第四章 数组字符串(二)
12 《C语言程序设计》教案 第四章 数组(2)—二维数组
二维数组的存储:二维数组从概念上可理解为行-列矩阵,但存储器是一维的,需按一定规则转换,在内存中:C语言中,二维数组中元素排列的顺序是——按行存放,不同的语言它的排列顺序是不一样的,Fotran是按列存放的。
如:见纸上
也就是说:数组元素的实际存放顺序是:右边下标比左边下标变化得快!!!
(2)字符数组的初始化
1)按元素赋
static char c[10]={‘s’,’t’,’o’,’r’,’e’};
注意static char c[10];则c[0],c[1],。。。c[9]初值均为‘\0’
但若char c[10];则c[0],c[1],。。。c[9]的值是未知的
注意:在C语言中,讲字符串作为字符数组来处理,即用一个一维数组来存放一个字符串。如c[10]存放字符串“store”。为了测定实际字符串长度,C语言规定了一个“字符串结束标志”,即‘\0’。即遇到字符‘\0’时,表示字符串结束。
printf(“%5”,a[i][i]);输出主对角线数据
考虑输出次对角线数据,打印上三角的各数据
例将一个二维数组行和列元素互换,存到另一个二维数组中(转置)
算法:1 a数组初始化(或赋值)并输出;2用二重循环进行转置b[j][i]=a[i][j];输出b数组
对于n*n的二维数组,可以在同一个数组进行矩阵转置操作
H=104
I =105
S=115
=32
注意几个问题:用字符串给字符数组赋初值,系统自动加上空字符’\0’(终结符)
‘ ’空格字符的AscII编码为32
‘\0’空字符ASCII编码为0
两者均无法直接打印出来。
3)字符串的引用与输入输出
PHP程序设计基础-第四章习题及答案
第四章 PHP数组
一、单选题
1. 关于数组的使用,请阅读以下代码:
$arr = array(1=>'aa','1'=>'bb');
echo $arr[1];
其正确的输出结果为()。
A、aa
B、bb
C、aabb
D、bbaa
2. 下列选项中,可以用于遍历关联数组的是()。
A、while
B、switch
C、foreach
D、for
3. 假设list($x,$y)=array(10,20,30,45),则$y的值是()。
A、10
B、20
C、30
D、45
4. 关于数组元素的删除,请阅读下面的代码:
$arr = array(0,1,2,3);
unset($arr[1]);
echo $arr[2];
其正确的输出结果是()。
A、0
B、1
C、2
D、3
5. 关于array_merge() 函数,下列说法中错误的是()。
A、该函数最多只能接收一个参数。
B、当遇到相同的字符串键名,后面的值将会覆盖前面的值。
C、如果数组是数字索引,则键名会以连续方式重新编排索引。
D、如果数组包含数字键名,后面的值将附加到数组的后面。
6. 下列函数中,可以将数组中各个元素连接成字符串的是()。
A、implode。
《C语言程序设计教程》第三版课后习题参考答案
《C语言程序设计教程》第三版课后习题参考答案C语言程序设计教程第三版课后习题参考答案第一章:C语言概述1.1 C语言的特点答案:C语言是一种通用的、面向过程的程序设计语言,具有高效、简洁、灵活等特点。
它提供了丰富的程序设计元素和功能,适用于各种不同的应用领域。
1.2 C语言程序的基本结构答案:C语言程序由预处理指令、函数声明、函数定义、变量声明和语句组成。
其中,预处理指令用来引入头文件或定义宏,函数声明用来声明函数的名称和参数,函数定义用来实现函数的功能,变量声明用来声明变量的类型和名称,语句用来表达具体的计算过程。
1.3 C语言的数据类型答案:C语言提供了多种数据类型,包括基本类型(整型、浮点型、字符型等)和派生类型(数组、指针、结构体等)。
每种数据类型在内存中占据一定的存储空间,并具有特定的取值范围和操作规则。
1.4 C语言的运算符和表达式答案:C语言支持各种运算符和表达式,例如算术运算符(+、-、*、/等)、关系运算符(>、<、==等)、逻辑运算符(&&、||、!等)等。
通过运算符和表达式可以进行各种数值计算和逻辑判断。
第二章:基本数据类型与运算2.1 整型数据类型答案:C语言提供了不同长度的整型数据类型,包括有符号整型(int、long等)和无符号整型(unsigned int、unsigned long等)。
整型数据类型可以表示整数值,并具有不同的取值范围。
2.2 浮点型数据类型答案:C语言提供了浮点型数据类型(float、double等),用来表示带小数部分的实数值。
浮点型数据可以表示较大或较小的数值,并具有一定的精度。
2.3 字符型数据类型答案:C语言提供了字符型数据类型(char),用来表示单个字符。
字符型数据可以用于表示各种字符(包括字母、数字、符号等)。
2.4 布尔型数据类型答案:C语言不直接支持布尔型数据类型,但可以使用整型数据类型来表示布尔值(0表示假、非零表示真)。
(个人收集学习笔记)4字符串处理与正则表达式
(个人收集学习笔记)4字符串处理与正则表达式第四章字符串处理与正则表达式一、字符串处理介绍1、如果字符串处理函数和正则表达式都可以实现字符串操作,建议使用字符串处理函数,因为效率高。
2、因为PHP 是弱类型语言,所以其他类型的数据一般都可以直接应用于字符串操作函数里,而自动转换成字符串类型进行处理。
3、还可以将字符串视为数组,或当作字符集合来看待。
$str[0]$str{0}二、常用的字符串输出函数1、echo()函数:使用它的效率要比其他字符串输出函数高。
2、print()函数:功能和echo()一样,但它有返回值,成功返回1,不成功返回0。
3、die()函数:exit()函数的别名。
1)参数如果是字符串,则该函数会在退出前输出它。
2)如果参数是一个整数,这个值会被用做退出状态。
值在0-254之间,退出状态255由PHP 保留,不会使用。
状态0用于成功终止程序。
4、printf():用于输出格式化字符串。
1)例子:printf(“%s age is $d”,$str,$num);2)%d :带符号十进制数%u :无符号十进制数%f :浮点数%s :字符串%b :二进制数%c :依照ASCII 值的字符%%:返回百分比符号%o :八进制数%x :十六进制数(小写字母)%X :十六进制数(大写字母)3)如果%符号多于arg 参数,则必须使用占位符。
占位符被插入到%符号之后,由数字和\$组成。
如:printf(“The %2\$s book contains %1\$d pages.That’s a nice %2\$s full of %1\$d pages”,$num,$str);%2\$s 代表$str 。
5、sprintf()函数:用法和printf()一样,但它不是输出字符串,而是把格式化的字符串以返回值的形式写入到一个变量中。
三、常用的字符串格式化函数字符串的格式化就是将字符串处理为某种特定的格式。
《数据结构与算法》第四章-学习指导材料
《数据结构与算法》第四章串知识点及例题精选串(即字符串)是一种特殊的线性表,它的数据元素仅由一个字符组成。
4.1 串及其基本运算4.1.1 串的基本概念1.串的定义串是由零个或多个任意字符组成的字符序列。
一般记作:s="s1 s2 … s n""其中s 是串名;在本书中,用双引号作为串的定界符,引号引起来的字符序列为串值,引号本身不属于串的内容;a i(1<=i<=n)是一个任意字符,它称为串的元素,是构成串的基本单位,i是它在整个串中的序号; n为串的长度,表示串中所包含的字符个数,当n=0时,称为空串,通常记为Ф。
2.几个术语子串与主串:串中任意连续的字符组成的子序列称为该串的子串。
包含子串的串相应地称为主串。
子串的位置:子串的第一个字符在主串中的序号称为子串的位置。
串相等:称两个串是相等的,是指两个串的长度相等且对应字符都相等。
4.2 串的定长顺序存储及基本运算因为串是数据元素类型为字符型的线性表,所以线性表的存储方式仍适用于串,也因为字符的特殊性和字符串经常作为一个整体来处理的特点,串在存储时还有一些与一般线性表不同之处。
4.2.1 串的定长顺序存储类似于顺序表,用一组地址连续的存储单元存储串值中的字符序列,所谓定长是指按预定义的大小,为每一个串变量分配一个固定长度的存储区,如:#define MAXSIZE 256char s[MAXSIZE];则串的最大长度不能超过256。
如何标识实际长度?1. 类似顺序表,用一个指针来指向最后一个字符,这样表示的串描述如下:typedef struct{ char data[MAXSIZE];int curlen;} SeqString;定义一个串变量:SeqString s;这种存储方式可以直接得到串的长度:s.curlen+1。
如图4.1所示。
s.dataMAXSIZE-1图4.1 串的顺序存储方式12. 在串尾存储一个不会在串中出现的特殊字符作为串的终结符,以此表示串的结尾。
Java字符串与数组
Java字符串与数组问题及答案来源⾃《Java程序员⾯试笔试宝典》第四章 Java基础知识 4.5字符串与数组1、字符串创建与存储的机制是什么?Java中字符串声明与初始化主要有两种情况:(1)String s1 = new String("abc")与String s2 = new String("abc")语句执⾏String s1 = new String("abc")语句,字符串池中不存在"abc",则会创建⼀个字符串常量"abc",并将它添加到字符串常量池中,然后new String()会在堆中创建⼀个新的对象,s1指向堆中的String对象紧接着创建String s2 = new String("abc")语句,因为字符串常量池中已经有了字符串常量"abc",所以不会再创建"abc",直接new String()在堆中创建⼀个新的对象,然后使⽤s2指向这个对象s1与s2指向堆中的不同String对象,地址⾃然也不相同(2)String s1 = "abc"语句与String s2 = "abc"语句在JVM中存在着⼀个字符串常量池,其中保存了着很多String 对象,s1,s2引⽤的是同⼀个常量池中的对象。
当创建⼀个字符串常量时,例如String s1 = "abc",会⾸先在字符串常量池中查找是否已经有相同的字符串被定义,若已经定义,则直接获取对其的引⽤,此时不需要创建字符串常量"abc",如果没有定义,则⾸先创建字符串常量"abc",然后把它加⼊到字符串池中,再将引⽤返回例⼦1:String s1 = new String("abc"); // 先查找常量区有⽆"abc"常量,若⽆则将其"abc"添加到常量区,再在堆中创建对象,将s1指向堆中的对象String s2 = new String("abc"); // 发现在常量区已经有了"abc",在堆中创建对象,将s2指向堆中的对象例⼦2:String s1 = "abc"; // 在常量区⾥⾯创建⼀个"abc"字符串对象,s1获取对其的引⽤String s2 = "abc"; // 发现在常量区已经有了"abc",s2直接获取对其的引⽤引申 - 对于String类型的变量s,赋值语句s=null和赋值语句s=""有什么区别?s=null,是指s不指向任何⼀个字符串;s=""中的s指向空字符串笔试题 - new String("abc")创建了⼏个对象?⼀个或两个,如果常量池中原来就有"abc",那么只创建⼀个对象,否则创建两个对象2、==、equals和hashCode有什么区别?==:是运算符,⽤于⽐较两个变量是否相等。
《C语言程序设计课件》第四章-数组
#include <stdio.h> #define N 10 int main(void)
{ int a[N], i; printf("Enter %d numbers: ", N);
for (i = 0; i < N; i++)
for(i=0;i<1;i++) if (a[i]>a[i+1]) { t=a[i];a[i]=a[i+1];a[i+1]=t; }
a[0]
20
a[1]
02
a[2]
44
a[3]
55
a[4]
88
a[5]
99
for(i=0;i<5;i++) if (a[i]>a[i+1]) { ……}
for(i=0;i<4;i++) if (a[i]>a[i+1]) { ……}
4.2 一维数组
一维数组主要用来存储一组类型相同并且数量一定 的数据。其中,每个数据称为数组的一个元素。
4.2.1 一维数组定义 一维数组的定义形式如下: 类型名 数组名[常量表达式]; int x[100]; char string[10]; double data[10];
常量表达式给出了数组的长度,在C语 言中定义数组时必须确定数组的长度。
600
xxx[[[654]]]
700
xxx[[[765]]]
800
xxx[[[876]]]
900
xxx[[[987]]]
第04章 数组
第4章
数
组
第 四 章
数 组
1
高 级 语 言 程 序 设 计 与 应 用 教 程
第4章:数 组
学习的意义
到目前为止,我们已经讨论了C语言中的基本数据类型, 如果用基本数据类型来定义某些变量,那么这些变量在内存 中将占用各自的内存单元,变量之间的制约关系无法体现, 不能表现出这些变量之间的关联性,看不出它们之间有任何 构造数据类型之一 有没有更好的方法来 的联系,我们把这些变量称之为‚离散变量‛,对它们的访 数组:把具有相同类型的若干变量按有序的形式 问只能通过变量名逐一进行 。 解决呢? 组织起来的集合,用数组名标识。 有!就是用数组来编程。 下面来思考一个问题:如何编程来实现对100个数进行排序呢? 数组元素:数组中的变量。用数组名和下标确定, 具有相同的名字,但有不同的下标。 解题思路: 太复杂了! 定义100个整型变量来 晕!!! 分别存放这100个整数,然 后再对这些变量的值进行比 较、交换等操作 。
//超出了数组的大小
(3) 只能给元素逐个赋值,不能给数组整体赋值。 例 int a[5] = {1, 1, 1, 1, 1}; 不能简化为: int a[10] = 1; ×
第 四 章
数 组
14
高 级 语 言 程 序 设 计 与 应 用 教 程
初始化赋值说明:
(4) 如果表达式的个数小于数组的大小,则未指定值的 数组元素被赋值为0;
4
高 级 语 言 程 序 设 计 与 应 用 教 程
第 四 章
4. 类型名int说明a数组中的10个数组元素都是整型,在每个 数组元素中只能存放整型数据。数组的类型实际上是指数 组元素的取值类型。对于同一个数组,其所有元素的数据 类型都是相同的。 5. 数组定义后, C语言的编译系统将给其分配一定大小的内 再例如: 存单元,其所占内存单元的大小与数组元素的类型和数组 float f[20]; //定义了有20个数据元素的float型数组f 的长度有关。上例中,系统为a数组在内存中开辟一段连 char str1[10], str2[20]; //定义了有10个和20个数据元素的char型 续的存储单元,如图所示。在图中标明了每个存储单元的 数组str1和str2 名字,可以用该名字直接引用每个存储单元。a数组在内 存中一共分配了10个int型的存储单元,而每个int型数据 占用4个字节(VC6.0),所以,a数组一共占用了40个字 节的连续存储单元。
C++程序设计教程-第4章 数组和指针-106
4.2
对一维数组而言,数组名和指针有许多相 通的地方,归纳如下:
(1) 数组名a表示数组的起始地址。可以利 用a+i表示的第i+1个元素的地址,即&a[i];
(2) 将指针变量pInt指向数组a的起始地址 的方法有两种,即pInt=a或pInt=&a[0];
(2) 第二种方法是通过强制类型转换用一 个整型常数直接初始化指针类型的变量。这 种方法必须在清楚目前存储空间那些“空闲 ”的前提下才能使用,否则在程序运行过程 中将会出现致命错误。
4.2
指针变量的值始终是一个地址,它是一个 无符号整型数据。
指针变量所指向的数据的类型与指针的 类型一致,它的值可以用如下的方法获得:
*<指针变量>
这里的运算符“*”称为取内容运算符。该
运算符的运算结果为作为其操作数的指针变 量所指向的数据的值。
4.2
二、指针变量的操作 1、指针变量的赋值运算 (1) 将一个变量的地址直接赋给同类型的 指针变量。
(2)同类型的指针之间可以互相赋值,此 时这两个指针指向同一个内存单元。
(3)不同类型的指针变量之间可以通过类型 强制转换互相赋值。但这样的赋值通常没有 价值。
用的空间,由于它存放的是地址,因此该空
间通常与int类型的数据所占用的空间相同,
为4个字节;另一个为该指针变量所指向的数
据所占用的存储空间。如图下图所示(以字
符型指针ptrch1为例):
ptrch1:
20001
ptrch1所指向的数据:
地址为20001
4.2
指针变量的初始化方法有两种:
第4章:数组和字符串
4.1.1一维数组
2. 创建一维数组
创建一维数组就是为数组分配存储空间,需指定数组长度。 数组创建后,数组名就标识用于存储数组元素的存储空间(引用)。 创建一维数组的3种方法:
(1) 先声明后创建
数组元素类型 数组名[]; 数组名 = new 数组元素类型[元素个数] ; 如:int intArray []; intArray = new int[5];4.2.3 字符串基本操作
字符串比较的注意事项:
表达式 str1.equals(str2)与表达式 str1==str2 的差异 在于:
• 前者表示所引用的两个字符串的内容是否相同, • 后者表示str1 与 str2是否引用同一个对象。 【实战编程技巧:如何避免潜在的空指针异常】
练习题
4.1 数组
4.2 字符串
4.1 数组
数组是将一组相同类型的数据顺序存储,组成的一 种复合数据类型。 数组的特点:
数组中的所有元素的数据类型相同。 数组中的元素连续顺序存储。 数组中每个元素按存储顺序对应一个下标,下标从0开始顺序编号 ,引用数组元素通过数组名和它的下标确定。 数组有一维数组和多维数组之分,数组元素的下标个数确定数组的 维数。
练习题
【真题练习】设有数组a和b的定义如下: int[]a={1,2,3}; int[]b={4,5,6} …… 执行以下代码“a=b;”,除了完成赋值操作之外,引起 系统额外要做的工作是_________。
第四章 labview数组字符串和簇
第3页
《虚拟仪器》 虚拟仪器》
4.1 数组
数组是同一类型数据的集合。 数组是同一类型数据的集合。 LabVIEW中的数组可以为任何数值类型、布尔型、字符串。 LabVIEW中的数组可以为任何数值类型、布尔型、字符串。 一个数组可以是一维的,在内存允许的情况下,也可以是多维的, 每维最多可以包含2 每维最多可以包含231个元素。 可以通过数组指针(索引index)访问数组元素,指针在0 可以通过数组指针(索引index)访问数组元素,指针在0到N-1的范 围内变化,而N就是数组元素的个数。 例:10 例:10元素的一维数组 10元素的一维数组
数组函数举例
求数组的大小 检索数组,得到指定位置的元素或子数组 检索数组,
第25页
《虚拟仪器》 虚拟仪器》
替换数组一个元素或行、列 替换数组一个元素或行、
第26页
《虚拟仪器》 虚拟仪器》
例:设计一个VI,产生9 例:设计一个VI,产生9个随机数组成的数组,先倒序排列,按从小到大 排列,并且求出最大值、最小值。
第38页
《虚拟仪器》 虚拟仪器》
不可显示字符代码表
代 码 \b \s \r \n \t 含 义 Backspace (ASCII BS, equivalent to \08) Space Return (ASCII SP, equivalent to \20) (ASCII CR, equivalent to \0D)
《虚拟仪器》 虚拟仪器》
《虚拟仪器》 虚拟仪器》
内蒙古科技大学信息学院 测控技术教研室 xjs2007@
c语言第四章 数组和结构.ppt
C语言程序设计
10
任务4.2 筛法依据
方法的依据:
1到200这些自然数可以分为3类: (1)单位数,即1 (2)素数,大于1,且只能被1和它自身整除 (3)合数,除了1和自身,还有其他正因子 筛法实际上是筛去合数,留下素数 为了提高筛法效率,注意到: 如n为合数(这里是200),c为n的大于1的最
赋过初值后的ice变量如下图所示
C语言程序设计
22
4.2.3 二维数组中的元素存放顺序
在内存中二维数组中的元素是按行存放的。 如上例中的二维数组 ice,其元素的存放顺序 如下图所示。
•二维数组一经定义, 系统就为其分配了连 成一片的存储区域, 这个区域有个首地址, 即ice[0][0]的地址, C/C++规定数组名就是 这个首地址的符号地 址
(5)第二遍扫描后, a[4]位置已定,以 后也不需再与a[4] 交换
以此类推每遍扫描 后都有一个元素的 位置已定,以后不 需再与之进行比较
C语言程序设计
15
冒泡排序算法设计
为了表述方便,定义以下3个变量
–(1)待排序的数的个数n(此处为6) –(2)扫描遍数j(j=1,2,3,…n-1) –(3)每遍扫描时待比较元素的下标i(i=1,2,3,…n-j)
定义格式:
–类型标识符 数组名[一维数组个数][一维数组中元素 的个数]
用于描述冰山高度的二维数组的定义为:
–int ice[5][7];
–上面语句定义了名为ice的数组,它包含5个一维数组, ice[0],ice[1]…ice[4],每个一维数组含7个整型元
素。
二维数组是带两个下标的变量,第一个下标规定
h[4]=‘4’;
数据结构(CC++语言版)第4章串
•
else return -1;
•}
34
4.3 模式匹配
35
4.3 模式匹配
朴素的模式匹配——BF算法分析
为什么BF算法时间性能低?
在每趟匹配不成功时存在大量回溯,没有利用已经 部分匹配的结果。
如何在匹配不成功时主串不回溯?
主串不回溯,模式就需要向右滑动一段距离。
如何确定模式的滑动距离?
36
4.3 模式匹配
T[strLength(S1) +i]=S2[i]; strLength(T) =MAXSTRLEN; return FALSE; } }
CompStr (S, T)
初始条件:串 S 和 T 存在。 操作结果:若S T,则返回值 0;
若S T,则返回值 0; 若S T,则返回值 0
例如:CompStr(data, state) < 0 CompStr(capture, case) > 0
• 由于在计算机科学、生物信息学等许多领域的重要应用, 串模式匹配已经变成了一个非常重要的计算问题
28
4.3 模式匹配
常用的模式匹配算法: • 朴素的模式匹配(BF算法) • 无回溯的模式匹配(KMP算法) 其他模式匹配算法
29
4.3 模式匹配
朴素的模式匹配——BF算法
基本思想:从主串S的第一个字符开始和模式T 的第 一个字符进行比较,若相等,则继续比较两者的后 续字符;否则,从主串S的第二个字符开始和模式T 的第一个字符进行比较,重复上述过程,直到T 中的 字符全部比较完毕,则说明本趟匹配成功;或S中字 符全部比较完,则说明匹配失败。
S1="ab12 cd " S2="ab12" S3=“cd"
c程序设计语言课后答案
c程序设计语言课后答案C程序设计语言课后答案C语言是一种广泛使用的计算机编程语言,由丹尼斯·里奇于1972年在贝尔实验室开发。
它以其高效性、灵活性和广泛的应用领域而闻名。
C语言是许多现代编程语言的基础,如C++、Java和C#。
学习C语言不仅能够帮助理解计算机系统的底层工作原理,而且对于掌握其他编程语言也大有裨益。
第一章:C语言基础问题1:C语言的主要特点是什么?答:C语言的主要特点包括:- 简洁的结构,使得程序编写和理解都相对容易。
- 丰富的数据类型,支持多种数据结构。
- 强大的控制语句,如循环和条件语句。
- 支持模块化编程,允许程序分解为多个函数。
- 低级语言特性,如指针,允许直接访问内存地址。
问题2:C语言的基本语法规则有哪些?答:C语言的基本语法规则包括:- 所有的语句必须以分号结束。
- 程序由函数组成,主函数是程序的入口点。
- 变量声明必须指定数据类型。
- 程序必须包含预处理指令`#include`来包含标准库。
- 函数名和变量名区分大小写。
第二章:数据类型和运算符问题3:C语言中的整型数据类型有哪些?答:C语言中的整型数据类型包括:- `int`:标准整数类型。
- `short`:短整型,比`int`占用更少的内存。
- `long`:长整型,比`int`占用更多的内存。
- `long long`:超长整型,用于表示非常大的整数。
问题4:C语言中的算术运算符有哪些?答:C语言中的算术运算符包括:- 加法:`+`- 减法:`-`- 乘法:`*`- 除法:`/`- 模运算:`%`(取余)第三章:控制语句问题5:C语言中的条件语句有哪些?答:C语言中的条件语句包括:- `if`语句:用于在满足特定条件时执行一段代码。
- `if...else`语句:用于在条件为假时执行另一段代码。
- `switch`语句:用于基于不同的情况执行不同的代码块。
问题6:C语言中的循环语句有哪些?答:C语言中的循环语句包括:- `for`循环:用于在给定的条件为真时重复执行一段代码。
c语言大一1至6章知识点
c语言大一1至6章知识点C语言是一种程序设计语言,被广泛应用于计算机科学和软件开发领域。
在大一的学习过程中,学生通常需要学习C语言的基础知识。
本文将介绍C语言大一1至6章的知识点,帮助读者全面理解并掌握这些内容。
第一章:概述C语言的概述部分主要介绍了C语言的发展历程、特点以及应用领域。
同时,还简要介绍了C语言程序的结构和运行过程。
第二章:数据类型与运算符在C语言中,数据类型和运算符是基础的概念和工具。
这一章节主要包括以下几个方面的知识点:1. C语言的基本数据类型,如整型、浮点型、字符型等;2. 数据类型的声明和定义方式;3. C语言的运算符,包括算术运算符、关系运算符、逻辑运算符等;4. 运算符的优先级和结合性规则。
第三章:控制语句控制语句是程序设计中用于控制程序执行流程的关键部分。
在C语言中,常用的控制语句包括:1. 条件语句(if语句和switch语句),用于根据条件执行相应的代码块;2. 循环语句(while语句、do-while语句和for语句),用于重复执行一段代码块;3. 跳转语句(break语句、continue语句和goto语句),用于改变程序的执行顺序。
第四章:数组与字符串数组和字符串是C语言中常用的数据结构和数据类型。
该章节主要包括:1. 数组的概念和基本操作,包括数组的声明、初始化和访问;2. 多维数组的定义和使用;3. 字符串的概念和表示方法,以及常用的字符串函数。
第五章:函数函数是C语言中组织代码的重要工具。
在这一章节中,主要介绍:1. 函数的定义和声明,以及函数的调用过程;2. 函数参数传递的方式,包括按值传递和按引用传递;3. 递归函数的概念和使用方法。
第六章:指针与动态内存管理指针是C语言中的重要特性,也是较难理解和掌握的部分。
该章节主要涵盖:1. 指针的概念和基本操作,包括指针的声明、初始化和使用;2. 指针和数组之间的关系,指针的运算和指针的比较;3. 动态内存管理,包括动态内存的分配和释放。
第四章 数组
4.1一维数组
数组元素在内存中是顺序存储的。对于 一维数组,就是简单地按下标顺序存储。 例如,对上面定义的整型数组a,在内存 中的存放顺序如图4-1所示:
4.1 一维数组
3 数组的赋值
1) 用“=”赋值 与数组的初始化不同,在给数组元素进行赋值
时,若必要须在逐数一组赋之值间。进行赋值,也只能一个 例如一:个对元于素下地述赋的值数组。初始化: 其等例样价如大的:小ii赋nn将 的tt值上 数aa形[[述 组式33]]数b如;=,{下组1可:,a2的以,3值利};赋用给下另面一的个循同环
的存储单元。 根据数组的维数,分为一维数组、二维数组
和多维数组,常用的是一维和二维数组。
4.1一维数组
1.一维数组的定义格式为: 类型 数组名[常量表达式]; 其中,类型是数组类型,即数组中各元素的数据
类型,可以是整型、浮点型、字符型等基本类型。
数组名是一个标识符,代表着数组元素在内存中 的起始地址,它的命名规则与变量名的命名一样。
→对a于[1二][维0]数→a组[1,][可1]以→把a[它1]看[2成]→是a由[1多][3个] 一 →维a数[2组][构0]成→的a[。2]例[1如]→上a例[2:][i2n]t →a[a2[]2[]3[]3;] 就 可以看成是由两个形如int a[3];的一维数 组构成的。
4.2 二维数组
常量表达式又称下标表达式,表示一维数组中元 素的个数,即数组长度(也称为数组大小),用 一对
方括号“[ ]”括起来。方括号“[ ]”的个数代表数 组
4.1一维数组
数据结构课件 第四章 串和数组
else {
s->str=(char*)malloc((len+1)*sizeof(char));
//分配空间
if (!s->str) return ERROR;
s->str[0..len]=string_constant[0..len];
//对应的字符赋值
s->length=len;
//赋予字符串长度
串的抽象数据类型定义
functions:
// 有13种之多
StrAssign(&T, chars) // 串赋值,生成值为chars的串T
StrCompare(S,T)
// 串比较,若S>T,返回值大于0…
StrLength(S)
// 求串长,即返回S的元素个数
Concat(&T, S1, S2) // 串连接,用T返回S1+S2的新串
type unsigned char String[MAX_STRING];
第二种是在程序执行过程中,利用标准函数malloc和free动态
地分配或释放存储字符串的存储单元,并以一个特殊的字符作为字符串
的结束标志,它的好处在于:可以根据具体情况,灵活地申请适当数目
的存储空间,从而提高存储资源的利用率。类型定义如下所示:
(4)串连接 int Concat(STRING *s1,STRING s2) { STRING s; StringAssign(&s,s1->str); //将s1原来的内容保留在s中 len=Length(s1)+Length(s2); //计算s1和s2的长度之和 free(s1->str); //释放s1原来占据的空间 s1->str=(char*)malloc((len+1)*sizeof(char)); //重新为s1分配空间
数据结构课后习题答案第四章
第四章串一、单项选择题1.B2. B3.B4.C5. C二、填空题1.空、字符2.由空格字符(ASCII值32)所组成的字符串空格个数3.长度、相等、子、主4.55.011223126.(1)char s[ ] (2) j++ (3) i >= j7.[题目分析]本题算法采用顺序存储结构求串s和串t的最大公共子串。
串s用i指针(1<=i<=s.len)。
t串用j指针(1<=j<=t.len)。
算法思想是对每个i(1<=i<=s.len,即程序中第一个WHILE循环),来求从i开始的连续字符串与从j(1<=j<=t.len,即程序中第二个WHILE循环)开始的连续字符串的最大匹配。
程序中第三个(即最内层)的WHILE循环,是当s中某字符(s[i])与t中某字符(t[j])相等时,求出局部公共子串。
若该子串长度大于已求出的最长公共子串(初始为0),则最长公共子串的长度要修改。
(1) i+k<=s.len && j+k<=t.len && s[i+k]==t[j+k] //所有注释同上(a)(2) con=0 (3) j+=k (4) j++ (5) i++三、应用题1.空格是一个字符,其ASCII码值是32。
空格串是由空格组成的串,其长度等于空格的个数。
空串是不含任何字符的串,即空串的长度是零。
2.(a)A+B “ mule”(b)B+A “mule ”(c)D+C+B “myoldmule”(d)SUBSTR(B,3,2) “le”(e)SUBSTR(C,1,0) “”(f)LENGTH(A) 2(g)LENGTH(D) 2(h)INDEX(B,D) 0(i)INDEX(C,”d”) 3(j)INSERT(D,2,C) “myold”(k)INSERT(B,1,A) “m ule”(l)DELETE(B,2,2) “me”(m)DELETE(B,2,0) “mule”3.朴素的模式匹配(Brute-Force)时间复杂度是O(m*n),KMP算法有一定改进,时间复杂度达到O(m+n)。
c语言函数库-第四章(字符串函数)
c语言函数库第四章(字符串函数)1. atof:字符串转浮点型函数 (1)2. atoi:字符串转整型函数 (2)3. atol:字符串转长整型函数 (3)4. memchr:字符搜索函数 (4)5. memcmp:字符串比较函数 (4)6. memcpy:字符串拷贝函数 (5)7. memmove:字块移动函数 (6)8.memset:字符加载函数 (8)9. strcat:字符串连接函数 (8)10. strchr:字符串中字符首次匹配函数 (9)11. strcmp:字符串比较函数 (10)12. strcpy:字符串拷贝函数 (11)13. strcspn:字符集逆匹配函数 (12)14. strdup:字符串新建拷贝函数 (13)15. strerror:字符串错误信息函数 (14)16. strlen:计算字符串长度函数 (15)17. strlwr:字符串小写转换函数 (16)18. strncat:字符串连接函数 (16)19. strncmp:字符串子串比较函数 (17)20. strncpy:字符串子串拷贝函数 (18)21. strpbrk:字符集字符匹配函数 (19)22. strrchr:字符串中字符末次匹配函数 (20)23. strrev:字符串倒转函数 (21)24. strset:字符串设定函数 (22)25. strspn:字符集匹配函数 (22)26. strstr:字符串匹配函数 (23)27. strtod:字符串转换成双精度函数 (24)28. strtok:字符串分隔函数 (25)29. strtol:字符串转换成长整型函数 (27)30. strtoul:字符串转换成无符号长整型函数 (28)31. strupr:字符串大写转换函数 (29)32. strupr:字符串大写转换函数 (29)1.atof:字符串转浮点型函数函数原型:float atof(const char *str);头文件:#include<stdlib.h>是否是标准函数:是函数功能:将字符串转换成浮点值,也就是将字符串str转换成浮点值然后获取转换后的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为加速转置速度,建立辅助数组 rowSize 和 rowStart: rowSize记录矩阵转置前各列,即转置矩 阵各行非零元素个数; rowStart记录各行非零元素在转置三元组 表中开始存放位置。 扫描矩阵三元组表,根据某项列号,确定 它转置后的行号, 查 rowStart 表, 按查到 的位置直接将该项存入转置三元组表中。
6
稀疏矩阵
0 0 0 0 91 0 0 11 0 0 0 0 0 22 0 0 15 0 0 0 17 0 0 6 0 0 0 0 0 0 39 0 0 0 0 0 0 28 0 0 0 0
[0] [1] [2] [3] [4] [5] [6] [7]
11
for (k = 0; k < Cols; k++) //处理所有列号 for (i = 0; i < Terms; i++) if (smArray[i].col == k) { B.smArray[CurrentB].row = k; B.smArray[CurrentB].col = smArray[i].row; B.smArray[CurrentB].value= smArray[i].value; CurrentB++; } } };
转置矩阵三元组表
行 列 值 (row) (col) (value) 0 4 91 1 1 11 2 5 28 3 0 22 3 2 -6 5 1 17 5 3 39 6 0 16
9
[0] [1] [2] [3] [4] [5] [6] [7]
[0] [1] [2] [3] [4] [5] [6] [7]
14
பைடு நூலகம்
[0] [1] [2] [3] [4] [5] [6] 语 义 rowSize 1 1 1 2 0 2 1 矩阵 A 各列非 零元素个数 rowStart 0 1 2 3 5 5 7 矩阵 B 各行开 始存放位置
A三元组 (0) (1) (2) (3) (4) (5) (6) (7) 0 0 1 1 2 3 4 5 行row 3 6 1 5 3 5 0 2 列col 22 15 11 17 -6 39 91 28 值value
行 列 值 (row) (col) (value) 0 3 22 0 6 15 1 1 11 1 5 17 2 3 -6 3 5 39 4 0 91 5 2 28
7
转置矩阵
0 0 0 22 0 0 15 0 0 11 0 0 0 0 6 0 0 17 0 0 0 0 0 0 0 0 39 0 91 0 0 0 0 0 0 0 0 28 0 0 0 0
16
for (i = 0; i < Terms; i++) rowSize[smArray[i].col]++; rowStart[0] = 0; for (i = 1; i < Cols; i++) rowStart[i] = rowStart[i-1]+rowSize[i-1]; for (i = 0; i < Terms; i++) { j = rowStart [smArray[i].col]; B.smArray[j].row = smArray[i].col; B.smArray[j].col = smArray[i].row; B.smArray[j].value = smArray[i].value; rowStart [smArray[i].col]++; }
稀疏矩阵 (Sparse Matrix)
0 0 0 22 0 0 11 0 0 0 0 6 0 0 0 0 91 0 0 0 0 0 28 0 0 0 15 0 17 0 0 0 0 0 39 0 0 0 0 0 0 0
A 67
设矩阵 A 中有 s 个非零元素,若 s 远远小于 矩阵元素的总数(即s≤m×n),则称 A 为 稀疏矩阵。
1
设矩阵 A 中有 s 个非零元素。令 e = s/(m*n), 称 e 为矩阵的稀疏因子。 有人认为 e≤0.05 时称之为稀疏矩阵。 在存储稀疏矩阵时,为节省存储空间,应只 存储非零元素。但由于非零元素的分布一般 没有规律,故在存储非零元素时,必须记下 它所在的行和列的位置 ( i, j )。 每一个三元组 (i, j, aij) 唯一确定了矩阵A的一 个非零元素。因此,稀疏矩阵可由表示非零 元的一系列三元组及其行列数唯一确定。
2
稀疏矩阵的定义
const int drows = 6, dcols = 7, dterms = 9; template<class E> struct Triple { //三元组 int row, col; //非零元素行号/列号 E value; //非零元素的值 void operator = (Triple<E>& R) //赋值 { row = R.row; col = R.col; value = R.value; } }; template <class E> class SparseMatrix {
17
} delete [ ] rowSize; delete [ ] rowStart;
}
18
3
public: SparseMatrix (int Rw = drows, int Cl = dcols, int Tm = dterms); //构造函数 void Transpose(SparseMatrix<E>& b); //转置 void Add (SparseMatrix<E>& a, SparseMatrix<E>& b); //a = a+b void Multiply (SparseMatrix<E>& a, SparseMatrix<E>& b); //a = a*b pvivate: int Rows, Cols, Terms; //行/列/非零元素数 Triple<E> *smArray; //三元组表 };
[0] [1] [2] [3] [4] [5] [6] [7]
行 列 值 (row) (col) (value) 0 4 91 1 1 11 2 5 28 3 0 22 3 2 -6 5 1 17 5 3 39 6 0 16
8
用三元组表表示的稀疏矩阵及其转置
原矩阵三元组表
行 列 值 (row) (col) (value) 0 3 22 0 6 15 1 1 11 1 5 17 2 3 -6 3 5 39 4 0 91 5 2 28
4
稀疏矩阵的构造函数
template <class E> SparseMatrix<E>::SparseMatrix (int Rw, int Cl, int Tm) { Rows = Rw; Cols = Cl; Terms = Tm; smArray = new Triple[Terms]; //三元组表 if (smArray == NULL) { cerr << “存储分配失败!” << endl; exit(1); } };
12
快速转置算法
设矩阵三元组表总共有 t 项,上述算法的时 间代价为 O ( n* t )。当非零元素的个数 t 和 m*n 同数量级时,算法transmatrix的时间复 杂度为O(m*n2)。
若矩阵有 200 行,200 列,10,000 个非零元 素,总共有 2,000,000 次处理。 快速转置算法的思想为:对 原矩阵A 扫描一 遍,按 A 中每一元素的列号,立即确定在转 置矩阵 B 三元组表中的位置,并装入它。
5
稀疏矩阵的转置
一个 mn 的矩阵 A,它的转置矩阵 B 是一 个 nm 的矩阵,且 A[i][j] = B[j][i]。即
矩阵 A 的行成为矩阵 B 的列 矩阵 A 的列成为矩阵 B 的行。 在稀疏矩阵的三元组表中,非零矩阵元素按 行存放。当行号相同时,按列号递增的顺序 存放。 稀疏矩阵的转置运算要转化为对应三元组表 的转置。
15
稀疏矩阵的快速转置算法
template <class E> void SparseMatrix<E>:: FastTranspos (SparseMatrix<E>& B) { int *rowSize = new int[Cols]; //列元素数数组 int *rowStart = new int[Cols]; //转置位置数组 B.Rows = Cols; B.Cols = Rows; B.Terms = Terms; if (Terms > 0) { int i, j; for (i = 0; i < Cols; i++) rowSize[i] = 0;
稀疏矩阵转置算法思想
设矩阵列数为 Cols,对矩阵三元组表扫描 Cols 次。第 k 次检测列号为 k 的项。
第 k 次扫描找寻所有列号为 k 的项,将其行 号变列号、列号变行号,顺次存于转置矩阵 三元组表。
10
稀疏矩阵的转置
template <class E> void SparseMatrix<E> :: Transpose (SparseMatrix<E>& B) { //转置this矩阵,转置结果由B返回 B.Rows = Cols; B.Cols = Rows; B.Terms = Terms; //转置矩阵的列数,行数和非零元素个数 if (Terms > 0) { int CurrentB = 0; //转置三元组表存放指针 int i, k;