高中物理速度选择器和回旋加速器解析版汇编及解析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理速度选择器和回旋加速器解析版汇编及解析

一、速度选择器和回旋加速器

1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。M 、N 两点间的距离为h 。不计粒子的重力。求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。

【答案】(1)电场强度U E d =;(2)0U v Bd

=;(3)2

222k qUh mU E d B d =+

【解析】 【详解】

(1)电场强度U E d

=

(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd

=

= (3)粒子从N 点射出,由动能定理得:2012

k qE h E mv ⋅=-

解得2

222k qUh mU E d B d

=+

2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。不计粒子重力。 (1)求第二象限中电场强度和磁感应强度的比值0

E B ; (2)求第一象限内磁场的磁感应强度大小B ;

(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。

【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】

(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有

00qvB qE =

解得

30

2.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径

1.0m R d ==

根据洛伦兹力提供向心力有

2

v qvB m R

=

解得磁感应强度大小

3210T B -=⨯

(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小

sin y v v θ=

粒子在电场中沿y 轴方向的加速度大小

cos y qE a m

θ

=

设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有

y y

v t a ∆=

t ∆时间内,粒子沿y 轴方向通过的位移大小

2

y v y t ∆=

⋅∆

联立解得

0.3m y ∆=

由于

cos y d θ∆<

故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离

cos 0.2m d d y θ'=-∆=

3.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=︒,求:

(1)粒子射入金属板的速度大小;

(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少?

【答案】(1)v =00U B L (2)

0110

2B L

B E U = 【解析】 【详解】

(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ①

E 0 =

U L ② 解得:v =0

0U B L

(2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则

1

1sin 30ad R s R =+

④ qvB 1 =2

v m R

得:B 1=

3ad

mv

qS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =

12

at 2

⑧ qE 1=ma ⑨

tan30º=ad x

S y + ⑩

y v at = ⑾

tan30º =y

v

v ⑿

得:E 1=

2

32ad

mv qS ⒀ 所以:

0110

2B L B E U = ⒁

4.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。其中S 、a 、圆心O 点在同一竖直线上。不计粒子的重力和粒子之间的作用力。求: (1)能到达a 点的粒子速度v 的大小;

相关文档
最新文档