第三十讲从创新构造入手(2014年初中数学培优提高)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十讲 从创新构造入手

有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解.

所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的.

构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有:

1.构造方程;

2.构造函数;

3.构造图形;

4.对于存在性问题,构造实例;

5.对于错误的命题,构造反例;

6.构造等价命题等.

【例题求解】

【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求

证:1))(())((22211211-=++=++b a b a b a b a .

思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻.

注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等.

【例2】 求代数式1342222+-+++x x x x 的最小值.

思路点拨 用一般求最值的方法很难求出此代数式的最小值.

222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,于是问题转化为:在x 轴上求一点

C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.

【例3】 已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,求b 和c 的值.

思路点拨 利用求根公式,解不等式组求出b 、c 的范围,这是解本例的基本思路,解法繁难.由于二次函数与二次方程有深刻的内在联系,构造函数,令c bx x y ++=25,从讨论抛物线与x 轴交点在1-与0之间所满足的约束条件入手.

【例4】 如图,在矩形ABCD 中,AD=a ,AB=b ,问:能否在Ab 边上找一点E,使E 点与C 、D 的连线将此矩形分成三个彼此相似的三角形?若能找到,这样的E 点有几个?若不能找到,请说明理由.

思路点拨 假设在AB 边上存在点E,使Rt △ADE ∽Rt △BEC ∽Rt △ECD,又设AE=x ,则BC BE AE AD =,即a

x b x a -=,于是将问题转化为关于x 的一元二次方程是否有实根,在一定条件下有几个实根的研究,通过构造方程解决问题.

【例5】 试证:世界上任何6个人,总有3人彼此认识或者彼此不认识.

思路点拨 构造图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比如2个人彼此认识就把连接2个人的对应点的线段染成红色;2个人彼此不认识,就把相应的线段染成蓝色,这样,有3个人彼此认识就是存在一个3边都是红色的三角形,否则就是存在一个3边都是蓝色的三角形,这样本题就化作:

已知有6个点,任何3点不共线,每2点之间用线段连结起来,并染上红色或蓝色,并且一条边只能染成一种颜色.证明:不管怎么染色,总可以找出三边同色的三角形.

注:“数缺形时少直观,形缺少时难入微”数形互助是一种重要的思想方法,主要体现在:

(1)几何问题代数化;

(2)利用图形图表解代数问题;

(3)构造函数,借用函数图象探讨方程的解.

利用代数法解几何题,往往是以较少的量的字母表示相关的几何量,根据几何图形性质列出代数式或方程(组),再进行计算或证明.

特别地,证明几何存在性的问题可构造方程,利用一元二次方程必定有解的的的代数模型求证;应用为韦达定理,讨论几何图形位置的可能性.

有些问题可通过改变形式或换个说法,构造等价命题或辅助命题,使问题清晰且易于把握.

对于存在性问题,可根据问题要求构造出一个满足条件的结论对象,即所谓的存在性问题的“构造性证明”. 学历训练

1.若关于x 的方程012)1(22=-+-mx x m 的所有根都是比1小的正实数,则实数m 的取值范围

是 .

2.已知a 、b 、c 、d 是四个不同的有理数,且1))((=++d a c a ,1))((=++d b c b ,那么))((c b c a ++的值是 .

3.代数式9)12(422+-++x x 的最小值为 .

4.A 、B 、C 、D 、E 、F 六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛 了5、4、3、2、1场,则还未与B 队比赛的球队是 .

5.若实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的取值范围是 .

6.设实数分别s 、t 分别满足0199192=++s s ,019992=++t t ,并且1≠st ,求t

s st 14++的值. 7.已知实数a 、b 、c 满足0))((<+++c b a c a ,求证:)(4)(2c b a a c b ++>-.

8.写出10个不同的自然数,使得它们中的每个是这10个数和的一个约数,并说明写出的10个自然数符合题设条件的理由.

9.求所有的实数x ,使得x

x x x 111-+-= .

10.若是不全为零且绝对值都小于106的整数.求证:2110132>

++c b a .

11.已知关于x 的方程k x x =+-1322有四个不同的实根,求k 的取值范围.

12.设10<

13.从自然数l,2,3,…354中任取178个数,试证:其中必有两个数,它们的差为177.

14.已知a 、b 、c 、d 、e 是满足8=++++e d c b a ,162222=++++e d c b a 的实数,试确定e 的最大值.

15.如图,已知一等腰梯形,其底为a 和b ,高为h .

(1)在梯形的对称轴上求作点P ,使从点P 看两腰的视角为直角;

(2)求点P 到两底边的距离;

(3)在什么条件下可作出P 点?

相关文档
最新文档