移动机器人视觉定位设计方案
AGV移动机器人的五种定位技术介绍
AGV移动机器人的五种定位技术介绍AGV(Automated Guided Vehicle)移动机器人是一种自动导引车辆,能够在工业和物流领域进行物品运输和搬运任务。
为了准确定位AGV移动机器人的位置,可以采用多种定位技术。
下面将介绍五种常见的AGV定位技术。
1.激光定位技术:激光定位技术是一种通过激光扫描仪实现的定位方法。
它通过扫描周围环境并计算与物体的距离和角度来确定机器人的位置。
这种定位技术具有高精度和高可靠性的特点,适用于需要精确定位的场景,如仓库等。
2.视觉定位技术:视觉定位技术是一种使用摄像头和图像处理算法来确定机器人位置的方法。
它通过识别和匹配环境中的特征点或标志物来进行定位。
视觉定位技术具有较高的灵活性和适应性,可以适应不同环境和场景的变化。
3.超声波定位技术:超声波定位技术是一种使用超声波传感器来测量距离和方向的方法。
机器人通过发送超声波信号,并根据接收到的反射信号计算与物体的距离和方向,进而确定自身位置。
这种定位技术需要在环境中设置超声波信号源,适用于开放空间和室内场景。
4.地磁定位技术:地磁定位技术是一种通过检测地球磁场强度和方向来进行定位的方法。
机器人搭载磁力计和罗盘传感器,通过测量环境中的地磁场来确定自身位置。
地磁定位技术具有较高的稳定性和精度,适用于室内和地下场景。
5.惯性导航定位技术:惯性导航定位技术是一种使用加速度计和陀螺仪等惯性传感器来确定机器人位置的方法。
它通过测量机器人的加速度和角速度来计算和集成运动路径,并推算出位置。
惯性导航定位技术具有较高的实时性和灵活性,适用于复杂环境和短距离运动。
这些AGV定位技术各有优劣,可以根据不同的应用场景和需求选择合适的技术。
在实际应用中,也可以将多种定位技术进行组合和协同,以提高定位的精度和鲁棒性。
随着技术的不断进步,AGV定位技术将会越来越成熟和普及。
AGV移动机器人的五种定位技术介绍
AGV移动机器人的五种定位技术介绍导语:随着传感技术、智能技术和计算技术等的不断提高,智能移动机器人一定能够在生产和生活中扮演人的角色。
那么,AGV移动机器人的定位技术主要涉有哪些呢?1、超声波导航定位技术超声波导航定位的工作原理也与激光和红外类似,通常是由超声波传感器的发射探头发射出超声波,超声波在介质中遇到障碍物而返回到接收装置。
通过接收自身发射的超声波反射信号,根据超声波发出及回波接收时间差及传播速度,计算出传播距离S,就能得到障碍物到机器人的距离,即有公式:S=Tv/2式中,T—超声波发射和接收的时间差;v—超声波在介质中传播的波速。
由于超声波传感器具有成本低廉、采集信息速率快、距离分辨率高等优点,长期以来被广泛地应用到移动机器人的导航定位中。
而且它采集环境信息时不需要复杂的图像配备技术,因此测距速度快、实时性好。
2、视觉导航定位技术在视觉导航定位系统中,目前国内外应用较多的是基于局部视觉的在机器人中安装车载摄像机的导航方式。
在这种导航方式中,控制设备和传感装置装载在机器人车体上,图像识别、路径规划等高层决策都由车载控制计算机完成。
视觉导航定位系统的工作原理简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。
3、GPS全球定位系统如今,在智能机器人的导航定位技术应用中,一般采用伪距差分动态定位法,用基准接收机和动态接收机共同观测4颗GPS卫星,按照一定的算法即可求出某时某刻机器人的三维位置坐标。
差分动态定位消除了星钟误差,对于在距离基准站1000km的用户,可以消除星钟误差和对流层引起的误差,因而可以显着提高动态定位精度。
4、光反射导航定位技术典型的光反射导航定位方法主要是利用激光或红外传感器来测距。
基于嵌入式系统的室内移动机器人定位与导航
基于嵌入式系统的室内移动机器人定位与导航一、概述随着科技的快速发展,室内移动机器人已成为智能家居、物流运输、医疗护理等领域的重要组成部分。
要实现机器人的高效、准确运作,其定位与导航技术至关重要。
基于嵌入式系统的室内移动机器人定位与导航技术,通过集成传感器、控制算法和路径规划算法,使机器人能够在复杂的室内环境中实现自主定位与导航。
嵌入式系统作为机器人的核心部分,具备体积小、功耗低、实时性强等特点,能够满足机器人对于硬件资源的需求。
通过集成多种传感器,如激光雷达、超声波传感器、摄像头等,机器人可以获取环境中的距离、障碍物、图像等信息,为定位与导航提供丰富的数据支持。
在定位方面,基于嵌入式系统的室内移动机器人可以采用多种技术,如SLAM(同时定位与地图构建)、惯性导航、WiFi指纹定位等。
这些技术各有优缺点,可以根据具体应用场景进行选择和优化。
通过实时获取机器人的位置信息,可以实现对机器人的精确控制。
在导航方面,嵌入式系统可以根据定位信息以及预设的目标位置,结合路径规划算法,为机器人规划出最优的行驶路径。
同时,机器人还需要具备避障功能,能够在遇到障碍物时及时调整行驶方向,确保安全到达目的地。
基于嵌入式系统的室内移动机器人定位与导航技术是实现机器人自主化、智能化的关键。
通过不断优化算法和硬件设计,可以提高机器人的定位精度和导航效率,为各领域的应用提供更加便捷、高效的解决方案。
1. 嵌入式系统概述及其在机器人技术中的应用嵌入式系统,作为一种专用的计算机系统,被设计用于执行特定的控制、监视或辅助功能。
它通常嵌入在设备或系统内部,是设备智能化、自动化的核心所在。
嵌入式系统结合了硬件和软件,具有体积小、功耗低、实时性强、可靠性高等特点,因此广泛应用于各种领域,如智能家居、医疗设备、航空航天以及机器人技术等。
在机器人技术中,嵌入式系统发挥着举足轻重的作用。
嵌入式系统为机器人提供了强大的计算和控制能力。
通过嵌入式处理器和相应的算法,机器人能够实时地处理传感器数据、执行复杂的运动控制任务,并实现自主导航和定位。
机器人视觉物体定位方法
机器⼈视觉物体定位⽅法机器⼈视觉物体定位⽅法本次设计的题⽬是机器⼈视觉物体定位。
伴随社会发展,机器⼈的利⽤越来越普及,出现了多种多样的智能机器⼈,由此也引发了对机器视觉的研究热潮。
⽂章⾸先介绍了机器视觉的发展历程,并详细说明了各阶段的特点。
接着概述了机器视觉技术的原理,深⼊剖析了主流视觉物体定位⽅法。
然后介绍了机器⼈视觉物体定位⽅法常⽤的⼏种应⽤。
最后介绍了⼏种新颖的视觉物体定位⽅法,并猜想机器⼈视觉物体定位技术未来发展⽅向。
关键词:机器视觉 SLAM技术单⽬视觉双⽬视觉多⽬视觉第⼀章:绪论1.1选题的背景及意义在我国持续爆发的2019新型冠状病毒(即2019-nCoV)事件中,⾃动化⾷品仓储配送系统服务包括机器⼈、⽆⼈驾驶、⽆⼈机等再次成为讨论的焦点。
配送机器⼈如何实现⾃动取货送货?⽆⼈驾驶汽车是怎么躲避⾏⼈?⽆⼈机巡航中怎么确定物体之间的距离?当我们谈到相关的话题时,机器视觉定位是⽆论如何也绕不开的问题。
⾃被誉为“机器⼈之⽗”的恩格尔伯格先⽣1959年发明第⼀台机器⼈以来,科学家⼀直把对机器⼈的研究作为研究的重点⽅向。
传统的机器⼈缺乏环境感知能⼒和⾃动应变能⼒,仅仅只能在严格的预定义的环境中完成⼀些预定义和指令下的动作,应⽤⾮常有限局限。
随着机器⼈逐渐⾛进⼈们的⽣产和⽣活中,⼈们也对机器⼈提出了更⾼的要求,希望实现在⽣产加⼯中对物体的⾃动加⼯、对⾃⾝运动轨迹实时的随动检测,节省对其运动轨迹的预先编程,提⾼⽣产效率。
要达到这些要求,必须同时满⾜图像信息的获取、采集、处理和输出,这就是本⽂的研究重点:机器⼈视觉物体定位⽅法。
机器⼈视觉物体定位系统的设计和研发是为了更好地为⼯业机器⼈服务,它的本质是发挥摄像机定位以及跟踪性功能,很多企业在⾃⾝⽣产环节依赖于机器⼈,⽣产效率明显得到改善。
然⽽很多的机器⼈是半⾃动的⼯作模式,只有在⼈⼯操控的指引下才能完成⼯作任务,这样的机器⼈实⽤性很差,⽆法彻底解放⼈⼯,实现⾃动化操作。
机器人视觉导航系统的设计与实现
机器人视觉导航系统的设计与实现一、引言近年来,随着机器人在工业、服务、医疗等各个领域的广泛应用,机器人系统的视觉导航成为了一个备受关注的课题。
机器人视觉导航系统可以通过图像处理技术从环境中获取信息,指导机器人完成一系列任务,如避障、路径规划、目标追踪等,使得机器人具备自主移动能力和环境感知能力。
本文将围绕机器人视觉导航系统的设计与实现展开讨论,并给出一些可行的解决方案。
二、机器人视觉导航系统的基本原理机器人视觉导航系统的基本原理是通过摄像头采集环境中的图像,然后将图像信息转换成机器人能够理解的数字信号,进行图像处理,确定机器人当前的位置和方向,并制定行动计划。
机器人视觉导航系统通常包括硬件系统和软件系统两部分。
硬件系统主要包括摄像头、传感器、运动控制器等。
其中,摄像头是整个系统的核心,可以为机器人提供实时的图像信息。
传感器则可以用来检测机器人的运动状态、环境温度、湿度等信息,并用于环境感知。
运动控制器则负责控制机器人的运动,包括车轮、轮刹、转向等。
软件系统主要包括图像处理模块、定位导航模块、路径规划模块等。
图像处理模块可以对摄像头所采集的图像进行处理和分析,提取环境中的目标物体、障碍物等信息。
定位导航模块则可以确定机器人的当前位置和方向,以及其在环境中的目标位置。
路径规划模块则使用机器学习算法,根据环境信息和目标位置制定出一条行动计划,让机器人进行自主移动。
三、机器人视觉导航系统的设计1. 摄像头选择在选择摄像头时需要考虑以下因素:(1)分辨率:分辨率越高,采集的图像越清晰,对于机器人视觉导航系统来说十分重要。
(2)帧数:帧数越高,机器人采集的图像就越流畅,对于环境感知和路径规划来说有一定的帮助。
(3)光线情况:机器人可能在不同的环境下进行移动,因此摄像头需要具备一定的适应性,能够在不同光线情况下稳定工作。
2. 图像处理模块设计在实现机器人视觉导航系统时,需要对机器采集到的图像进行处理和分析,从而提高机器人的自主移动能力。
机器人的导航与定位方案
机器人的导航与定位方案随着科技的发展,机器人在日常生活中扮演着越来越重要的角色。
机器人的导航与定位是机器人能够准确感知和移动的关键技术之一。
本文将介绍几种常见并且可行的机器人导航与定位方案。
一、视觉导航与定位视觉导航是一种基于机器视觉技术的导航与定位方案。
该方案利用机器人配备的相机和图像处理算法,通过识别环境中的特征物体、地标或者二维码来进行导航与定位。
相对于其他导航与定位技术,视觉导航需要的硬件成本相对较低,并且能够较为准确地感知环境。
然而,视觉导航容易受到光照、遮挡等外界因素影响,对环境要求较高。
二、惯性导航与定位惯性导航与定位是一种以惯性传感器为基础的导航与定位方案。
通过使用陀螺仪和加速度计等惯性传感器,机器人可以感知自身的加速度、角速度等信息,并通过积分计算出机器人的位置和姿态。
惯性导航与定位不依赖于外界参考,对环境的要求较低,且具有较高的精度和实时性。
但是,由于惯性传感器的误差会随着时间的推移而积累,因此需要结合其他导航与定位技术进行纠正,以提高定位的精度。
三、激光雷达导航与定位激光雷达导航与定位是一种基于激光雷达扫描地图和传感器测距原理的导航与定位方案。
机器人搭载激光雷达设备,通过发射激光束扫描周围环境,并根据激光束的反射情况构建地图。
利用地图信息和机器人当前位置的估计值,可以进行导航与定位。
激光雷达导航与定位具有较高的精度和可靠性,适用于复杂的室内和室外环境。
然而,激光雷达设备价格昂贵,使用成本较高,且不适用于某些特殊环境,如强光环境或者雨雪天气。
四、超声波导航与定位超声波导航与定位是一种基于超声波传感器的导航与定位方案。
机器人使用超声波传感器发射超声波,通过测量超声波的传播时间和反射情况,可以计算出物体与机器人的距离和方位,从而实现导航和定位。
超声波导航与定位具有成本较低、实时性较好的优点,适用于室内环境中的障碍物避开和目标搜索。
然而,由于超声波传感器测量范围有限,并且容易受到噪声的干扰,导致其定位精度相对较低。
机器人视觉智能定位与导航算法研究与优化
机器人视觉智能定位与导航算法研究与优化随着科技的不断发展,机器人已经成为一个重要的研究领域。
机器人的视觉智能定位与导航是机器人能够自主感知环境并进行准确定位和导航的关键技术。
本文将就机器人视觉智能定位与导航算法的研究与优化进行探讨。
1. 机器人视觉智能定位机器人的视觉定位是指机器人通过视觉传感器获取环境信息,并根据这些信息确定自身在环境中的位置。
视觉定位的关键问题是图像的特征提取与匹配。
图像特征提取是指从图像中提取出能够表达物体特征的信息,如角点、边缘等;而图像特征匹配是指通过比较不同图像间的特征点,确定它们之间的对应关系。
常用的图像特征匹配算法有SIFT、SURF和ORB等。
在机器人视觉定位中,同时还需要进行地图构建和定位融合。
地图构建是建立环境的三维模型,通过获取环境中的特征点,并将其与机器人的位置信息进行关联。
定位融合是将不同传感器的数据进行融合,提高定位的准确性和鲁棒性。
2. 机器人视觉智能导航机器人的视觉导航是指机器人根据位置信息和地图,计划一条从起始点到目标点的路径,并通过控制器控制机器人按照计划的路径进行移动。
视觉导航的关键问题是路径规划和运动控制。
路径规划是根据机器人当前位置和目标位置,确定机器人的移动路径。
常用的路径规划算法有A*算法、Dijkstra算法和RRT算法等。
这些算法根据不同的问题和环境,选择合适的指标和搜索策略,生成高效的路径。
运动控制是将路径规划得到的路径转化为具体的机器人控制指令,使机器人能够按照规划的路径正确地移动。
其中,机器人的速度控制和轨迹跟踪是重要的研究问题。
速度控制是通过控制机器人的线速度和角速度实现机器人的移动;轨迹跟踪是使机器人沿着规划的路径以合适的速度进行移动,同时尽量减小位置误差。
3. 算法研究与优化在机器人视觉智能定位与导航算法的研究中,算法的效率和鲁棒性是重要的考虑因素。
算法的效率决定了机器人能够在有限的时间内进行定位与导航;算法的鲁棒性决定了机器人能够应对不同的噪声和环境变化,保持定位与导航的准确性。
基于视觉的室内移动机器人精确定位方法
l n ma k i a e i c n ime . Th o ii n a d t e d r c i n o h b l r b ta e c lu a e a d r m g s o f r d e p sto n h ie to ft e mo i o o r a c l t d e
摘 要 : 出 了 一种 用混 合 编 码 路 标 的 方 法 对移 动机 器人 精 确 定 位 。 据 路 标 像 与像 面 上 平 均 能 量之 间 的 关 系 , 提 根 选
取 出合 适 的 动 态阚 值 , 大 多数 环 境 中能 从 天 花 板 像 中提 取 出路 标像 ; 特 殊 情 况 下 , 在 在 阈值 自动调 整 。 采 用 竖 直
o he b ss o h e r fg a t nd c di nf r to ft e l n n t a i ft e c nte o r viy a o ng i o ma i n o h a dma k i g r ma e.Exp rme e i n—
a r pra e d a i hr s o d i ee t d t ik up a l n pp o i t yn m c t e h l s s l c e o p c a dma k i a r m e ln m a n r m ge f o a c ii g i ge i
维普资讯
第 2卷 第 2 2 期 20 0 7年 6月
数
据
采
集
与
处
理
Vo . 2 No 2 12 .
J u n lo t q ii o L o esn o r a fDa aAc ust n 8 c sig i Pr
机器人视觉定位方法【秘籍】
针对移动机器人的局部视觉定位问题进行了研究。
首先通过移动机器人视觉定位与目标跟踪系统求出目标质心特征点的位置时间序列,然后在分析二次成像法获取目标深度信息的缺陷的基础上,提出了一种获取目标的空间位置和运动信息的方法。
该方法利用序列图像和推广卡尔曼滤波,目标获取采用了HIS模型。
在移动机器人满足一定机动的条件下,较精确地得到了目标的空间位置和运动信息。
仿真结果验证了该方法的有效性和可行性。
运动视觉研究的是如何从变化场景的一系列不同时刻的图像中提取出有关场景中的目标的形状、位置和运动信息,将之应用于移动机器人的导航与定位。
首先要估计出目标的空间位置和运动信息,从而为移动机器人车体的导航与定位提供关键前提。
视觉信息的获取主要是通过单视觉方式和多视觉方式。
单视觉方式结构简单,避免了视觉数据融合,易于实现实时监测。
如果利用目标物体的几何形状模型,在目标上取3个以上的特征点也能够获取目标的位置等信息。
此方法须保证该组特征点在不同坐标系下的位置关系一致,而对于一般的双目视觉系统,坐标的计算误差往往会破坏这种关系。
采用在机器人上安装车载摄像机这种局部视觉定位方式,本文对移动机器人的运动视觉定位方法进行了研究。
该方法的实现分为两部分:首先采用移动机器人视觉系统求出目标质心特征点的位置时间序列,从而将对被跟踪目标的跟踪转化为对其质心的跟踪;然后通过推广卡尔曼滤波方法估计目标的空间位置和运动参数。
1.目标成像的几何模型移动机器人视觉系统的坐标关系如图1所示。
其中O-XYZ为世界坐标系;Oc-XcYcZc为摄像机坐标系。
其中Oc为摄像机的光心,X轴、Y轴分别与Xc轴、Yc轴和图像的x,y轴平行,Zc为摄像机的光轴,它与图像平面垂直。
光轴与图像平面的交点O1为图像坐标系的原点。
OcO1为摄像机的焦距f.图1 移动机器人视觉系统的坐标关系不考虑透镜畸变,则由透视投影成像模型为:式中,Z′=[u,v]T为目标特征点P在图像坐标系的二维坐标值;(X,Y,Z)为P点在世界坐标系的坐标;(Xc0,Yc0,Zc0)为摄像机的光心在世界坐标系的坐标;dx,dy为摄像机的每一个像素分别在x轴与y轴方向采样的量化因子;u0,v0分别为摄像机的图像中心O1在x轴与y轴方向采样时的位置偏移量。
《移动机器人》课件-第6章 移动机器人定位
传感器动态性能还需提高,地图 存在累积误差
12
6.2 同时定位与建图
SLAM问题可以描述为: 移动机器人从一个未知的位置出发,在不断运动过程中根据自身位姿估计和传感 器对环境的感知构建增量式地图,同时利用该地图更新自己的定位。 定位与增量式建图融为一体,而不是独立的两个阶段。
13 移动机器人
6.2 同时定位与建图
移动机器人
三维正态分布曲线
6.3.2 NDT算法
6.3.2 NDT算法
移动机器人
6.3.2 NDT算法
移动机器人
6.3.2 NDT算法
相对于ICP需要剔除不合适的点对(点对距离过大、包含边界点的点对)的 缺点,NDT算法不需要消耗大量的代价计算最近邻搜索匹配点,并且概率密度函 数在两幅图像采集之间的时间可以离线计算出来;
Cartographer的核心内容是融合多传感器数据的局部子图创建以及闭环检测 中的扫描匹配。该方案的不足是没有对闭环检测结果进行验证,在几何对称的环 境中,容易引起错误的闭环。
移动机器人
6.3 基于激光雷达的定位方法
激光雷达点云数据是由一系列空间中的点组成的,属于稀疏点云。 点云处理的关键在于点云的配准,是通过点云构建完整场景的基础。 目前常用的配准方法有ICP算法和 NDT算法。 典型的基于激光雷达的定位方法主要有:Gmapping、Hector SLAM和
6.1 定位
(2)绝对定位 原理:确定移动机器人在全局参考框架下的位姿信息。 特点:不依赖于时间和初始位姿,没有累积误差问题,具有精度高、可靠性
强等特点。 采用导航信标、主动或被动标识、地图匹配、全球定位系统、超声波、激光、
卫星、WiFi、射频标签、蓝牙、超宽带、计算机视觉等定位方法,属于绝对定位 范围。
移动机器人双目视觉-惯导融合定位技术研究
挪动机器人双目视觉-惯导融合定位技术探究关键词:挪动机器人;双目视觉;惯性导航;融合算法;定位精度;鲁棒性1. 引言挪动机器人自主导航与定位是机器人领域亟待解决的技术难题。
传统的定位方式主要依靠GPS、激光等技术,但在室内环境或密闭环境下无法使用。
因此,双目视觉与惯性导航系统(INS)成为了探究的热点之一。
本文将双目视觉与惯性导航系统进行融合,提高了定位的精度和鲁棒性。
2. 双目视觉定位双目视觉利用左右两个摄像机从不同的角度拍摄同一物体,通过图像处理和三角测量等方法计算出目标物体的三维坐标。
双目视觉定位方法相对实惠,且容易实现,但在暗光、昏暗环境下精度无法保证,且对于透亮和高反光物体的识别存在困难。
3. 惯性导航定位惯性导航系统利用加速度计和陀螺仪等传感器测量机器人的姿态和运动状态,通过累计计算出机器人相对于起始位置的位移,从而实现机器人的定位。
INS的定位精度较高,但由于测量误差的叠加,随着时间的推移误差会越来越大。
4. 双目视觉-惯导融合定位技术双目视觉与惯性导航系统各自具有优缺点,因此将两者进行融合,可以弥补彼此的不足,提高定位精度和鲁棒性。
本文提出了一种基于卡尔曼滤波的双目视觉-惯导融合定位算法。
在该算法中,双目视觉通过图像处理和三角测量等方法计算出机器人相对于目标的距离和角度,惯性导航系统通过加速度计和陀螺仪等传感器测量机器人的位移和姿态信息,并依据卡尔曼滤波的原理对测量误差进行修正,从而提高定位精度和鲁棒性。
5. 试验结果分析本文对设计的双目视觉-惯导融合定位算法进行了试验验证,通过利用机器人在室内环境中的运动数据进行测试,验证了算法的可行性。
试验结果表明,与单独使用双目视觉和惯性导航系统相比,双目视觉-惯导融合定位算法具有更高的定位精度和更好的鲁棒性。
6. 结论本文提出了一种基于卡尔曼滤波的双目视觉-惯导融合定位算法,并通过试验验证了该算法的可行性和有效性。
该算法能够提高挪动机器人在室内环境中的定位精度和鲁棒性,为挪动机器人在实际应用中的导航和定位提供了可靠的技术支持。
基于视觉导航的智能移动机器人设计
基于视觉导航的智能移动机器人设计近年来,随着人工智能技术的不断发展,机器人已经开始成为生产和服务领域中的普遍存在。
在这其中,视觉导航技术的应用是智能移动机器人领域中不可或缺的一环。
因此,本文将就基于视觉导航的智能移动机器人的设计展开一番探讨。
一、智能移动机器人概述智能移动机器人是一种自动运行的机器人,它可以通过自身所搭载的各种传感器,如视觉传感器、距离传感器等,获取周围环境的信息,并根据该信息自主地规划路径,在不需要人类干预的情况下完成任务。
二、基于视觉导航的智能移动机器人设计理念基于视觉导航的智能移动机器人设计理念主要是将机器人视为一个能够感知周围环境并做出适应性决策的个体。
该设计理念的核心是视觉导航技术,它能够让机器人通过摄像头等视觉设备获取周围环境的信息,比如说识别周围物体的大小、颜色等特征,并能够对得到的信息进行处理和分析,最终决定自身的运动方向和路径规划。
基于视觉导航的智能移动机器人具有以下优点:1. 能够适应复杂环境中的定位和导航任务;2. 具备高精度的定位、导航和控制能力;3. 能够自主规划路径、调整运动速度和方向等;4. 降低了成本,提高了工作效率。
三、基于视觉导航的智能移动机器人系统基于视觉导航的智能移动机器人系统主要包括视觉交互模块、定位感知模块、路径规划控制模块等部分。
其中,视觉交互模块负责机器人和环境之间的信息交互,定位感知模块负责实时获取机器人的位置信息,路径规划控制模块负责根据当前环境条件以及机器人的目的地,生成机器人的移动路径和运动控制指令。
除此之外,基于视觉导航的智能移动机器人系统还需要搭载相关的硬件设备,比如说视觉传感器、电机、主板、电源等,以便为机器人提供实时的数据处理和运动控制能力。
四、基于视觉导航的智能移动机器人在不同领域的应用基于视觉导航的智能移动机器人可以广泛应用于不同领域,如航空航天、汽车制造、医疗护理、仓储物流等领域。
其中,其应用于医疗护理领域的意义尤为重要,医疗护理机器人可以通过自主导航、语音识别等技术为医疗行业提供安全、高效、便捷的服务。
机器人视觉导航系统中的定位与建图研究
机器人视觉导航系统中的定位与建图研究随着人工智能技术的发展,机器人在日常生活和工业生产中的应用越来越广泛。
机器人的视觉导航系统是其中的重要组成部分,它能够通过视觉感知环境,实现精准定位和建图,从而使机器人能够在复杂的环境中自主导航。
本文将对机器人视觉导航系统中的定位与建图进行研究与探讨。
一、定位技术在机器人视觉导航系统中的应用定位是机器人导航系统中的基础问题,它确定机器人在环境中的准确位置和方向,是后续导航和建图任务的前提。
在机器人视觉导航系统中,常用的定位技术包括视觉标记定位、视觉里程计和地图匹配等。
1. 视觉标记定位:视觉标记定位是一种常见的室内机器人定位技术。
通过在环境中布置特定的二维码或符号标记,机器人可以通过识别这些标记来确定自身的位置和方向。
这种方法简单易行,但需要提前布置标记并保证标记的可视性,适用于较小范围的室内环境。
2. 视觉里程计:视觉里程计是使用机器人的摄像头对环境中的特征进行识别和跟踪,利用机器人行进过程中所观测到的移动信息计算机器人的位姿变化。
通过对连续帧之间的特征点匹配和运动估计,可以实现对机器人位置的实时更新。
然而,视觉里程计容易受到环境变化和传感器误差的影响,导致累积误差的问题,需要引入其他定位方法进行辅助。
3. 地图匹配:地图匹配是一种将机器人观测到的环境特征与预先建立的地图进行匹配的方法。
通过将机器人感知到的地标或特征点与地图中存储的信息进行匹配,可以确定机器人的位置和方向。
地图匹配方法能够克服视觉里程计的累积误差问题,但对于大范围、复杂环境的定位需要耗费较大的计算资源和存储空间。
二、建图技术在机器人视觉导航系统中的应用建图是指机器人通过感知环境并提取特征信息,将其转化为地图的过程。
机器人视觉导航系统中的建图技术能够为机器人提供精确的环境模型,用于路径规划和避障等任务。
1. 视觉SLAM:视觉同步定位与建图(Visual SLAM)是一种通过机器人的摄像头实时感知环境并同时进行定位和建图的技术。
基于视觉SLAM的移动机器人导航与定位系统设计
基于视觉SLAM的移动机器人导航与定位系统设计移动机器人导航与定位是目前机器人研究领域的热点之一,可以广泛应用于自动驾驶、室内定位、无人机导航等领域。
视觉SLAM(Simultaneous Localization and Mapping)技术作为一种基于视觉感知的导航与定位方法,可以通过摄像机获取环境信息,同时实时地进行定位与地图构建,被广泛应用于移动机器人导航与定位系统的设计。
本文将详细介绍基于视觉SLAM的移动机器人导航与定位系统的设计。
首先,我们将介绍视觉SLAM的基本原理和技术,然后探讨移动机器人导航与定位系统的需求和设计要求,最后提出一种基于视觉SLAM的系统设计方案。
视觉SLAM是一种通过摄像机获取环境信息进行定位与地图构建的技术。
它通过对摄像机获取的图像序列进行特征提取和匹配,从而实现对相机位置和地图的估计。
常见的视觉SLAM算法包括ORB-SLAM、LSD-SLAM、DVO-SLAM等。
这些算法通常采用特征点、直接法或者半直接法进行地图构建和相机定位。
视觉SLAM的优点是可以在不依赖额外传感器的情况下,通过摄像机获取环境信息,实现高精度的导航与定位。
移动机器人导航与定位系统的设计需要考虑到环境感知、运动控制和路径规划等方面。
首先,机器人需要能够感知周围的环境,包括障碍物检测、地标识别等。
这样可以避免机器人碰撞到障碍物,同时利用地标信息进行定位。
其次,机器人需要能够进行准确的运动控制,包括速度控制、姿态调整等。
这样可以保证机器人在导航过程中的稳定性和精确性。
最后,机器人需要具备路径规划的能力,根据当前位置和目标位置确定最优路径,避免不必要的行走和转向。
基于视觉SLAM的移动机器人导航与定位系统设计需要解决以下几个关键问题。
首先是特征提取和匹配问题。
系统需要能够通过摄像机获取到清晰的图像,然后提取关键特征点,并将其与地图上的特征点进行匹配,以实现相机位置的估计。
其次是地图构建和更新问题。
移动机器人建图与自主定位算法研究
移动机器人建图与自主定位算法研究移动机器人是一种具备自主移动能力的智能机器人,其在现实世界中可以执行多种任务,例如巡检、搬运、导航等。
为了能够准确地执行这些任务,移动机器人需要具备建图和定位的能力。
建图和定位是移动机器人领域的重要研究方向,本文将分析现有的建图和自主定位算法,并讨论其研究方向与进展。
一、建图算法研究移动机器人的建图主要是通过感知和采集环境信息,并将其转化为机器人可以理解和使用的地图表示。
建图算法可以分为静态建图和动态建图。
静态建图是指在机器人运动之前,对环境进行建模,构建一个静态的地图。
动态建图则是指在机器人运动过程中,对新发现的环境进行实时的建模。
目前,常用的静态建图算法包括激光雷达建图、视觉建图和拓扑图建图。
激光雷达建图使用激光传感器扫描环境,通过测量反射激光束的距离和角度,来生成环境的地图。
激光雷达建图具有高精度和实时性的特点,但对机器人的硬件要求较高。
视觉建图使用摄像机获取环境图像,通过图像处理技术来提取环境特征,并进行地图构建。
视觉建图需要较高的计算性能,并对环境光照和纹理等因素敏感。
拓扑图建图则是将环境表示成一种图形结构,其中节点表示位置或区域,边表示连接关系。
拓扑图建图适用于遥感地图和室内空间等场景,具有较高的表达能力。
动态建图算法主要用于处理未知或动态环境,例如环境中有障碍物的移动或变化。
目前常用的动态建图算法有基于激光雷达的SLAM算法和基于视觉的SLAM算法。
SLAM是同时定位与地图构建(Simultaneous Localization and Mapping)的缩写,指机器人在未知环境中同时进行自主定位和地图构建。
基于激光雷达的SLAM算法可以通过激光雷达获取环境的几何信息,并结合机器人自身的运动信息,实现环境地图的建立和机器人定位的同时进行。
基于视觉的SLAM算法则通过摄像机获取环境图像,并通过视觉特征进行定位和地图构建。
该算法具有低成本和易实现的特点,但对光照和纹理等因素敏感。
AGV视觉导航设计方案-经典
AGV搬运机器人视觉导航方案AGV(Automated Guided Vehicle,AGV)作为现代制造系统中的物料传送设备已经得到了广泛应用。
从理论上看,视觉导引AGV具有较好的技术应用前景,然而其却没能像电磁导引和激光导引AGV 那样广泛使用,主要问题在于视觉导引技术在实时性、鲁棒性和测量精度方面还有待进一步突破。
由多个AGV 单元组成的AGV 系统(Automated Guided Vehicle System,AGVS)配有系统集成控制平台,对AGV 的作业过程进行监管和优化,例如,创建任务、地图生成、发出搬运指令、控制AGV 的运行路线、跟踪传送中的零件以与多AGV 的任务规划和调度。
将AGV 与外部自动化物流系统、生产管理系统有机结合,对系统内每台AGV 合理地分配当前任务、选择最佳路径、实时图形监控、管理运行安全,实现信息化的管理和生产,方便地构成由调配中心计算机控制的自动化生产线、自动仓库和全自动物流系统。
目前视觉导引方式主要方法有基于局部视觉和全局视觉两种方法。
基于视觉导引的AGV 还没有大规模产业化,但其潜在的市场前景使其成为近几年来国内外AGV 研究的热点。
全局视觉导引方法是将摄像机安装在天花板或者墙上,以整个工作环境为目标,对包括AGV、导引路径、障碍物等进行对象识别,对各个摄像机获取的图像进行基于特征的图像融合,得到全局地图。
在生成的全局地图中,每个AGV 单元,导引线,障碍物的绝对坐标都能够实时获取。
全局视觉方法相对于将摄像机安装在车体上的局部视觉方法,在多AGV 调度、障碍物检测(固定和移动)、避障、全局监测方面更具优势。
尤其是可以对AGV 和障碍物的特征进行分类,通过增强型的卡尔曼滤波方法进行运动估计,动态跟踪每一个目标的位置、速度。
但是这种方法要根据不同的现场环境,按照视野不被遮挡并覆盖整个工作空间的原则,根据摄像机放置算法决定摄像机的数目、安装位姿。
因此这张全局视觉方法仅仅适用于室内且空间较大的场合,而且导引精度较低。
深度解析:移动机器人的几种视觉算法
深度解析:移动机器人的几种视觉算法谈到移动机器人,大家第一印象可能是服务机器人,实际上无人驾驶汽车、可自主飞行的无人机等等都属于移动机器人范畴。
它们能和人一样能够在特定的环境下自由行走/飞行,都依赖于各自的定位导航、路径规划以及避障等功能,而视觉算法则是实现这些功能关键技术。
如果对移动机器人视觉算法进行拆解,你就会发现获取物体深度信息、定位导航以及壁障等都是基于不同的视觉算法,本文就带大家聊一聊几种不同但又必不可少的视觉算法组成。
本文作者陈子冲,系Segway Robot架构师和算法负责人。
移动机器人的视觉算法种类Q:实现定位导航、路径规划以及避障,那么这些过程中需要哪些算法的支持?谈起移动机器人,很多人想到的需求可能是这样的:“嘿,你能不能去那边帮我拿一杯热拿铁过来。
”这个听上去对普通人很简单的任务,在机器人的世界里,却充满了各种挑战。
为了完成这个任务,机器人首先需要载入周围环境的地图,精确定位自己在地图中的位置,然后根据地图进行路径规划控制自己完成移动。
而在移动的过程中,机器人还需要根据现场环境的三维深度信息,实时的躲避障碍物直至到达最终目标点。
在这一连串机器人的思考过程中,可以分解为如下几部分的视觉算法:1.深度信息提取2.视觉导航3.视觉避障后面我们会详细说这些算法,而这些算法的基础,是机器人脑袋上的视觉传感器。
视觉算法的基础:传感器Q:智能手机上的摄像头可以作为机器人的眼睛吗?所有视觉算法的基础说到底来自于机器人脑袋上的视觉传感器,就好比人的眼睛和夜间视力非常好的动物相比,表现出来的感知能力是完全不同的。
同样的,一个眼睛的动物对世界的感知能力也要差于两个眼睛的动物。
每个人手中的智能手机摄像头其实就可以作为机器人的眼睛,当下非常流行的Pokeman Go游戏就使用了计算机视觉技术来达成AR 的效果。
像上图画的那样,一个智能手机中摄像头模组,其内部包含如下几个重要的组件:镜头,IR filter,CMOS sensor。
移动机器人视觉导航算法的研究与设计的开题报告
移动机器人视觉导航算法的研究与设计的开题报告一、选题的背景及意义近年来,随着移动机器人的快速发展,人们对其功能的需求也越来越高。
移动机器人视觉导航算法是指移动机器人在运动过程中运用视觉传感器所采集的信息实现自主导航。
其在机器人探测、物流、清洁、安保等领域中具有广泛的应用,并且未来有着更为广阔的发展前景。
因此,研究移动机器人视觉导航算法的实现及其优化具有重要的理论和实践意义。
二、选题的目的和内容本论文旨在研究并设计一种移动机器人视觉导航算法,实现移动机器人在运动过程中的自主导航。
本文的研究内容包括:1.对现有移动机器人视觉导航算法进行分析和总结。
2.研究移动机器人视觉导航算法的工作原理和基本实现方法,并建立算法数学模型。
3.设计一种基于视觉传感器的机器人位置估计算法,实现机器人的精确定位和追踪。
4.研究移动机器人路径规划算法,设计一种基于局部最优化和全局优化的路径规划算法。
5.设计移动机器人控制模块,实现机器人的动态控制,使其能够遵循规划的路径进行移动。
三、选题的方法和技术路线本论文采用了理论分析和实验对比等方法。
首先,对现有移动机器人视觉导航算法进行分析和总结,以掌握其基本实现方法和优缺点。
然后,研究视觉传感器的原理及其在机器人自主导航中的应用,确定技术实现路线。
接着,根据研究结果,建立算法数学模型。
然后,设计一种机器人位置估计算法和路径规划算法,并实现算法验证。
最后,设计移动机器人控制模块,实现机器人的动态控制,使其能够遵循规划的路径进行移动。
四、可行性分析随着科技的不断进步,越来越多的高精度、高速度、低成本的视觉传感器被广泛应用于移动机器人中。
本文研究的移动机器人视觉导航算法是基于现有视觉传感器技术、机器人控制理论和路径规划算法,因此其技术可行性较高。
同时,本论文将对算法的性能进行实验对比验证,对研究结果具有较高的可靠性和实用性。
五、预期的研究成果通过本论文的研究,预期达到以下成果:1.总结现有移动机器人视觉导航算法,明确其优缺点和应用场景。
机器人导航中地图构建与路径规划的技术方案
机器人导航中地图构建与路径规划的技术方案随着人工智能和机器人技术的快速发展,机器人导航系统正逐渐成为实现智能自主移动的关键技术。
在机器人导航中,地图构建与路径规划是实现精准导航的核心环节。
本文将探讨机器人导航中地图构建与路径规划的技术方案,并分析其在实际应用中的优势和挑战。
一、地图构建的技术方案1. 传感器融合方案地图构建是机器人导航的基础,传感器融合方案是其中一种常用的技术方案。
该方案通常使用多种传感器如激光雷达、摄像头、超声波传感器等,将其采集到的数据进行融合处理,实时构建环境地图。
2. 激光雷达SLAM方案激光雷达(Simultaneous Localization and Mapping,即SLAM)是一种常用的地图构建技术方案。
激光雷达通过扫描周围环境并测量物体的距离,从而获得地图上的点云数据,然后使用SLAM算法进行实时地图构建与定位。
3. 视觉SLAM方案视觉SLAM方案是利用机器人搭载的摄像头进行地图构建与定位的技术方案。
该方案通过视觉传感器获取到环境图像,然后使用SLAM算法进行图像处理和特征提取,实现地图构建与机器人定位。
4. 深度学习方案深度学习技术在地图构建中也有广泛的应用。
通过对大量的环境数据进行学习和训练,深度学习算法可以自动提取环境特征,实现快速准确的地图构建。
二、路径规划的技术方案1. 经典路径规划算法经典路径规划算法如A*算法、Dijkstra算法等是机器人导航中常用的技术方案。
这些算法通过计算节点之间的代价来寻找最优路径,并考虑避开障碍物等因素。
2. 概率路径规划算法概率路径规划算法是一种基于随机性的路径规划技术方案。
例如蒙特卡洛方法,通过对机器人位置和周围环境进行随机采样,计算路径的概率分布,从而得到可行的路径。
3. 人工智能路径规划算法人工智能路径规划算法如遗传算法、神经网络等,利用人工智能的优势进行路径规划。
这些算法通过学习和模拟人类的行为和思维,实现智能化的路径规划。
面向复杂室外环境的移动机器人三维地图构建与路径规划
面向复杂室外环境的移动机器人三维地图构建与路径规划一、本文概述随着科技的快速发展,移动机器人在复杂室外环境中的应用日益广泛,如无人驾驶汽车、智能物流、农业自动化等领域。
这些应用对移动机器人的三维地图构建与路径规划能力提出了更高要求。
因此,本文旨在探讨和研究移动机器人在复杂室外环境下的三维地图构建与路径规划技术,以期提升机器人的自主导航和决策能力。
本文将首先介绍移动机器人三维地图构建的基本原理和方法,包括传感器技术、数据处理和地图生成等关键步骤。
随后,将重点分析复杂室外环境下地图构建面临的挑战,如动态障碍物、环境变化等因素对地图构建的影响。
在此基础上,本文将探讨有效的地图更新和维护策略,以确保地图信息的准确性和实时性。
在路径规划方面,本文将介绍常见的路径规划算法,如基于规则的方法、优化算法和机器学习算法等。
将讨论这些算法在复杂室外环境中的适用性,并探讨如何结合三维地图信息实现高效、安全的路径规划。
本文还将关注实时路径调整策略,以应对动态环境中的突发情况。
本文将总结移动机器人在复杂室外环境下三维地图构建与路径规划技术的研究现状和发展趋势,以期为相关领域的研究和应用提供有益参考。
二、复杂室外环境的三维地图构建在复杂室外环境下,移动机器人的三维地图构建是实现精确导航和高效路径规划的前提。
这一环节涉及对室外环境的深度感知、特征提取、地图构建以及优化等多个步骤。
深度感知是三维地图构建的基础。
通过激光雷达、深度相机等传感器,机器人能够获取周围环境的深度信息。
这些传感器能够测量激光束或光线与目标物体之间的距离,生成离散的深度点云数据。
接下来,特征提取是从离散的深度点云数据中识别出关键的环境特征。
这些特征可能包括道路边缘、建筑物轮廓、树木等。
通过特征提取,可以减少数据处理的复杂度,提高地图构建的效率和准确性。
在获取了深度信息和环境特征之后,就可以进行三维地图的构建。
三维地图通常以点云图或网格图的形式表示。
点云图由离散的点组成,每个点都包含三维坐标和颜色等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移动机器人视觉定位设计方案
运动视觉研究的是如何从变化场景的一系列不同时刻的图像中提取出有关场景中的目标的形状、位置和运动信息,将之应用于移动机器人的导航与定位。
首先要估计出目标的空间位置和运动信息,从而为移动机器人车体的导航与定位提供关键前提。
视觉信息的获取主要是通过单视觉方式和多视觉方式。
单视觉方式结构简单,避免了视觉数据融合,易于实现实时监测。
如果利用目标物体的几何形状模型,在目标上取3 个以上的特征点也能够获取目标的位置等信息。
此方法须保证该组特征点在不同坐标系下的位置关系一致,而对于一般的双目视觉系统,坐标的计算误差往往会破坏这种关系。
采用在机器人上安装车载摄像机这种局部视觉定位方式,本文对移动机器人的运动视觉定位方法进行了研究。
该方法的实现分为两部分:首先采用移动机器人视觉系统求出目标质心特征点的位置时间序列,从而将对被跟踪目标的跟踪转化为对其质心的跟踪;然后通过推广卡尔曼滤波方法估计目标的空间位置和运动参数。
1 目标成像的几何模型
移动机器人视觉系统的坐标关系如图1 所示。
其中O-X Y Z 为世界坐标系;O c - X cY cZ c 为摄像机坐标系。
其中O c 为摄像机的光心,X 轴、Y 轴分别与X c 轴、Y c 轴和图像的x ,y 轴平行,Z c 为摄像机的光轴,它与图像平面垂直。
光轴与图像平面的交点O 1 为图像坐标系的原点。
O cO 1 为摄像机的焦距f 。
图1 移动机器人视觉系统的坐标关系
不考虑透镜畸变,则由透视投影成像模型为:
式中,Z′= [u,v ]T 为目标特征点P 在图像坐标系的二维坐标值;(X ,Y ,Z )为P 点在世界坐标系的坐标;(X c0,Y c0,Z c0)为摄像机的光心在世界坐标系的坐标;dx ,dy 为摄像机的每一个像素分别在x 轴与y 轴方向采样的量化因子;u0,v 0 分别为摄像机的图像中心O 1 在x 轴与y 轴方向采样时的位置偏移量。
通过式(1)即可实现点P 位置在图像坐标系和世界坐标系的变换。
2 图像目标识别与定位跟踪
2.1 目标获取
目标的获取即在摄像机采集的图像中搜索是否有特定目标,并提取目标区域,给出目标在图像中的位置特征点。
由于机器人控制实时性的需要,过于耗时的复杂算法是不适用的,因此以颜色信息为目标特征实现目标的获取。
本文采用了HS I 模型, 3 个分量中,I 是受光照影响较大的分量。
所以,在用颜色特征识别目标时,减少亮度特征I 的权值,主要以H 和S 作为判定的主要特征,从而可以提高颜色特征识别的鲁棒性。
考虑到连通性,本文利用捕获图像的像素及其八连通区域的平均HS 特征向量与目标像素的HS特征向量差的模是否满足一定的阈值条件来判别像素的相似性;同时采用中心连接区域增长法进行区域增长从而确定目标区域。
图2 给出了目标区域分割的算法流程。
图2 目标区域分割算法流程
实现目标区域提取后,由于目标有一定的大小和形状,为了对目标定位,必须在图像中选取目标上对应的点的图像位置。
由于目标的质心点具有不随平移、旋转与比例的改变而变化的特点,故选取目标的质心点作为目标点。
质心坐标计算公式如下:
式中:为质心坐标;n 为目标区域占据的像素个数,且n≥2; (x i,y i)为第i 个像素的坐标;p (x i,y i)为第i 个像素的灰度值。
2.2 目标跟踪
运动目标的跟踪是确定同一物体在不同帧中位置的过程,当运动目标被正确检测出来时,它就对相邻帧中检测出的目标进行匹配。
匹配过程如下:
2. 2. 1 目标质心位置预测
目标位置预测是依据最小二平方预测原理由目标质心在本帧以及相邻的连续前几帧的位置值,直接预测出目标质心在下一帧的位置值。
在等间隔观测条件下,可用式(4)的简便预测:
2. 2. 2 搜索聚类的种子点
在搜索与上一帧图像对应质心点匹配的点时,采用基于子块的模式匹配方法。
子模块是由待匹配的点与周围8 个邻点组成。
由于这种方法充分考虑了特征点的统计特性,识别率大大提高。
首先从预测质心点开始,在100×100 像素的动态窗口(以预测质心点为中心)内,按照逆时针搜索周围8 邻域象素的趋势进行环状搜索,并分别计算由每个搜索象素决定的子块与上一帧的目标质心点T 决定的子块的HS 特征值之差的平方和。
其中P [i ][j ](i,j = 0,1,2)表示由点P 决定的子块中的各个像素;T [i ][j ](i,j = 0,1,2)表示由上一帧的质心点决定的子块中的各个像素。
最后,判定某个点P 是否与上一帧的特征点T 匹配的标准为:P 须同时满足式(7,8)。
其中P. H表示待匹配点P 的H 特征值;m eanH 表示目标区域的平均H 特征值;满足式(8)能够保证匹配点在目标区域内。
2. 2. 3 聚类色块区域
其目的是找出色块区域,色块区域的质心点即为特征跟踪结果。
在步骤(2)中已经找到了聚类的起始点,由于H 反映图像的色彩特性,所以根据匹配点的H 特征值是否在由色块的平均H 特征值确定的某个范围内来聚类色块区域,即满足式(8)。
这样既可保证识别精度,又减少了图像信息计算量。
3 二次成像法
设Z c1,Z c2分别表示在t1,t2 时刻目标与成像系统的距离(深度值); d 1′,d 2′分别表示t1,t2 时刻目标在图像平面的几何特征值,为便于表示,d 1′,d 2′可以是目标的像的外接圆直径或者外接矩形的边长,则有:
式(9)表明:根据同一目标、同一摄像机所摄物体的图像几何特征的变化,可以计算出它们在空间深度方向运动时距离所发生的变化,这就是二次成像法的原理。
分析式(9)可知,二次成像法能够确定目标在摄像机坐标系中的位置,但该方法在摄相机两次成像的位置变化不大的情况下误差会比较大,而且不能得到目标的运动信息。
为此本文提出了利用序列图像和推广卡尔曼滤波来估计目标的空间位置和运动信息的方法。
4 目标的空间位置和运动参数估计
由于图像序列前后两帧的时间间隔T 很小,本文用二阶微分方程来描述P 点的运动轨迹。
定义状态矢量:
则可以定义状态方程为:
其中:
V (k )为模型噪声,假设V (k )为零均值的高斯白噪声,其方差阵为Q (k )= cov (V)。
将式(1)离散化得:
其中n (k )为测量噪声。
假设n (k )为零均值的高斯白噪声,其方差阵为R (k )= cov (n)。
则式(10,11)组成系统的离散状态方程和测量方程,当该系统满足可观测性条件:
时,就可以应用推广卡尔曼滤波对目标的空间位置和运动状态进行估计。
其中r (t),v (t)分别为目标相对于车体的位置和速度,下标t 代表目标,i 代表成像系统,a (t)为任意的标量。
5 实验结果
利用微软提供的V FW 视频处理开发软件包,由CCD 摄像机和相应的视频采集卡获取移动机器人前的场景图像数据,在Delph i 6 下开发了移动机器人视觉定位与目标跟踪系统的完整程序。
本算法在CPU 主频为500MHz,内存为256MB 环境下,对帧速率为25 帧?s,图像分辨率为320×240的共180 帧视频图像进行了实验,最终实现了对运动目标快速、稳定的跟踪。
图3 给出了部分帧图像的目标定位与跟踪结果。
图3 目标定位与跟踪结果。
为了验证本文提出的对目标的空间位置和运动参数估计算法的有效性,利用获取的目标质心点的位置时间序列对目标运动状态进行了跟踪仿真实验。
由于仿真的相似性,本文只给出了推广卡尔曼滤波在O Z 方向的仿真结果,如图4 所示。
其中图4(a,b)分别是观测噪声方差为3 个像素时目标在Z轴方向的位置p 和运动速度v 的估计误差曲线(150 次Mon te Carlo 运行)。
其中目标的起始位置为(115,1,10)m ,速度为(110,115,215)m /s,加速度为(0125,011,015)m /s2; 摄相机运动为实际中容易实现的且满足机动的条件,其初始位置为(010,015,010)m ,初始速度为(015,0175,110)m /s,运动加速度为(0125,0105,015)m /s2.
图4 推广卡尔曼滤波Z 方向(深度)的仿真结果由仿真结果可见,随着机器人车体的不断机动和滤波次数的增加,目标位置的估计值在20 帧左右就可收敛到理论真值,而且抖动很小,可满足系统快速定位与跟踪要求。
6 结束语
本文对移动机器人的局部视觉定位方法进行了深入研究。
二次成像法要求摄像机第二次成像时的位置要有较大变化,从而导致利用序列图像所获取的目标位置信息误差较大。
与
之相比本文提出的定位方法可更精确地得到目标的空间位置和运动参数。
这为移动机器人的路径规划、伺服跟踪等提供了更可靠的依据。
sdzhibohui
文章来源工控论坛原文地址/d/201208/452326_1.shtml。