基于场效应管的直流电机驱动控制电路设计

合集下载

直流脉宽(PWM)调速系统设计与研究--触发电路设计

直流脉宽(PWM)调速系统设计与研究--触发电路设计

1绪论1.1背景直流调速技术的研究和应用已达到比较成熟的地步,尤其是随着全数字直流调速的出现,更提高了直流调速系统的精度及可靠性。

目前国内各大专院校,科研单位和厂家也都在开发直流调速装置,但大多数调速技术都是结合工业生产中,而在民用中应用相对较少,所以应用已有的成熟技术开发性能价格比高的,具有自主知识产权的直流调速单元,将有广阔的应用前景。

1.2直流电动机的调速方法本系统采用转速环和电流环双闭环结构,因此需要实时检测电机的电枢电流并把它作为电流调节器的反馈信号。

由电动机理论知,直流电动机的机械特性方程为T R C C C U n m e e Nφφ2N -=式中n N ——直流电动机的转速(r/min )U N ——电动机的额定电压(v):R ——电动机电枢电路总电阻(Ω)C e ——电动势常数(v·min /r); C m ——转矩常数,C m =9.55C e; T ——电动机电磁转矩(N·m);φ——电动机磁通(wb)。

由上式可以知道:直流电动机的调速方法有三种:(1)调节电枢供电电压U 。

改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。

对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。

I a 变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。

(2)改变电动机主磁通Φ。

改变磁通可以实现无级平滑调速,但只能减弱磁通进行调2速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。

I f变化时间遇到的时间常数同I a变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。

(3)改变电枢回路电阻R。

在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。

但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。

1.3选择PWM控制系统的理由脉宽调制器UPW 采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM 控制器。

L6203直流电机驱动设计原理图及例程

L6203直流电机驱动设计原理图及例程

L6203直流电机控制驱动器【简要说明】一、尺寸:长66mmX宽33mm X高28mm二、主要芯片:L6203三、工作电压:控制信号直流4.5~5.5V;驱动电机电压7.2~30V四、可驱动直流(7.2~30V之间电压的电机)五、最大输出电流4A六、最大输出功率20W七、特点:1、具有信号指示2、转速可调3、抗干扰能力强4、具有续流保护5、可单独控制一台直流电机6、PWM脉宽平滑调速(可使用PWM信号对直流电机调速)7、可实现正反转8、此驱动器非常时候控制飞思卡尔智能车,驱动器压降小,电流大,驱动能力强。

【标注图片】直流电机的控制实例使用驱动器可以控制一台直流电机。

电机分别为OUT1和OUT2。

输入端EN可用于输入PWM脉宽调制信号对电机进行调速控制。

(如果无须调速可将EN使能端,接高低电平,高电平启动,低电平停止。

也可由单片机输出直接控制)实现电机正反转就更容易了,输入信号端IN1接高电平输入端IN2接低电平,电机正转。

(如果信号端IN1接低电平,IN2接高电平,电机反转。

)可参考下图表:电机旋转方式控制端IN1控制端IN2EN使能端M 正转高低高反转低高高调速* * 输入PWM信号直流电机测试程序【原理图】【测试程序】/********************************************************************汇诚科技实现功能:调试程序使用芯片:AT89S52 或者 STC89C52晶振:11.0592MHZ编译环境:Keil作者:zhangxinchun淘宝店:汇诚科技*********************************************************************/ #include<reg52.h>#define uchar unsigned char//宏定义无符号字符型#define uint unsigned int //宏定义无符号整型sbit P2_0=P2^0;//启动sbit P2_1=P2^1;//停止sbit P2_2=P2^2;//正转sbit P2_3=P2^3;//反转sbit P1_0=P1^0;//使能sbit P1_1=P1^1;//IN1sbit P1_2=P1^2;//IN2/********************************************************************延时函数*********************************************************************/ void delay(uchar t)//延时程序{uchar m,n,s;for(m=t;m>0;m--)for(n=20;n>0;n--)for(s=248;s>0;s--);}/********************************************************************主函数*********************************************************************/ main(){while(1){if(P2_0==0){delay(3);if(P2_0==0)//启动{P1_0=1;P1_1=1;P1_2=0;}}if(P2_1==0){delay(3);if(P2_1==0)//停止{P1_0=0;}}if(P2_2==0){delay(3);if(P2_2==0)//正转{P1_1=1;P1_2=0;}}if(P2_3==0){delay(3);if(P2_3==0)//反转{P1_1=0;P1_2=0;}}}}/********************************************************************结束*********************************************************************/L6203DMOS(消耗型金属氧化物半导体)全控桥驱动器⏹供电电压:48V⏹最大峰值电流5A(L6021最大2A)⏹电流有效值:⏹L6201: 1A; L6202: 1.5A; L6203/L6201PS: 4A ⏹R DS (ON) 电阻值0.3 Ω (室温25 ︒C)⏹击穿电压保护⏹兼容TTL电路⏹运行最高频率100KHz⏹热滞⏹集成逻辑电路使用⏹高效概述L6201是一种应用多源BCD(Bipolar,CMOS,DMOS)技术来控制电机的全控桥驱动器芯片,这种芯片能将独立的DMOS场效应晶体管和CMOS以及二极管集成在一块芯片上。

MOSFET的驱动保护电路设计

MOSFET的驱动保护电路设计

摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。

分析了二极管器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。

该电路具有结构简单,实用性强,响应速度快等特点。

在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。

功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。

但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。

如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET 功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。

文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。

该设计使系统功率驱动部分的可靠性大大的提高。

1 功率MOSFET保护电路设计功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。

功率MOSFET保护电路主要有以下几个方面:1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt 而引起误导通。

为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。

基于场效应管的大功率直流电机驱动电路设计

基于场效应管的大功率直流电机驱动电路设计

基于场效应管的大功率直流电机驱动电路设计随着工业自动化技术的不断发展,直流电机在现代工业中得到了广泛的应用。

其高效率、高控制精度、低噪声等特点,使得直流电机成为了各种工业设备中的重要部件。

然而,直流电机的驱动电路一直以来都是一个难以解决的问题。

基于场效应管的大功率直流电机驱动电路是解决这一问题的一个有效方法,本文将对其进行详细的介绍和分析。

一、基本原理场效应管是一种基于场效应的半导体器件,其主要特点是输入电阻高、带宽宽、阈值电压低、驱动电压低、体积小等。

这种器件可以在很小的控制电压下,实现大功率的开关控制。

因此,利用场效应管来设计大功率直流电机驱动电路,可以有效地提高电机的效率和控制精度。

二、电路设计基于场效应管的大功率直流电机驱动电路的设计需要根据具体的需求而定。

下面我们以一个C速率驱动电路为例来进行介绍。

1、整体设计整个电路由驱动电源、控制信号处理、驱动电路和电机负载等部分组成。

其中,驱动电路主要由N沟道场效应管和P沟道场效应管组成。

控制信号处理主要是通过单片机控制信号,以控制场效应管的通断和时间控制等。

电机负载部分则由直流电机和机械负载器件组成,直接产生动力。

2、驱动电路部分设计驱动电路是基于场效应管大功率直流电机驱动电路的核心部分。

其设计需要做到以下几个方面:①选择适当的场效应管在设计驱动电路时,需要根据具体的电机负载特点和驱动电路所需的电压电流等参数,选择适当的场效应管。

通常情况下,能承受大电流的MOSFET管具有更好的驱动特性和开关速度,这对于电机的控制非常重要。

②优化电路结构在设计过程中,还需要优化电路的结构,保证电路的稳定性和可靠性。

在本设计中,采用了H桥结构和电流采样电路等。

③加入保护电路在实际应用过程中,直流电机会承受很大的负载,如果没有保护电路,就可能会导致电机的损坏。

因此,在电路设计过程中,需要加入过压保护、过流保护等保护电路,保证电路的安全运行。

3、控制信号处理部分设计控制信号处理部分主要负责将控制信号进行放大和变形,以满足不同的驱动器控制要求。

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计一、本文概述随着现代电子技术的飞速发展,直流电机因其优良的控制性能和简单的结构设计,在工业自动化、精密仪器和消费电子等领域得到了广泛应用。

传统的直流电机驱动控制电路存在功耗大、效率低、响应速度慢等问题,难以满足当前对高性能电机控制系统的需求。

研究新型的直流电机驱动控制电路具有重要意义。

本文主要聚焦于基于场效应管的直流电机驱动控制电路设计。

场效应管(FET)作为一种高效、快速的电子器件,在电机驱动领域具有独特的优势。

本文将首先介绍场效应管的基本原理和特性,以及其在直流电机驱动控制中的应用优势。

接着,本文将详细阐述一种基于场效应管的直流电机驱动控制电路的设计方法,包括电路的拓扑结构、工作原理以及关键参数的设计与优化。

本文的研究重点在于如何通过优化电路设计,提高直流电机驱动控制系统的性能,包括降低功耗、提高效率、加快响应速度等。

本文还将探讨电路设计中可能遇到的问题和挑战,并提出相应的解决策略。

总体而言,本文旨在为直流电机驱动控制电路的设计提供一种新的思路和方法,以推动电机控制技术在现代工业和电子领域的应用与发展。

二、场效应管基础知识场效应管(FieldEffect Transistor,简称FET)是一种利用电场效应来控制电流流动的半导体器件。

它具有三个引脚:源极(Source)、栅极(Gate)和漏极(Drain)。

场效应管的主要类型包括结型场效应管(JFET)和金属氧化物半导体场效应管(MOSFET)。

在直流电机驱动控制电路中,MOSFET因其高输入阻抗、低导通电阻和高开关速度等特点而得到广泛应用。

场效应管的工作原理基于电场效应。

在MOSFET中,当在栅极和源极之间施加一个电压时,会在栅极和硅基片之间形成一个电场。

这个电场会影响硅基片中的电荷分布,从而控制源极和漏极之间的电流流动。

当栅极电压达到一定阈值时,MOSFET开始导通,电流可以在源极和漏极之间流动。

场效应管的特性参数对其在电路中的应用至关重要。

场效应管电机驱动

场效应管电机驱动

场效应管电机驱动-MOS管H桥原理所谓的H 桥电路就是控制电机正反转的。

下图就是一种简单的H 桥电路,它由2 个P型场效应管Q1、Q2 与2 个N 型场效应管Q3、Q3 组成,所以它叫P-NMOS 管H 桥。

桥臂上的4 个场效应管相当于四个开关,P 型管在栅极为低电平时导通,高电平时关闭;N 型管在栅极为高电平时导通,低电平时关闭。

场效应管是电压控制型元件,栅极通过的电流几乎为“零”。

正因为这个特点,在连接好下图电路后,控制臂1 置高电平(U=VCC)、控制臂2 置低电平(U=0)时,Q1、Q4 关闭,Q2、Q3 导通,电机左端低电平,右端高电平,所以电流沿箭头方向流动。

设为电机正转。

控制臂1 置低电平、控制臂2 置高电平时,Q2、Q3 关闭,Q1、Q4 导通,电机左端高电平,右端低电平,所以电流沿箭头方向流动。

设为电机反转。

当控制臂1、2 均为低电平时,Q1、Q2 导通,Q3、Q4 关闭,电机两端均为高电平,电机不转;当控制臂1、2 均为高电平时,Q1、Q2 关闭,Q3、Q4 导通,电机两端均为低电平,电机也不转,所以,此电路有一个优点就是无论控制臂状态如何(绝不允许悬空状态),H 桥都不会出现“共态导通”(短路),很适合我们使用。

(另外还有4 个N 型场效应管的H 桥,内阻更小,有“共态导通”现象,栅极驱动电路较复杂,或用专用驱动芯片,如MC33883,原理基本相似,不再赘述。

)下面是由与非门CD4011 组成的栅极驱动电路,因为单片机输出电压为0~5V,而我们小车使用的H 桥的控制臂需要0V 或7.2V 电压才能使场效应管完全导通,PWM 输入0V 或5V时,栅极驱动电路输出电压为0V 或7.2V,前提是CD4011 电源电压为7.2V。

切记!!故CD4011 仅做“电压放大”之用。

之所以用两级与非门是为了与MC33886 兼容。

两者结合就是下面的电路:调试时两个PWM 输入端其中一个接地,另一个悬空(上拉置1),电机转为正常。

基于PWM控制技术的直流电机驱动系统设计

基于PWM控制技术的直流电机驱动系统设计

基于PWM控制技术的直流电机驱动系统设计摘要:本文基于PWM控制技术,研究了直流电机驱动系统的设计。

文章首先介绍了直流电机的基本原理和结构特点,然后阐述了PWM控制技术的基本原理和实现方法,接着分析了直流电机驱动系统中常见的驱动电路,并通过实验验证了PWM控制技术的优点和应用价值。

最后,总结了本文的研究结论,提出了后续研究的方向和建议。

关键词:PWM控制技术;直流电机;驱动电路;应用价值Abstract: This paper is based on PWM control technology, studying the design of DC motor drive system. Firstly, the basic principle and structural characteristics of DC motor are introduced, then the basic principle and implementation method of PWM control technology are elaborated, and the common drive circuits in DC motor drive system are analyzed. Through experiments, we verified the advantages and application value of PWM control technology. Finally, the research conclusions were summarized, and the direction and suggestions for subsequent research were proposed.Keywords: PWM control technology; DC motor; Drive circuit; Application value一、绪论直流电机作为一种常见的电动机,具有结构简单、容易控制、启动转矩大等优点,广泛应用于机械、电子、汽车等各个领域。

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计

关 键 词 : 沟道 增强 型场 效应 管 ; H桥 ; P N WM 控 制 ; 电荷 泵 ; 功 率放 大 ; 直流 电机
中图分 类号 : M3 T 3
文 献标 识码 : A
文章 编号 :0 6 6 7 (0 80 — 0 3 0 1 0 — 9 72 0 )2 0 0 — 4
De i n 0 sg fDC o o i e o r lb s d o O S m t r drv r c t o a e n M FET
YOU Zhi y - u ,DU n ZHANG n ra g , Ho g ,DONG u- h n Xi c e g
1 引 言
长期 以来 , 直流 电机 以其 良好 的线性 特 性 、 异 优
电机调速控制。 2 直 流 电机 驱 动控 制 电路 总 体 结 构
直 流 电 机驱 动 控 制 电路 分 为 光 电隔 离 电路 、 电 机 驱 动逻 辑 电路 、 动信 号 放大 电路 、 驱 电荷 泵 电路 、 H桥 功 率驱动 电 路等 四部 分 。其 电路框 图如 图 l所
Ab t a tB s d o h — rd e P M o t li d sg e o r i g a d c n r l n t ro o — s r c : a e n t e H— i g W b c n r s e i n d f r d i n n o t l g DC mo o fp s o v o i -
iie o ai n r v r e r t to n p e e ulto , t h o e f N Ch n l MOSF tv r tto ,e e s oa in a d s e d r g ai nwih t e c r o a ne ET,n t h a d wih t e p r o e o ei h e d fhg u p s f me t ng t e n e s o ih—p we mo o rv n n o to l . p rme s ho t a o r DC tr d i i g a d c n r li Ex e i nt s w h t ng t e d ie c r u t h s c a a t rsi s o a l o tu to po ru rv n r y a d po r c n u — h rv ic i a h r ce itc f s mp e c nsr c in, we f ld i e e e g n we o s mp

直流电机驱动电路设计

直流电机驱动电路设计

直流电机驱动电路设计时间:2007-04-23 来源: 作者: 点击:49151 字体大小:【大中小】一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。

如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。

2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。

1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。

2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。

要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。

3)对控制输入端的影响。

功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4)对电源的影响。

共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。

5)可靠性。

电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。

二、三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。

注意1脚对地连接了一个2K欧的电阻。

当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。

当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。

或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。

高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。

基于场效应管的大功率直流电机驱动电路设计_胡发焕

基于场效应管的大功率直流电机驱动电路设计_胡发焕

图2
H 桥功率驱动电路框图
应管截止延迟时间 t d( off) 。
3
感性负载下的功率场效应管开关 过程
电动机是典型的感性负载, 具有感性负载的
4
驱动电路的设计
根据功率场效应管的特性和电气隔离的要 设计了大功率直流电机驱动电路。 驱动电路 求,
— 22 —
2011 , 38 ( 4 )
控制与应用技术EMCA
图1
驱动控制电路框图
2
H 桥功率驱动器原理
3. 1
图3
功率场效应管开关电路图
直流电机驱动使用最广泛的是 H 型全桥式 这种驱动电路能方便地实现电机的四象限 电路, 运行, 即正转、 正转制动、 反转、 反转制动。H 桥功 率驱动原理图如图 2 所示, 组成 H 桥驱动电路的 4 只开关管工作在开关状态, S1 、 S4 为一组, S2 、 S3 S4 导 通 时, 为一组, 这两组状态为互补。 当 S1 、 S2 、 S3 截止, 电机两端加正向电压实现电机的正 转或反转制动;反之亦然, 实现电机反转或正转制 动。实际控制中, 电机可以在四个象限之间切换 运行。在各种开关元件中, 功率场效应管是压控 元件, 具有输入阻抗大、 开关速度快、 无二次击穿 等特点, 能满足高速开关动作的需求, 因此常用功 率场效应管为 H 桥的开关元。H 桥电路中的4 个 P 场效应管可以分别采用 N 沟道型和 P 沟道型, N 沟道用于下桥臂。 下面分析 沟道用于上桥臂, 功率场效应管的开关过程。
U gs = U T ( 场效应管的导通电压 ) 时, 场效应管开 始导通
[2 ]
, 由此可以得出: t d( on) = τln[ U g1 / ( U g1 - U T) ] (1)

直流电机的驱动

直流电机的驱动

直流电机驱动电路设计时间:2007-04-23 来源: 作者: 点击:32646 字体大小:【大中小】一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。

如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。

2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。

1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。

2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。

要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。

3)对控制输入端的影响。

功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。

4)对电源的影响。

共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。

5)可靠性。

电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。

二、三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。

注意1脚对地连接了一个2K欧的电阻。

当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。

当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。

或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。

高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计引言:直流电机广泛应用于工业自动化系统、机械设备和电动汽车等领域。

为了实现对直流电机的精确控制和高效能耗,设计一种基于场效应管的直流电机驱动控制电路非常重要。

本文将介绍基于场效应管的直流电机驱动控制电路的设计原理和具体步骤,并详细说明其优势和应用。

一、设计原理:场效应管是一种三极管,其内部有一个门电极控制电流流动。

利用场效应管的导通特性,可以通过控制门电极的电压来调节场效应管的导通状态。

通过合理设计电路,将场效应管与直流电机相连,即可实现对直流电机的驱动控制。

当门电极被施加正电压时,场效应管导通,电流流过直流电机,驱动电机转动。

当门电极电压为零或负电压时,场效应管截止,电机停止转动。

二、设计步骤:1.选择合适的场效应管和直流电机。

根据直流电机的额定电流和工作电压,选择合适的场效应管,保证场效应管能够承受电机的电流和电压。

2.设计电源电路。

为了保证直流电机稳定工作,需要提供稳定的电源电压。

可以使用直流稳压电源或者直流电路滤波器。

3.设计信号调节电路。

为了实现对直流电机的转速和转向控制,需要设计信号调节电路。

通过改变信号调节电路的输入电压,可以改变场效应管的导通状态,从而控制电机的转速和转向。

4.设计保护电路。

为了保护直流电机和场效应管,设计相应的保护电路非常重要。

常见的保护电路包括过流保护电路、过压保护电路和过热保护电路。

三、优势和应用:1.高效能耗:基于场效应管的直流电机驱动控制电路具有高效能耗的特点。

场效应管的导通电阻低,能够大量减少功率损失,提高系统的能效。

2.高精确控制:由于场效应管具有很好的响应特性,可以实现对直流电机的精确控制。

通过调节门电极电压的大小,可以准确控制电机的转速和转向。

3.应用广泛:基于场效应管的直流电机驱动控制电路广泛应用于工业自动化系统、机械设备和电动汽车等领域。

由于其高效能耗和高精确控制性能,在工业生产中得到了广泛的应用。

结论:基于场效应管的直流电机驱动控制电路设计可以实现高效能耗和精确控制的目的,广泛应用于工业自动化系统、机械设备和电动汽车等领域。

MOS管驱动直流电机

MOS管驱动直流电机

直流电机驱动课程设计题目:MOS管电机驱动设计摘要直流电动机具有优良的调速特性,调速平滑,方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。

本文介绍了直流电机驱动控制装置(H桥驱动)的设计与制作,系统采用分立元件搭建H桥驱动电路,PWM调速信号由单片机提供,信号与H桥驱动电路之间采用光电耦合器隔离,电机的驱动运转控制由PLC可编程逻辑控制器实现。

关键词:直流电动机,H桥驱动,PWM目录一、直流电机概述 (4)二、直流电机驱动控制 (6)三、直流电机驱动硬件设计 (8)四、直流电机驱动软件设计 (9)五、程序代码 (12)六、参考文献 (18)一、概述19世纪70年代前后相继诞生了直流电动机和交流电动机,从此人类社会进入了以电动机为动力设备的时代。

以电动机作为动力机械,为人类社会的发展和进步、工业生产的现代化起到了巨大的推动作用。

在用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、国防、科技及社会生活等各个方面。

电动机负荷约占总发电量的70%,成为用电量最多的电气设备。

对电动机的控制可分为简单控制和复杂控制两种。

简单控制对电动机进行启动、制动、正反转控制和顺序控制。

这类控制可通过继电器、可编程控制器和开关元件来实现。

复杂控制是对电动机的转速、转角、转矩、电压、电流等物理量进行控制,而且有时往往需要非常精确的控制。

以前对电动机的简单控制应用较多,但是,随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机的复杂控制变成主流,其应用领域极其广泛。

电动机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。

正是这些技术的进步,使电动机控制技术在近二十多年内发生了翻天覆地的变化。

其中电动机控制部分已由模拟控制让位给以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统的应用,并向全数字控制系统的方向快速发展。

基于IR2136与MOSFET的无刷直流电机驱动电路设计

基于IR2136与MOSFET的无刷直流电机驱动电路设计

基于IR2136与MOSFET的无刷直流电机驱动电路设计作者:陈华彬张兴华来源:《现代电子技术》2019年第04期关键词: IR2136; MOSFET; 无刷直流电机; 自举电路; 过流保护; 驱动电路中图分类号: TN433⁃34; TM383 ; ; ; ; ; ; ; ;文献标识码: A ; ; ; ; ; ; ; ; ; ;文章编号:1004⁃373X(2019)04⁃0053⁃04Design of drive circuit based on IR2136 and MOSFET for brushless DC motorCHEN Huabin, ZHANG Xinghua(School of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210009, China)Abstract: The independent power supplies are adopted to supply power for the power switch tube in the traditional drive circuit design, which makes hardware structure complex and reliability reduced. Therefore, a drive circuit based on the power drive chip IR2136 and field⁃effect tube MOSFET is designed for the brushless DC motor from the respects of signal isolation, three⁃phase inverter drive, and overcurrent protection circuit. The design of the bootstrap circuit and optimization design for drive protection of the power tube in the three⁃phase inverter drive circuit are expounded emphatically. The TMS570 control board is used to perform functional test of the drive circuit. The results show that the designed drive circuit can drive the motor to operate smoothly,stably and reliably.Keywords: IR2136; MOSFET; brushless DC motor; bootstrap circuit; overcurrent protection; drive circuit随着电力电子技术的迅猛发展,无刷直流电机的控制技术也取得长足的进步,在航天、军事、机器人等领域得到了广泛的使用。

基于场效应管的大功率直流电机驱动电路设计

基于场效应管的大功率直流电机驱动电路设计

基于场效应管的大功率直流电机驱动电路设计最近,随着新能源技术的发展,不断有越来越多的电机应用于工业界,尤其是大功率的直流电机,如它能够在低功耗、高效率下实现快速响应和精度高的运动控制,使之成为工业自动化领域中最重要的元件之一。

因此,大功率直流电机驱动电路的设计是工业领域中重要而又普遍的难题。

首先,我们要考虑大功率直流电机的驱动技术。

由于大功率直流电机的电流较大,易于产生损耗和热量,因此必须采用有效的驱动技术才能达到最佳的使用效果,例如可采用场效应管(FET)技术来驱动大功率的直流电机,此外,还可使用晶体管(IGBT)和可控硅(SCR)等元件来实现。

其次,针对大功率直流电机驱动电路,必须进行设计,因此对设计有一定的要求,主要有负载适应能力,控制精度,谐振特性,响应速度,散热特性以及空间占用等,其中负载适应能力要求电路能够根据负载的变化而调整电流,以确保电动机正常运转;控制精度要求驱动电路能够实现快速和精确的控制,以满足运动控制的要求;谐振特性要求设计电路具有降低谐振基波,抑制谐振次波和谐振环路反馈的功能;响应速度要求响应时间短,输出有效;散热特性要求控制电路器件尽量少,而且要有良好的散热装置,以确保元件正常工作;空间占用要求电路的尺寸越小越好,以便节省空间。

为了满足以上要求,基于场效应管(FET)技术,可以设计一种大功率直流电机驱动电路。

该电路主要由反馈环路、驱动环路、空闲环路和浪涌环路组成。

首先,在反馈环路中,采用电压反馈,以涵盖电机的大负载变化,并且可以满足不同的控制模式;其次,在驱动环路中,采用独特的半桥拓扑,以满足不同的电机控制要求;多余,采用空闲环路,能够降低拓扑电路的复杂性;最后,浪涌环路可以限制电机负载上升时功率电路出现的超负荷,以提高其稳定性和可靠性。

最后,在实际应用中,也有一些其他关键技术,例如,采用有效的滤波技术来抑制驱动电路中的干扰和电磁干扰;采用软启动电路,以减少启动过程中产生的电流激烈波动;采用热保护电路,以监视电路温度,防止热导致的损坏等等,以确保电路的可靠性和安全性。

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计

基于场效应管的直流电机驱动控制电路设计
基于场效应管的直流电机驱动控制电路设计
1 引言
长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。

特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件
(GTR、GTO、MOSFET、IGBT 等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。

为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。

但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。

因此采用N 沟道增强型场效应管构建H 桥,实现
大功率直流电机驱动控制。

该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM 技术实现直流电机调速控制。

2 直流电机驱动控制电路总体结构
直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H 桥功率驱动电路等四部分,其电路框由在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。

隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H 桥的上下臂。

由于H 桥由大功率N 沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H 桥功率驱动电路来驱动直流电机。

3 H 桥功率驱动原理
直流电机驱动使用最广泛的就是H 型全桥式电路,这种驱动电路方便地。

mos管控制电机驱动电路设计

mos管控制电机驱动电路设计

mos管控制电机驱动电路设计MOS管控制电机驱动电路设计MOS管控制电机驱动电路设计是工业电气领域的一个重要环节。

其主要目的是通过设计合理的电路,实现对电机的驱动控制,从而使得机器能够正常运转,能够适应不同的工作条件,提高其运行的效率和稳定性。

下文将依次介绍该过程的具体步骤。

第一步:明确工作要求在进行MOS管控制电机驱动电路设计之前,需要明确电机的种类和具体的工作要求。

比如,需要确定电机的额定电压和额定功率,需要了解其负载类型和工作环境等情况,以此为基础,才能进行后续的电路设计。

同时,还需要确定驱动电路的控制要求,比如需要实现速度控制、反向控制等功能。

第二步:选取MOS管驱动电路MOS管驱动电路分为多种类型,常用的有单路和双路驱动,需要根据实际情况选取适合的驱动电路。

一般情况下,如果电机功率较小,可以采用单路驱动电路,而大功率电机则需要使用双路驱动电路。

同时,需要考虑驱动电路的可靠性和稳定性等因素。

第三步:设计电路图设计电路图是MOS管控制电机驱动电路设计的核心环节。

在这一步中,需要将选取的MOS管驱动电路与电机连接起来,实现电机的驱动控制。

电路图需要精确明确,符合实际工作要求,在避免冗余的同时,也需要保证电路的可靠性和稳定性。

第四步:制作电路板电路图设计完成之后,需要进行电路板的制作。

制作电路板时需要注意,要保证电路板上的元器件位置准确无误,且对于大功率电机,需要选择耐高温、高电压的元器件。

第五步:电路测试电路制作完成后,需要进行电路测试。

测试时,需要仔细检查各个元器件的连接是否正确,以及是否存在接触不良等因素。

同时,还需要使用相应的工具进行电路的测量,查看电路是否能达到预期的控制效果。

综上所述,MOS管控制电机驱动电路设计需要进行多个步骤的精心设计和实现。

在实际操作中,需要对每个步骤都进行仔细的分析和考虑,避免出现影响驱动效果的问题。

只有经过严谨、逐步的实验和测试,才能完成一个性能稳定、可靠性好的驱动电路的设计与制造。

详解直流电机驱动电路设计

详解直流电机驱动电路设计

直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

它是能实现直流电能和机械能互相转换的电机。

当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。

直流电机的基本构成直流电机由定子和转子两部分组成,其间有一定的气隙。

直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。

其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。

直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。

其中电枢由电枢铁心和电枢绕组两部分组成。

电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。

换向器是一种机械整流部件。

由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。

各换向片间互相绝缘。

换向器质量对运行可靠性有很大影响。

直流电机的组成结构直流电机的结构应由定子和转子两大部分组成。

直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。

运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。

01定子主磁极主磁极的作用是产生气隙磁场。

主磁极由主磁极铁心和励磁绕组两部分组成铁心一般用0.5mm~1.5mm厚的硅钢板冲片叠压铆紧而成,分为极身和极靴两部分,上面套励磁绕组的部分称为极身,下面扩宽的部分称为极靴,极靴宽于极身,既可以调整气隙中磁场的分布,又便于固定励磁绕组。

励磁绕组用绝缘铜线绕制而成,套在主磁极铁心上。

整个主磁极用螺钉固定在机座上。

换向极换向极的作用是改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花,一般装在两个相邻主磁极之间,由换向极铁心和换向极绕组组成。

较大功率直流电机驱动电路的设计与实现

较大功率直流电机驱动电路的设计与实现

较大功率直流电机驱动电路的设计与实现
汪华章;宰文姣;马亚宁;郑志高
【期刊名称】《西南民族大学学报(自然科学版)》
【年(卷),期】2010(036)004
【摘要】基于直流电机H桥的驱动和控制原理, 本文详细分析和探讨了电路设计过程中可能出现的各种问题, 提出了切实可行的解决手段.该电路采用NMOS场效应管作为功率输出器件, 设计并实现了较大功率的直流电机H桥驱动电路, 并对额定电压为24伏, 额定电流为3.8A的25D60-24A直流电机进行闭环控制, 电路的抗干扰能力强, 鲁棒性好.
【总页数】6页(P649-654)
【作者】汪华章;宰文姣;马亚宁;郑志高
【作者单位】西南民族大学电气信息学院,四川成都,610041;四川师范大学工学院,四川成都,610064;西南民族大学电气信息学院,四川成都,610041;西南民族大学电气信息学院,四川成都,610041
【正文语种】中文
【中图分类】TM33
【相关文献】
1.大功率直流电机驱动电路的设计 [J], 胡发焕;杨杰;邱小童
2.基于场效应管的大功率直流电机驱动电路设计 [J], 胡发焕;邱小童;蔡咸健
3.双闭环无刷直流电机驱动电路的设计与实现 [J], 宋超;王刚;栾宁
4.大功率直流电机驱动电路设计与实现分析 [J], 唐亦敏
5.具有软启动功能的大功率直流电机驱动电路设计 [J], 陶瑞
因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于MOSFET的直流电机控制器

一种基于MOSFET的直流电机控制器

(19)中华人民共和国国家知识产权局(12)实用新型专利(10)申请公布号CN202168027U(43)申请公布日2012.03.14(21)申请号CN201120265228.5(22)申请日2011.07.26(71)申请人浙江吉利汽车研究院有限公司;浙江吉利控股集团有限公司地址317000 浙江省台州市临海市东方大道229号(72)发明人马小建;金启前;由毅;丁勇;赵福全(74)专利代理机构台州市方圆专利事务所代理人张智平(51)Int.CI权利要求说明书说明书幅图(54)发明名称一种基于MOSFET的直流电机控制器(57)摘要本实用新型提供了一种基于MOSFET的直流电机控制器,属于直流电机控制技术领域。

它解决了现有技术中直流电机运行中的驱动控制系统中电机电枢电流的续流损耗问题。

该直流电机控制器包括PWM驱动控制电路和由大功率可控开关管组成的H型双极式可逆电路,其输入端与电源连接,输出端连接于直流电机上,其特征在于,所述的可控开关管为MOSFET管,每个MOSFET管的漏极和源极之间连接有续流二极管,MOS管的栅极与所述的PWM驱动控制电路连接。

该直流电机控制器采用MOSFET来进行逆向同步续流,不但能执行原开关管与二极管并联组合的全部功能,而且还能降低驱动控制系统中电机电枢电流的续流损耗。

法律状态法律状态公告日法律状态信息法律状态2012-03-14授权授权2014-09-17专利权的终止专利权的终止权利要求说明书一种基于MOSFET的直流电机控制器的权利要求说明书内容是....请下载后查看说明书一种基于MOSFET的直流电机控制器的说明书内容是....请下载后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相对来说,利用2个N沟道功率MOSFET和2个P沟道功率MOSFET驱动电机的方案,控制电路简单、成本低。但由于加工工艺的原因,P沟道功率MOSFET的性能要比N沟道功率MOSFET的差,且驱动电流小,多用于功率较小的驱动电路中。而N沟道功率MOSFET,一方面载流子的迁移率较高、频率响应较好、跨导较大;另一方面能增大导通电流、减小导通电阻、降低成本,减小面积。综合考虑系统功率、可靠性要求,以及N沟道功率MOSFET的优点,本设计采用4个相同的N沟道功率MOSFET的H桥电路,具备较好的性能和较高的可靠性,并具有较大的驱动电流。其电路图。图中Vm为电机电源电压,4个二极管为续流二极管,输出端并联一只小电容C6,用于降低感性元件电机产生的尖峰电压。
PWM调速控制的基本原理是按一个固定频率来接通和断开电源,并根据需要改变一个周期内接通和断开的时间比(占空比)来改变直流电机电枢上电压的&quot;占空比&quot;,从而改变平均电压,控制电机的转速。在脉宽调速系统中,当电机通电时其速度增加,电机断电时其速度减低。只要按照一定的规律改变通、断电的时间,即可控制电机转速。而且采用PWM技术构成的无级调速系统.启停时对直流系统无冲击,并且具有启动功耗小、运行稳定的特点。
6 结束语
以N沟道增强型场效应管为核心,基于H桥PWM控制的驱动控制电路,对直流电机的正反转控制及速度调节具有良好的工作性能。实验结果表明,直流电机驱动控制电路运行稳定可靠,电机速度调节响应快。能够满足实际工程应用的要求,有很好的应用前景。
4.2 电荷泵电路设计
电荷泵的基本原理是通过电容对电荷的积累效应而产生高压,使电流由低电势流向高电势。最早的理想电荷泵模型是J.Dickson在1976年提出的,当时这种电路是为可擦写EPROM提供所需电压。后来J.Witters,Toru Tranzawa等人对J.Dickson的电荷泵模型进行改进,提出了比较精确的理论模型,并通过实验加以证实提出了相关理论公式。随着集成电路的不断发展,基于低功耗、低成本的考虑,电荷泵在电路设计中的应用越来越广泛。
4.3 电机驱动逻辑与放大电路设计
直流电机驱动电机驱动电路中电机驱动逻辑及放大电路主要实现外部控制信号到驱动H桥控制信号的转换及放大。控制信号Dir、PWM、Brake经光电隔离电路后,由门电路进行译码,产生4个控制信号M1&#39;、M2&#39;、M3&#39;、M4&#39;,然后经三极管放大,产生控制H桥的4个信号M1、M2、M3、M4。其电路原理图。其中Vh是Vm经电荷泵提升的电压,Vm为电机电源电压。
2 直流电机驱动控制电路总体结构
直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图。
由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分口。
5 直流电机PWM调速控制
直流电动机转速n=(U-IR)/K&phi;
其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,&phi;为每极磁通量,K为电动机结构参数。
直流电机转速控制可分为励磁控制法与电枢电压控制法。励磁控制法是控制磁通,其控制功率小,低速时受到磁饱和限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差,所以这种控制方法用得很少。大多数应用场合都使用电枢电压控制法。随着电力电子技术的进步,改变电枢电压可通过多种途径实现,其中PWM(脉宽调制)便是常用的改变电枢电压的一种调速方法。
基于场效应管的直流电机驱动控制电路设计
1 引言
长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。
电路中A部分是方波发生电路,由RC与反相施密特触发器构成,产生振幅为Vin=5 V的方波。B部分是电荷泵电路,由三阶电荷泵构成。当a点为低电平时,二极管D1导通电容C1充电,使b点电压Vb=Vm-Vtn;当a点为高电平时,由于电容C1电压不能突变,故b点电压Vb=Vm+Vin-Vtn,此时二极管D2导通,电容C3充电,使c点电压Vx=Vm+Vin-2Vtn;当a点再为低电平时,二极管D1、D3导通,分别对电容C1、C2充电,使得d点电压Vd=Vm+Vin-3Vtn;当a点再为高电平时,由于电容C2电压不能突变,故d点电压变为Vd=Vm+2Vin-3Vtn,此时二极管D2、D4导通,分别对电容C3、c4充电,使e点电压Ve=Vm+2Vin-4Vtn。这样如此循环,便在g点得到比Vm高的电压Vh=Vm+3Vin-6tn=Vm+11.4 V。其中Vm为二极管压降,一般取0.6 V。从而保证H桥的上臂完全导通。
图2中4只开关管为续流二极管,可为线圈绕组提供续流回路。当电机正常运行时,驱动电流通过主开关管流过电机。当电机处于制动状态时,电机工作在发电状态,转子电流必须通过续流二极管流通,否则电机就会发热,严重时甚至烧毁。
4 直流电机驱动控制电路设计
由直流电机驱动控制电路框图可以看出驱动控制电路结构简单,主要由四部分电路构成,其中光电隔离电路较简单,在此不再介绍,下面对直流电机驱动控制电路的其他部分进行详细介绍。
实际控制中,需要不断地使电机在四个象限之间切换,即在正转和反转之间切换,也就是在S1、S2导通且S3、S4关断到S1、S2关断且S3、S4导通这两种状态间转换。这种情况理论上要求两组控制信号完全互补,但是由于实际的开关器件都存在导通和关断时间,绝对的互补控制逻辑会导致上下桥臂直通短路。为了避免直通短路且保证各个开关管动作的协同性和同步性,两组控制信号理论上要求互为倒相,而实际必须相差一个足够长的死区时间,这个校正过程既可通过硬件实现,即在上下桥臂的两组控制信号之间增加延时,也可通过软件实现。
电机工作时,H桥的上臂处于常开或常闭状态,由Dir控制,下臂由PWM逻辑电平控制,产生连续可调的控制电压。该方案中,上臂MOSFET只有在电机换向时才进行开关切换,而电机的换向频率极低,低端由逻辑电路直接控制,逻辑电路的信号电平切换较快,可以满足不同频率要求。该电路还有一个优点,由于上臂开启较慢,而下臂关断较快,所以,实际控制时换向不会出现上下臂瞬间同时导通现象,减小了换向时电流冲击,提高了MOSFET的寿命。
设电机始终接通电源时,电机转速最大为Vmax,且设占空比为D=t/T,则电机的平均速度Vd为:
Vd=VmaxD
由公式可知,当改变占空比D=t/T时,就可以得到不同的电机平均速度Vd,从而达到调速的目的。严格地讲,平均速度与占空比D并不是严格的线性关系,在一般的应用中,可将其近似地看成线性关系。 在直流电机驱动控制电路中,PWM信号由外部控制电路提供,并经高速光电隔离电路、电机驱动逻辑与放大电路后,驱动H桥下臂MOSFET的开关来改变直流电机电枢上平均电压,从而控制电机的转速,实现直流电机PWM调速。
4.1 H桥驱动电路设计
在直流电机控制中常用H桥电路作为驱动器的功率驱动电路。由于功率MOSFET是压控元件,具有输入阻抗大、开关速度快、无二次击穿现象等特点,满足高速开关动作需求,因此常用功率MOSFET构成H桥电路的桥臂。H桥电路中的4个功率MOSFET分别采用N沟道型和P沟道型,而P沟道功率MOSFET一般不用于下桥臂驱动电机,这样就有两种可行方案:一种是上下桥臂分别用2个P沟道功率MOSFET和2个N沟道功率MOSFET;另一种是上下桥臂均用N沟道功率MOSFET。
在驱动控制电路中,H桥由4个N沟道功率MOSFET组成。若要控制各个MOSFET,各MOSFET的门极电压必须足够高于栅极电压。通常要使MOSFET完全可靠导通,其门极电压一般在10 V以上,即VCS>10 V。对于H桥下桥臂,直接施加10 V以上的电压即可使其导通;而对于上桥臂的2个MOSFET,要使VGS&gt;10 V,就必须满足VG&gt;Vm+10 V,即驱动电路必须能提供高于电源电压的电压,这就要求驱动电路中增设升压电路,提供高于栅极10 V的电压。考虑到VGS有上限要求,一般MOSFET导通时VGS为10 V~15 V,也就是控制门极电压随栅极电压的变化而变化,即为浮动栅驱动。因此在驱动控制电路中设计电荷泵电路,用于提供高于Vm的电压Vh,驱动功率管的导通。其电路原理图。
在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。
简单电荷泵原理电路图。电容C1的A端通过二极管D1接Vcc,电容C1的B端接振幅Vin的方波。当B点电位为0时,D1导通,Vcc开始对电容C1充电,直到节点A的电位达到Vcc;当B点电位上升至高电平Vin时,因为电容两端电压不能突变,此时A点电位上升为Vcc+Vin。所以,A点的电压就是一个方波,最大值是Vcc+Vin,最小值是Vcc(假设二极管为理想二极管)。A点的方波经过简单的整流滤波,可提供高于Vcc的电压。
相关文档
最新文档