基于Matlab的非线性规划问题的求解
基于matlab求解非线性规划问题
计算结果为:
x =[ 3.0000 5.0000 0.0000 7.0000 0.0000 1.0000 0.0000 0.0000 4.0000 0.0000 6.0000 10.0000]’ fval = 136.2275
即 由 料 场 A、 B 向 6 个 工 地 运 料 方 案 为 : 1 料场 A 料场 B 3 0 2 5 0 3 0 4 4 7 0 5 0 6 6 1 10
(二)使用临时料场的情形
使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量 为Xij,在各工地用量必须满足和各料场运送量不超过日储量的 条件下,使总的吨千米数最小,这是线性规划问题. 线性规划模 型为:
min f
aa ( i , j ) X
j 1 i 1
2
6
ij
2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2
3、再建立主程序youh2.m: x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 4、运算结果为: x = 0.7647 1.0588 fval = -2.0294
工 地 位 置 ( a, b) 及 水 泥 日 用 量 d 1 a b d 1 .2 5 1 .2 5 3 2 8 .7 5 0 .7 5 5 3 0 .5 4 .7 5 4 4 5 .7 5 5 7 5 3 6 .5 6 6 7 .2 5 7 .2 5 11
非线性规划的MATLAB解法及其应用
题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划是20世纪50年代才开始形成的一门新兴学科。
70年代又得到进一步的发展。
非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。
在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。
例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。
对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。
具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
本实验就是用matlab 软件来解决非线性规划问题。
(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。
题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。
Matlab中的数学优化与非线性规划方法
Matlab中的数学优化与非线性规划方法数学优化和非线性规划是数学领域中的重要分支,广泛应用于各个科学领域和工程实践中。
Matlab作为一种常用的数学建模和计算软件,对于解决优化和非线性规划问题具有强大的功能和丰富的工具包。
本文将介绍Matlab中的数学优化和非线性规划方法,探讨其原理和应用。
一、Matlab中的数学优化方法数学优化方法旨在寻找一个函数的最大值或最小值,常用的方法包括线性规划、整数规划和非线性规划等。
在Matlab中,优化问题可以通过建立目标函数和约束条件的数学模型来求解。
1.1 线性规划线性规划是一种求解带有线性约束条件的优化问题的有效方法。
在Matlab中,可以使用linprog函数来求解线性规划问题。
该函数采用单纯形法或者内点法等算法,在给定线性约束条件下,寻找目标函数的最小值。
例如,我们考虑一个简单的线性规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:-5 <= x1 <= 5-3 <= x2 <= 32x1 + 3x2 >= 6首先,我们需要将目标函数和约束条件表示为Matlab中的向量和矩阵形式。
然后,使用linprog函数求解最小值。
1.2 整数规划整数规划是一种求解带有整数变量的优化问题的方法。
在Matlab中,可以使用intlinprog函数来求解整数规划问题。
该函数使用分支定界法或者割平面法等算法,在给定整数约束条件下,寻找目标函数的最小值。
例如,我们考虑一个简单的整数规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:0 <= x1 <= 50 <= x2 <= 5x1 + x2 = 5在Matlab中,我们可以定义目标函数和约束条件,并使用intlinprog函数求解最小值。
1.3 非线性规划非线性规划是一类求解带有非线性约束条件的优化问题的方法。
在Matlab中,可以使用fmincon函数来求解非线性规划问题。
非线性规划的MATLAB解法
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。
MATLAB优化工具箱--线性规划-非线性规划
linprog输入参数说明: f, A, b, Aeq, beq lb,ub 边界设置 说明: 如果x(i)无边界,则 lb(i) = -inf, ub(i) = inf
6
linprog 输出参数说明: x 决策变量取值 fval 目标函数最优值
exitflag > 0 成功找到最优解 0 达到最大迭代次数也没有找到最优解 < 0 该线性规划问题不可行或者linprog计
10
fmincon函数求解形如下面的有约束非线性规 划模型
一般形式:
min f ( X ) s.t. AX b
Aeq X beq l X u c(X ) 0 ceq ( X ) 0
Matlab求解有约束非线性最小化 1.约束中可以有等式约束 2.可以含线性、非线性约束均可
数学实验
输入参数语法:
例子:某农场种植两种作物A、B,需要甲、乙两种化肥。种植 每亩作物A和作物B分别需用的化肥数,可得利润及农场现有化
肥数量如下表所示:
问在现有条件下,如何安排种植,才能使利润最大?
作物
每亩所需化肥 (百公斤)
现有化肥
AB (百公斤)
化肥
甲
23
100) 6 4
数学实验
例题建模
[x,fval,exitflag,output,lambda]=fmincon(fun,x0,...)
数学实验
输入参数的几点说明
模型中如果没有A,b,Aeq,beq,lb,ub的限制,则以空矩阵[ ]作为 参数传入; nonlcon:如果包含非线性等式或不等式约束,则将这些函数
编写为一个Matlab函数, nonlcon就是定义这些函数的程序文件名;
3
遗传算法解决非线性规划问题的Matlab程序
非线性整数规划的遗传算法Matlab程序(附图)通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab 优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。
这时就需要针对问题设计专门的优化算法。
下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考!模型的形式和适应度函数定义如下:这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。
function Fitness=FITNESS(x,FARM,e,q,w)%% 适应度函数% 输入参数列表% x 决策变量构成的4×50的0-1矩阵% FARM 细胞结构存储的当前种群,它包含了个体x% e 4×50的系数矩阵% q 4×50的系数矩阵% w 1×50的系数矩阵%%gamma=0.98;N=length(FARM);%种群规模F1=zeros(1,N);F2=zeros(1,N);for i=1:Nxx=FARM{i};ppp=(1-xx)+(1-q).*xx;F1(i)=sum(w.*prod(ppp));F2(i)=sum(sum(e.*xx));endppp=(1-x)+(1-q).*x;f1=sum(w.*prod(ppp));f2=sum(sum(e.*x));Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(mi n([sign(f2-F2);zeros(1,N)]));针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm)%% 求解01整数规划的遗传算法%% 输入参数列表% M 遗传进化迭代次数% N 种群规模% Pm 变异概率%% 输出参数列表% Xp 最优个体% LC1 子目标1的收敛曲线% LC2 子目标2的收敛曲线% LC3 平均适应度函数的收敛曲线% LC4 最优适应度函数的收敛曲线%% 参考调用格式[Xp,LC1,LC2,LC3,LC4]=MYGA(50,40,0.3)%% 第一步:载入数据和变量初始化load eqw;%载入三个系数矩阵e,q,w%输出变量初始化Xp=zeros(4,50);LC1=zeros(1,M);LC2=zeros(1,M);LC3=zeros(1,M);LC4=zeros(1,M);Best=inf;%% 第二步:随机产生初始种群farm=cell(1,N);%用于存储种群的细胞结构k=0;while k %以下是一个合法个体的产生过程x=zeros(4,50);%x每一列的1的个数随机决定for i=1:50R=rand;Col=zeros(4,1);if R<0.7RP=randperm(4);%1的位置也是随机的Col(RP(1))=1;elseif R>0.9RP=randperm(4);Col(RP(1:2))=1;elseRP=randperm(4);Col(RP(1:3))=1;endx(:,i)=Col;end%下面是检查行和是否满足约束的过程,对于不满足约束的予以抛弃 Temp1=sum(x,2);Temp2=find(Temp1>20);if length(Temp2)==0k=k+1;farm{k}=x;endend%% 以下是进化迭代过程counter=0;%设置迭代计数器while counter%% 第三步:交叉%交叉采用双亲双子单点交叉newfarm=cell(1,2*N);%用于存储子代的细胞结构Ser=randperm(N);%两两随机配对的配对表A=farm{Ser(1)};%取出父代AB=farm{Ser(2)};%取出父代BP0=unidrnd(49);%随机选择交叉点a=[A(:,1:P0),B(:,(P0+1):end)];%产生子代ab=[B(:,1:P0),A(:,(P0+1):end)];%产生子代bnewfarm{2*N-1}=a;%加入子代种群newfarm{2*N}=b;%以下循环是重复上述过程for i=1:(N-1)A=farm{Ser(i)};B=farm{Ser(i+1)};P0=unidrnd(49);a=[A(:,1:P0),B(:,(P0+1):end)];b=[B(:,1:P0),A(:,(P0+1):end)];newfarm{2*i-1}=a;newfarm{2*i}=b;endFARM=[farm,newfarm];%新旧种群合并%% 第四步:选择复制FLAG=ones(1,3*N);%标志向量,对是否满足约束进行标记%以下过程是检测新个体是否满足约束for i=1:(3*N)x=FARM{i};sum1=sum(x,1);sum2=sum(x,2);flag1=find(sum1==0);flag2=find(sum1==4);flag3=find(sum2>20);if length(flag1)+length(flag2)+length(flag3)>0FLAG(i)=0;%如果不满足约束,用0加以标记endendNN=length(find(FLAG)==1);%满足约束的个体数目,它一定大于等于N NEWFARM=cell(1,NN);%以下过程是剔除不满主约束的个体kk=0;for i=1:(3*N)if FLAG(i)==1kk=kk+1;NEWFARM{kk}=FARM{i};endend%以下过程是计算并存储当前种群每个个体的适应值SYZ=zeros(1,NN);syz=zeros(1,N);for i=1:NNx=NEWFARM{i};SYZ(i)=FITNESS2(x,NEWFARM,e,q,w);%调用适应值子函数endk=0;%下面是选择复制,选择较优的N个个体复制到下一代while k minSYZ=min(SYZ);posSYZ=find(SYZ==minSYZ);POS=posSYZ(1);k=k+1;farm{k}=NEWFARM{POS};syz(k)=SYZ(POS);SYZ(POS)=inf;end%记录和更新,更新最优个体,记录收敛曲线的数据minsyz=min(syz);meansyz=mean(syz);pos=find(syz==minsyz);LC3(counter+1)=meansyz;if minsyz Best=minsyz;Xp=farm{pos(1)};endLC4(counter+1)=Best;ppp=(1-Xp)+(1-q).*Xp;LC1(counter+1)=sum(w.*prod(ppp));LC2(counter+1)=sum(sum(e.*Xp));%% 第五步:变异for i=1:Nif Pm>rand%是否变异由变异概率Pm控制AA=farm{i};%取出一个个体POS=unidrnd(50);%随机选择变异位R=rand;Col=zeros(4,1);if R<0.7RP=randperm(4);Col(RP(1))=1;elseif R>0.9RP=randperm(4);Col(RP(1:2))=1;elseRP=randperm(4);Col(RP(1:3))=1;end%下面是判断变异产生的新个体是否满足约束,如果不满足,此次变异无效 AA(:,POS)=Col;Temp1=sum(AA,2);Temp2=find(Temp1>20);if length(Temp2)==0farm{i}=AA;endendendcounter=counter+1end%第七步:绘收敛曲线图figure(1);plot(LC1);xlabel('迭代次数');ylabel('子目标1的值');title('子目标1的收敛曲线'); figure(2);plot(LC2);xlabel('迭代次数');ylabel('子目标2的值');title('子目标2的收敛曲线'); figure(3);plot(LC3);xlabel('迭代次数');ylabel('适应度函数的平均值');title('平均适应度函数的收敛曲线'); figure(4);plot(LC4);xlabel('迭代次数');ylabel('适应度函数的最优值');title('最优适应度函数的收敛曲线');贴出一幅运行得到的收敛曲线。
MATLAB线性规划非线性规划
解 编写M文件xxgh1.m如下: c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900];
返 回
解答
线性规划模型的一般形式
目标函数和所有的约束条件都是设计变量 的线性函数.
min u ci xi
i 1
n
n aik xk bi , i 1, 2,..., n. s.t. k 1 x 0, i 1, 2,..., n. i
矩阵形式: min u cx Ax b s.t. vlb x vub
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
To MATLAB (xxgh1)
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例2
min z 6x1 3x2 4x3 s.t. x1 x2 x3 120 x1 30 0 x2 50 x3 20
编写M文件xxgh3.m如下: f = [13 9 10 11 12 8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [800; 900]; Aeq=[1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; To MATLAB (xxgh3) beq=[400 600 500]; vlb = zeros(6,1); vub=[]; [x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)
非线性规划问题的Matlab实现求解
本科毕业论文(设计)论文题目:非线性规划问题的建模与Matlab求解实现的案例分析学生:许富豪学号:1204180137专业:信息与计算科学班级:计科1201指导教师:王培勋完成日期:2015年6月25日非线性规划问题的建模与Matlab求解实现的案例分析容摘要非线性规划问题通常极其抽象,并且求解计算极其复杂,本文举个别非线性规划问题案例,通过对抽象的非线性规划问题先建立数学模型,再利用Matlab软件高效快捷的实现非线性规划问题的求解,最后分析利用Matlab软件得出的案例结果。
关键词:非线性规划建立数学模型Matlab目录(三号黑体居中)空一行空一行一、※※※※※※ (1)(一)※※※※※※ (1)1.※※※※※※※※※※※※※ (1)2.※※※※※※※ (4)(二)※※※※ (7)(三)※※※※※※※※ (12)二、※※※※ (16)(一)※※※※※ (16)(二)※※※※※ (24)1.※※※※ (24)2.※※※※※ (30)3.※※※※ (31)(三)※※※※ (33)三、※※※※ (36)(一)※※※※※ (38)(二)※※※※ (43)四、※※※※ (45)参考文献 (48)附录 (50)(标题顺序号、容及其开始页码均为四号宋体,一级标题为黑体四号)序 言非线性规划问题通常难以用人力计算,所以我们一般利用Matlab 软件代替人去计算抽象的非线性规划问题,解决了耗费时间、耗费精力的问题,快速准确的得出计算结果。
因此,善于利用Matlab 实现非线性规划问题的求解非常重要,而求解非线性规划问题之前必须先对问题进行建立数学模型,才能准确的理解题意并快速的运用Matlab 求解。
一、非现性规划的基本概念(一)定义如果目标函数或约束条件中至少有一个是非线性函数,则最优化问题就叫做非线性规划问题,简记为NP 。
(二)一般形式min (),n f x x E ∈,()=0(=1,2,..()0(j=1,2i jh x j m s t g x l ⋯≤⎩⋯⎧⎨),,)其中:1,2,n =()Tx x x x ⋯称为模型(NP )的决策变量,f 称为目标函数,(=1,...,)i h i m 和(=1,...,)j g j l 称为约束函数;()=0(=1,...,)i h x i m 称为等式约束;()0(=1,...,)j g x j l ≤称为不等式约束。
matlab中的非线性规划求解fmincon函数
这个函数的基本形式为x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中fun为你要求最小值的函数,可以单写一个文件设置函数,如以上给的例子中。
1.如果fun中有N个变量,如x y z, 或者是X1, X2,X3, 什么的,自己排个顺序,在fun 中统一都是用x(1),x(2)....x(n) 表示的。
2. x0, 表示初始的猜测值,大小要与变量数目相同3. A b 为线性不等约束,A*x <= b, A应为n*n阶矩阵,学过线性代数应不难写出A和b4 Aeq beq为线性相等约束,Aeq*x = beq。
Aeq beq同上可求5 lb ub为变量的上下边界,正负无穷用 -Inf和Inf表示, lb ub应为N阶数组6 nonlcon 为非线性约束,可分为两部分,非线性不等约束 c,非线性相等约束,ceq可按下面的例子设置function [c,ce] = nonlcon1(x)c = -x(1)+x(2)^2-4;ce = []; % no nonlinear equality constraints7,最后是options,可以用OPTIMSET函数设置,见上例具体可见OPTIMSET函数的帮助文件。
对于优化控制,MATLAB提供了18个参数,这些参数的具体意义为:options(1)-参数显示控制(默认值为0)。
等于1时显示一些结果。
options(2)-优化点x的精度控制(默认值为1e-4)。
options = optimset('TolX',1e-8) options(3)-优化函数F的精度控制(默认值为1e-4)。
options = optimset('TolFun',1e-10) options(4)-违反约束的结束标准(默认值为1e-6)。
基于MATLAB的非线性规划的求解
基于M A T L A B的非线性规划的求解The Standardization Office was revised on the afternoon of December 13, 2020基于MATLAB 的非线性0-1规划的求解学 生:易棉生指导教师:宋来忠三峡大学理学院摘要:本文主要研究非线性0-1整数规划的解法。
首先,通过对传统求解方法的研究,提出从0-1整数规划的变量只取值0和1这个特点来求解,为利用好这个特点,构造了一种数据结构——组合树,还根据目标函数和约束条件所含的变量是否被包含在解中取值为1的变量集中,将0-1整数规划的解细分为目标特殊解和约束特殊解。
然后,把这个特点具体化为4条性质。
根据这些性质,设计出合理的算法,并用MATLAB 实现该算法。
实验表明,该算法是有效的。
Abstract: In this paper, the problem about solving nonlinear 0-1 integer programming is studied. Firstly the view that we can use the feature that the variables of 0-1 integer programming only have two values 0 and 1 is raised after discussing some traditionalalgorithms. To express the feature, a new tree structure, called combination tree in the paper is given and also object-satisfied solution and constrain-satisfied solution is defined, based on whether the variables with the value 1 in objective function and constrained condition belong to the variables with the value 1 in solution. Then it can be specified by 4 properties. According to these properties, a new algorithm is designed and implemented with MATLAB language. From the experiment, it is proved that the algorithm is effective.关键词:0-1规划 非线性 组合树 解的标记 MATLABkey words: 0-1 integer programming; nonlinear; combination tree; the mark of solution; MATLAB前言本文研究的模型可是:111min ()..()0()0{0,1}f x Ax b A x b s t C x C x x ≤=⎧⎪≤=⎨⎪∈⎩,,,,(1) 其中,()f x 都是非线性函数,A 、b 、1A 、1b 是矩阵,1()()C x C x 、非线性矩阵函数。
MATLAB非线性规划问题
MATLAB⾮线性规划问题⼀.⾮线性规划课题实例1 表⾯积为36平⽅⽶的最⼤长⽅体体积。
建⽴数学模型:设x、y、z分别为长⽅体的三个棱长,f为长⽅体体积。
max f = x y (36-2 x y)/2 (x+y)实例2 投资决策问题某公司准备⽤5000万元⽤于A、B两个项⽬的投资,设x1、x2分别表⽰配给项⽬A、B的投资。
预计项⽬A、B的年收益分别为20%和16%。
同时,投资后总的风险损失将随着总投资和单位投资的增加⽽增加,已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资⾦,才能使期望的收益最⼤,同时使风险损失为最⼩。
建⽴数学模型:max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]s.t x1+x2≤5000x 1≥0,x2≥0⽬标函数中的λ≥0是权重系数。
由以上实例去掉实际背景,其⽬标函数与约束条件⾄少有⼀处是⾮线性的,称其为⾮线性问题。
⾮线性规划问题可分为⽆约束问题和有约束问题。
实例1为⽆约束问题,实例2为有约束问题。
⼆.⽆约束⾮线性规划问题:求解⽆约束最优化问题的⽅法主要有两类:直接搜索法(Search method)和梯度法(Gradient method),单变量⽤fminbnd,fminsearch,fminunc;多变量⽤fminsearch,fminnuc 1.fminunc函数调⽤格式:x=fminunc(fun,x0)x=fminunc(fun,x0,options)x=fminunc(fun,x0,options,P1,P2)[x,fval]=fminunc(…)[x,fval, exitflag]=fminunc(…)[x,fval, exitflag,output]=fminunc(…)[x,fval, exitflag,output,grad]=fminunc(…)[x,fval, exitflag,output,grad,hessian]=fminunc(…)说明:fun为需最⼩化的⽬标函数,x0为给定的搜索的初始点。
MATLAB求解非线性规划
经济管理学院:李继红
1 Matlab简介及操作环境
1.1 Matlab简介
由美国 DOCTORCLEVER MOLER 于 1980 年 开始研制并于1984年推出正式版本。以后陆续推 出了4.0,4.2和5.0版本,1999年初推出了功能更 为强大的5.3版本,2001年推出6.1版本,2003年 推出了6.5版本。2004年6月正式推出7.0版本。 MATLAB是建立在 C 语言基础上的高级语言, 并建立了自已独特的语言环境。
plot3(x,y,z,’s’)
plot3(x1,y1,z1,’s1’,x2,y2,z2,’s2’,·· ·) plot3例命:令t将=绘0制:二pi维/5图0形:1的0函*p数i;plot的特性扩展到三维空间。函 数格式除p了lo包t括3(第s三in维(t的),信co息s((t)比,t如);Z方向)之外,与二维函数
1、for循环
li1_6_1.m
• For循环可以按指定的次数重复执行一系列语 句。For循环的常见结构:
• for 变量 =表达式 循环语句
end
这里循环语句可以是一条或 多条,并且可以是变量的函 数
• 如:for k=初值: 增值: 终值
例:
% mzmfor.m
clear all
N=input('请输入矩阵的维数 N:');
6.4 switch-case语句
一般switch-case语句格式为: switch num case n1 command case n2 command case n3 command . . .otherwise Command
li1_6_4.m
7 数据的可视化
用Matlab求解非线性规划
用Matlab 求解非线性规划1.无约束优化问题)(min x f n Rx ∈,其中向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数。
用Matlab 求解:先建立函数文件mbhs.m ,内容是)(x f 的表达式;再回到Matlab 命令区输入决策变量初值数据x0,再命令[x,fmin]=fminunc(@mbhs,x0) 如:)32(m in 22212x x R x +∈的最优解是.)0,0(T x = 用Matlab 计算,函数文件为 function f=mbhs(x)f=2*x(1)^2+3*x(2)^2;再输入初值 x0=[1;1]; 并执行上述命令,结果输出为 x =? fmin =? 略。
2.约束优化问题.),,...,2,1(,0)(),,...,2,1(,0)(..)(min U x L m i x h p i x g t s x f i i Rx n ≤≤===≤∈其中:向量x 的n 个分量i x 都是决策变量,称)(x f 目标函数、)(x g i 等式约束函数、)(x h i 不等式约束函数、L 下界、U 上界。
用Matlab 求解:先把模型写成适用于Matlab 的标准形式.,0)(,0)(,,..)(min U x L x h x g beq x Aeq b Ax t s x f n Rx ≤≤=≤=≤∈ 约束条件中:把线性的式子提炼出来得前两个式子;后三个式子都是列向量。
(如:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===⨯⨯)()()([],[],,,11262x g x g x g beq Aeq b A p )再建立两个函数文件:目标函数mbhs.m ;约束函数yshs.m再回到Matlab 命令区,输入各项数据及决策变量初值数据x0,执行命令[x,fmin]=fmincon(@mbhs,x0,A,b,Aeq,beq,L,U,@yshs)例:单位球1222≤++z y x 内,曲面xy y x z 1.05.022--+=的上方,平面008.0=-++z y x 之上(不是上面),满足上述三个条件的区域记为D ,求函数)1cos()sin(2-+-+-z e z y x e xy xyz 在D 上的最大值、最大值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Matlab的非线性规划问题的求解
摘要:优化问题分为线性规划问题和非线性规划问题。
对于线性规划问题,可以使用图解法或者单纯形法很方便地求解;对于非线性规划问题,用图解法只能解极为特殊的情况,对于一般的非线性规划问题,求解计算极其复杂。
本文利用Matlab软件,通过实例,高效快捷地实现了非线性规划问题求解。
关键词:优化非线性规划Matlab
人们在日常工作中经常会遇到在一定人力、物力和财办资源条件下,使经济效益(如产值、利润等)达到最大的问题,这就是最优化问题。
其用数学语言可表述为:在一定的约束条件下,求目标函数的极值。
根据涉及的函数类型,优化问题分为线性规划问题、非线性规划问题等。
1 最优化问题模型
对于线性规划问题,可以使用图解法或者单纯形法很方便地求解;求解非线性规划问题涉及到十分复杂的计算,下面分别使用图解法及使用Matlab软件来解非线性规划问题,通过实验得出,使用Matlab软件,能够大大提高求解非线性规划问题的效率。
2 非线性规划问题的图解法
图解法是解决非线性规划问题的最直观的方法,但它只能用于解决二维或者三维空间中某些特殊的问题,对于一般的非线性规划问题
无法使用图解法。
3 用Matlab解非线性规划问题
Matlab是一个数学平台,在这个平台上,可以使用Matlab的各种指令和函数完成计算和作图工作,下面用实例来加以验证。
3.1 单变量函数的最小值问题的求解
对单变量函数求最小值的形式为,可使用fminbnd命令求其最小值。
x=fminbnd(fun,x1,x2,options)变量x返回函数fun在区间[x1,x2]上的最小值点,fun为目标函数的表达式字符串或Matlab自定义函数的函数柄,options为设置优化选项参数,可缺省。
[x,fval] = fm inbnd(…)fval为目标函数的最小值;
[x,fval,exitflag]=fminbnd(…) exitflag为返回算法的终止标志;
[x,fval,exitflag,output] = fminbnd(…) output为返回优化算法的一个数据结构。
说明:若参数exitflag>0,表示计算收敛于解x,若exitflag=0,表示超过函数估计值或迭代的最大次数,若exitflag<0表示计算不收敛。
计算结果:函数的最小值点x=0.5223,相应的函数最小值z=0.3974.
3.2 多元函数最小值问题的求解
有约束的非线性问题形式如(1)所示,用命令fmincon求解:
x=fmincon(fun,x0,A,b) x0为初始值,A、b满足线性不等式约束Ax≤b;
x=fmincon(fun,x0,A,b,Aeq,beq)Aeq、beq满足等式约束Aeq*x = beq;
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub)设置解向量x的界,即≤x≤;
x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)nonlcon非线性约束函数
说明:
c=(x(1)-1) -x(2);
ceq=[];
z2=x(1) +x(2) -x(1)*x(2)-2*x(1)-5*x(2);
第三步:运行以下命令:
clear
x0=[0,1];A=[-2,3];b=6;
options=optimset(’Largescale’,’off’);
options=optimset(options,’linesearch’,’cubicpoly’);
[z,fval,eflag,out]=fmincon(@myfun2,x0,A,b,[],[],[],[],@mycon2,opt ions)
得到的输出结果是:
z =
3.0000
4.0000
fval =
-13
eflag =
1
out =
iterations: 1
funcCount: 7
stepsize: 1
algorithm: ’medium-scale: SQP, Quasi-Newton, line-search’
firstorderopt: 1.2762e-007
cgiterations: []
message: [1x144 char]
这表明,经过1次迭代(iterations: 1),收敛(eflag = 1)到最优解(3.0,4.0),目标函数最优值为-13。
优化参数选项options的作用是关闭Largescale算法,选用线性插值(三次多项式)算法,若没有这一选项,在执行时系统就会显示警告错误。
通过以上的分析和实证,我们可以得出,利用matlab软件可以方便高效地求解非线性规划问题,具有极高的利用价值。
参考文献
[1]徐翠薇.计算方法引论[M].北京:高等教育出版社,1999.
[2]姜启源,邢文训.大学数学实验[M].北京:清华大学出版社,2005.
[3]王正东.数学建模与数学实验[M].北京:科学出版社,2004.
[4]张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出
版社,2003.。