八年级下册中位数
人教版数学八年级下册中位数和众数(第2课时)教学课件
22 17 16 19 32 30 16 14 15 26 15 32 23 17 15 15 28 28 16 19
第九页,共三十七页。
探究新知
(1)月销售额在哪个值的人数最多?中间的月销售额是多少 (duōshǎo)?平均的月销售额是多少(duōshǎo)?
超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度
进行分析,你将如何确定这个“定额”?9×1+10×1+11×6+12×4+13×2+15×2+16×2
+19×1+20×1)÷20=13(个); 答:这一天20名工人生产零件的平均(píngjūn)个数为13个; (2)中位数为 12 12 (12个),众数为11个,当定额为13个时,有8人达标
乙
7
中位数 (环)
众数(环)
7
7
b
8
(1)写出表格(biǎogé)中a,b的值; 解:a=7,b=7.5.
第十九页,共三十七页。
探究新知
(2)分别运用表中的三个统计量,简要分析(fēnxī)这两名队员的 射击成绩,若选派其中一名参赛,你认为应选哪名队员?
解:从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中 7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的 次数最多.综合以上各因素,若选派一名学生参赛的话,可选择乙
人教版 数学(shùxué) 八年级
下册
20.1 数据的集中趋势(qūshì) 20.1.2 中位数和众数 (第2课时)
第一页,共三十七页。
导入新知
八年级某班的教室里,三位同学(tóng xué)正在为谁的数学成 绩好而争论,他们的五次数学成绩分别是:
八年级数学下册(人教版)20.1.3中位数和众数(第一课时)优秀教学案例
(二)问题导向
1.引导学生提出问题,培养学生的提问能力。
2.设计具有启发性的问题,引导学生独立思考,培养学生解决问题的能力。
3.注重问题之间的逻辑关系,引导学生发现知识之间的联系。
4.鼓励学生主动参与课堂讨论,培养学生的表达能力和思维能力。
3.使学生了解中位数和众数在生活中的应用,感受数学与生活的紧密联系。
4.培养学生运用列表、画图等方法展示数据,提高学生数据分析的能力。
(二)过程与方法
1.通过生活情境的创设,引导学生发现并提出问题,培养学生提出问题的能力。
2.利用小组合作、讨论交流的方式,让学生在探究中掌握中位数和众数的求解方法,培养团队协作能力和沟通能力。
3.引导学生从实际问题中总结规律,培养学生的归纳总结能力。
4.注重启发式教学,引导学生运用数学思维分析问题,提高学生的数学思维能力。
(三)情感态度与价值观
1.让学生在探究中体验到数学的乐趣,激发学生学习数学的兴趣。
2.培养学生积极思考、主动探究的学习态度,养成良好的学习习惯。
3.使学生认识到数学与生活的紧密联系,增强学生运用数学解决实际问题的意识。
4.培养学生尊重数据、实事求是的态度,树立正确的价值观。
三、教学策略
(一)情景创设
1.结合生活实际,创设有趣、富有挑战性的问题情境,激发学生的学习兴趣。
2.通过展示现实生活中的大量数据,让学生感受到中位数和众数在生活中的重要性。
3.设计不同难度的问题,满足不同层次学生的需求,使学生在解决问题中感受到成功的喜悦。
2.教师对学生的学习过程进行评价,关注学生的进步和发展。
3.注重评价的激励作用,让学生在评价中感受到成功的喜悦,增强自信心。
人教版八年级下册20.1.2中位数和众数众数(教案)
一、教学内容
人教版八年级下册20.1.2中位数和众数:本节课我们将学习中位数和众数的概念及其应用。教学内容主要包括:
1.中位数的定义:一组数据从小到大(或从大到小)排列,位于中间位置的数,若数据个数为偶数,则中位数为中间两个数的平均值。
2.中位数的性质:中位数不受极端值的影响,更能反映一组数据的一般水平。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中位数和众数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对中位数和众数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-中位数难点:如数据集{1, 2, 3, 4, 5, 6}的中位数是(3+4)/2=3.5,而非3或4,学生需要理解这种求中位数的方法。
-众数难点:如在数据集{1, 2, 2, 3, 3, 3, 4, 4}中,众数是3,但如果数据集是{1, 2, 3, 4},则没有众数。
-应用难点:如在分析某班级学生的身高数据时,学生需要判断使用中位数还是众数更能反映班级学生的身高特点。
5.课后,我会关注学生的作业完成情况,了解他们在课堂上是否真正掌握了知识点。同时,我也会根据学生的反馈,及时调整教学方法,以提高教学效果。
五、教学反思
在今天的教学中,我重点关注了中位数和众数的概念及其在实际问题中的应用。通过引导学生们从日常生活实例入手,我希望他们能够感受到数学知识就在身边,增强学习兴趣。在讲授过程中,我注意到以下几点:
1.学生对中位数和众数的概念理解较为顺利,但在具体计算和应用时还存在一定困难。这说明在今后的教学中,我需要进一步强化算理讲解和实例分析,帮助学生更好地掌握计算方法。
人教版数学八年级下册《中位数》教学设计1
人教版数学八年级下册《中位数》教学设计1一. 教材分析人教版数学八年级下册中位数单元,主要让学生了解中位数的概念,学会求一组数据的中位数,并理解中位数的意义和作用。
中位数在统计学中占有重要地位,它是衡量数据集中趋势的一个指标,对于解决实际问题具有重要意义。
二. 学情分析学生在七年级已经学习了平均数,对统计学有了初步的认识。
但中位数的概念和求法对学生来说是一个新的内容,需要通过具体例子让学生感受中位数的特点,从而理解并掌握中位数的求法。
三. 教学目标1.了解中位数的概念,理解中位数的意义和作用。
2.学会求一组数据的中位数,能运用中位数解决实际问题。
3.培养学生的数据分析能力,提高解决问题的能力。
四. 教学重难点1.重点:中位数的概念,求一组数据的中位数的方法。
2.难点:理解中位数的意义和作用,运用中位数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究中位数的概念和求法。
2.利用实例分析,让学生感受中位数的特点,培养学生的数据分析能力。
3.采用小组合作学习,让学生在讨论中加深对中位数的理解。
4.运用练习法,巩固所学知识,提高解决问题的能力。
六. 教学准备1.准备相关实例,用于讲解中位数的概念和求法。
2.准备练习题,用于巩固所学知识。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用一个实际问题引入中位数的概念,如:“某班有30名学生,在一次数学考试中,有10名学生得分为90分以上,10名学生得分为80分以下,其余10名学生的得分是多少?”让学生思考并回答,引出中位数的定义。
2.呈现(15分钟)讲解中位数的概念,用课件展示一组数据的图形,让学生观察并找出中位数。
通过实例讲解,让学生理解中位数的意义和作用。
3.操练(15分钟)让学生分组讨论,每组找出一组数据,求出其中的中位数,并解释原因。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成练习题,求出一组数据的中位数,并写出解题过程。
人教版八年级数学下册3中位数和众数
合作探究
一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如 表所示. 你能根据表中的数据为这家鞋店提供进货建议吗?
尺码/cm 22 22.5 23 23.5 24 24.5 25
销售量/双 1
2
5
11
7
3
1
分析:一般来讲,鞋店比较关心哪种尺码的鞋销售量最大,也就是关 心卖出的鞋的尺码组成的一组数据的众数. 一段时间内卖出的30双女鞋的 尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数. 进 而可以估计这家鞋店销售哪种尺码的鞋最多.
万元 (平均数).因为从样本数据看,在平均数、中位数和众数中,平
均数最大. 可以估计,月销售额定为每月20万元是一个较高目标,
大约会有
1 3
的营业员获得奖励.
合作探究
(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以 定为每月18万元(中位数). 因为从样本情况看,月销售额在18万元以 上(含18万元)的有16人,占总人数的一半左右. 可以估计,如果 月销售额定为18万元,将有一半左右的营业员获得奖励.
(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售 额定为多少合适?说明理由.
合作探究
分析:商场服装部统计的每位营业员在某月的销售额组成一个 样本,通过分析样本数据的平均数、中位数、众数来估计总体的 情况,从而解决问题.
确定一个适当的月销售目标是一个关键问题,如果目标定得太 高,多数营业员完不完成任务,会使营业员失去信心;如果目标 定得太低,不能发挥营业员的潜力.
中位数和众数
第2课时
学习目标
1.理解众数的概念,掌握众数的作用,会用众数分析实际问题. 2.进一步认识平均数、中位数、众数都可以反映一组数据的集中趋势. 3.了解平均数、中位数、众数各自的特点,能选择适当的量反映数据 的集中趋势.
20.1.2 中位数和众数 课件2024-2025学年人教版数学八年级下册
平均成绩
众数
得分
77
81
a
80
82
80
b
求被遮盖的两个数据a和b.
【自主解答】见全解全析
12
【举一反三】
1.(2023·金华中考)上周双休日,某班8名同学课外阅读的时间如下(单位:时):
1,4,2,4,3,3,4,5,这组数据的众数是
A.1时
B.2时
( D)
C.3时
D.4时
2.已知一组数据:7,a,6,5,5,7的众数为7,求这组数据的中位数.
【解析】∵一组数据:7,a,6,5,5,7的众数为7,
∴a=7,∴这组数据按从小到大的顺序排列为5,5,6,7,7,7,
∴这组数据的中位数是(6+7)÷2=6.5.
13
【技法点拨】
众数的特征
(1)一组数据的众数一定出现在这组数据中.
(2)一组数据的众数可能不止一个.如1,1,2,3,3,5中众数是1和3.
(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户
所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否
发生变化?
6
8
【举一反三】
1.(奇数位求法)已知两组数据3,2a,5,b与a,4,2b的平均数都是6,若将这两组数据
5
合并为一组数据,则这组新数据的中位数是_______.
2.(偶数位求法)一组数据:1,0,4,5,x,8.若它们的中位数是3,求x的值.
【解析】除x外5个数由小到大排列为0,1,4,5,8,
∵原数据有6个数,且这组数据的中位数是3;
所以,只有x+4=2×3时才成立,即x=2.
浙教版数学八年级下册3.2《中位数和众数》教案
浙教版数学八年级下册3.2《中位数和众数》教案一. 教材分析浙教版数学八年级下册3.2《中位数和众数》一节,主要介绍了中位数和众数的概念及其求法。
中位数是将一组数据从小到大排列后,位于中间位置的数,能够反映数据的中心位置;众数是一组数据中出现次数最多的数,能够反映数据的最常见特征。
这一节的内容是学生对统计学知识的一次深化,也是对数据处理能力的一次提高。
二. 学情分析学生在学习这一节之前,已经学习了平均数、方差等统计量,对数据处理有一定的基础。
但中位数和众数的概念及求法较为抽象,需要学生通过实际例子去理解和掌握。
同时,学生对于实际生活中的数据处理还不够敏感,需要教师通过生活中的实例来引导学生。
三. 教学目标1.理解中位数和众数的概念,掌握求中位数和众数的方法。
2.能够运用中位数和众数解决实际问题,提高数据处理能力。
3.培养学生的合作交流能力,提高学生的逻辑思维能力。
四. 教学重难点1.重点:中位数和众数的概念及其求法。
2.难点:中位数和众数在实际问题中的应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作法。
通过生活中的实例引导学生理解中位数和众数的概念,通过小组合作讨论,让学生在实际问题中运用中位数和众数,提高学生的数据处理能力。
六. 教学准备1.准备相关的生活实例和数据。
2.准备课件,进行图文并茂的讲解。
3.准备练习题,进行巩固练习。
七. 教学过程1.导入(5分钟)通过一个班级考试成绩的数据,引导学生思考:如何找到这组数据的中间成绩?如何找到这组数据中出现次数最多的成绩?从而引入中位数和众数的概念。
2.呈现(10分钟)讲解中位数和众数的概念,并通过PPT展示相关的例子,让学生理解和掌握。
3.操练(10分钟)让学生分组讨论,每组找出一组数据,求出这组数据的中位数和众数,并交流讨论。
4.巩固(10分钟)出示一些练习题,让学生独立完成,巩固对中位数和众数的理解和掌握。
5.拓展(10分钟)引导学生思考:在实际生活中,我们什么时候会用到中位数和众数?如何运用中位数和众数解决实际问题?6.小结(5分钟)让学生总结这一节课的收获,对中位数和众数的概念、求法以及实际应用进行回顾。
初中数学人教版八年级下册《中位数的概念》课件
134579 10 中位数
由小到大排序 数据个数为奇数
173495
10
中间位置
134579 10 中位数
由小到大排序 数据个数为奇数
1 3 4 5 6 7 9 10
173495
10
中间位置
134579 10 中位数
由小到大排序 数据个数为奇数
1 3 4 5 6 7 9 10 数据个数为偶数
173495
中位数的概念
将一组数据依照由小到大(或由大到小)的顺序排列, 若数据的个数为奇数,则称处于中间位置的数为这组数 据的中位数;
中位数的概念
将一组数据依照由小到大(或由大到小)的顺序排列, 若数据的个数为奇数,则称处于中间位置的数为这组数 据的中位数;若数据的个数为偶数,则称中间两个数据 的平均数为这组数据的中位数.
则这组数据的中位数是______.
20+30+40+m+35+10 =30 6
10 20 30 35 40 45
m=45 30+35 =32.5
2
练习
3.若一组数据 20,30,40,m,35,10的平均数是30,
则这组数据的中位数是__3_2__.5_.
20+30+40+m+35+10 =30 6
例2 学校展开线上防疫知识大赛,将八年级(1)班40名 学生的成绩数据(百分制)进行整理、描写和分析.下 面给出了部分信息.
a.比赛成绩的频数散布直方图如右:
例2 学校展开线上防疫知识大赛,将八年级(1)班40名 学生的成绩数据(百分制)进行整理、描写和分析.下 面给出了部分信息.
a.比赛成绩的频数散布直方图如右: b.比赛成绩在80≤x<90这一组的是:
人教版数学八年级下册第二十章数据的集中趋势第二节《中位数和众数》
M
30%
连接中考
某校女子排球队12名队员的年龄分布如下表所示:
年龄(岁) 13
14
15
16
人数(人) 1
2
5
4
则该校女子排球队12名队员年龄的众数、中位数分别是( C ) A.13,14 B.14,15 C.15,15 D.15,14
课堂检测
基础巩固题
1.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情
20人 18人
8人 4人
课堂检测
6.下面两组数据的中位数是多少? (1)5,6,2,3,2; (2)5,6,2,4,3,5.
提示:确定中位数要先排序、看奇偶,再计算. 解:(1) 中位数是3; (2)中位数是4.5.
课堂检测
能力提升题
为了了解开展“孝敬父母,从家务事做起”活动的实施情况,某
校抽取八年级某班50名学生,调查他们一周做家务所用时间,得
x 450001180001100001 55003 5000 6 34001 30001110001 6276 111 3 6 1111
平均数远远大于绝大多数人(22人)的实际月工资, 绝大多数人“被平均”,所以不合适.
探究新知
该公司员工的中等收入水平大概是多少元?你是怎样确定的?
月收
巩固练习
一组数据18,22,15,13,x,7,它的中位数是16,则x的值 是_____1_7_. 解析:这组数据有6个,中位数是中间两个数的平均数.因为 7<13<15<16<18<22,所以中间两个数必须是15,x,故 (15+x)÷2=16,即x=17.
探究新知 知识点 2 众数
下表是某公司员工月收入的资料.
人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义
初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。
求这一天10名工人生产零件的中位数。
知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。
例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。
知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。
✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。
➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。
✧缺点:不能充分地利用各数据的信息。
➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。
✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。
人教版八年级下册20.1.2中位数和众数说课稿
3.情感态度与价值观目标:培养学生对数学的兴趣,使他们认识到数学在生活中的重要性,增强他们运用数学解决实际问题的意识。
(三)教学重难点
1.教学重点:中位数和众数的定义及其求法,以及它们在实际生活中的应用。
2.小组讨论:教师给出讨论话题,学生分组进行讨论,鼓励他们发表自己的观点,培养他们的合作意识和沟通能力。
3.成果展示:各小组展示自己的研究成果,其他小组进行评价和补充,促进学生之间的交流和学习。
4.课堂练习:教师给出练习题,学生独立完成,教师及时进行点评和指导,帮助学生巩固知识。
四、教学过程设计
(一)导入新课
2.个别辅导:对计算能力不足的学生进行个别辅导,帮助他们提高计算能力。
课后,我将通过学生的课堂表现、作业完成情况和练习成绩来评估教学效果。根据评估结果,我将进行以下反思和改进措施:
1.针对学生的薄弱环节进行重点讲解,提高他们的理解能力。
2.调整教学方法和练习设计,使之更符合学生的学习需求。
3.鼓励学生积极参与课堂活动,提高他们的学习兴趣和动机。
2.同伴评价:鼓励学生互相评价,给出中位数和众数求解过程中的建议和意见。
3.教师评价:教师对学生的学习情况进行总结和评价,针对学生的不足提出改进建议,帮助他们进一步提高。
(五)作业布置
我的课后作业布置情况如下:
1.作业内容:布置一道求中位数和众数的课后作业,让学生独立完成,巩固所学知识。
2.作业目的:通过作业的完成,检验学生对中位数和众数的理解和掌握程度,培养他们的实践能力。
2.课后作业:布置相关的课后作业,如求一组给定数据的中位数和众数,让学生独立完成,巩固所学知识。
人教八年级数学下册- 中位数和众数(附习题)
2. 某校男子足球队的年龄分布如下面条形图 所示.请找出这些队员年龄的平均数、众数、中位 数,并解释它们的意义.
解:由图知13岁2人,14岁6人,15岁8人,16岁 3人,17岁2人,18岁1人,一共22人.
所以足球队员年龄的平均数为:15岁;众 数为:15岁;中位数为:15岁.
它们的含义分别是:校男子足球队员的平 均年龄为15岁;校男子足球队员中年龄为15岁 的队员最多;校男子足球队员的年龄不足15岁 和超过15岁的人数相当.
根据例4中的样本数据,你还有其 他方法评价(2)中这名选手在这次比 赛中的表现吗?
练习
下面的条形图描述了某车间工人日加工 零件数的情况.
请找出这些 工人日加工零件 数的中位数,并 说明这个中位数 的意义.
解:由条形图知这组数据中从小到大排列为:4个3, 5个4,8个5,9个6,6个7,4个8共36个数,则这组数 据的中位数为处在中间两个数6,6的平均数,因此这 些工人日加工零件的中位数为6.
它的意义是:23.5cm的鞋销量最大.因此可以 建议鞋店多进23.5cm的鞋.
练习
1. 下面的扇形图描述了某种运动服的S号,M 号,L号,XL号,XXL号在一家商场的销售情况. 请你为这家商场提出进货建议. 解:由扇形图可以看出,在某种运 动服大小型号组成的一组数据当中, M号最多为30%.因此可以建议这家 商场多进M号的运动服.
2.在一次女子体操比赛中,八名运动员的年
龄(单位:岁)分别为:12、14、12、15、14、14、 16、15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
八年级数学中位数
奇数个数的中位数
当数据个数为奇数时,中位数是位于 中间位置的数。例如,如果数据集为 {1, 3, 5, 7},中位数就是3。
如果数据个数总和除以2的商不是整数, 则中位数是位于中间两个数的平均值。 例如,如果数据集为{1, 5, 7, 9},中位 数就是(5+7)/2=6。
偶数个数的中位数
当数据个数为偶数时,中位数是中间两个数的平均值。例如,如果数据集为{1, 3, 5, 7, 9},中位数就是(5+7)/2=6。
八年级数学中位数
contents
目录
• 引言 • 中位数的计算方法 • 中位数的性质 • 中位数的实际应用 • 中位数与其他统计量的比较 • 案例分析
01 引言
中位数的定义
01
中位数是一组数据中排在中间位 置的数值。
02
当数据量是奇数时,中位数就是 中间那个数;当数据量是偶数时 ,中位数是中间两个数的平均值 。
中位数的应用场景
01
02
03
数据分析
中位数可以用于描述一组 数据的中心趋势,帮助我 们了解数据的分布情况。
统计学
在统计学中,中位数经常 被用来描述数据的集中趋 势,特别是在处理偏态数 据时。
决策制定
在某些情况下,中位数可 以用于决策制定,例如在 确定工资水平或制定价格 策略时。
02 中位数的计算方法
平均数受异常值影响较大
由于平均数是所有数值的总和除以数值的数量,因此当数据中出现异常值时,平均数会 受到较大的影响,可能导致对数据分布的误判。而中位数则相对稳定,不易受到异常值
的影响。
中位数与几何平均数的关系
几何平均数是中位数的上界
对于正数数据集,中位数总是小于或等于几何平均数。这是因为几何平均数考虑了所有数值的连乘积,对于较大 的数值有更大的权重,因此几何平均数会相对较大。
人教版数学八年级下册《中位数》教学设计
人教版数学八年级下册《中位数》教学设计一. 教材分析人教版数学八年级下册中的《中位数》是统计学的一部分,主要让学生了解中位数的定义、性质和求法。
中位数是将一组数据从小到大排列后,位于中间位置的数。
它是一种描述数据集中趋势的统计量,能较好地反映一组数据的一般水平。
本节课通过中位数的概念,让学生掌握中位数的求法,并能够运用中位数解决实际问题。
二. 学情分析学生在八年级上册已经学习了平均数、众数等统计量,对统计学有了初步的认识。
但中位数的概念和求法与他们之前学习的内容有所不同,需要引导学生进行适当的过渡。
同时,学生需要具备一定的逻辑思维能力和数学运算能力,才能理解和掌握中位数。
三. 教学目标1.知识与技能:让学生了解中位数的定义、性质和求法,能运用中位数描述一组数据的一般水平。
2.过程与方法:通过实例分析,让学生学会求一组数据的中位数,培养学生的逻辑思维能力和数学运算能力。
3.情感态度与价值观:让学生感受统计在生活中的应用,培养学生的统计观念,激发学生学习数学的兴趣。
四. 教学重难点1.重点:中位数的定义、性质和求法。
2.难点:中位数的求法,以及如何运用中位数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解中位数的概念和作用。
2.讲授法:讲解中位数的定义、性质和求法。
3.实践操作法:让学生动手实践,求一组数据的中位数。
4.问题驱动法:引导学生思考中位数在实际生活中的应用,培养学生的统计观念。
六. 教学准备1.教学课件:制作课件,展示中位数的定义、性质和求法。
2.练习题:准备一些有关中位数的练习题,用于巩固所学知识。
3.教学素材:收集一些生活中的统计数据,用于引导学生思考中位数的作用。
七. 教学过程1.导入(5分钟)利用课件展示一组数据:3, 5, 7, 9, 11, 13, 15。
提问:“请问这组数据的中位数是多少?”让学生思考并回答。
2.呈现(10分钟)讲解中位数的定义、性质和求法。
人教版八年级数学下册第1课时 中位数和众数
17、17,则这组数据的中位数是 16 .
2.在一次女子体操比赛中,八名运动员的年龄(单
位:岁)分别为:12、14、12、15、14、14、16、
15,这组数据的众数是( B )
A.12
B.14
C.15
D.16
综合应用
如图是连续十周测试甲、乙两名运动员体能 训练成绩的折线统计图,教练组规定:体能测试 成绩70分以上(包括70分)为合格.
例4 在一次男子马拉松长跑比赛中,抽得12名选手 所用的时间(单位:min)如下:
136 140 129 180 124 154
146 145 158 175 165 148 (1)样本数据(12名选手的成绩)的中位数是多 少? (2)一名选手的成绩是142min,他的成绩如何?
解:(1)先将样本数据按照由小到大的顺序排列: 124 129 136 140 145 146
20.1.2 中位数和众数
第1课时 中位数和众数
R·八年级数学下册
新课导入
上节课我们学习了平均数,知道它可以作为 一组数据的代表,利用它可以反映一组数据的集 中趋势.
除了平均数,还有什么样的数也可以来作为 一组数据的代表,反映一组数据的集中趋势呢?
学习目标
1.理解中位数、众数的意义. 2.会利用样本的中位数去估计总体的中位数. 3.体会中位数和众数在统计中的作用.
错因分析:导致错误的原因是没有准确地理 解中位数、众数的概念,求中位数时,所有的数 据都要参与排序,不仅仅是把不同的数排序.在 理解记忆平均数、中位数、众数概念的时候,要 准确掌握它们的计算方法,特别注意在求中位数 时要记住对所有数据进行排序.
误区 二 求中位数时误认为数据的顺序已定
一组数据:2,3,4,x若中位数与平均数相等,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.1.2中位数和众数
一、教学目标
1、知识目标:
①理解众数与中位数的意义。
②会求一组数据的众数和中位数。
2、能力目标:培养学生的观察、分析和计算能力。
3、德育目标:
①培养学生认真、耐心、细致的学习态度和学习习惯。
②渗透数学知识来源于生活,又服务于生活的思想。
二、重点·难点·疑点
1.教学重点:定义的理解及求一组数据的众数与中位数。
2.教学难点:
①平均数、众数、中位数这三数之间的区别与联系。
②偶数个数据的中位数的求法。
3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。
三,导入
第一课时、中位数
【活动一】小A到本山公司招聘趣事
小A到人才市场应聘,人事经理告诉他员工月平均工资是2000元,小A欣然接受了这份工作,但一段时间后,小A 发现了问题,没有一个职员工资超过2000,他很苦恼,你能帮帮他吗?
请同学们仔细观察这个统计表,帮助小A解决问题。
1、请大家仔细观察表中的数据,计算本山公司员工的月平均工资是多少? 经理是否欺骗了小A?
2、为什么月平均工资2000元,为什么本山公司大部分员工的工资在2000元以下呢?
3、该公司的月平均工资能否客观地反映员工的工资收入?
4、仔细观察表中的数据,你们认为哪个数据反映员工的实际收入比较合适?
活动一中的1200为中位数
自主学习:p116页中位数定义
中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
找一找;
找出下列各组数据的中位数
(1)2,3,-1,2,1,3,0
排序:-1,0,1,2,2,3,3
中位数:2
(2)1,4,3,2,4,5
排序1,2,3,4,4,5
中位数:3.5
(3)5,6,2,3,2
排序:2,2,3,5,6,
中位数:3
(4)5,6,2,4,3,5,1,2
排序:1,2,2,3,4,5,5,6
中位数: 3.5
探究:观察(1)-(4)用含有n的代数式填空
如果数据个数n为奇数时,第()个数据为中位数。
如果数据个数n为偶数时,第()和()个数据的(平
均数)为中位数。
注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾
名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的
平均数),排序时,从小到大或从大到小都可以。
2.在数据个数为奇数的情况下,中位数是这组数据中的一个数
据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平
均数,它不一定与这组数据中的某个数据相等。
归纳:找中位数的方法:先排序,定奇偶,求中位数
总结:1.大小排序2.唯一3.不一定是组中数
随堂练习
1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是 9
2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值
是22
3.某公司销售部有营销人员15人,销售部为了制定某种商品的销售
金额,统计了这15个人的销售量如下(单位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求这15个销售员该月销量的中位数
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
答案:(1)210件
(2)不合理。
因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数,是大部分人能达到的额定。
4、随机抽取我市一年(按365天计)中的30天平均气温状况如下表:温度(℃)-8 -1 7 15 21 24 30
天数 3 5 5 7 6 2 2
请你根据上述数据回答问题:
(1).该组数据的中位数是什么?
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?
答案:.(1)15. (2)约97天
中位数的作用:
中位数是一个位置代表值,利用中位数分析数据可以得到一些信息。
如果已知一组数据的中位数,那么我们可以知道:在这组数据中,有一半的数比中位数大,有一半的数比中位数小。
即小于或大于这个中
位数的数据各占一半。
课后思考?
一次数学考试,婷婷得到78分,全班共30人,其他同学的成绩为一个100分,4个90分,22个80分,以及一个2分和一个10分。
(1)计算出全班的平均成绩
(2)所以婷婷告诉妈妈说,自己这次成绩在班上处于中上水平,这个说法合理吗?理由?
提示:结合P117,例4思考
第二课时、众数
【活动一】小范到本山公司招聘趣事
请同学们仔细观察这个统计表,帮助小范解决问题。
活动一中的1100为众数
自主学习:p118页众数定义定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。
众数的功能,“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”你学会了吗?
练习1:找出下列各组数据的众数
(1)1,2,3,3,4 3
(2)1,2,3,2,3,4, 2、3
(3)1,2,4,1,4,2,无
注意:
①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。
②一组数据中的众数有时不只一个
如数据1、2、3、2、3、4中,2和3都出现了2次,它们都是这组数据的众数。
总结:1.与顺序无关2.不唯一
例2:结合生活实际,应用举例:
例110名工人某天生产同一零售,生产的件数是:
15 17 14 10 15 19 17 16 14 12
求这一天10名工人生产的零件的中位数.
教师引导学生观察分析后,让学生自解.
解:将10个数据按从小到大的顺序排列,得到:
10 12 14 14 15 15 16 17 17 19
左右最中间的两个数据都是15,它们的平均数是15,即这组数据的中位数是15(件).
答:这一天10人生产的零件的中位数是15件.
随堂练习
1、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
1匹 1.2匹 1.5匹2匹
3月12台20台8台4台
4月16台30台14台8台
根据表格回答问题:
商店出售的各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
答案:(1)1.2匹
(2)通过观察可知1.2匹的销售最大,所以要多进1.2匹,由于资金有限就要少进2匹空调。
2、如果在一组数据中,2
3、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( c)
A.24、25
B.23、24
C.25、
25 D.23、25
总结:中位数和众数意义和作用:
中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。
众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响
练习:判断正误(区分中位数,众数,平均数)
a一组数据的平均数一定只有一个。
()
b一组数据的中位数一定只有一个。
()
c一组数据的众数一定只有一个。
()
d一组数据的中位数一定是这组数据中的某一个数。
()
e一组数据的平均数、中位数、众数可以是同一个数。
()
f一组数据的众数数一定是这组数据中的某一个数。
()
P118-119例5、例6
归纳:平均数反映一组数据的()
中位数反映一组数据的()
众数数反映一组数据的()
A.平均水平
B.中等水平
C.多数水平
第3课时
例:某班四个小组的人数如下:10,10,x,8,已知这组数据的中位数与平均数相等,求这组数据的中位数。
分析:根据求平均数公式可列出该数据组的平均数为
(10+10+x+8),中位数要先从小到大排列后才可求出,又不知道x的大小,就要分情况讨论,然后列方程求解。
解:平均数:=
(1)当x≤8时,原数据按从小到大排列为:x,8,10,10,其中位数为=9
若=9,则x=8
∴此时中位数为9
(2)当8<x≤10时,原数据按从小到大排列为:8,x,10,10,其中位数为若=,则x=8,不在8<x≦10范围内,也就是说x不可能在8<x≤10范围内
(3)当x≥10时,原数据按从小到大排列为:8,10,10,x其中位数为=10
若=10,则x=12
∴此时中位数是10
综上所述,这组数据的中位数是9或10
说明:分类讨论是数学中的重要思想方法,解题时一定要全面考虑,对可能出现的各种情况要逐个研究讨论。