激光拉曼光谱分析.doc

合集下载

激光拉曼光谱-1详解

激光拉曼光谱-1详解

2021/4/1
28
Raman and Infrared Spectra of H-C≡C-H
Asymmetric C-H Stretch
Symmetric C-H Stretch C≡C Stretch
2021/4/1
29
2941,2927cm-1 ASCH2 2854cm-1 SCH2 1444,1267 cm-1 CH2
Stocks lines
anti-Stockes lines
2021/4/1
12
3.拉曼光谱的经典解释 拉曼光谱与分子极化率的关系
分子在静电场E中,极化感应偶极距p
p= αE α为极化率
诱导偶极矩与外电场的强度之比为分子极化率 分子中两原子距离最大时,α也最大 拉曼散射强度与极化率成正比例关系
32
Infrared and Raman Spectrum of CCl4
Infrared spectrum
776 cm-1
314 cm-1
Raman spectrum
463 cm-1 219 cm-1
2021/4/1
33
红外光谱:基团; 拉曼光谱:分子骨架测定;
2021/4/1
34
2.无机化学中的应用
延德尔散射 弹性散射
瑞利散射
I与λ无关 I正比于1/λ4
2021/4/1
8
2.基本理论
2021/4/1
λ
λ
拉 曼
增减散 大小射

λ

透过光λ不变


瑞 利


λ
不 变
9
最低激发 E1 电子能级 E0
激发虚态

激光拉曼光谱分析法

激光拉曼光谱分析法

激光拉曼光谱分析法首先,让我们来了解激光拉曼光谱分析的原理。

拉曼光谱是指物质分子与光子相互作用后发生的能量改变所产生的光的散射现象。

当激光照射到样品表面时,部分被散射,其中一部分发生拉曼散射,即光子在与物质分子相互作用后发生频率改变的过程。

拉曼散射光中含有与样品中分子振动、转动和其他模式有关的信息,通过分析拉曼散射光的频率和强度,可以确定样品的化学成分、结构和状态。

为了实现激光拉曼光谱的测量,需要一套专门的仪器设备。

最基本的设备包括激光器、样品架、光谱仪等。

激光器用于产生高能量、单色的激光束,通常使用激光二极管或激光器作为光源。

样品架用于将待测样品放置在激光束中,确保样品与激光充分接触。

光谱仪用于收集并分析拉曼散射光的频率和强度,通常使用光栅或干涉仪作为光谱分析装置。

激光拉曼光谱的测量过程主要包括样品的准备、实验参数的设置、光谱测量和数据分析等步骤。

首先,需要将待测样品制备成适当的形式,如固体样品可以通过压片或微晶片技术制备,液体样品可以直接放置在样品架上。

然后,根据样品的性质和分析要求,设置合适的激光器功率、波长和探测器增益等参数。

接下来,将样品架放置在激光束中,通过调整样品位置和激光聚焦来最大化拉曼散射光的强度。

然后,使用光谱仪收集拉曼散射光的光谱数据,并通过傅里叶变换等数学方法将时间域数据转换为频域数据。

最后,根据光谱图像和峰位、峰形等特征,可以确定样品的化学成分、结构和状态。

激光拉曼光谱分析法在不同领域具有广泛的应用。

在材料科学领域,可以利用激光拉曼光谱分析法研究材料的结构和相变过程,例如确定纳米材料的尺寸和形态、表征薄膜的物理性质等。

在生物医学领域,可以使用激光拉曼光谱分析法研究生物分子的结构和功能,如检测肿瘤标记物、鉴定细菌和病毒等。

在环境监测领域,可以利用激光拉曼光谱分析法迅速检测土壤、水体、空气中的污染物,例如检测水中重金属离子、鉴别有机污染物等。

综上所述,激光拉曼光谱分析法是一种高分辨率、非破坏性的分析技术,广泛应用于材料科学、生物医学、环境监测等领域。

激光拉曼光谱分析

激光拉曼光谱分析
•2
2 拉曼效应(1) 1)瑞利散射
一个频率为 的单色光(一般为可见光),当
不被物体吸收时,大部分将保持原来的方向穿过 物体,但大约有1/105——1/103的光被散射到各 个方向。并且在与入射光垂直的方向,可以看到 这种散射光。1871年科学家Rayleigh发现了这种 现象,因此称之为瑞利散射。该种散射为弹性碰 撞,光的频率不变。
•11
2 拉曼效应(10)
拉曼散射的多个不同的波数
•12
2 拉曼效应(11)
拉曼散射的多个不同的波数
•13
3 拉曼光谱仪(1)
1)激光光源:氩离子激光器,激光波长 514.5nm(绿光), 氦氖激光器,激光波长 488.0nm(紫光)。
激光的特点:偏振光,强度大,可聚集成很 细的一束。 照射在样品上的一个点(1微米区域),因 此把激光拉曼光谱又称之外激光拉曼微探 针:Laser Raman Microscopy (LRM)
•5
2 拉曼效应(4)
若入射光的波数为0,则拉曼散射的0i 。 又称之为拉曼位移。
E1为分子的基态; E2为除基态以外的某
一能级(如某一振 动态) E3和E3’为该分子的受 激虚态之能级。
•6
2 拉曼效应(5)
1)处于基态E1的分子受入射 光子h0的激发,跃迁到受 激虚态E3,而后又回到基 态E1。或者E2的分子激发 到E3’,很快又回到E2,这 两种情况下,能量都没有 改变,这种弹性碰撞称之 为瑞利散射,散射光的波 数等于入射光的波数。
散射波的波数等于0+’
•9
2 拉曼效应(8)
斯托克斯散射和反斯 托克斯散散统称为拉 曼散射。实际上,反 斯托克斯散射的强度 比较大,因此在拉曼 光谱测定上习惯采用 反斯托克斯散射。

激光拉曼光谱

激光拉曼光谱

激光拉曼光谱激光拉曼光谱技术是一种基于激光和拉曼散射原理的光谱分析技术,它通过测量拉曼光谱,研究物质的化学结构、成分信息、物性参数等,以及拉曼光谱和分子结构的关系,为物理、化学和材料科学领域提供了广泛的研究和应用机会。

激光拉曼光谱的研究方法包括电子及共振光谱技术,它可以用来探测物质的结构和性质,也可以识别和分析物质的成分。

激光拉曼光谱的技术依赖的理论基础可以分为普通的拉曼原理、共振拉曼原理和复合拉曼原理。

拉曼原理是由拉曼散射测量分析物质中元素振动或颗粒所产生的拉曼散射现象,这种现象所产生的拉曼光谱容易识别物质的成分和结构。

共振拉曼散射是由物质的外电子云或共价键的频率相关的电磁场的组合而观测到的,它可以获得元素在物质中的分子结构,从而获得物质的化学结构信息。

复合拉曼散射是指拉曼散射和共振拉曼散射结合在一起使用,可以获得更多的信息。

激光拉曼光谱技术是一种灵敏、高分辨率的分析技术,可以应用于多种物质,如生物、材料、环境等,它可以用来检测机理、探索结构、计算反应率,在广泛应用于物理化学研究和机械工程制造领域。

激光拉曼光谱技术的优点可归纳为:(1)精确可靠,它可以测量到物质结构的非常小的变化,而不会受到其他因素的影响;(2)灵敏度高,可以探测到痕量物质;(3)可以获得高分辨率的全光谱信息;(4)可以检测物质的多种特性;(5)对物质的测量不受环境的影响;(6)快速测量,可以快速分析多种物质。

激光拉曼光谱技术的应用十分广泛,它可以应用于工业领域的控制及检测,如分析精细化学品;也可以应用于表面分析,如金属和多层膜结构的探索;可以应用于生命科学领域,如生物分子和生物大分子的结构和物性参数的检测;还可以应用于环境领域,如分析气体、水体中的痕量化学物;还可以应用于材料工程领域,如分析材料的结构和组成,以及晶体内部的分析等。

总之,激光拉曼光谱技术在物理、化学、材料工程、环境等多个领域中都有着广泛的应用,它拥有良好的准确性、灵敏性以及全光谱信息分析能力,而且操作简单便捷,是一种重要的分析技术。

激光拉曼光谱仪实验报告

激光拉曼光谱仪实验报告

近代物理实验报告激光拉曼实验学院班级姓名学号时间2014年5月24日激光拉曼实验实验报告【目的要求】1.学习和了解拉曼散射的根本原理;2.学习使用激光拉曼光谱仪测量CCL4的谱线;【仪器用具】LRS-3型激光拉曼光谱仪、CCL4、计算机、打印机【原理】1.拉曼散射当平行光投射于气体、液体或透明晶体的样品上,大局部按原来的方向透射而过,小局部按照不同的角度散射开来,这种现象称为光的散射。

散射是光子与物质分子相互碰撞的结果。

由于碰撞方式不同,光子和分子之间会有多种散射形式。

⑴ 弹性碰撞弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率根本一样,频率变化小于3×105HZ ,在光谱上称为瑞利散射。

瑞利散射在光谱上给出了一条与入射光的频率一样的很强的散射谱线,就是瑞利线。

⑵ 非弹性碰撞光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。

由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。

散射谱线的排列方式是围绕瑞利线而对称的。

在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。

斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一局部能量给分子, 或者从分子中吸收一局部能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=∆。

在光子与分子发生非弹性碰撞过程中,光子把一局部能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子承受的能量转变成为分子的振动或转动能量,从而处于激发态 E 1,这时的光子的频率为ννν∆-=0'〔入射光的频率为0ν〕;当分子已经处于振动或转动的激发态 E 1 时,光量子则从散射分子中取得了能量E ∆ (振动或转动能量),以较大的频率散射,称为频率较高的光(即反斯托克斯线) ,这时的光量子的频率为ννν∆+=0'。

物理实验技术中的激光散射与拉曼光谱分析

物理实验技术中的激光散射与拉曼光谱分析

物理实验技术中的激光散射与拉曼光谱分析激光散射与拉曼光谱分析是物理学中重要的实验技术之一。

激光散射是指激光与物质相互作用后,光的散射现象。

而拉曼光谱分析则是通过测量样品散射光的频率偏移,获得与分子结构相对应的分子振动信息。

这两种实验技术在材料科学、化学、生物医学等领域具有广泛的应用。

激光散射实验技术可以分为弹性散射和非弹性散射两种。

弹性散射是指激光与物质相互作用后,散射光的频率与入射光的频率保持不变。

这种散射现象常常用于粒子大小的测量,如散射光的强度与颗粒的粒径成正比。

非弹性散射则是指散射光的频率发生了偏移,由此可获得样品的分子结构和振动信息。

非弹性散射中的拉曼散射是最常用和最重要的一种。

拉曼光谱分析是一种非侵入性的分析技术,可以在不破坏样品的情况下获取样品的信息。

当激光照射到样品上时,其中的光子会与样品分子相互作用,部分光子将发生拉曼散射。

拉曼散射光由于与样品分子振动相互作用,其频率将发生偏移,这种偏移可以通过拉曼光谱仪测量得到。

通过分析拉曼散射光谱,可以了解样品的分子振动模式,从而获得样品的结构、组分以及化学状态等信息。

在实际应用中,激光散射与拉曼光谱分析被广泛应用于多个领域。

在物质科学领域,这种技术可以用于研究材料的结构与性质之间的关系,例如通过研究晶体中声子谱线的偏移,可以了解晶体的结构、相变以及材料中的缺陷。

在化学分析中,拉曼光谱分析可以用于快速和准确地鉴定化学化合物的结构,同时还可用于定量分析。

生物医学领域中,激光散射和拉曼光谱分析可以用于研究生物分子的结构与功能,例如蛋白质、核酸等生物大分子的结构和构象。

为了提高激光散射与拉曼光谱分析的实验效果,一些关键技术也被引入到实验中。

例如,用于激发样品的激光源要具备高功率和高能量的特点,以提高拉曼散射光的强度。

此外,采用高分辨率的光谱仪可以准确地测量拉曼散射光谱,以获取更加精确的分析结果。

同时,在实际应用中,还需要优化样品的制备方法和测量条件,以提高实验的灵敏度和准确性。

2024年激光拉曼光谱仪市场分析报告

2024年激光拉曼光谱仪市场分析报告

2024年激光拉曼光谱仪市场分析报告1. 导言激光拉曼光谱仪是一种能够快速分析物质成分的仪器,在化学、生物、医疗等领域得到广泛应用。

本报告将对激光拉曼光谱仪市场进行深入分析,探讨市场规模、市场趋势、竞争格局及前景。

2. 市场规模与发展趋势据市场研究数据显示,激光拉曼光谱仪市场近年来持续增长,并预计在未来几年内将保持良好的发展势头。

这一增长主要得益于以下几个方面的因素:•技术进步:激光拉曼光谱仪的核心技术不断创新,使得仪器的性能不断提高,应用领域不断扩大。

•实验室需求:科研机构和实验室对于成分分析需要不断增长,驱动了激光拉曼光谱仪市场的扩大。

•工业应用:激光拉曼光谱仪在制药、化工等行业中的应用也在持续增加,为市场发展提供了新的动力。

基于以上因素,预计未来几年激光拉曼光谱仪市场的年复合增长率将达到X%。

3. 市场竞争格局当前,激光拉曼光谱仪市场竞争激烈,主要厂商包括A公司、B公司和C公司等。

这些厂商拥有先进的技术和丰富的市场经验,在市场份额上表现出较高的竞争力。

虽然大型企业占据了市场的较大份额,但小型创新企业也快速崛起,推动了市场的进一步发展。

这些创新企业依靠技术创新和差异化战略,提供了更具性价比的产品,并在特定领域取得了一定的市场地位。

4. 市场前景与机遇激光拉曼光谱仪市场前景广阔,存在着以下几点机遇和机会:•新兴应用领域:激光拉曼光谱仪在食品安全检测、环境监测等领域中的应用前景巨大,市场潜力未来可期。

•区域市场扩大:亚洲地区的经济发展和科研实力提升,为激光拉曼光谱仪市场的扩大提供了良好的机遇。

•产品升级与创新:厂商可以通过产品升级和创新,提高产品的性能,满足市场多样化需求。

总体而言,激光拉曼光谱仪市场将继续保持较高的增长,但也需要厂商持续创新和提升产品性能,以应对市场竞争与变化。

5. 结论激光拉曼光谱仪市场具有较高的发展潜力。

随着技术的不断创新和市场需求的不断增长,激光拉曼光谱仪市场有望维持较高的增长速度。

高分子材料表征第五章激光拉曼光谱法

高分子材料表征第五章激光拉曼光谱法

高分子材料的定量分析
❖ 2906cm-1是聚氯乙烯的特征峰。由于聚偏氯 乙烯和聚氯乙烯都有CH:不对称伸缩振动的 2926cm-1峰,故可以该峰作为内标。氯乙烯 含量按下式计算:
共聚物中VC%:
A K 2906
A 2926
高分子材料的结构分析
❖ 1、构型 ❖ 拉曼光谱研究聚二烯烃的几何异构十分有效,因为
❖ 拉曼光谱用于鉴别高分子的一个典型例子是尼 龙。不同种类尼龙的红外光谱极为相似。但不 同的亚甲基序列组成的骨架在拉曼光谱中有很 强的谱带.彼此很易区分。图7-42示出尼龙6 、尼龙610和尼龙11的拉曼光谱,可见差别很 大。主要的尼龙品种都可以鉴别,唯独尼龙6 和尼龙66的拉曼光谱差别不大,但它们的红外 光谱显著不同,可以区分开来。
(二)拉曼光谱与红外光谱的比 较
❖ 因为这两种光谱分析机理不同,它们提供的信 息也有差异。一些对称性较高的基团,极 性 很小,红外吸收很弱,但在拉曼光谱中却有较 强的谱带,如C—C,C=C,S—S就很适合拉 曼光谱研究。红外光谱法更适合于测定高分子 的侧基和端基,而拉曼光谱法更多用于研究高 分子的骨架结构。
构型分析
构象
❖ 由于C—C骨架振动是强谱带,这些谱带高度 偶合,构象的任何变化会通过改变偶合而改变 谱带,所以可用于研究高分子的链构象。
构象
❖ 例如,聚四氟乙烯,其构象与温度有关,19℃以下 为136螺旋,19℃以上是157螺旋。对于结晶聚四氟 乙烯可计算出有24个振动模式,其中21个模式有拉 曼活性。所以其拉曼光谱有许多锐峰,其中4个特强 。将样品冷至19℃以下,并未发现主要谱带有位移 ,说明136螺旋和157螺旋两种构象的拉曼光谱差别 很小。但根据计算,平面锯齿形构象与之应当有较大 的频率差别,所以实验结果排除了平面锯齿形构象的 可能性。

拉曼光谱分析实验报告

拉曼光谱分析实验报告

拉曼光谱分析实验报告引言拉曼光谱分析是一种非侵入性的光谱分析技术,可用于物质的结构分析、化学性质表征等领域。

本实验旨在通过拉曼光谱仪对不同样品进行测试,探究拉曼光谱分析的基本原理和应用。

实验材料和设备•拉曼光谱仪:用于测量和记录拉曼光谱•样品:选择不同类型的样品,如有机物、无机物等•液氮:用于冷却拉曼光谱仪实验步骤1.准备样品:选择所需的不同类型的样品,并制备成适合拉曼光谱分析的形式,如固体、液体或气体。

2.打开拉曼光谱仪:确保拉曼光谱仪已连接电源,并打开仪器。

3.校准:根据拉曼光谱仪的使用说明书,进行仪器的校准步骤,以确保测量结果的准确性。

4.设置实验参数:根据样品的性质和实验需求,设置拉曼光谱仪的参数,如激光功率、积分时间等。

5.冷却拉曼光谱仪:对于某些样品,特别是液体样品,可能需要使用液氮冷却拉曼光谱仪,以避免样品的热解或挥发。

6.放置样品:将样品放置在拉曼光谱仪的样品台上,并确保样品与激光光束对准。

7.开始测量:点击拉曼光谱仪软件中的“开始测量”按钮,开始记录拉曼光谱。

8.记录数据:拉曼光谱仪会自动记录和保存测量数据,包括波数和对应的强度值。

9.分析数据:使用适当的软件或方法,对测量得到的拉曼光谱数据进行分析,如峰值识别、谱图对比等。

10.结果和讨论:根据实验数据和分析结果,结合样品的性质和实验目的,得出相应的结论和讨论。

结论通过本实验,我们成功地使用拉曼光谱仪对不同类型的样品进行了分析和测试。

拉曼光谱分析技术具有非破坏性、高灵敏度和高分辨率等优点,在材料科学、化学、生物医学等领域有着广泛的应用前景。

通过进一步的研究和实验,我们可以深入了解拉曼光谱分析的原理和方法,并应用于更广泛的实验和研究中。

参考文献(这部分需要依据实际参考文献情况进行填写)注意:为了保证实验的准确性和安全性,请在进行实验前详细阅读拉曼光谱仪的使用说明书,并遵循实验室安全规范。

激光拉曼光谱分析法与红外光谱分析法

激光拉曼光谱分析法与红外光谱分析法

材料微观结构分析法一、激光拉曼光谱分析法1.拉曼光谱的基本原理当用单色光照射透明样品是,大部分光透过而小部分会被样品在各个方向上散射。

这些光的散射又分为瑞利散射和拉曼散射两种。

1.1瑞利散射和拉曼散射若光子和样品分子发生弹性碰撞,即光子和分子之间没有能量交换,即光子的能量保持不变,散射光能量和入射光能量相同,但方向可以改变。

这种光的弹性碰撞,叫做瑞利散射。

当光子和样品分子发生非弹性碰撞时,散射光能量和入射光能量大小不同,光的频率和方向都有所改变,这种光的散射成为拉曼散射。

其散射光的强度约占总散射光强度的10-6~10-10。

拉曼散射的产生原因是光子与分子之间发生了能量交换,改变了光子的能量。

1.2拉曼散射的产生拉曼散射的产生可以从光子和样品分子作用时光子发生能级跃迁来解释。

样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。

样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。

当样品分子激发到虚态后又回到低能级的振动激发态,此时激发光能量大于散射光能量,散射光频率小于入射光。

这时在瑞利散射线较低频率侧就会出现一根拉曼散射线,这条线称为Stokes 线。

若光子与处于振动激发态(V 1)的分子相互作用,是分子激发到更高的不稳定能态后又回到振动激态(V 0),散射光的能量大于激发光,在瑞利散射线高频率侧会出现一拉曼散射线,这条线称为Anti-stokes 线。

1.3拉曼位移Stokes 与Anti-stokes 散射光的频率与激发光之间频率的差值ΔV 称为拉曼位移。

一般斯托克斯散射光比反斯托克斯散射光强度大得多,故在拉曼光谱分析中通常测定斯托克斯散射光线。

拉曼位移取决于分子振动能级的变化,不同的化学键或基态有不同的振动方式,决定了其能级间的能量变化,与之对应的拉曼位移是特征的。

这是拉曼光谱进行分子结构定性分析的理论依据。

拉曼散射机制图示虚态激发态基态V 0+ΔVAnti-stokes 线 V 0 瑞利散射 V 0+ΔV Stokes 线2 基本仪器及功能拉曼光谱仪一般由光源、外光路、色散系统、及信息处理与显示系统五部分组成。

激光拉曼光谱分析法

激光拉曼光谱分析法

不对称振动→红外活性
2020/5/13
.
4. 红外与拉曼谱图对比
红外光谱:基团; 拉曼光谱:分子骨架测定;
2020/5/13
.
红外与拉曼谱图对比
2020/5/13
.
5.选律 1 S C S
振动自由度:3N- 4 = 4
拉曼活性
2 S C S
红外活性
3 S C S
4
红外活性
红外光谱—源于偶极矩变化 拉曼光谱—源于极化率变化 对称中心分子CO2,CS2等,选律不相容。 无对称中心分子(例如SO2等),三种振动既是红外活
第十八章 红外吸收光谱
分析法
infrared absorption spectroscopy,IR
第五节 激光拉曼光谱分析法
一、 拉曼光谱基本原理 principle of Raman spectroscopy 二、拉曼光谱的应用 applications of Raman spectroscopy 三、 激光拉曼光谱仪 laser Raman spectroscopy
2020/5/13
.
傅立叶变换-拉曼光谱仪
FT-Raman spectroscopy 光源:Nd-YAG钇铝石榴石激光器(1.064m); 检测器:高灵敏度的铟镓砷探头; 特点: (1)避免了荧光干扰; (2)精度高; (3)消除了瑞利谱线; (4)测量速度快。
2020/5/13
.
内容选择
第一节 红外基本原理
2020/5/13
.
3.红外活性和拉曼活性振动
①红外活性振动 ⅰ永久偶极矩;极性基团; ⅱ瞬间偶极矩;非对称分子;
eE
r e
红外活性振动—伴有偶极矩变化的振动可以产生红外吸收谱带.

激光共焦显微拉曼光谱分析

激光共焦显微拉曼光谱分析

第五篇 光谱分析第四章 拉曼光谱分析——激光显微共焦拉曼光谱仪拉曼散射是印度科学家Raman 在1928年发现的,拉曼光谱因之得名。

光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射称为瑞利散射,由英国物理学家瑞利于1899年进行了研究。

但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经色散分光过滤后的太阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。

拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。

因为这一重大发现,拉曼于1930年获诺贝尔物理学奖。

拉曼光谱得到的是物质分子的振动光谱,是物质的指纹性信息,即每一种物都有自己特征拉曼谱图,因此拉曼光谱是认证物质和分析成分的有力工具。

而且拉曼峰的频率(或波数)对物质结构的微小变化非常敏感,所以也常通过对拉曼峰的微小变化的观察,来研究在一些条件下,比如温度、压力、掺杂等,所引起的物质结构变化,以及间接推出材料不同部分微观上的环境因素的信息,如应力分布等。

拉曼光谱技术的优点:光谱的信息量大,谱图易辨认,特征峰明显;对样品无接触,无损伤;样品无需进一步处理;快速分析,鉴别各种材料的特性与结构;由于激光拉曼光谱仪还带有显微共焦功能,故又称激光显微共焦拉曼光谱仪,可做微区微量以及分层材料的分析(1微米左右光斑);高空间分辨率对地质的包裹体尤其有用;能适合黑色和含水样品;高、低温及高压条件下测量;光谱成像快速、简便,分辨率高;仪器稳固,体积适中,维护成本低,使用简单。

激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。

如在化学方面应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。

一、基本原理当波数为 (频率为 )的单色光入射到介质上时,除了被介质吸收、反射和透射外,总会有一部分被散射。

拉曼光谱拉曼光谱分析

拉曼光谱拉曼光谱分析

引言概述:拉曼光谱是一种非侵入性的光谱分析技术,可以用来研究物质的化学成分、结构和分子间相互作用等信息。

通过测量样品与激发光相互作用后反散射光的频移,可以得到样品的拉曼光谱图谱。

拉曼光谱具有快速、灵敏和无需样品处理等优势,因此在化学、材料科学、生物医学和环境科学等领域被广泛应用。

正文内容:一、理论基础1. 拉曼散射原理:介绍拉曼光谱的基本原理,包括应力引起的拉曼散射和分子振动引起的拉曼散射。

2. 基本理论模型:介绍拉曼光谱的基本理论模型,包括简谐振动模型和谐振子模型等。

二、仪器设备1. 激发光源:介绍常用的激发光源,如激光器和光纤激光器等,以及它们的特点和选择。

2. 光谱仪:介绍常用的拉曼光谱仪,包括激光外差光谱仪和光纤光谱仪等,以及它们的原理和优缺点。

3. 采样系统:介绍拉曼光谱的采样系统,包括反射式、透射式和光纤探头等,以及它们的适用范围和操作注意事项。

三、数据处理与分析1. 光谱预处理:介绍光谱预处理的方法,包括光谱平滑、噪声抑制和基线校正等,以提高数据质量和减少干扰。

2. 谱图解析:介绍拉曼光谱谱图的解析方法,包括峰拟合、峰识别和谱图比较等,以确定样品的化学成分和结构信息。

3. 定量分析:介绍拉曼光谱的定量分析方法,包括多元线性回归和主成分分析等,以快速准确地测量样品的含量和浓度。

四、应用领域1. 化学分析:介绍拉曼光谱在化学分析中的应用,包括有机物和无机物的定性和定量分析,以及催化剂和原位反应研究等。

2. 材料科学:介绍拉曼光谱在材料科学中的应用,包括纳米材料、多晶材料和聚合物等的表征和结构分析。

3. 生物医学:介绍拉曼光谱在生物医学中的应用,包括体液中代谢产物和蛋白质的检测,以及癌症和药物代谢研究等。

4. 环境科学:介绍拉曼光谱在环境科学中的应用,包括土壤和水体中有机物和无机物的检测,以及大气污染和环境污染物的监测等。

五、发展前景与挑战1. 发展前景:介绍拉曼光谱在未来的发展前景,包括高灵敏度和高分辨率的光谱仪、纳米尺度的光学探针和超快激光技术等。

(完整)激光拉曼光谱法讲解

(完整)激光拉曼光谱法讲解

第三节激光拉曼光谱法在分子的振动中,有些振动由于偶极矩的变化表现了红外活性,能吸收红外光,从而出现了红外吸收谱带(见第二章第二节),但有些振动却表现了拉曼活性,产生了拉曼光谱谱带.这两种方法都能提供分子振动的信息,起到相互补充的作用,采用这两种方法,可获得振动光谱的全貌.拉曼光谱是一种散射光谱.在20世纪30年代,拉曼散射光谱曾是研究分子结构的主要手段.后来随着实验内容的深人,由于拉曼效应太弱,所以随着红外光谱的迅速发展,拉曼光谱的地位随之下降。

自1960年激光问世,并将这种新型光源引入拉曼光谱后,拉曼光谱出现了新的局面,已广泛应用于有机、无机、高分子、生物、环保等各个领域,成为重要的分析工具。

而且由于它的一些特点,如水和玻璃散射光谱极弱,因而在水溶液、气体、同位素、单晶等方面的应用具有突出的特长.近几年又发展了傅里叶变换拉曼光谱仪,使它在高分子结构研究中的作用与日俱增。

3.1基本概念3.1.1拉曼散射及拉曼位移拉曼光谱为散射光谱。

当一束频率为V0的人射光照射到气体、液体或透明晶体样品上时,绝大部分可以透过,大约有0.1%的入射光与样品分子之间发生非弹性碰撞,即在碰撞时有能量交换,这种光散射称为拉曼散射;反之,若发生弹性碰撞,即两者之间没有能量交换,这种光散射称为瑞利散射。

在拉曼散射中,若光子把一部分能量给样品分子,得到的散射光能量减少,在垂直方向测量到的散射光中,可以检测频率为(V0—△E/h)的线,称为斯托克斯(stokes)线,如图3-1所示,如果它是红外活性的话,△E/h的测量值与激发该振动的红外频率一致。

相反,若光子从样品分子中获得能量,在大于入射光频率处接收到散射光线,则称为反斯托克斯线。

处于基态的分子与光子发生非弹性碰撞,获得能量到激发态可得到斯托克斯线,反之,如果分子处于激发态,与光子发生非弹性碰撞就会释放能量而回到基态,得到反斯托斯线。

斯托克斯线或反斯托克斯线与入射光频率之差称为拉曼位移。

激光拉曼光谱分析法

激光拉曼光谱分析法
4 激光Raman光谱法的应用
4.1.1 有机化合物结构分析
对于有机化合物的结构研究,虽然Raman光谱的应用远不如红外吸收光谱广泛,但Raman光谱适合于测定有机分子的骨架,并能够方便地区分各种异构体,如位置异构、几何异构、顺反异构等。
官能团不是孤立的,在不同的分子中,相同官能团的Raman位移有一定的差异,△ 不是固定的频率,而是在某一频率范围内变动。
光是电磁辐射,其作用于物质,光子与物质分子发生碰撞时,产生散射光。
01
当物质颗粒尺寸小于入射光波长,产生拉曼散射和瑞利散射。
03
非弹性碰撞不但改变方向,还有能量交换和频率改变,称拉曼散射。
05
当物质颗粒尺寸等于或大于入射光波长,产生丁达尔散射。
02
弹性碰撞时 无能量交换,且不改变频率,,仅改变运动方向,称瑞利散射;
11.3.1 色散型Raman光谱仪
11.3.1.3 单色器 色散型Raman光谱仪采用多单色器系统,如双单色器、三单色器。最好的是带有全息光栅的双单色器,能有效消除杂散光,使与激光波长非常接近的弱Raman线得到检测。 在傅里叶变换Raman光谱仪中,以Michelson(迈克耳孙)干涉仪代替色散元件,光源利用率高,可采用红外激光光源,以避免分析物或杂质的荧光干扰。 11.3.1.4. 检测器 一般采用光电倍增管。 为减少荧光的干扰,在色散型仪器中可用CCD检测器。 常用的检测器为Ga-As光阴极光电倍增管,光谱响应范围宽,量子效率高,而且在可见光区内的响应稳定。 傅里叶变换型仪器中多选用液氮冷却锗光电阻作为检测器。
3.2 傅里叶变换Raman光谱仪
01
02
4.1 定性分析 Raman位移△ 表征了分子中不同基团振动的特性,因此,可以通过测定△ 对分子进行定性和结构分析。另外,还可通过退偏比ρ的测定确定分子的对称性。 无机、有机、高分子等化合物的定性分析; 生物大分子的构象变化及相互作用研究; 各种材料(包括纳米材料、生物材料、金刚石)和膜(包括半导体薄膜、生物膜)的Raman分析; 矿物组成分析; 宝石、文物、公安样品的无损鉴定等方面。

第5章_拉曼光谱分析法

第5章_拉曼光谱分析法

第5章_拉曼光谱分析法拉曼光谱分析法是一种基于光散射现象的分析方法,利用样品与激光束相互作用产生的散射光谱进行定性和定量分析。

它具有非接触、无损、无需特殊处理样品等优点,可以广泛应用于材料科学、化学、生物学等领域。

拉曼光谱是一种特殊的光散射现象,它是指当光线通过样品时,与样品中的分子或晶体发生相互作用,产生了与入射光不同频率的光线。

这种频率差异所产生的光谱称为拉曼光谱。

拉曼光谱的频率差值与样品的化学成分和结构有关,因此可以通过分析拉曼光谱来确定样品的组成和结构信息。

拉曼光谱分析法的原理是基于拉曼散射的特点。

当激光束照射到样品上时,部分光会被样品吸收,其余部分则会发生拉曼散射。

拉曼散射有两个主要成分:斯托克斯散射和反斯托克斯散射。

斯托克斯散射是指散射光的频率低于入射光的情况,而反斯托克斯散射是指散射光的频率高于入射光的情况。

拉曼光谱分析主要包括拉曼散射光谱的测量和数据的处理与解析两个步骤。

在测量过程中,首先要选择合适的激光源和光谱仪器,激光的选择应该能够激发样品的拉曼散射,并且要避免与样品产生共振散射的情况。

光谱仪器则需要具备高分辨率和高灵敏度,以获取清晰的拉曼散射光谱。

数据的处理与解析是拉曼光谱分析的关键步骤。

首先需要对所得的拉曼光谱进行预处理,包括去除背景噪声、波峰的校正和峰的归一化等。

然后可以通过对光谱进行拟合和峰的分析来获得样品的组成和结构信息。

常用的数据处理方法包括主成分分析、偏最小二乘法和支持向量机等。

拉曼光谱分析法在材料科学领域有着广泛的应用。

例如,可以利用拉曼光谱分析法对纳米材料的大小、形状和晶格结构进行表征;可以通过拉曼光谱分析法对药物的纯度和杂质进行检测;可以利用拉曼光谱分析法对生物标志物进行快速识别和检测等。

此外,拉曼光谱也可以应用于环境监测、食品安全和法医学等领域。

综上所述,拉曼光谱分析法是一种非常有价值的分析手段,它通过测量样品的拉曼散射光谱来获得样品的组成和结构信息。

它具有非接触、无损、无需特殊处理样品等优点,可以应用于多个领域。

激光拉曼光谱

激光拉曼光谱

Raman散射
h0
h(0 + )
h
ANTI-STOKES
Rayleigh
0 -
0
0 +
2. 拉曼位移
• 散射光频率与入射光频率之差称为拉曼位移。
R 0
• 拉曼位移为负值的叫斯托克斯线,拉曼位移为正 值的叫反斯托克斯线。
• 拉曼位移的数值正好对应分子振动和转动能级跃 迁的频率。 • 激发光波长改变时,拉曼位移不变,强度改变。
二、拉曼光谱产生的基本原理
1. 瑞利散射与拉曼散射
(1)瑞利散射 • 当具有能量为hν0 的入射光子与处于振动基态 (V=0)或处于振动第一激发态(V=1)的分子 相碰撞时,分子吸收能量被激发到能量较高的虚 拟态,分子在虚拟态是很不稳定的,很快返回 V=0 和V=1的状态,并将吸收的能量以光的形式 释放出来,光子的能量未发生改变,散射光频率 与入射光频率相同。 • 瑞利散射光强度是入射光强度的10-3。
1.光源 拉曼散射光较弱,要求用很强的单色光来激发试样才能产 生足够强的拉曼散射信号。激光是一个很理想的光源。HeNe激光器,波长为632.8 nm;Ar+离子激光器,其波长为 488.0nm和514.5nm;Kr+离子激光器,其波长为568.2nm。 2.检测器 拉曼光谱仪检测的是可见光,可以采用与紫外-可见吸收 光谱一样的信噪比很高的光电倍增管作为检测器。常用GaAs光阴极光电倍增管。在测定拉曼光谱时,将激光束射入试 样池,一般是在与激光束成90°处观察散射光,因此单色器、 检测器都安装在与激(强度是入射光的10-6~10-8): ①处在振动基态的分子,被激发到虚拟态,然后从虚拟态回到 振动的激发态,产生能量为h(ν0-ν1)的拉曼散射。散射光的 能量比入射光的能量低,称为斯托克斯(Stokes)散射。 ②处在振动激发态的分子,被激发到虚拟态,然后从虚拟态回 到振动基态,产生能量为h(ν0+ν1)的拉曼散射。散射光的能 量比入射光的能量高,称为反斯托克斯(Anti-Stokes)散射。 由于常温下处于基态的分子比处于激发态的分子数多的 多,因此斯托克斯线比反斯托克斯线强的多。故一般采用 斯托克斯线。

【word】流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向

【word】流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向

【word】流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向年地质论评GEOLOGICALREVIEWV01.55No.6NOV.2009流体包裹体激光拉曼光谱分析原理,方法,存在的问题及未来研究方向陈勇?,ERNSTA.JOBurke’1)中国石油大学(华东)地球资源与信息学院,中国山东青岛,2665552)阿姆斯特丹自由大学地球科学系微量分析实验室,荷兰阿姆斯特丹内容提要:国内外在流体包裹体激光拉曼光谱研究方面取得了大量的成果.本文回顾了流体包裹体激光拉曼光谱分析技术的发展历史,介绍了流体包裹体激光拉曼光谱技术定性和定量分析的原理和方法,指出了该技术存在的问题及未来研究方向.流体包裹体激光拉曼光谱分析主要受到样品,荧光,同位素,光化学反应,水溶性物质信号弱,气相水及水合物,子矿物等因素的影响.由于用来进行定量分析的拉曼散射截面参数明显受到压力影响,加上峰面积计算不规范化使得目前的流体包裹体激光拉曼光谱分析结果可靠性有待于重新审视.未来流体包裹体拉曼光谱分析技术应当在完善不同标准体系和标准物质光谱数据的基础上,针对不同类型包裹体采用采取不同条件,分析结果将在准确定性的基础上从相对定量向绝对定量发展.关键词:流体包裹体;激光拉曼光谱;定量分析;研究进展;未来研究方向激光拉曼光谱技术应用于流体包裹体已有30多年的历史,由于该技术可以实现对单个包裹体非破坏性分析,并可定量获取包裹体中成分含量,因而受到广大流体包裹体研究者的青睐.尽管国内外已有大量关于流体包裹体激光拉曼光谱分析的研究文章和数据报道,但目前仍有一些研究者和分析测试人员对数据的准确性和可靠性不够了解,甚至在发表文章报道时出现错误的解释.笔者等根据多年的实验分析和研究经历,介绍了激光拉曼光谱技术分析的基本原理和方法,并提出几个有关流体包裹体激光拉曼光谱分析的关键问题与广大同行探讨,同时指出了该技术今后的研究和发展方向.1流体包裹体激光拉曼光谱分析技术研究历史回顾Rosasco等(1975)最早发表了天然流体包裹体的拉曼分析结果,接下来是Rosasco和Roedder(1979)及Dhamelincourt等(1979)人的报道,随后Beny等(1982)和Touray等(1985)分别发表了关于流体系统和拉曼光谱分析方法更全面的研究成果.这些报道不仅指出了这种新方法在流体包裹体分析的可能性,也为用有效截面积进行流体包裹体定量分析指明了道路.Schrotter和Klocner(1979)的文章对流体组成的截面积进行了讨论,尽管地球科学的拉曼分析工作者经历了10多年才完全理解它的内容,但这篇文章却是显微拉曼光谱技术发展历程上的一个重大突破(Dubessy等,1999).最初将拉曼光谱仪应用于流体包裹体是Pasteris等(1986)以及Burke和Lustenhouwer(1987).Wopenka和Pasteris(1986,l987),Seitz等(1987),特别是Pasteris等(1988)系统地讨论了仪器的局限性和最优分析条件.在流体包裹体显微拉曼光谱定量分析技术尝试初期最具有纪念意义的工作是Kerkho{(1988)关于CO一CH一N体系的研究,同时也包括Dubessy等(1989)的评述,这篇评述包括讨论和对c—O—H—N,S流体分析的必要校正.在国内,黄伟林等(1990),徐培苍等(1996)较早报道利用U一1OO0型激光拉曼光谱仪进行了流体包裹体分析,并对定量分析方法进行了较详细的讨论.近年来国内一些学者也曾对流体包裹体拉曼光谱分析技术研究进展作过一些评述(陈晋阳等,2002;陈勇等,2007),此外还有大量流体包裹体拉曼光谱分注:本文为国家”863’’课题(编号2007AA06Z210),山东省自然科学基金(编号:Y2oO8E25)和油气资源与探测国家重点实验室开放课题(编号2009006)资助的成果.收稿日期:2008—09—10;改回日期:200905—20;责任编辑:章雨旭.作者简介:陈勇,男,1976年生.博士,副教授.主要从事流体包裹体和油气地球化学研究工作.通讯地址:266555,中国石油大学(华东)地球资源与信息学院;电话:0546—8393548;Email:yongchenzy@.ca.地质论评2009正析的数据报道.2拉曼光谱分析基本原理2.1拉曼光谱产生原理早在1923年,A.Semkal等人在理论上预言:光通过介质时,由于它们之间的相互作用,可以观测到光频率发生变化,相位也发生无规律的变化.而1928年,印度物理学家C.V.Raman和K.s.Krishman首先在CC1液体的散射光中发现了频率变化,这就是最早发现的拉曼现象.为纪念印度物理学家Raman,这种现象就称为Raman散射.当一束频率为u.的单色光照射到物质(固体,气体,液体)上时,一部分被透射,一部分被反射,还有一部分向四周散射.在散射光中,除了与人射光频率相同的光外,还包含有一系列频率为??u的光,这部分频率有变化的光就是拉曼散射光(其中?u即为拉曼位移).根据量子理论,频率为的入射单色光,可看作是具有能量h的光子.当光子与物质分子碰撞时,有两种情况,一种是弹性碰撞;一种是非弹性碰撞.在弹性碰撞中,只改变了光的方向,而光子的能量没有发生改变,光的频率也不会改变,称为瑞利散射.在非弹性碰撞中,光子运动的方向和能量都发生了改变,因此光的频率也发生变化,这就是拉曼散射,频率之差?u叫作拉曼位移.拉曼散射光对称的分布在瑞利散射光两侧(图1),其强度要比瑞利光弱很多,通常为瑞利光的10,1o.其中波长比瑞利光长的拉曼光叫斯托克斯线(Stokes线),波长比瑞利光短的拉曼光叫反斯托克斯线(anti—Stokes线).V.-?1,+——一v———v【】+?1,图1光散射现象Fig.1Phenomenonoflightscattering拉曼散射产生的根本原因是当光照射物质时,如果物质分子的某种振动可以引起分子极化率的改变,则就会产生拉曼散射现象.仅当分子极化率有变化时才会引起拉曼散射现象,如果分子的振动模式不能改变分子极化率,将不会发生拉曼散射现象, 通常把能够产生拉曼散射的分子振动称为拉曼活性振动.2.2拉曼光谱定性分析原理在拉曼散射中,拉曼位移?与入射光的频率无关,仅取决于分子本身的固有振动和转动能级结构,因此,不同物质具有不同的拉曼位移.尽管对同一种物质用不同频率光照射时产生的拉曼散射光不相同,但是其拉曼位移却是一个确定的值.每一种具有拉曼活性的物质都有其特定的拉曼光谱特征, 根据物质的特征拉曼光谱可以辨认出物质种类,这就是拉曼光谱定性分析的基本原理.在利用拉曼光谱进行物质鉴定时,只需找出拉曼谱图中的特征光谱,就可以识别物质的种类.相同化学组成而晶体结构不同的物质,往往由于其分子结构不同而具有不同的拉曼光谱.由于拉曼光谱为我们提供了物质分子结构的信息,所以,利用拉曼光谱技术可以获取流体包裹体中成分的分子信息,从而识别其中的流体组成类型.2.3拉曼光谱定量分析原理尽管拉曼位移与入射光强度无关,但拉曼散射的强度却与分子的浓度,入射光强度等因素有关. 据朱自莹(1998),拉曼散射光通量可表示为:一j5.sKNHL47sin(4/2)(1)式中为在垂直入射光束方向上通过聚焦透镜所收集的拉曼散射光的通量();屯为入射光束照射到样品上的光通量(W);sK为拉曼散射系数,约等于1O.,10.tool?L-./Sr:N为单位体积内的分子数;H为样品的有效长度;L为考虑到折射率和样品内场效应等因素影响的系数;a为拉曼光束在聚焦透镜方向上的半角度.由(1)式分析可以知道,当实验条件不变时,拉曼散射光的通量与单位体积内的分子数成正比,这为拉曼定量分析提供了依据.3流体包裹体拉曼光谱分析原理与方法3.1流体包裹体中的拉曼活性物质流体包裹体可能含有固态,液态或气态的多种物质,但并非所有的原子和分子都具有拉曼效应.Roedder(1990)总结了一些给定包裹体分析可以完成的分析物质.Buker(2001)在Roedder的基础上第6期陈勇等:流体包裹体激光拉曼光谱分析原理,方法,存在的问题及未来研究方向853进行了修改,他指出流体包裹体中的常见物质及其拉曼活性,具体内容见表1.由此可见,流体包裹体中仅有很少一部分物质是可以用拉曼光谱定量分析,它们是一些多原子气体和溶液中极少的几种多核物质.尽管许多物质具有拉曼活性,并可以通过它们的拉曼特征峰证实其存在,但对一些物质(如溶液中的阳离子),只有在低温下才可能检测到它们的水合物.所以,拉曼光谱技术主要可以成功地对流体包裹体或超临界包裹体中的气相进行分析(气相不包括水蒸气)(Burke, 2001).而对于多相水溶液包裹体中的液相通常只能得到定性数据.对于气相,如果扣去少量的水蒸汽(在室温下水的饱和蒸汽压很低)就可以获得定量结果.由于水蒸气的”峰”实际上是一个宽波带,所以是难以用显微拉曼光谱技术定量的.3.2流体包裹体拉曼光谱定量分析方法如果只是定性分析流体包裹体中的拉曼活性物质,仅有它们的特征峰拉曼位移?v就足够了.而定量分析气体或超临界包裹体则需要知道在一定精度条件下的显微光谱仪光谱效率(仪器因子)和不同组分的拉曼散射效率(相当于截面积,)才可能实现.拉曼散射效率参数与波长无关,而拉曼散射效率参数与波长有关,表2中列出了流体包裹体中常见物质的拉曼位移?v,拉曼散射效率(三)和拉曼散射效率(d).表中CO.后的和2为CO:的费米共振双峰.从表2可以看出,不同文献给出的?和?数值上的有些不同.例如大多数学者给出CH的v振动的峰位在2917cm,但一些学者给出在2914cm.实际上拉曼位移对定性和定量分析没有明显的影响,但当用峰位确定包裹体的密度或组分的分压时是非常重要的.在Schrotter和Klocner(1979)发表的论文中列出了不同实验室获得的值,用488和514nm激发光对CH的2917cm峰的六个值分别为:6.8,9.2,8.7和9.1,8.7,9.3;而表1中列出的是它们的平均值(三一8.63).三值是不同拉曼散射截面的相对规一化值,可用于比较不同波长的测试结果.另外,对一定激光波长下获得的气体组分峰面积的计算会用到值和相对拉曼散射截面,这两个值都是相对N的散射效率标准化给表1流体包裹体中常见物质拉曼活性特征Table1TheRamancharacteristicsofcommonmaterinfluidinclusions 室温条件下一般物质相态/类型可半定量分析可定性分析不具备拉曼活性溶剂物质H2o,C02,H2S水溶液中的常见阳离子Na+,K+,Ca,MgHCOa-,coi,HS一,水溶液中的常见阴离子ClHSO~-,s0i室温下液相的物质Li,A1,Fe,B,Ba,Br,Mn,水溶液中的微量元素离子P,F,Si的离子及NH4+高碳数碳氢化合物,乙酸其它盐(酯),草酸盐(酯)主要成分0CO2,CH4,N2H2o室温下的气体或次要成分H2S,C2H6,C3H80C02超临界物质SO2,CO,COS,HzOz高碳数碳氢化合物,He,稀有组分NH3Ar具有拉曼活性的子矿物,室温下的固体物质石墨及含碳物质H20,CO2,H2S,盐(Na,Ca,Mg,Li)的水合物及气低温下的固体物质体(COz,CH4,Nz,Has)水合物地质论评出的(N.的三和d都等于1).Dubessy等(1989)详细阐述了采用值而不用三值的必要性.Schrotter和Klockner(1979)给出和的关系式,Dubessy等(1989)也引用这个公式.但是如果书写过程忽略方程中的分母部分会导致对任何应用都不适合.这个公式的表达式如下:.E1--e-hcvi/kT](2)YOPi,式中和d是对不同的散射值是激光波数(对488nm,514nm和633nm分别为20487cm,19435cm和15802cm),h是普朗克常数(6.626×10Js),c是光速(2.998×10m/s),k是玻耳兹曼常数(1.381×10.J/K),T是绝对温度.用公式(2)获得的值计算时应当注意的是,所有这些值是对低密度流体混合物而言,它们会随压力,温度和流体包裹体的化学组成变化.值得注意的是CO拉曼光谱出现费米振动双峰,两个峰面积的强度比率随密度变化,但两个峰面积之和为常数. Dubessy等(1989)认为混合物中的CO.含量计算应当采用峰面积的总和或d的总和(如对514nm光为2.5).而Seitz等(1996)获得关于CH和CO2费米双峰之和的比率的变化是压力的函数,因此Seitz等(1993)曾指出,仅用CO的2v比用费米双峰之和来确定CO一CH混合物的流体组分更合适.而一个基于Placzck偏振理论的简化公式可用来尝试定量分析一个流体包裹体中出现物质的浓度(Dubessy等,1989),这是目前流体包裹体激光拉曼光谱定量分析的通用公式,该式如下:一(3)x,A.,和已分别是a组分的浓度(以摩尔分数表示),峰面积,拉曼散射截面和仪器效率.A峨和代表包裹体中所有检测物质的值.峰面积应当相对激光功率和信号积分时间进行规一化.举个例子: 对一个单相超临界流体包裹体拉曼分析得到光谱峰面积分别为CO在1388cm(4386计数)和1285cm(2580计数),N2在233lcm(314计数)和CH在2917cm(9834计数).由于CO2,N2和表2包裹体中常见物质的拉曼位移(Av),与波长无关的相对拉曼散射截面参数(J,与波长有关的相对散射截面参数(J(据Burke,2001JTable2Ramanshifts(?’,).wavelength—independentrelativeRamanscatter ingcross-sections{,,~)andwavelength-dependentrelativeRamanscattering cross-sections()ofcommonfluidspeciesininclusions-withsomereferences Species?三(488nm)(514nm)(633rim)C0S857S0983HSO1050S021l514.O35.25.35.6“011285O.8O1.01.01.1CO22val3881.231.51.51.6CO22v213701.5l_51.6HCO136O0215551.031.21.21.3C02143O.9O0.900.90O.9ON22331111lHS一2574H2SLiquid258OH2Sinwater259OH2S26l16.86.46.46.2C3H82890CHa29178.637.67.57.2 CaH6295413H2Oliquid3219NH333366.325.05.04.6H2Ovapour36573.29H241563.542.32.32.0CH的值分别为2.5(两个峰之和),1和7.5;而光谱仪在CO,CH和N.峰位的仪器效率因子值分别为0.5,1和1 (值由合成气体混合物校正过),简化就得到下面的峰面积(Burke,2001):CO2:[(4386+2580)/(2.5×0.5)]=5572.8N2:[(314)/(1×1)]一314CH:[(9834)/(7.5×1)]一1311.2利用公式(3)计算得到的分析结果为,n(CO):78,,z(N.):4,(CH):18,但这个结果是基于这样一个假设:即低密度的值可以应用到具有明显更大密度的流体.这就是激光拉曼光谱定量分析流体包裹体气体成分的计算方法.3.3流体包裹体激光拉曼光谱分析方法的校正激光拉曼光谱定性分析的第6期陈勇等:流体包裹体激光拉曼光谱分析原理,方法,存在的问题及未来研究方向855校正工作相对比较简单,只要在测试样品之前用单晶硅片对仪器进行校正就可以了.而定量分析的校正相对较复杂,如果能够准确知道不同流体物质的相对拉曼散射面积(),并且仪器光学效率是确定的(用标准灯),那么在理论上激光拉曼光谱仪定量分析的准确性是可以校正的.由于a随温度,压力和具体的流体组成变化,而且又缺少有效的偏振扰频器,Pasteris等(1988)就提出了拉曼光谱仪的经验校正法,即用已知组成和压力的流体混合物进行校正.由于缺少标样,评价拉曼结果的唯一经验方法是用天然或人工合成流体包裹体的显微测温数据来比较.Wopenka和Pasteris(1986)最早用C02一CH人工合成流体包裹体进行了校正.由于在多数情况下得到的拉曼数据与测温结果实质上是一致的,这就导致了一些人对于仪器校正因子的过度信任,Dubessy(1989)就指出了随便用与波长无关的拉曼散射截面代替与波长有关的计算方法不可靠.后来的研究明显表明,仅用三得到的一些拉曼结果在合理的误差范围内.Wopenko和Pasteris (1987)及Kerkho{(1988)分别最早提出了用焊封毛细石英管内的已知成分气体混合来进行经验校正的方法.Chou等(1990)提出了用高压腔的方法进行校正.目前许多拉曼实验室采用kerkhof等(1988) 提出的焊封石英管法或Chou等(1990)提出的焊封硅玻璃管方法来校正仪器.经过校正,流体包裹体拉曼分析的相对误差通常低于5(Burke,2001).4流体包裹体拉曼光谱分析的主要影响因素4.1样品与仪器因素为避免拉曼测试浪费时间,应当选择那些可以获得显微测温数据的包裹体.为达到这个目的,样品需磨成两面抛光,厚度在5O,200am的岩石薄片,理论上也完全适合拉曼分析.这样的薄片不能用易进入样品裂缝或裂隙或带有荧光的粘胶准备. 建议最好采用蜂蜡,因为它不会进入样品,而且易溶于白酒或松节油中(Burke,2001).如果用常见的胶水(如加拿大树胶)制备薄片,那么在进行激光拉曼光谱分析前一定要把薄片取下来清洗干净.一些样品的性质会直接影响拉曼分析:如样品不够透明或薄片抛光得不好就会造成无法观察或无法分析包裹体;514nm的氩离子激光会被红色矿物吸收;高反射率的矿物(如方解石)在深部会造成双图像;由于不透明子矿物在一定程度上吸收激光的能量会使整个包裹体信号变差.目前大多数激光拉曼光谱仪配有高质量的高倍显微镜,物镜可以使激光聚焦到l~2btm,甚至更小.一些透镜带外套(涂层)的物镜可以选择吸收部分拉曼散射光谱,这会降低结果的精度.可以进行拉曼分析的最小流体包裹体取决于多种因素,包括显微镜系统的性质,激光光源,光谱仪的检测器类型,流体的密度,包裹体在样品中的深度,基质的背景信号等.在理想条件下,可以获得石英中100/~m深,2m大包裹体中可靠的定量结果(Burke,2001).有时即使流体包裹体又宽又长,但可能会很薄,由于激光聚焦在垂直方向相对较大,大多数情况会激发包裹体的基质,而不显示包裹体本身特征.由于这些因素,所有包裹体中流体成分应当在不改变位置和激光聚焦深度的条件下测试.每个包裹体都有自己的特点,通常为不规则的几何体, 而且激光聚焦的任意变化都会对包裹体的激发体积估计产生重大影响.而目前新型拉曼光谱仪中采用共焦系统极大地提高了测试小包裹体的可能性. 有时靠近样品表面的小包裹体很可能比深处大包裹体的拉曼信号更强.通常情况下,尽量分析靠近表面的包裹体是流体包裹体拉曼光谱分析的一条重要原则,当包裹体深度超过50/~m就会出现检测问题,特别是如果流体密度不太高的情况就更加难以检测.对于含N:流体,分析包裹体的最佳深度是3O,7Om,这个深度是获得最强的拉曼峰信号与避免物镜和样品之间空气中的氮气干扰的最佳深度, 但共焦拉曼光谱仪一般不会出现这种背景干扰问题(Burke,2001).增强激光功率或采用更长的测试时问可以增大样品中低密度或埋藏较深包裹体中的拉曼散射信号.由于样品的性质不同,包裹体和仪器就决定了一系列分析条件选择,以便保证可以检测所有组分.还有一些需要考虑的问题,如包裹体是否可以抵制激光导致的热量增加?以及在可能的时问限制内能够采集几个波段的光谱?获取低密度包裹体中的成分信息仍然是包裹体拉曼光谱分析的一个技术难题.4.2荧光现象在流体包裹体(特别是有机包裹体)拉曼光谱分析时遇到一个常见而又头疼的问题就是荧光现象.荧光的强度一般比拉曼信号大几个数量级,相对较弱的拉曼信号可能会被荧光完全掩盖.有三个方面因素可能会引起荧光,包括表面,基质矿物及流体包裹体.表面荧光的诱导因素较多,最常见原因是矿地质论评物和由样品准备所用的粘合剂没有完全洗净的残余物引起的,也可能是用记号笔在包裹体附近划圈的含碳氢官能团墨水引起,甚至还有可能荧光仅仅是不小心印在样品上的指纹引起的.常见发荧光的矿物有萤石,方解石和斜长石,甚至有时石英也会发荧光.裂缝和裂隙中充填了发荧光的粘合剂也会妨碍分析.如果流体包裹体中含有环状或芳环烃类,或者荧光性子矿物,通常都会引发荧光(Burke, 2001).消除荧光除了采用共焦拉曼光谱仪外,还有其它几种方法可以避免荧光效应,如清洁样品表面,对将用激光束分析的地方加热几分钟有时可以大大减低矿物的荧光.而发荧光的流体包裹体通常不能用传统可见光拉曼光谱仪进行分析,如单个有机包裹体用传统拉曼光谱仪标定有一定困难,即便用傅立叶转换红外光谱仪或近红外傅里叶转换拉曼光谱仪也如此.然而,对于傅立叶转换红外光谱仪或近红外傅里叶转换拉曼光谱仪,包裹体分析的最小尺寸要求比可见光拉曼光谱仪能够分析的尺寸大将近一个数量级.另一个可能的办法就是采用时间高分辨可见光拉曼光谱仪,因为荧光效应发生比拉曼效应晚一些,这样就可以在检测器被荧光覆盖之前获取拉曼信号.此外,由于荧光强度与激发光有关,有时减弱激发光强度在一定程度上也可以减弱荧光的影响,但同时也减弱了包裹体中成分的拉曼信号,需要找到合适的激发光强度.目前有研究发现在低温下分析也可能减小荧光的影响.4.3同位素的影响在流体包裹体中最常见而含量较高的同位素组合就是c和”C,主要影响CO.的含量分析.CO的拉曼光谱包含四个峰,即费米共振双峰(1285em的1和1388em的2v.),及费米双峰外的两个”热峰”,分别为1265cm和141Ocm一.很多包裹体在2v.峰肩旁出现一个附加峰,在1370cm.这个峰是由于.C0的2.振动引起的,它的强度通常非常低,而它的不规则性会影响CO 定量测定(Garrabos等,1989).Rosasco等(1975) 确定”CO2的精度为20%o,而Dhamelincourt等(1979)的精度仅为37‰.最新的拉曼仪器及检测器应当考虑提高这种潜在的拉曼分析及研究应用的精度.我国学者赫英等(1998)曾尝试用拉曼光谱技术测定包裹体中”CO.的含量.此外,碳同位素在有机物测试中的影响还有待于进一步分析.4.4光化学反应我们知道,一些物质在光的作用下会发生化学反应,这类反应也可能在包裹体进行拉曼测试时发生.通常情况下激光的热量不会传到流体包裹体, 即便是室温下接近临界点的两相COz流体包裹体也不会被激光辐射均一化.Rosso和Bodnar(1995) 曾指出激发体积中的激光诱导加热不是很重要.然而,如果包裹体中含有吸收激光的粒子(不能用显微镜看见),那么情况就会完全改变,会完全损耗或爆裂,然后流体快速流出,有时可以看见包裹体反应的结果.Rosasco等(1975)指出,分析含有CH和高碳烃的包裹体时通常可以看到一个由于有机物的聚合导致不透明物质沉淀的现象.例如C0z—CH体系包裹体的一个组分含量在3O,70时会发生一个特殊反应,这种CO一CH组成在许多高密度包裹体室温下不能共存,它们会发生如下反应(Burke,2001):CO+CH一2H20(L)+2C由于石墨的核能高,所以石墨形成可能滞后(推迟),但是如果在当时温度下如果有微小不透明颗粒出现,就可能引发这个反应,因为该反应消耗的气相中两组分的量相同,所以反应就会一直持续到较少的一种组分耗完为止.为了避免获取完全错误的浓度值,CO一CH包裹体在拉曼光谱分析过程中应当注意上述现象.实际上,有时即便在已经有石墨粒子存在的情况下,上述反应也不一定会发生.Huizenga等(1999)的研究表明,在测试一组来自Zimbabwe剪切带中55个石英中的(CO.一CH一H(),C)包裹体时只有2个包裹体发生反应,可能是因为水可以导热而使反应不发生.因此,激光加热对”干”蒸汽相包裹体中固体物的影响比”湿”液体相中包裹体中固体物的影响更明显.Seitz等(1993)曾观察到充满CO和CH混合物的石英管中发生的另一个光化学反应,在激光作用下形成了发强荧光的黄色芳香烃液滴.笔者曾用激光拉曼光谱分析原油时发现,在激光热效应作用下由于有机物的挥发而在样品上出现一个小洞.4.5盐类物质的弱信号问题水溶液包裹体含有的物质一般比气相包裹体种类多.多原子物质容易得到拉曼信号,但是许多水溶液中的盐类物质难以得到清楚的拉曼信号.Dubessy等(1989,1992)指出PO:一的浓度在地质流体中通常非常低,NO;是一种不稳定物种,co;一仅在高pH条件下出现(现实中极少),而在1018第6期陈勇等:流体包裹体激光拉曼光谱分析原理,方法,存在的问题及未来研究方向857cm附近的HCOa低(弱)拉曼散射信号常会被石。

拉曼光谱分析2篇

拉曼光谱分析2篇

拉曼光谱分析2篇拉曼光谱分析引言:拉曼光谱是一种非破坏性的分析技术,在化学、物理、生物等领域有着广泛的应用。

通过测定分子库仑振动引起的光子的散射光谱,可以确定分子的组成、结构与纯度等信息。

本文将介绍拉曼光谱分析原理、仪器和方法,并探究其在各领域的应用。

第一章拉曼散射与拉曼谱1.1 拉曼散射当一束激光穿过样品时,其中一部分光散射后形成散射光。

拉曼散射是一种非弹性光学散射,它在散射光中维持了激发光的能量和波长,改变了散射光的方向和强度。

1.2 拉曼谱拉曼谱是被称为荧光谱的光谱种类之一,使用光学显微镜(OM)或拉曼显微镜(RM)观察,能够毫秒级别分析纯度、结构和组成。

拉曼谱的红移和蓝移来自于拉曼散射光的波长。

第二章拉曼光谱分析原理和仪器2.1 原理基础拉曼光谱图显示分子库仑振动引起的散射光,而本征或摩尔散射为二次近似和一次近似散射,相较于热散射的分子现象,更能准确反映分子特征与结构分析。

2.2 仪器种类通常使用的拉曼光谱仪包括离线和在线两种类型。

在离线情况下,样品可以在先前从样品中提取分离,而在在线情况下可将拉曼光谱仪迅速连接到某些机器上,使设备更接近台面。

第三章拉曼光谱分析方法3.1 标准样品库与数据库标准样品库是基于数据库的分析,用于确定和确认样品的组分。

原则上,数据库应该包含样品的特征或实验条件。

对于大多数标准样品库,品牌需提供相关开发配置,具体视品牌而定。

3.2 定量分析如果使用吸收光谱进行定量分析,则使用定量公式进行计算。

在拉曼光谱方面,需要方法验证,包括质量控制。

第四章拉曼光谱在不同领域的应用4.1 化学领域化学领域中,拉曼光谱经常用于无机物质的分析(R萤荧素),聚合物的结构分析,贵金属的表征以及有机分子的数字化测量分析。

4.2 材料领域材料领域中,拉曼光谱应用于无机物质(如纳米材料)半导体材料以及有机物质的分析,并且在例如非晶体的热探头标定等方面表现出非常吸引人的表现。

4.3 生命科学领域在生命科学领域,拉曼光谱主要应用于生物医学领域、药物研究以及细胞研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 11 章激光拉曼光谱分析第十一章激光拉曼光谱分析(L aser Raman Spectroscopy, LRS)教学要求1.理解拉曼散射的基本原理2.理解拉曼光谱和红外光谱与分子结构关系的主要差别3.了解拉曼光谱仪器结构4.了解激光拉曼光谱的应用重点:拉曼光谱原理;拉曼光谱与红外光谱的关系难点:拉曼光谱与红外光谱的关系课时安排: 1.5 学时§11-1 拉曼光谱原理一、拉曼光谱当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。

在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。

由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。

因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。

目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。

拉曼光谱和红外光谱一样同属于分子振动光谱 ,可以反映分子的特征结构。

但是拉曼散射效应是个非常弱的过程 ,一般其光强仅约为入射光强的 10-10。

1、瑞利散射虚拟态当光子与物质的分子发生弹性碰撞时,hυ0hυ0没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。

入射光与散射光的频率相同,如图中 2、3 两种情况。

2、斯托克斯 (Stokes)散射hυ0h(υ0-υ1) hυ0hυ0hυ0h(υ0+υ1) υ=1υ=0图 11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子从基态跃迁到某一虚拟态,返回到某一激发态,入射光频率大于散射光频率,如图中第 1 种情况,最后这种散射称斯托克斯 (Stokes)线。

3、反斯托克斯 (Anti-Stokes)散射当原处于激发态的分子跃迁到某一虚拟态,返回到基态,入射光频率小于散射光频率,如图中第 4 种情况。

这种散射称反斯托克斯 (Stokes)线。

由于常温下处于基态的分子占绝大多数,斯托克斯线比反斯托克斯线强得多。

4、拉曼位移入射光频率与拉曼散射光频率之差称拉曼位移。

它与物质的振动和转动能级有关,不同的物质有不同的拉曼位移。

对于同一种物质,若用不同频率的入射光照射,所产生的拉曼散射光的频率也不相同,但拉曼位移却是一个确定值。

因此,拉曼位移与入射光频率无关,仅与分子振动能级有关。

—拉曼光谱物质分子结构分析和定性鉴定的依据。

5、拉曼光谱:横坐标:拉曼位移;纵坐标:强度二、去偏振度激光是偏振光。

起偏振器测得的垂直于入射光方向散射光强和平行于入射光方向散射光强的比值称去偏振度,用ρ表示。

ρ取值: 0~3/4;ρ→0,对称性高,ρ→ 3/4,不对称结构三、共振拉曼效应当选取的入射激光波长非常接近或处于待测分子生色团吸收频率时,产生电子耦合,拉曼跃迁的几率大大增加,使得分子的某些振动模式的拉曼散射截面增强高达 106倍,这种现象称为共振拉曼效应(Resonance Raman ,RR)。

利用共振拉曼光谱的某些拉曼谱带的选择性增强,可以得到生色团振动光谱信息。

但是只有少数分子具有与处于可见光区的激发光相匹配的电子吸收能级。

(只有与生色团有关的振动形式才具有共振拉曼光谱)§11-2 拉曼光谱与红外光谱的关系一、原理差异红外光谱—源于偶极矩变化拉曼光谱—源于极化率变化拉曼光谱用于研究非极性基团和对称性振动的方法。

( 1)互斥规则1 SC S拉曼活性2 S C S红外活性3S C S 红外活性4对称中心分子 CO2, CS2等,选律不相容。

凡具有中心对称的分子,其分子振动为拉曼活性,则红外光谱是非活性的。

反之也然( 2)互允规则无对称中心分子(例如 SO2等),既是红外活性振动,又是拉曼活性振动。

( 3)互禁规则不发生极化率和偶极矩的改变,拉曼、红外均为非活性对称分子:对称振动→拉曼活性。

不对称振动→红外活性例如同核双原子分子N2,Cl2,H2等无红外活性却有拉曼活性。

是由于这些分子平衡态或伸缩振动引起核间距变化但无偶极矩改变,对振动频率 (红外光 )不产生吸收。

但两原子间键的极化度在伸缩振动时会产生周期性变化:核间距最远时极化度最大,最近时极化度最小。

由此产生拉曼位移。

二、特征光谱的差异红外光谱:对极性基团和非对称性振动敏感,适合于分子端基的测定拉曼光谱:适合于分子骨架的测定。

两者关系:都是活性的,基团频率等效、通用。

但红外光谱参考资料和标准图谱全,占明显优势。

拉曼光谱长处:去偏度→对称性;共振拉曼→具有生色团大分子;水溶液测定→生化、无机拉曼光谱不足:试样的颜色,荧光干扰,激光对样品的损伤等三、方法差异拉曼光谱红外光谱40~4000cm-1 400~4000cm-1水可以作溶剂水不能作溶剂样品可以在玻璃容器或毛细管不能在玻璃容器中测量中测量固体样品可以直接测量需研碎用 KBr 压片§11-3 激光拉曼光谱仪早期的拉曼光谱使用汞弧灯作为激发光源,由于拉曼光谱信号很弱,试样量大,曝光时间长杂质引起的荧光会淹没拉曼光谱。

1960 年,激光出现后为拉曼光谱提供了理想的光源。

激光的优势:亮度极强,单色性极好,极好的准直性,几乎完全是线偏振光,简化了去偏振度的测量。

一、色散型激光拉曼光谱仪色散型激光拉曼光谱仪主要由以下几个部分组成:激光光源→样品室→色散系统(双单色仪)→检测器→数据处理系统。

1、激光光源:由于拉曼散射很弱,因此要求光源强度大,一般用激光光源。

色散型拉曼有可见及红外激光光源,如具有308nm,351nm发射线的紫外激光器;Ar+ 激光器一般在488.0nm, 514.5nm等可见区发光;而Nd:YaG激光器则在1064nm近红外区使用。

2、试样室有液体池、气体池和毛细管。

对固体样品、薄膜可以置于特制的样品架上。

3、单色器:色散型拉曼光谱仪有多个单色器。

主要是有效的消除杂散光。

由于测定的拉曼位移较小,因此仪器需要较高的单色性。

在傅立叶变换拉曼光谱仪中,以迈克尔逊干涉仪代替色散元件,光源利用率高,可采用红外激光,用以避免分析物或杂质的荧光干扰。

4、检测器:多采用光电倍增管,光子计数器;二、傅立叶变换 -近红外拉曼光谱仪傅立叶变换拉曼光谱仪主要有以下几个部分组成:激光光源→样品室→相干滤波器→干涉仪→检测器→计算机处理数据 ( 进行傅立叶变换 ) 。

1、光源:Nd-YAG钇铝石榴石激光器( 1.064 m);检测器:高灵敏度的铟镓砷探头;特点:(1)避免了荧光干扰;(2)精度高;(3)消除了瑞利谱线;( 4)测量速度快。

2、迈克尔逊干涉仪三、激光显微拉曼光谱仪§11-4 激光拉曼光谱的应用拉曼光谱的应用范围十分广泛。

对于研究有机物的结构,拉曼光谱的应用远不如红外,但拉曼光谱适合于水溶液中有机物的测定,它适合于测定有机分子的骨架。

一、由拉曼光谱提供有机化合物结构信息:1、分子中含有 -S-S-,-C=C-,-C=S-,-C-N-,-N=N- ,C C 产生强拉曼谱带,特征明显,适合于拉曼光谱研究,随单键双键三键谱带强度增加。

2、红外光谱中,由 C N,C=S,S-H 伸缩振动产生的谱带一般较弱或强度可变,而在拉曼光谱中则是强谱带。

3、环状化合物的对称呼吸振动常常是最强的拉曼谱带。

4、在拉曼光谱中, X=Y=Z ,C=N=C ,O=C=O- 这类键的对称伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。

红外光谱与此相反。

5、C-C 伸缩振动在拉曼光谱中是强谱带。

6、醇和烷烃的拉曼光谱是相似的二、拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。

此外1、由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。

2、拉曼一次可以同时覆盖40-4000 波数的区间,可对有机物及无机物进行分析。

而中红外光谱覆盖400-4000 波数,若覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。

3、拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。

在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。

4、因为激光束的直径在它的聚焦部位通常只有0.2-2 毫米,常规拉曼光谱只需要少量的样品就可以得到。

这是拉曼光谱相对常规红外光谱一个很大的优势。

而且,拉曼显微镜物镜可将激光束进一步聚焦至20 微米甚至更小,可分析更小面积的样品。

5、共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000 到 10000 倍。

6、表面增强拉曼SERS(Surface-Enhanced Raman Scattering)是用通常的拉曼光谱法测定吸附在胶质金属颗粒如银、金或铜表面的样品,或吸附在这些金属片的粗糙表面上的样品。

被吸附的样品其拉曼光谱的强度可提高103-106倍。

如果将表面增强拉曼与共振拉曼结合,光谱强度的净增加几乎是两种方法增强的和。

检测限可低至10-9-10-12摩尔 /升。

表面增强拉曼主要用于吸附物种的状态解析等。

相关文档
最新文档