烟气脱硝技术-选择性催化还原法(SCR)技术(优选资料)

合集下载

烟气SCR法脱销技术

烟气SCR法脱销技术

·氨稀释空气流量控制
氨稀释用空气流量在SCR 系统运行时被设定好,不 再调整。两台空气压缩机,一台备用。当第1台空气压 缩机输出气体压力低于设定值或发生故障时,第2台空 气压缩机自动启动
·氨气蒸发器
氨气蒸发器与储罐为一体化结构,加热器放置在无 水氨的液体中,通过氨储罐内的压力控制加热器。当储 罐内的压力低于设定压力时,加热器通电加热液氨;加 热器过热则断电保护。 。
烟气SCR法脱ቤተ መጻሕፍቲ ባይዱ技术
·
工 艺 原 理
·
技 术 特 点
·
催 化 剂 活

·
测 量 控 制


工艺原理
SCR(Selective Catalytic Reduction)——选择性催化还 原法脱硝技术是目前国际上应用最为广泛的烟气脱硝技术 ,在日本、欧洲、美国等国家地区的大多数电厂中基本都 应用此技术,它没有副产物,不形成二次污染,装置结构 简单,并且脱除效率高(可达90%以上),运行可靠,便 于维护等优点。
技术特点
·烟气脱硝效率≥ 90%; ·出口氨气排放量< 3PPM,完全达到国家标准; ·SO2转化为SO3的转化率< 1%; ·蜂窝状或板式催化剂单元设计,保证最大催 化剂表面; ·特殊气体均布装置保证烟气和NH3均匀分布; ·反应器可以布置省煤器和空预器之间,或脱 硫塔之后; ·提供氨水或者液NH3两种可选方案,可满足 不同需要。
催化剂量是根据脱硝装置的设计能力和操作要求来决定的,增加催 化剂量可以提高脱硝性能。在实际中,催化剂的初期充填量是设计要求 的最适量和使用期间的损失量之和。一般用SV 值[ SV值=处理气体量 (m3 (Vn ) /h ) /催化剂量(m3 ) ]来表示催化剂的充填量指标。脱硝 反应时,排放气体中的NOx 和注入的NH3 几乎是以1: 1的物质的量之比 进行反应,因此在相同的催化剂充填量下,通过增加NH3 的注入量,也会 使NH3的泄漏量增加,所以在决定氨浓度和催化剂量时必须考虑对脱硝 装置后部机器的影响。

选择性催化还原法脱硝技术介绍

选择性催化还原法脱硝技术介绍
4NH3+4NO+O2→4N2+6H2O 4NH3+2NO2+O2→3N2+6H2O 采用催化剂促进NH3和NOx的还原反应时,其反应温度取 决于所选用催化剂的种类。当采用钒或铁氧化物类的催化剂 时,其反应温度为300~400 ℃;当采用活性焦炭作为催化 剂时,其反应温度为100~150 ℃。因此,根据所采用的催 化剂的不同,催化剂反应器应布置在尾部烟道中相应温度的
scr反应器内部五scr的工艺流程液氨从液氨槽车由卸料压缩机送入液氨储槽再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进入锅炉区通过与空气混合后由分布导阀进入scr反应器内部反应scr反应器设置于空预器前氨气在scr反应器的上方通过一种特殊的喷雾装置和烟气均匀分布混合混合后烟气通过反应器内催化剂层进行还原反应
1、氨储存罐可以容纳15天使用的无水氨,可充至 85%的储罐体积,装有液面仪和温度显示仪。
2、液氨汽化采用电加热方式。 3、在反应器前安装静态混合器,保证烟气与氨气在 烟道混合均匀,维持较低的NH3逃逸率。 4、SCR反应器采用固定床形式,催化剂为模块放置, 在反应器催化剂层间设置了吹灰装置,定时吹灰,吹扫 时间30~120分钟,每周1~2次,保证催化剂表面的洁 净。 5、反应器器下设有灰斗,与电厂排灰系统相连,定 时排灰。 6、SCR工艺的核心装置是催化剂反应器,有水平和 垂直气流两种布置方式,如图2所示。在燃煤锅炉中,烟 气中的含尘量很高,一般采用垂直气流方式。
位置。
三、SCR系统的主要设备
XX热电 2×300MW 机组脱硝系统是由哈锅引进 日本三菱重工技术制造安装,脱硝系统一般组成:
◆ 烟道系统(包括省煤器和 SCR旁路) ◆ 氨的储存及供应系统 ---卸料压缩机、液氨储罐、 氨气蒸发器、氨气缓冲器 ◆ 氨气与空气混合系统 ◆ 氨气喷入系统 ◆ SCR反应系统 ◆ 吹灰系统 ◆ 检测控制系统 ◆ 电气系统

选择性催化还原(SCR)法烟气脱硝技术

选择性催化还原(SCR)法烟气脱硝技术

选择性催化还原(SCR)法烟气脱硝技术摘要:选择性催化还原(SCR)烟气脱硝技术以其高效的特点在国外得到了普遍的应用。

本文概述了SCR法的基本原理、催化剂的分类及成型布置方式、SCR 系统在电站锅炉系统中的布置方式、系统的构成和主要装置设备以及工程应用中常见的问题和解决办法。

分别以飞灰、飞灰与Al2O3混合、堇青石蜂窝陶瓷的Al2O3涂层作为载体,担载CuO、Fe2O3等金属氧化物作为活性成分进行活性测试,在实验室理想气体条件下具有较高的效率。

关键词:选择性催化还原,催化剂,SCR系统,飞灰1. 引言NO和NO2是人类活动中排放到大气环境的大量常见的污染物,通称NOx。

酸雨主要由大气污染物如硫氧化物、氮氧化物及挥发性有机化合物所导致。

因为其对土壤和水生态系统所带来的变化是不可逆的,它的影响极其严重。

NOx对大气环境的污染除了其本身的危害之外,还由于它们参与光化学烟雾的生成而受到人们的特别关注。

固定源氮氧化物排放控制技术主要有两类:燃烧控制和燃烧后控制。

燃烧控制的手段主要包括低过量空气燃烧、烟气再循环、燃料再燃烧、分级燃烧和炉膛喷射等;燃烧后脱硝的措施包括湿法和干法[1]。

而在干法中,选择性催化还原(SCR)法烟气脱硝技术具有高效率的特点,目前最高的脱硝效率能达到95%以上,因此在世界范围内得到了十分广泛的应用。

SCR烟气脱硝系统最早由七十年代晚期在日本的工业锅炉机组和电站机组中得到应用。

到目前为止已经有170多套的SCR装置在日本的电站机组上运行,其总装机容量接近100,000MW。

在欧洲,SCR技术于1985年引入,并得到了广泛的发展。

电站机组的总装机容量超过60,000MW[2]。

在美国,最近五到十年以来,SCR系统得到十分广泛的应用。

为适应更高的排放标准,SCR已经被作为最好的可以利用的技术。

此外在丹麦、意大利、俄罗斯、澳大利亚、韩国、台湾等国家和地区都建立了一些SCR的脱硝装置。

我国福建某电厂也曾引进该装置和技术。

选择性催化还原烟气脱硝(十)

选择性催化还原烟气脱硝(十)
• 载体TiO2晶相对催化性能的影响 已有研究普遍认为,晶型为锐钛矿有利于催化剂脱硝的进 行,而控制煅烧温度对其形成有很大影响。 TiO2在350℃时由无定形向锐钛相转变,600 ℃下由锐钛 相向金红石相转变,750 ℃下完全转变为金红石相。常控 制其煅烧温度在450~600 ℃。
2021/9/13பைடு நூலகம்
9
谢谢观看
MoO 使用,不仅可以增强反应选择性,还可对砷引 助剂常用WO3或MoO3,不仅增加了催化剂活性、温度范围,还改善催化剂机械结构和晶体结构,同时增强催化剂的抗毒和选择性。
还原剂为:碳氢化合物3,氨,尿素等,主要应用的是氨。
起的中毒有很好的耐受性;但其活性低于WO ,而 但其活性低于WO3 ,而且MoO3会使少量NOx转化为N2O, N2O为温室气体,对环境危害非常大。
二、催化剂V2O5-WO3/TiO2结构
善催化剂机械结构和晶体结构。 在催化过程中,还原剂NH3与催化剂中的B酸中心发生强的化学吸附,而NOx几乎不被催化剂吸附;
二、催化剂V2O5-WO3/TiO2结构
以氨为还原剂的SCR反应如下:
• MoO 所活以性, 组选分择不助仅剂对时NH,3常作3倾用向下于的WNOOx3有还原作用,也将烟气中的SO2氧化为SO3,添加助剂可提高选择性,使其只对前者有作用。
选择性催化还原法-烟气脱硝(SCR)
一、脱硝原理
2021/9/13
• 在一定温度和催化剂作用 下,还原剂有选择性地把 烟气中的NOx还原为无毒无 污染的N2和H2O。
• 催化剂用V2O5-WO3/TiO2
• 还原剂为:碳氢化合物, 氨,尿素等,主要应用的
是氨。以氨为还原剂的 SCR反应如下:
4NH3 + 4NO + O2 4NH3 + 2N2O + O2

选择性催化还原脱硝技术(SCR)

选择性催化还原脱硝技术(SCR)
选择性催化还原脱硝技术(SCR)
职业教育环境监测与治理技术专业教学资源库
• 一、SCR脱硝技术原理 • 二、SCR系统组成及工艺流程介绍 • 三、 SCR催化剂的失活及其应对措施 • 四、SCR烟气脱硝装置问题及优化
一、SCR脱硝技术原理
1.1 反应机理
SCR反应原理与SNCR相同,只是由于使用了催化剂使 得反应温度大大降低(300~450℃),从而可以在锅炉的 省煤器与空气预热器之间的烟道喷入的NH3、烃类等还原 剂在烟气中O2的作用下将NOX快速还原成无害的N2和H2O。
谢谢大家! Thanks!
总体布置 SCR反应器可以安装在锅炉的不同位置,一般分三种情况: 1)位于锅炉省煤器和空气预热器之间的高灰SCR系统; 2)安装在高温电除尘器之后的低灰SCR系统; 3)安装在FGD脱硫塔之后的尾部低温低灰SCR系统。
图2-3 SCR反应器的布置方式 (a) 高灰段布置;
图2-3 SCR反应器的布置方式 (b) 低灰段布置;
• 催化剂的失活主要有化学失活和物理失活,失活的主要影 响因素包括催化剂成分、结构、反应传质速率、反应扩散 速率、烟气温度、烟气成分、灰分等。
3.1 化学失活
• 典型的SCR催化剂化学失活主要是由砷、碱金属、金属氧化物等引起的 催化剂中毒。
• 碱金属吸附在催化剂的毛细孔表面,金属氧化物如MgO、CaO、Na2O、 K2O等使催化剂中毒,在催化剂活性位置与其他物质发生了反应,主要 是由于中和催化剂表面吸附的SO2生成硫化物而造成的。
内部结构 SCR工艺的核心装置是脱硝反应器,反应 器中的催化剂分上下多层(一般为3~4层)有 序放置。 图2-1为典型的SCR反应器内部结构示意图。
图2-2为水平和垂直布置的SCR反应器。

SCR烟气脱硝技术ppt课件

SCR烟气脱硝技术ppt课件

烟气中NOX来源
烟气中NOX特征 NOX净化技术方向 SCR烟气脱硝原理 SCR烟气脱硝工艺 SCR工艺运行要点
5
2. 烟气中NOX特征
NO、NO2
烟气一次污染物中NO 占NOX的90~95%
酸性
可被碱液吸收
浓度低
1000ppm左右
氧化性
可被还原为N2 实现无害化
6
11
2
主要 内容 3
4
5 6
烟气中NOX来源
《大气污染控制技术》
选择性催化还原法(SCR) 烟气脱硝技术
1
11
2
主要 内容 3
4
5 6
烟气中NOX来源
烟气中NOX特征 NOX净化技术方向 SCR烟气脱硝原理 SCR烟气脱硝工艺 SCR工艺运行要点
2
1.1 烟气中NOX --来源
热力型 空气中 N2+O2=NOX
燃料型 燃料中N+O2=NOX
措施:
催化剂中加入MoO3,与催化剂表面的 V2O5复合型氧化物,降低As的毒化。
25
6.2 SCR-运行维护
(5) 失效催化剂的处理
在SCR脱硝过程中,由于烟气中存在灰分和其它的杂 质和有毒的化学成份等因素,从而降低催化剂的活性。
再生:水洗再生、热还原再生、SO2酸化热再生
及酸、碱液处理再生。
更换:活性降低到一定的程度,不能满足脱硝性
9
4. 选择性催化还原法(SCR)--思路
催化剂
NOX + 还原剂
N2 + 无害物质
具有选择性 产物无害化 条件易实现
NH3
10
选择性催化还原法(SCR)--原理
6NO + 4NH3 = 5N2 + 6H20 6NO2 + 8NH3 = 7N2 + 12H20

(完整版)选择性催化还原法(SCR)烟气脱硝技术概述

(完整版)选择性催化还原法(SCR)烟气脱硝技术概述

选择性催化还原法(SCR)烟气脱硝技术概述王清栋(能源与动力工程1302班1306030217)摘要:对选择性催化还原脱硝技术进行概述,分析了其机理,并简要介绍催化剂的种类及钝化与中毒机理.最后,对SCR技术进行总结与展望.关键词:选择性催化还原;烟气脱硝;氮氧化物Overview of Selective catalytic reduction (SCR) flue gas denitrationWang Qingdong(Power and Energy Engineering, class 1302 1306030217) Abstract: selective catalyst reduction flue gas denitration is reviewed. Its mechanism is analysed and catalyst is given a brief introduction. Catalyst passivation and poisoning mechanism is analysed. Finally, the summary and prospect of the technology are given.Keywords: SCR; NO x; flue gas denitration.1.前言氮氧化物是造成酸雨的主要酸性物质之一,是形成区域微细颗粒物污染和灰霾的主要原因,也是形成光化学烟雾的主要污染物,会引起多种呼吸道疾病,是“十二五”期间重点控制的空气污染物之一.2011年初通过的“十二五”规划纲要,要求NO x减少10%,从而使NO x成为我国下一阶段污染减排的重点.烟气脱硝技术与NO的氧化、还原及吸附特性有关.根据反应介质状态的不同,分为干法脱硝和湿法脱硝.目前,已经在火力发电厂采用的烟气脱氮技术主要是选择性催化还原(SCR)和选择性非催化还原(SNCR),其中采用最多的主流工艺是选择性催化还原法.2.SCR反应原理选择性催化还原脱氮是在一定温度和有催化剂存在的情况下,利用还原剂把烟气中的NO x还原为无毒无污染的N2和H2O.这一原理与1957年在美国发现,该工艺最早却在20世纪70年代的日本发展起来的.SCR原理图如图一所示氨气被稀释到空气或者蒸汽中,然后注入到烟气中脱硝,在催化剂表面,氨与NO x 生成氨气和水.SCR过程中的主要反应如下:4NO+4NH3+O24N2+6H2O基于V2O5的催化剂在有氧的条件下还对NO2的减少有催化作用,其反应式为2NO2+4NH3+O23N2+6H2O在缺氧的条件下,NO 的反应式变成6NO+4NH 35N 2+6H2O 在缺氧的条件下,NO2的反应式变成6NO 2+8NH 37N 2+12H 2O在没有催化剂的情况下,上述化学反应只能在很窄的温度范围内(850~1000)进行,℃通过选择合适的催化剂,可以使反应降低,并且使反应温度范围扩大(250~420),便于℃在锅炉尾部烟道的适当位置布置催化反应装置.当反应条件改变时,还可能发生副反应 4NH 3+O 22N 2+6H 2O 2 NH N 2+3H 2 4NH 3+4O 24NO+6H 2O 发生NH 3分解的反应和NH 3氧化为NO 的反应都在350以上才能进行,450反应速℃℃度明显加快.温度在300时仅有NH 3转化为N 2的副反应可能发生.℃实际使用中,催化剂通常制成板状、蜂窝状的催化原件,再将催化原件制成催化剂组件,组件排列在催化剂反应器的框架内构成催化剂层.烟气中的NO X 、NH 3和O 2在流过催化剂层时,经历以下几个过程:① NO X 、NH 3和O 2扩散到催化剂外表面并进一步相催化剂的微孔表面扩散;② NO X 和O 2与吸附在催化剂表面活性位的NH 3反应生成N 2和H 2O ;③N 2和H 2O 从催化剂表面脱附到微孔中;④微孔中的N 2和H 2O 扩散到催化剂外表面,并继续扩散到主流烟气中被带出催化层.其中,过程①-③为控制步骤,因此脱氮装置的性能不但受到化学反应速度的制约,还在很大程度上受反应物扩散速度的影响.3.SCR 催化剂简介3.1 贵金属催化剂贵金属催化剂低温催化活性优良,对NOx 还原及对NH3、CO 氧化均具有很高的催化活性,因此在SCR 过程中会导致还原剂大量消耗而增加系统运行成本。

选择性催化还原法(SCR)

选择性催化还原法(SCR)

选择性催化还原法(SCR)由于炉内低氮燃烧技术的局限性,使得NOx的排放不能达到令人满意的程度,为了进一步降低NOx的排放,必须对燃烧后的烟气进行脱硝处理。

目前通行的烟气脱硝工艺大致可分为干法、半法和湿法3类。

其中干法包括选择性非催化还原法(SNCR)、选择性催化还原法(SCR)、电子束联合脱硫脱硝法;半干法有活性炭联合脱硫脱硝法;湿法有臭氧氧化吸收法等.煤燃烧过程中生成的氮氧化物主要是NO和NO2,另外还有少量的N2O(氧化亚氮),统称为NOX。

其中NO占NOX的90%以上,NO2占5% ̄10%,N2O仅为1%左右。

由于存在上述副反应,SCR反应器内排出的未反应完全的氨与少量SO3反应生成硫酸氨和硫酸氢氨可以导致下游设备的阻塞和腐蚀,因此,减少SCR反应器下游的未反应完全的氨,即“氨泄露”问题,是非常重要的。

通常氨泄露必须小于5ppm,最好低于2ppm~3ppm,以减少硫酸氨和硫酸氢氨的生成。

对于高硫煤,这一问题尤为重要。

上述反应,在没有催化剂的情况下,只在980℃左右很窄的温度范围内进行,但在催化的作用下,反应温度可大大降低,约300℃~400℃。

SCR具有以下特点:(1)脱NOX效率高。

可达到高于80%的脱硝效率,满足严格的NOX排放标准要求,远高于SNCR法25%~40%的脱NOX效率。

(2)适用范围广。

SCR法适用于各种容量的锅炉机组,而SNCR只适用于小型锅炉。

(3)运行可靠、便于维护和检修。

同时,SCR技术也存在一些问题:(1)系统占地面积较大,设备投资和运行费用较高。

(2)SCR催化剂的工作条件比较恶劣,由固体沉积物使微孔堵塞碱性化合物(特别是钾或重金属)引起中毒、引起中毒、飞灰腐蚀等原因造成了催化剂SO3中毒失效,必须定期更换。

更换时间依具体情况而定,一般1年 ̄5年。

(3)氨泄露以及其导致的硫酸氨盐的集聚会导致空气预热器性能下降。

选择合适的催化剂是SCR技术能够成功应用的关键所在。

scr 选择性催化还原法

scr 选择性催化还原法

SCR(Selective Catalytic Reduction)是美国Ecgelhard公司发明的,并于1959年申请了专利,而日本率先在20世纪70年代对该方法实现了工业化。

燃煤电站SCR脱硝原理是利用NH3基和催化剂(铁、钒、铬、钴或等碱金属)在温度为300~420℃时将NOx还原为N2。

NH3具有选择性,只与NOx发生反应,基本上不与O2反应,所以称为选择性催化还原脱硝。

SCR法中催化剂的选取是关键。

对催化剂的要求是活性高、寿命长、经济性好和不产生二次污染。

在以氨为还原剂来还原NO时,虽然过程容易进行,铜、铁、铬、锰等非贵金属都可起到有效的催化作用,但因烟气中含有SO2、尘粒和水雾,对催化反应和催化剂均不利,故采用SCR法必须首先进行烟气除尘和脱硫,或者是选用不易受肮脏烟气污染影响的催化剂;同时,要使催化剂具有一定的活性,还必须有较高的烟气温度。

目前以二氧化钛为基体的碱金属催化剂,最佳反应温度为300~420℃。

SCR是国际上应用最多,技术最成熟的一种烟气脱硝技术之一。

该法的优点是:由于使用了催化剂,故反应温度较低;净化率高,可达85%以上;工艺设备
紧凑,运行可靠;还原后的氮气放空,无二次污染。

但也存在一些明显的缺点:烟气成分复杂,某些污染物可使催化剂中毒;高分散的粉尘微粒可覆盖催化剂的表面,使其活性下降;系统中存在一些未反应的NH3和烟
气中的SO2作用,生成易腐蚀和堵塞设备的(NH4)2SO4和NH4HSO4,同时还会降低氮的利用率;系统设计与运行费用较高。

SCR烟气脱硝技术

SCR烟气脱硝技术
烟气冷却器:降低烟 气温度便于后续处理 和排放
添加标题
烟气排放口:排放处 理后的烟气满足环保 要求
采用选择性催化还原技术将NOx转化为N2和H2O 工艺流程简单操作方便易于控制 脱硝效率高可达到90%以上 设备投资和运行成本相对较低 适用于各种类型的锅炉和工业炉窑 具有较好的环保效益和社会效益
影响因素:反应温度是影响SCR烟气脱硝技术效果的重要因素之一 反应温度范围:SCR烟气脱硝技术通常在300-400℃的反应温度范围内进行 温度过高:反应温度过高会导致催化剂失活影响脱硝效果 温度过低:反应温度过低会导致反应速率降低影响脱硝效率
减少NOx排放:有 效降低烟气中的 NOx含量
提高燃烧效率:提 高锅炉燃烧效率降 低燃料消耗
降低运行成本:减 少脱硝剂消耗降低 运行成本
提高环保性硝系统 的投资成本
运行成本:运行 SCR烟气脱硝系统 的运行成本
节能效果:SCR烟 气脱硝系统对节能 减排的贡献
加强环保监管:建 立完善的环保监管 体系确保脱硝技术 的有效实施
技术瓶颈:现有技术存在效率低、成本高等问题 创新方向:提高脱硝效率、降低成本、减少环境污染 技术研发:加强技术研发推动技术创新 政策支持:政府出台相关政策鼓励企业进行技术创新
汇报人:
其他行业: 如陶瓷、 有色金属 等
烟气预处理: 去除烟气中的 灰尘、水分等
杂质
氨气注入:将 氨气注入烟气 中形成氨气与 烟气的混合物
催化剂选择: 选择合适的催 化剂如V2O5、
TiO2等
反应器设计: 设计反应器使 烟气与氨气混 合物在反应器
中充分反应
脱硝产物处理: 处理脱硝产物 如NOx、NH3

烟气排放:将 处理后的烟气 排放到大气中

选择性催化还原法脱硝技术介绍

选择性催化还原法脱硝技术介绍

七、SCR系统设计技术参数
◆ 反应器入口NOX浓度 ◆ 反应温度 ◆ 反应器内空间速度或还原剂的停留时间 ◆ NH3/NOX摩尔比 ◆ NH3的逃逸率 ◆ SCR系统的脱硝效率
在SCR系统设计中,最重要的运行参数是反应温度、反 应时间、NH3/NOx摩尔比、烟气流速、O2浓度、NH3的溢出 浓度、SO3浓度、H2O(蒸汽)浓度、钝化影响等。SCR反器内部五、SCR的工艺流程
液氨从液氨槽车由卸料压缩机送入液氨储槽,再
经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进 入锅炉区,通过与空气混合后由分布导阀进入SCR 反应器内部反应,SCR反应器设置于空预器前,氨 气在SCR反应器的上方通过一种特殊的喷雾装置和 烟气均匀分布混合,混合后烟气通过反应器内催化剂 层进行还原反应。
SCR法 脱硝技术介绍
XXXX电厂“上大压小” 2X300MW机组烟气脱硝工程
目录
脱硝的目的
SCR法的原理 SCR系统的主要设备 SCR系统的布置方法 SCR的工艺流程 旁路系统的作用 SCR系统设计技术参数 SCR控制系统 氨的特性简介 SCR的优缺点
一、脱硝的目的
NOX是NO、NO2、N2O等物质的总称,由其引 起的环境问题及对人体健康的危害可以归纳如下:
1、氨储存罐可以容纳15天使用的无水氨,可充至 85%的储罐体积,装有液面仪和温度显示仪。
2、液氨汽化采用电加热方式。 3、在反应器前安装静态混合器,保证烟气与氨气在 烟道混合均匀,维持较低的NH3逃逸率。 4、SCR反应器采用固定床形式,催化剂为模块放置, 在反应器催化剂层间设置了吹灰装置,定时吹灰,吹扫 时间30~120分钟,每周1~2次,保证催化剂表面的洁 净。
为选择性催化还原法(SCR)和非选择性催化还原法(SNCR)。 SCR技术是还原剂(NH3、尿素)在金属催化剂作用下,

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术燃煤锅炉是我国工业生产中常用的一种锅炉设备,但是在燃煤过程中会产生大量的氮氧化物和硫化物等有害气体,对环境造成污染。

对烟气进行脱硝是非常重要的环保措施。

选择性催化还原(Selective Catalytic Reduction,简称SCR)技术是目前被广泛应用的烟气脱硝技术之一,可以高效降低燃煤锅炉的氮氧化物排放。

本文将详细介绍燃煤锅炉的选择性催化还原烟气脱硝技术的原理、工艺流程和应用情况,希望能够为相关领域的从业人员提供一定的参考。

选择性催化还原烟气脱硝技术是利用催化剂催化还原氮氧化物(NOx)和氨(NH3),将其还原成氮气(N2)和水蒸气(H2O)的一种气体净化技术。

其基本原理可用下列反应式来表示:4NH3 + 4NO + O2 → 4N2 + 6H2O反应中氨和氮氧化物在催化剂的作用下经氧化反应逐步转化为氮气和水蒸气,从而实现烟气中氮氧化物的脱除。

选择性催化还原烟气脱硝技术的核心是催化剂,根据不同的催化剂种类可分为铜、铁、钒、钨等多种材料,其中广泛使用的催化剂是钒钛催化剂和铜铁催化剂。

选择性催化还原技术需要在燃煤锅炉的烟气排放口前设置脱硝装置,烟气通过催化剂层时与喷射进入的氨气进行反应,达到脱硝效果。

二、选择性催化还原烟气脱硝技术工艺流程1.氨气供应系统:选择性催化还原烟气脱硝技术需要在燃煤锅炉的烟气处理系统中加入氨气进行反应。

需要设置一个稳定的氨气供应系统,通常使用的有液氨和氨水两种形式。

氨气供应系统通常会配备氨气储罐、氨气输送管道、喷氨装置等设施。

2.催化剂喷射系统:在烟气进入脱硝装置前,需要设置催化剂喷射系统,将催化剂喷洒到烟气中。

催化剂通常以固体颗粒的形式存在,可以通过气力输送或液体喷射的方式喷射到烟气中。

3.脱硝装置:脱硝装置通常是一个烟气净化器,内部填充有催化剂。

烟气通过脱硝装置时,与喷射进入的氨气和催化剂进行反应,将烟气中的氮氧化物还原为无害的氮气和水蒸气。

选择性催化还原(SCR)基本资料

选择性催化还原(SCR)基本资料

选择性催化还原(SCR)作用基理选择性催化还原(SCR)技术是在催化剂作用下,还原剂NH3 (液氨、氨水、尿素等)与烟气中的NO X反应,将烟气中的NO X还原为无毒无污染的氮气N2和水H2O。

其反应器设置于锅炉省煤器出口与空气预热器入口之间,反应温度一般在320℃-400℃之间,SCR法脱硝技术是目前国内外最成熟可靠的脱硝技术,脱硝效率高,系统安全稳定。

反应原理如下:(1)在有氧的条件下主要反应:4NH3+4NO+O2→4N2+6H2O4NH3+2NO2+O2→3N2+6H2ONO+NO2+2NH3→2N2+3H2O(2)在反应条件改变时,有可能发生以下副反应:4NH3+3O2→2N2+6H2O2NH3→N2+3H24NH3+5O2→4NO+6H2O催化剂是整个SCR系统的核心和关键,催化剂的设计和选择是由烟气条件、组分来确定的,影响其设计的三个相互作用的因素是NOx脱除率、NH3的逃逸率和催化剂体积。

在形式上主要有板式、蜂窝式和波纹板式三种。

工艺流程影响SCR脱硝率的因素:在SCR系统设计中,最重要的运行参数是反应温度、反应时间、NH3/NOx摩尔比、烟气流速、O2浓度、NH3的溢出浓度、SO3浓度、H2O(蒸汽)浓度、钝化影响等。

反应温度是选择催化剂的重要运行参数,催化反应只能在一定的温度范围内进行,同时存在催化的最佳温度,这是每种催化剂特有的性质,因此反应温度直接影响反应的进程。

在SCR 工作过程中温度的影响有两方面:一是温度升高使脱NOx反应速度加快,NOx脱除率升高;二是温度升高NH3氧化反应开始发生,使NOx脱除率下降。

反应时间是烟气与催化剂的接触时间,随着反应时间的增加,NOx脱除率迅速增加,当接触时间增至200 ms左右时,NOx脱除率达到最大值,随后下降。

这主要是由于烟气与与催化剂的接触时间增大,有利于烟气在催化剂微孔内的扩散、吸附、反应和生成物的解吸、扩散,从而使NOx脱除率提高。

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术选择性催化还原(Selective Catalytic Reduction,SCR)是一种通过给予适量还原剂将氮氧化物(NOx)转化为氮气(N2)和水蒸气的技术。

SCR技术已被广泛应用于燃煤锅炉的烟气脱硝过程中,能够有效降低燃煤锅炉排放的氮氧化物浓度,减少大气污染物的排放。

SCR技术主要包括还原剂注入系统、反应器、催化剂和氧化剂注入系统等主要部分。

还原剂通常是氨或尿素,用来在反应器中与NOx反应生成氮气和水蒸气。

催化剂则是通过改变反应物的活性能够加速反应速率的物质。

燃煤锅炉的SCR系统可以根据不同的工况和要求进行选择。

催化剂的选择要考虑到其耐热性和耐腐蚀性,以应对高温和腐蚀性气体的冲击。

常用的催化剂有钒钛催化剂、钴钛催化剂、锆钛催化剂等。

还需要考虑催化剂的净化效率和耐毒性。

净化效率是指催化剂对NOx的转化率,一般要求在70%以上。

耐毒性是指催化剂对氨、尿素等还原剂以及烟气中的硫酸雾等毒性物质的抗腐蚀能力,一般要求催化剂在使用寿命内保持较高的活性。

还需考虑SCR系统的运行成本和能耗。

还原剂的消耗量和催化剂的使用寿命对系统运行成本有着重要影响。

选择适当的还原剂注入系统和氧化剂注入系统能够降低能耗。

在选择SCR技术时,还需考虑到实际情况和技术要求。

不同类型的燃煤锅炉存在着不同的烟气温度、氮氧化物浓度和硫氧化物浓度等特点,需要根据实际情况进行技术调整和优化。

燃煤锅炉的选择性催化还原烟气脱硝技术是一种有效降低锅炉排放的NOx浓度的技术。

在选择催化剂、还原剂注入系统和氧化剂注入系统等方面都需要考虑到耐热性、耐腐蚀性、净化效率、耐毒性、运行成本和能耗等多个因素。

只有综合考虑以上因素,才能选择出适合燃煤锅炉的SCR技术,提高燃煤锅炉的环保水平和经济性。

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术选择性催化还原(Selective Catalytic Reduction,简称SCR)技术是一种常用的燃煤锅炉烟气脱硝技术。

其主要原理是通过在催化剂的作用下,将烟气中的氮氧化物(NOx)与还原剂(尿素或氨水)进行反应,生成氮气和水,从而实现对烟气中NOx的减排。

SCR技术在燃煤锅炉烟气脱硝中具有较高的脱硝效率、较低的能耗和较少的副产物生成等优势。

SCR技术逐渐成为燃煤锅炉烟气脱硝的首选技术之一。

在选择SCR技术进行燃煤锅炉烟气脱硝时,需要考虑以下几个方面:1. NOx排放浓度:首先需要了解燃煤锅炉烟气中NOx的排放浓度。

通常情况下,烟气中NOx的浓度越高,所需的SCR系统工作温度也越高。

2. 烟气温度:选择SCR技术时还需要考虑烟气的温度。

SCR技术需要在一定的温度范围内才能发挥最佳脱硝效果,过低或过高的烟气温度都会影响SCR系统的脱硝效率。

3. 还原剂选择:还原剂的选择也至关重要。

常用的还原剂有尿素和氨水。

尿素作为还原剂具有较高的还原效率和较低的成本,但是在储存、输送和喷淋过程中需要特定的设备和控制措施。

氨水作为还原剂则相对简单,并且能够与煤粉进行混合燃烧,但成本较高。

4. 催化剂选择:选择合适的催化剂也是关键。

SCR技术中常用的催化剂有V2O5/TiO2、WO3/TiO2等。

催化剂选择应综合考虑其脱硝效率、抗毒化能力和经济性等。

5. SCR系统构成:SCR系统主要由氨水喷淋系统、催化剂层和控制系统等组成。

喷淋系统应能够均匀喷淋还原剂,催化剂层应具备较大的比表面积和良好的气体分布特性,控制系统应能够精确控制喷淋量和催化剂温度等参数。

选择性催化还原烟气脱硝技术是一种成熟的燃煤锅炉烟气治理技术。

在选择SCR技术时需注意烟气中NOx的排放浓度、烟气温度、还原剂和催化剂的选择,以及SCR系统的构成等因素。

只有全面考虑这些因素,才能选择出适合特定燃煤锅炉的SCR技术,实现烟气脱硝的高效、经济和可靠。

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术燃煤锅炉已经成为我国能源结构的重要组成部分,但燃煤锅炉排放的氮氧化物(NOx)是造成空气污染的主要因素之一。

选择性催化还原(SCR)技术是一种有效的烟气脱硝技术,它已广泛应用于燃煤锅炉的尾部处理。

本文主要讨论燃煤锅炉中选择性催化还原烟气脱硝技术的选择和应用。

1. SCR技术原理和性能SCR是一种将氨(NH3)或尿素(CO(NH2)2)溶液喷入尾部烟气中,通过催化剂将NOx与氨或尿素还原成氮气和水的技术。

SCR技术的主要反应可以写成:4NO + 4NH3 + O2 → 4N2 + 6H2OSCR技术的主要性能包括脱硝效率和氨氧化率。

脱硝效率是指SCR系统对NOx的去除率,通常要达到90%以上。

氨氧化率是指SCR系统内的氨氧化反应(2NH3 + O2 → 2NO + 3H2O)比例,通常要控制在5%以下,以避免额外的NOx排放。

2. SCR技术的催化剂选择SCR技术的催化剂是其核心部分,直接关系到SCR系统的脱硝效率和稳定性。

SCR技术的催化剂可以分为大气压催化剂和高压催化剂两种。

大气压催化剂的工作温度范围在200℃至450℃之间,通常采用V2O5-WO3/TiO2、MoO3/TiO2、Cu-ZSM-5和Fe-ZSM-5等催化剂。

在催化剂的选择上,需要根据SCR系统的运行条件和烟气成分进行选择。

此外,催化剂的耐热性、耐毒性、耐水性和抗灰烬能力也是需要考虑的因素。

SCR技术在燃煤锅炉中的应用主要分为两种:前置SCR和后置SCR。

前置SCR通常用于新装置,它将SCR系统安装在锅炉出口处,可以有效地控制NOx的排放。

前置SCR的缺点是需要较高的温度(250℃以上)才能达到脱硝效果,因此需要增加锅炉的燃烧控制和废气余热回收设备。

4. SCR技术的发展趋势随着环保要求的不断提高和锅炉设备的更新换代,SCR技术将继续得到广泛应用。

未来的SCR技术发展趋势主要包括以下几个方面:(1)催化剂的改进和优化,提高SCR系统的脱硝效率和稳定性。

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术

燃煤锅炉的选择性催化还原烟气脱硝技术燃煤锅炉是目前我国工业生产中常用的热能设备,但是燃煤锅炉排放的烟气中含有大量的氮氧化物,其中主要成分为氮氧化物(NOX)。

高浓度的NOX不仅会对环境造成严重污染,还会对人体健康产生不良影响。

燃煤锅炉的NOX排放成为大气污染治理的重点之一。

为了减少燃煤锅炉排放的NOX,选择性催化还原(SCR)烟气脱硝技术被广泛应用。

SCR 技术通过将氨和烟气中的NOX在催化剂的作用下进行反应,将NOX还原成氮气和水,从而达到脱硝的目的。

本文将重点介绍燃煤锅炉的选择性催化还原烟气脱硝技术的选择原则、工艺流程及影响因素等内容。

1.适用性分析:燃煤锅炉的选择性催化还原烟气脱硝技术需要根据燃煤锅炉的排放特点来进行适用性分析。

需要考虑的因素包括燃煤锅炉的烟气温度、NOX排放浓度、燃料性质、燃烧特性等。

2.环保要求:根据国家和地方对燃煤锅炉NOX排放的环保要求,选择合适的SCR系统技术参数和催化剂性能。

3.经济性分析:在选择SCR系统时,还需要进行经济性分析,包括投资成本、运行维护成本、能耗等方面的考虑。

4.可靠性考虑:SCR系统是燃煤锅炉脱硝的关键设备之一,其可靠性对脱硝效果和设备运行稳定性具有重要影响,因此在选择SCR系统时,需考虑其可靠性。

二、工艺流程SCR系统的基本工艺流程包括氨水制备系统、氨水喷射系统、SCR反应器、氨水喷洒均匀性控制系统、变压器、废气均匀性控制系统等。

1.氨水制备系统:氨水制备系统主要由氨气(NH3)制备装置组成,氨气是SCR技术中的还原剂,通过氨气制备装置将液氨和水进行混合制备成氨水。

2.氨水喷射系统:氨水喷射系统主要由氨水喷射器、氨水喷射管和气流分配装置组成,其作用是将制备好的氨水喷射到燃烧炉的烟气中。

3.SCR反应器:SCR反应器是SCR系统的核心部件,是进行NOX还原的主要场所,通常是采用催化床进行NOX还原反应。

4.氨水喷洒均匀性控制系统:氨水在烟气中的喷洒均匀性对SCR反应器的性能有重要影响,因此需要设计合理的氨水喷洒均匀性控制系统。

烟气脱硝技术-选择性催化还原法(SCR)技术

烟气脱硝技术-选择性催化还原法(SCR)技术

垃圾焚烧电站
1980
1982
1984
1986
1988
1990
精品课件
1992
1994
1996
1998
2003
7
德国安装SCR脱硝设备容量发展情况
安装SCR脱硝设备容量
30 000 MW el 25 000
20 000
15 000
li褐gn煤ite
oil油 bi烟tu煤minous coal
100 % 93 %
精品课件
热力型NOx的生成浓度与温度的关系
NO浓度(ppm)
800
700
600
500
400
系列1
300
200
100
0 1600
1650
1700 1750 1800 温度(摄氏度)
1850
1900
精品课件
B. 燃料型 NOX
燃料中的有机氮化合物在燃烧过程中氧化生成的氮氧化物 在煤粉燃烧中,约80%的NOx为燃料型
煤的燃烧方式对排放的影响
NO的生成及破坏与以下因素有关:
(a).煤种特性,如煤的含氮量,挥发份含量,燃料比FC/V以及V-H/V-N等。
(b).燃烧温度。
(c).炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量。
(d).燃料及燃烧产物在火焰高温区和炉膛内的停留时间。
• 控制原理
精品课件
SCR设备容量在德国的发展情况
联邦污染物防治
法第13条例排放
标准(CO, NOx, SOx,HCI, HF, 粉 尘)
环境部长会议确定 控制NOx
安装脱硫设备容量:45 000MW 安装SCR脱硝设备容量:30 000MW
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟气脱硝技术-选择性催化还原 法(SCR)技术研讨
医疗参考~
2012.2.12 1
目录
1、概述 2、NOx形成的机理和NOx生成的控制 3、NOx脱除技术选择 4、脱销工程涉及的主要设备及系统 5、SCR 烟气流动模拟设计 6、SCR内部结构 7、 还原剂的运输方式及接卸设施 8、SCR 典型工期 9、投资估算及财务分析 10、其它注意事项
医疗参考~
Seite 2
1、概述
NOx的危害
低空臭氧的产生 光化学烟雾的形成 酸雨 各种潜在的致癌物质
光化学烟雾中对植物有害的成分主要为臭氧和氮氧 化合物:臭氧浓度超过0.1ppm时便对植物产生危害。 NO2浓度达1ppm时,某些植物便会受害。
不同浓度的NO2对人体健康的影响
浓度(ppm) 影 响
火电厂大气污染物排放标准
火电厂污染物排放标准 (GB13223-2003)
2004年以后的新项目
· 必须预留烟气脱除氮氧化物装置空间
· 锅炉NOx最高容许排放浓度(燃煤):

煤质
NOx最高容许排放浓度(mg/Nm3)

Vdaf>20%
450

10%≤Vdaf≤20% 650

Vdaf<10%
1.0 5.0 10-15 50 80 100-150 200 以上
闻到臭味 闻到很强烈的臭味 眼、鼻、呼吸道受到强烈刺激 1 分钟内人体呼吸异常,鼻受到刺激 3-5 分钟内引起胸痛 人在 30-60 分钟就会因肺水肿死亡 人瞬间死亡
医疗参考~
Seite 4
环境中NOX 来源
氮氧化物是化石燃料与空气在高温燃烧时产生的,包括一氧化氮(NO) 、二氧化氮(NO2)和氧化二氮(N2O),还有NxOy。在氮氧化物中,NO占有 90%以上,二氧化氮占5%-10%。随着反应温度T的升高,其反应速率按 指数规律增加。当T<1500oC时,NO的生成量很少,而当T>1500oC时,T每 增加100oC,反应速率增大6-7倍。
• 控制原理
NOX 生成的控制
降低燃烧温度 控制燃料和空气的混合速度与时机
• 主要控制手段
燃烧器设计参数(风速、旋流强度等)优化 煤粉浓缩技术 OFA分级送风技术
• 注意事项 锅炉的燃烧效率 煤粉的着火和稳燃
医疗参考~
Seite 14
不同燃煤设备所生成的NOx的原始排放值及为达到环境保 护标准所需的NOx降低率
(mg/NM3) :200
· 油料燃机氮氧化物(以NO2计)排放限值(mg/Nm3) : 120 · 天燃气燃机氮氧化物(以NO2计)排放限值(mg/Nm3) :50
医疗参考~
Seite 6
SCR设备容量在德国的发展情况
联邦污染物防治 法第13条例排放 标准(CO, NOx, SOx,HCI, HF, 粉 尘)
环境部长会议确定 控制NOx
安装脱硫设备容量:45 000MW 安装SCR脱硝设备容量:30 000MW
联邦污染物防治法第 17条例排放标准(CH,
HCI, HF, SOx, NOx, 重金属,PCDD/F, 粉 尘)
垃圾焚烧电站
1980
1982 1984
1986
1988
1990
1992 1994 1996
1998 2003
医疗参考~
Seite 7
德国安装SCR脱硝设备容量发展情况
安装SCR脱硝设备容量
30 000 MW el 25 000
20 000
15 000
lig褐n煤ite
oil 油 b烟itu煤minous coal
100 % 93 %
78 %
10 000 5 000
2%
30,5 % 8,50% 14%
医疗参考~
Seite 10
热力型NOx的生成浓度与温度的关系
NOŨȶ (ppm)
800 700 600 500 400 300 200 100
0 1600
1650
1700 1750 1800 Π¶È (Éã ÊÏ ¶È )
1850
1900
医疗参考~
ϵ ÁÐ 1
Seite 11
B. 燃料型 NOX
燃料中的有机氮化合物在燃烧过程中氧化生成的氮氧化物 在煤粉燃烧中,约80%的NOx为燃料型
相关因素
• 与燃料和空气的混合程度密切相关 • 与燃烧区域的温度关系不大
C. 快速型 NOX
在燃烧的早期生成 形成过程 氮和燃料中的碳氢化合物反应
N2+CH化合物==》HCN化合物 HCN化合物氧化生成NO HCN化合物+O2==》NO
1987
1988
1989
1991
医疗参考~
Seite 9
2、NOx形成的机理和NOx生成的控制
NOX 形成机理
A. 热力型 NOX
主要反应 N2+O→NO+N N+O2→NO+O N+OH→NO+H 无烟煤燃烧中,一般一半以上的NOx为
热力型
相关因素 高温环境 燃料与空气的充分混合
举例:固态除渣煤粉炉,当要求NOx排放值为650mg/m3时,所需的NOx降低率为36%。
120
NOxµ½ ͵ Ê (%)
100
Ñ­ »·²´
80
Á´ Ìõ ¯
Å׺à »ú ¯
1100
火电厂大气污染物排放标准 (GB13223-2011)
2014年7月1日起,现有火力发电锅炉及燃机;2012年以后的新项目
·
燃煤锅炉氮氧化物(以NO2计)排放限值(mg/Nm3) : 100
·
采用W型锅炉,现有循环流化床锅炉,以及2003年 12月31日前建
成投产或通过环评审批的电厂锅炉 氮氧化物(以NO2计)排放限值
对于燃煤锅炉,快速型NOx所占份额一般低于5%。
煤的燃烧方式对排放的影响
NO的生成及破坏与以下因素有关:
(a).煤种特性,如煤的含氮量,挥发份含量,燃料比FC/V以及V-H/V-N等。
(b).燃烧温度。
(c).炉膛内反应区烟气的气氛,即烟气内氧气,氮气,NO和CHi的含量。
(d).燃料及燃烧产物在火焰高温区和炉膛内的停留时间。
1985 1986 1987 1988 1989 1990 1991
来源:德电联
医疗参考~
2003 Seite 8
德国NOx排放情况
Mio t
0.75 0.74
0.75
0.75
0.70
0.65
0ቤተ መጻሕፍቲ ባይዱ58
0.51 0.50
0.37
0.25 0.20
NOx
0.00 1982
1983
1984
1985
1986
相关文档
最新文档