斯散散统称为拉 曼散射。实际上,反 斯托克斯散射的强度 比较大,因此在拉曼 光谱测定上习惯采用 反斯托克斯散射。

激光拉曼光谱

激光拉曼光谱

激光拉曼光谱激光拉曼光谱技术是一种基于激光和拉曼散射原理的光谱分析技术,它通过测量拉曼光谱,研究物质的化学结构、成分信息、物性参数等,以及拉曼光谱和分子结构的关系,为物理、化学和材料科学领域提供了广泛的研究和应用机会。

激光拉曼光谱的研究方法包括电子及共振光谱技术,它可以用来探测物质的结构和性质,也可以识别和分析物质的成分。

激光拉曼光谱的技术依赖的理论基础可以分为普通的拉曼原理、共振拉曼原理和复合拉曼原理。

拉曼原理是由拉曼散射测量分析物质中元素振动或颗粒所产生的拉曼散射现象,这种现象所产生的拉曼光谱容易识别物质的成分和结构。

共振拉曼散射是由物质的外电子云或共价键的频率相关的电磁场的组合而观测到的,它可以获得元素在物质中的分子结构,从而获得物质的化学结构信息。

复合拉曼散射是指拉曼散射和共振拉曼散射结合在一起使用,可以获得更多的信息。

激光拉曼光谱技术是一种灵敏、高分辨率的分析技术,可以应用于多种物质,如生物、材料、环境等,它可以用来检测机理、探索结构、计算反应率,在广泛应用于物理化学研究和机械工程制造领域。

激光拉曼光谱技术的优点可归纳为:(1)精确可靠,它可以测量到物质结构的非常小的变化,而不会受到其他因素的影响;(2)灵敏度高,可以探测到痕量物质;(3)可以获得高分辨率的全光谱信息;(4)可以检测物质的多种特性;(5)对物质的测量不受环境的影响;(6)快速测量,可以快速分析多种物质。

激光拉曼光谱技术的应用十分广泛,它可以应用于工业领域的控制及检测,如分析精细化学品;也可以应用于表面分析,如金属和多层膜结构的探索;可以应用于生命科学领域,如生物分子和生物大分子的结构和物性参数的检测;还可以应用于环境领域,如分析气体、水体中的痕量化学物;还可以应用于材料工程领域,如分析材料的结构和组成,以及晶体内部的分析等。

总之,激光拉曼光谱技术在物理、化学、材料工程、环境等多个领域中都有着广泛的应用,它拥有良好的准确性、灵敏性以及全光谱信息分析能力,而且操作简单便捷,是一种重要的分析技术。

激光拉曼光谱的基本原理和应用

激光拉曼光谱的基本原理和应用

激光拉曼光谱的基本原理和应用概述激光拉曼光谱是一种分析化学技术,通过激光与物质相互作用产生拉曼散射,来研究物质的结构、组成和分子间相互作用。

它具有非破坏性、无需样品准备和实时性等优点,逐渐成为了化学、材料科学、生物科学等领域的重要工具。

基本原理1.激光激发:使用单色激光激发样品,激光光源通常采用连续激光或脉冲激光。

2.拉曼散射:激光与物质相互作用时,部分光子会发生能量改变,产生拉曼散射。

拉曼散射分为斯托克斯拉曼散射和反斯托克斯拉曼散射两种类型。

3.能量转移:拉曼散射中发生的能量转移可以反映样品的各种信息,包括化学成分、结构、晶格振动、分子动力学等。

4.光谱测量:将拉曼散射的频率和强度进行测量,得到拉曼光谱。

拉曼光谱可以通过光谱解析获得样品的详细信息。

应用领域1. 分析化学•定性分析:通过比对拉曼光谱数据库,可以鉴定物质的组成和结构,例如鉴别药品中的成分、研究有机化合物的结构等。

•定量分析:利用拉曼光谱与物质的浓度之间的关系,可以进行定量分析,例如测定食品中的添加剂含量、检测环境中的污染物等。

•微生物检测:拉曼光谱可以用于微生物的快速检测与鉴别,例如检测食品中的细菌、水质中的藻类等。

2. 材料科学•表征材料:激光拉曼光谱可以用于表征各种材料,包括无机材料、有机材料和生物材料等,例如研究催化剂的表面性质、分析聚合物的分子结构等。

•动态研究:拉曼光谱可以实时监测样品的变化过程,例如观察材料的相变、溶液的反应动力学等。

•薄膜制备:通过拉曼光谱的组成分析,可以优化薄膜的制备过程,提高其性能。

3. 生物科学•细胞研究:利用激光拉曼光谱,可以对细胞的化学成分进行非破坏性分析,例如观察细胞的代谢活性、鉴别癌细胞等。

•药物研发:拉曼光谱可以用于药物的研发过程中,以评估其结构、稳定性和溶解度等。

•生物分子结构解析:通过拉曼光谱,可以研究生物分子的结构和相互作用,例如蛋白质的折叠状态、核酸的结构等。

研究进展•激光技术的进步:随着激光技术的不断发展,激光拉曼光谱的应用范围和灵敏度得到了显著提高。

(仪器分析)16.1激光拉曼光谱原理培训资料

(仪器分析)16.1激光拉曼光谱原理培训资料
激光拉曼光谱具有快 速、非破坏性、高灵 敏度等优势,但存在 信号强度弱、背景干 扰等局限性。
激光拉曼光谱的原理和基本原理
1 拉曼散射
2 拉曼散射过程
拉曼散射是指光在物质中传播时发生频 率的变化,进而产生散射光,用于分析 物质的结构和成分。
拉曼散射光的频率与物质的振动状态有 关,通过测量散射光的频移可以获得物 质的拉曼光谱。
激光拉曼光谱在信号强度、背景干扰等 方面存在一定的局限性,对样品的要求 较高。
激光拉曼光谱的实验方法和操作流程
1
样品准备
准备样品并将其放置在激光拉曼光谱仪中以进行分析。
2
光谱采集
通过激光照射样品,采集拉曼散射光,曼光谱进行数据处理和分析,以获取样品的结构和成分信息。
(仪器分析)16.1激光拉曼 光谱原理培训资料
仪器分析简介
激光拉曼光谱概述
1 原理概述
激光拉曼光谱是一种 无损、非接触的光谱 分析技术,通过激光 与样品相互作用来获 取样品分子的信息。
2 应用范围
激光拉曼光谱被广泛 应用于材料科学、生 物医学、环境分析等 领域,可用于物质的 鉴定和组成分析。
3 优势和局限性
激光拉曼光谱仪的构造和工作原理
1 核心组件
2 工作原理
激光源、光路系统、样品仓、光谱仪等 是激光拉曼光谱仪的核心组件。
激光拉曼光谱仪通过激光照射样品产生 拉曼散射光,并将散射光分析为拉曼光 谱进行物质结构和成分的分析。
激光拉曼光谱在实际应用中的优势和 局限性
1 优势
2 局限性
激光拉曼光谱具有高灵敏度、非破坏性、 无需样品处理等优势,适用于分析多种 不同类型的样品。
激光拉曼光谱的应用领域和案例介绍
材料科学

蓝宝石鉴定新技术——激光拉曼光谱分析

蓝宝石鉴定新技术——激光拉曼光谱分析

蓝宝石鉴定新技术——激光拉曼光谱分析蓝宝石Sapphire 源于拉了文Spphins,代表蓝色,象征忠诚、坚贞、仁爱和诚信。

蓝宝石因闪耀美丽的颜色、晶宝剔透的外观,被古代人们视为神秘的超自然的宝石,意为吉祥之物。

世界上大部分蓝宝石主要分布在澳大利亚、泰国、老掛、柬墙寨、越南。

1957 年,美国贝尔实验室成功用水热法合成红蓝宝石,我国在1999 年成功地用水热法合成出蓝宝石。

当前宝玉石界面临的一项迫切任务是天然宝玉石和人工合成、优化宝玉石的鉴别。

一些传统的宝石鉴定仪器及鉴定方法已难以满足珠宝鉴定的要求。

困难在于,合成宝石具有同天然宝石一样的化学成分和晶体结构,因此也具有同天然宝石一样的物理性质。

从化学成分和物理性质上讲,它们是真正的宝石(一些物理性质还优于天然宝石)。

但宝石其价值不仅取决于其品质,还与产出量及不可再生性有关。

合成宝石生产的途径不同因而价值亦大不相同。

天然和合成蓝宝石从外观上看,合成蓝宝石的颜色更加均匀,但部分合成;蓝宝石因颜色过深,肉眼上看透明度有所降低。

天然的蓝宝石内部裂隙都较多,并且存在天然角状色带、深色或无色的晶体包体。

而合成蓝宝石内部总体较干净, 大部分都能看到气泡,弯曲生长纹不明显。

激光拉曼光谱仪,作为一种微区无损分析和红外吸收光谱的互补技术,拉曼光谱能迅速判断出宝玉石中分子振动的固有频率,判断分子的对成性、分子内部作用力的大小及一般分子动力学的性质,成为宝石鉴定工作者一种新型有效的分析手段。

下图是天然(a)和人造蓝宝石(b)的拉曼谱图,拉曼特征峰有明显的差别,天然蓝宝石具有191cm-1,241cm-1,341cm-1 谱峰,而人造蓝宝石则没有,可以准确判别天然和人造蓝宝石。

目前市场上已有便携式激光拉曼智能检测仪,专为珠宝玉石鉴定设计,可对市面上大多数珠宝玉石,以及相关填充物和仿冒品进行快速鉴定。

tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

激光拉曼光谱法

激光拉曼光谱法

04
III.与C—H和N—H谱带比较,O—H拉曼谱带较弱。
红外与拉曼谱图对比
红外光谱:基团;
01
拉曼光谱:分子骨架测定。
02
红外与拉曼谱图对比
拉曼光谱图
拉曼光谱图
2941,2927cm-1 ;asCH2 2854cm-1 sCH2; 1029cm-1 (C-C); 803 cm-1环呼吸; 1444 cm-1,1267 cm-1 CH2 环己烷红外光谱图 环己烷拉曼光谱图
E
e
e
r
二、Raman光谱
CCl4的Ramam光谱图
拉曼光谱记录的是stoke 线。
测量相对单色激发光频率的位移。 把入射光频率位置作为零,频率位移(拉曼位移)的数值正好对应于分子振动或转动能级跃迁的频率。
激发光是可见光,在可见光区测分子振动光谱。
拉曼光谱中的基团振动频率和红外光谱相同。 酮羰基的伸缩振动在红外光谱中位于1710cm-1附近,而拉曼光谱中总在(1710土3)cm-1。
测量共振拉曼效应时的注意点:
结束
1 红外光谱分析基础 2 红外光谱仪 3 红外光谱与分子结构的关系 4 红外吸收光谱的应用 5 激光拉曼光谱法
第十一章
内容选择
红外活性
拉曼光谱—源于极化率变化
红外光谱—源于偶极矩变化
5.3 激光拉曼光谱仪(结构流程)
结构流程 激光光源、试样池、单色器、检测器。
二、主要部件
激光光源:He-Ne激光器,波长632.8 nm 。
三、傅里叶变换-拉曼光谱仪
1
光源:Nd-YAG钇铝石榴石激光器(1.064 m)。
2
检测器:高灵敏度的铟镓砷探头。
特点:
傅里叶变换-拉曼光谱仪特点

激光拉曼光谱的原理

激光拉曼光谱的原理

激光拉曼光谱的原理
激光拉曼光谱(Laser Raman Spectroscopy)是一种非常强大的分析技术,它利用激光光源和拉曼散射效应来获得样品的分子结构和化学成分信息。

激光拉曼光谱的原理可以概括如下:
1. 激光光源:激光拉曼光谱的核心是激光器,通常使用单色激光源,如氦氖激光器(He-Ne)或激光二极管激光器(例如Nd:YAG激光器)。

激光光源发出单一波长的激光光束,通常是可见光或近红外光。

2. 样品激发:激光光束照射到待分析的样品上。

激光光子与样品中的分子相互作用,引起分子的振动、转动和能级变化。

这些过程会导致光子的散射。

3. 拉曼散射:当激光光子与样品中的分子相互作用时,部分光子的能量会发生微小的频率变化,这就是拉曼散射。

拉曼散射产生的光子具有不同的频率或波数,其中一些频率高于激光光子,而另一些则低于它。

这种频率变化的光子被称为拉曼散射光子。

4. 原始光与拉曼散射光的分离:拉曼散射光子与原始的激光光子分开,通常通过使用光谱仪中的光栅或其他分光元件。

这使得能够将拉曼散射光子分离并记录其频率。

5. 光谱分析:分离后的拉曼光谱通过光谱仪传递到检测器上,记录不同频率(波数)下的光强度。

这个拉曼光谱包含了样品中不同分子的振动和转动模式的信息。

6. 数据解释:通过分析拉曼光谱,可以识别样品中的不同分子、它们的浓度以及分子之间的相互作用。

这使得激光拉曼光谱成为一种非侵入性、非破坏性的分析工具,可用于化学、材料科学、生物学和环境科学等领域。

总的来说,激光拉曼光谱的原理是基于激光散射的现象,通过测量拉曼光谱,可以提供有关样品分子结构和成分的宝贵信息。

激光拉曼光谱原理

激光拉曼光谱原理

激光拉曼光谱原理
激光拉曼光谱是一种用于分析物质成分和结构的非损伤性技术。

它利用激光光源照射样品,当光与样品相互作用时,其中一部分光被散射,并通过集成光谱仪进行分析。

激光拉曼光谱基于拉曼散射效应,拉曼散射是指光在与物质相互作用时改变频率和能量的现象。

当激光与样品相互作用时,有一部分光被散射,并且散射光的频率可能会发生变化。

这些频率的变化量与样品的分子振动和旋转相关。

拉曼散射光中的频率变化通常非常小,因此需要使用高分辨的光谱仪来检测。

光谱仪通常由一个光栅或干涉仪组成,可以将不同频率的光分离开来,并测量其强度。

这样就可以得到一个频率与强度的光谱图。

激光拉曼光谱可以用于分析各种类型的样品,包括固体、液体和气体。

对于固体样品,激光光源可以通过显微镜聚焦到样品表面上的微小区域,以获得高空间分辨率的光谱信息。

对于液体和气体样品,可以通过光纤将光源引导到样品中,以获取其拉曼光谱。

通过对激光拉曼光谱的分析,可以确定样品中的分子组成和结构信息。

每种分子都有独特的拉曼光谱特征,因此可以通过比对实验结果与已知标准光谱库来确定样品的成分。

此外,还可以通过观察峰值的位置、强度和形状来推断样品的分子结构和化学键信息。

激光拉曼光谱具有高灵敏度、非破坏性、快速分析等优点,因此广泛应用于材料科学、化学、生物医学等领域的研究和实际应用中。

激光拉曼光谱的原理及应用

激光拉曼光谱的原理及应用

激光拉曼光谱的原理及应用1. 激光拉曼光谱简介激光拉曼光谱是一种非损伤性、非接触性的光谱分析技术,通过测量样品散射光与激光光源相比较发生的Raman散射,得到样品的结构和成分信息。

激光拉曼光谱具有高灵敏度、快速测量、高准确性等优点,在材料科学、生物化学、环境监测等领域有广泛应用。

2. 激光拉曼光谱原理激光拉曼光谱的原理基于拉曼散射现象,当激光与物质相互作用时,部分光子发生能量的转移,散射光中频移与分子振动或晶格振动的能量差相对应,这种频移即为拉曼散射。

拉曼光谱是通过记录样品散射光的频移和强度,来研究物质结构和成分的一种手段。

3. 激光拉曼光谱的基本步骤激光拉曼光谱的测量过程可以分为以下几个步骤:• 3.1 激光照射:选择合适的激光源,将激光光束聚集到样品上。

• 3.2 散射光收集:收集由样品散射的光,包括弹性散射光和Raman 散射光。

• 3.3 光谱检测:使用光谱仪检测、记录散射光的频移和强度。

• 3.4 数据分析:对测量到的光谱进行数据处理和分析,提取所需的结构和成分信息。

4. 激光拉曼光谱的应用领域4.1 材料科学•纳米材料研究:激光拉曼光谱可以用于表征纳米材料的结构、形貌等,帮助研究者了解纳米材料的性质和行为。

•材料质量控制:通过对材料进行激光拉曼光谱分析,可以判断材料的纯度、杂质含量等,提高材料的质量控制水平。

•化学反应研究:激光拉曼光谱可以实时监测化学反应过程中的物质转化和结构变化,为反应机理的研究提供详细信息。

4.2 生物化学•药物研发:激光拉曼光谱可以用于药物分子结构的表征和药物与靶标的相互作用研究,加速药物研发过程。

•生物分析:激光拉曼光谱可以用于分析生物样品中的蛋白质、核酸等生物大分子,实现快速、无损伤的分析。

•病理诊断:激光拉曼光谱可以鉴定组织和细胞中的分子组成,提供快速的病理诊断手段。

4.3 环境监测•污染物检测:激光拉曼光谱可以快速检测环境中的化学污染物,如有机物、重金属等,有助于环境监测和治理。

激光拉曼光谱

激光拉曼光谱

实验系统和光谱:
优点:
缺点:
① 高强度 ② 抑制背景光 ③ 高光谱分辨率 ④ 消除单色仪影响 ⑤ 探测微量样品 ⑥ 转换效率高
① 较强背景荧光 ② 不适合损耗大介质 ③ 非共振背景信号干扰
一、普通拉曼光谱
斯托克斯线 反斯托克斯线
薛定谔方程 微扰时系统波函数 简化可得
初始条件:
积分可得: 跃迁几率:
——斯托克斯线 ——反斯托克斯线
二、受激拉曼光谱
受激拉曼散射特点
① 阈值性
② 方向性
⑦ 与正常拉曼谱线中最强
③ 强度高 ④ 单色性 ⑤ 短脉冲
的谱线位置相同 ⑧ 反斯托克斯线容易出现
⑥ 多重谱线特
能量和动量守恒定律:
总光场:
极化偶极矩: 能量交换速率: 平均速
总的光场写成:
平均速率:
波矢方程: 利用关系:
简化得: 利用关系:
简化得: 利用能量和动量守恒定律,可得:
实验要求:
① 激光输出功率必须大于阈值 ② 拉曼光应尽量落在探测器上 ③ 激光脉宽必须选择适当
受激拉曼散射应用: ——振动态能级寿命
k
L
E2 E1
转换效率:
三、超拉曼光谱
二阶感生偶极子P:
入射光场: 分子做谐振动:
利用关系:
实验技术和光谱:
四、相干反斯托克斯拉曼光谱
——相干反斯托克斯拉曼散射 ——相干斯托克斯拉曼散射
输出激光光场:
CARS光强度: 相位匹配条件:
相干长度:

(完整)激光拉曼光谱法讲解

(完整)激光拉曼光谱法讲解

第三节激光拉曼光谱法在分子的振动中,有些振动由于偶极矩的变化表现了红外活性,能吸收红外光,从而出现了红外吸收谱带(见第二章第二节),但有些振动却表现了拉曼活性,产生了拉曼光谱谱带.这两种方法都能提供分子振动的信息,起到相互补充的作用,采用这两种方法,可获得振动光谱的全貌.拉曼光谱是一种散射光谱.在20世纪30年代,拉曼散射光谱曾是研究分子结构的主要手段.后来随着实验内容的深人,由于拉曼效应太弱,所以随着红外光谱的迅速发展,拉曼光谱的地位随之下降。

自1960年激光问世,并将这种新型光源引入拉曼光谱后,拉曼光谱出现了新的局面,已广泛应用于有机、无机、高分子、生物、环保等各个领域,成为重要的分析工具。

而且由于它的一些特点,如水和玻璃散射光谱极弱,因而在水溶液、气体、同位素、单晶等方面的应用具有突出的特长.近几年又发展了傅里叶变换拉曼光谱仪,使它在高分子结构研究中的作用与日俱增。

3.1基本概念3.1.1拉曼散射及拉曼位移拉曼光谱为散射光谱。

当一束频率为V0的人射光照射到气体、液体或透明晶体样品上时,绝大部分可以透过,大约有0.1%的入射光与样品分子之间发生非弹性碰撞,即在碰撞时有能量交换,这种光散射称为拉曼散射;反之,若发生弹性碰撞,即两者之间没有能量交换,这种光散射称为瑞利散射。

在拉曼散射中,若光子把一部分能量给样品分子,得到的散射光能量减少,在垂直方向测量到的散射光中,可以检测频率为(V0—△E/h)的线,称为斯托克斯(stokes)线,如图3-1所示,如果它是红外活性的话,△E/h的测量值与激发该振动的红外频率一致。

相反,若光子从样品分子中获得能量,在大于入射光频率处接收到散射光线,则称为反斯托克斯线。

处于基态的分子与光子发生非弹性碰撞,获得能量到激发态可得到斯托克斯线,反之,如果分子处于激发态,与光子发生非弹性碰撞就会释放能量而回到基态,得到反斯托斯线。

斯托克斯线或反斯托克斯线与入射光频率之差称为拉曼位移。

激光拉曼光谱分析法

激光拉曼光谱分析法
4 激光Raman光谱法的应用
4.1.1 有机化合物结构分析
对于有机化合物的结构研究,虽然Raman光谱的应用远不如红外吸收光谱广泛,但Raman光谱适合于测定有机分子的骨架,并能够方便地区分各种异构体,如位置异构、几何异构、顺反异构等。
官能团不是孤立的,在不同的分子中,相同官能团的Raman位移有一定的差异,△ 不是固定的频率,而是在某一频率范围内变动。
光是电磁辐射,其作用于物质,光子与物质分子发生碰撞时,产生散射光。
01
当物质颗粒尺寸小于入射光波长,产生拉曼散射和瑞利散射。
03
非弹性碰撞不但改变方向,还有能量交换和频率改变,称拉曼散射。
05
当物质颗粒尺寸等于或大于入射光波长,产生丁达尔散射。
02
弹性碰撞时 无能量交换,且不改变频率,,仅改变运动方向,称瑞利散射;
11.3.1 色散型Raman光谱仪
11.3.1.3 单色器 色散型Raman光谱仪采用多单色器系统,如双单色器、三单色器。最好的是带有全息光栅的双单色器,能有效消除杂散光,使与激光波长非常接近的弱Raman线得到检测。 在傅里叶变换Raman光谱仪中,以Michelson(迈克耳孙)干涉仪代替色散元件,光源利用率高,可采用红外激光光源,以避免分析物或杂质的荧光干扰。 11.3.1.4. 检测器 一般采用光电倍增管。 为减少荧光的干扰,在色散型仪器中可用CCD检测器。 常用的检测器为Ga-As光阴极光电倍增管,光谱响应范围宽,量子效率高,而且在可见光区内的响应稳定。 傅里叶变换型仪器中多选用液氮冷却锗光电阻作为检测器。
3.2 傅里叶变换Raman光谱仪
01
02
4.1 定性分析 Raman位移△ 表征了分子中不同基团振动的特性,因此,可以通过测定△ 对分子进行定性和结构分析。另外,还可通过退偏比ρ的测定确定分子的对称性。 无机、有机、高分子等化合物的定性分析; 生物大分子的构象变化及相互作用研究; 各种材料(包括纳米材料、生物材料、金刚石)和膜(包括半导体薄膜、生物膜)的Raman分析; 矿物组成分析; 宝石、文物、公安样品的无损鉴定等方面。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光为什么是拉曼光 谱 的 理 想 光 源 ?
拉曼散射的发展
1928年,印度物理学家拉曼(G.V.Raman)首次发现拉曼 散射效应,荣获1930年诺贝尔物理学奖。 1928——1930年,拉曼光谱成为研究光谱的主要手段。因 为拉曼光谱喇曼频率及强度、偏振等标志着散射物质的性 质。
1940——1960年,拉曼光谱地位一落千丈,主要是因为拉 曼效应太弱,并要求被测样品体积足够大、无色、无尘埃、 无荧光等。
按照统计分布率,分子数在热平衡下按 能量的分布为玻耳兹曼分布,其中α为 能级E的简并度,因此布居在较高能级上 的分子数要少于较低能级上的,这就使 频率增加的散射谱线(反斯托克斯线) 的强度要比频率减少的散射谱线(斯托 克斯线)弱些。
邱 东 敏
拉曼原理
Rayleigh scattering: I λ-4
hn hn’ n = n’ n = n’
n = n’ 这种现象称为拉曼散射 激发态
anti stokes
stokes
虚能级 准激发态
பைடு நூலகம்基态
Raman Rayleigh Raman scattering
为何斯托克斯谱线强度比反斯 托克斯谱线大?
窄的激光器,多波长激光器一起
使用,这样拉曼效果才能出来比较好
何谓瑞利散射、拉曼散 射、斯托克斯散射、反 斯托克斯散射?
瑞利散射
当一束激发光的光子与作为散射中 心的分子发生相互作用时,大部分 光子仅是改变了方向,发生散射, 而光的频率仍与激发光源一致,这 种散射称为瑞利散射。
拉曼效应
光通过介质时由于入射光与分子运动 相互作用而引起的频率及方向发生变 化的散射。其散射光的强度约占总散 射光强度的10-3。拉曼散射的产生原 因是光子与分子之间发生了能量交换, 改变了光子的能量。
(3)激光的准直性可使激光束汇聚到试样的 微小部位以得到该部位的拉曼信息。
(4)激光几乎完全是线偏振光,简 化了去偏振度的测量。 (5)激光的功率密度强,方向性好, 使得光与物质发生相互作用时散射 截面(粒子与粒子的碰撞概率)增大, 拉曼散射增强,从而得到较强的拉 曼光谱信号。
同时,我们还可以用谱线宽度
1960年后,由于激光技术的发展,使得拉曼再度复兴。用 激光替代汞灯作为拉曼实验光源。激光成为了理想光源。
激光光源其灵敏度比常规光源 拉曼光谱可提高104~107倍,加 之活性载体表面选择吸附分子对 荧光发射的抑制,使分析的信噪 比大大提高。
(1)激光亮度极强,可得到较强的拉曼射线。
(2)激光的单色性极好,有利于得到高质量 的拉曼光谱图。
斯托克斯(Stokes)拉曼散射
处于振动基态的分子E0,被入射光激 发到虚拟态,然后回到振动激发态E1, 产生能量为ΔE=E1-E0 =h(v1-v0)拉 曼散射,由此可以获得相应光子的频 率改变Δν=ΔE/h 。这种散射光的能 量比入射光的能量低此过程称为斯托 克斯散射。
反斯托克斯拉曼散射
处于振动激发态的分子,被入射光 激发到虚拟态后跃迁会振动基态, 产生能量为h(v0+v1)的拉曼散射, 称为反斯托克斯散射。
相关文档
最新文档