生化名词解释及问答题答案
生化名词解释、简答
试卷一五、写出下列物质的中文名称并阐明该物质在生化中的应用(共8分)DNS-C1 DNFB DEAE —纤维素 BOC 基1、DNS-Cl : 5一二甲氨基萘-1-磺酰氯,用作氨基酸的微量测定,或鉴定肽链的N —端氨基酸。
2、DNFB :2,4一二硝基氟苯,鉴定肽链的N —端氨基酸。
3、DEAE 一纤维素: 二乙氨基乙基纤维素,阴离子交换剂,用于分离蛋白质。
4、BOC 基: 叔丁氧羰酰基,人工合肽时用来保护氨基酸的氨基。
六、解释下列名词(共12分)1、肽聚糖:肽聚糖是以NAG 与NAM 组成的多糖链为骨干与四肽连接所成的杂多糖。
2、蛋白质的别构效应:含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构效应。
3、肽平面:由于肽键不能自由旋转,形成肽键的4个原子和与之相连的2个α-碳原子共处在1个平面上,形成酰胺平面,也称肽平面。
4、两面角:由于肽链中的C α-N 键和Cα—C 键是单键,可以自由旋转,其中绕C α-N 键旋转的角度称φ角,绕C α-C 键旋转的角度称ψ角,这两个旋转的角度称二面角。
5、波耳效应:pH 的降低或二氧化碳分压的增加,使血红蛋白对氧的亲和力下降的现象称波耳效应。
6、碘价:100克脂肪所吸收的碘的克数称碘价,碘价表示脂肪的不饱和度。
七、问答与计算(共30分)1、今从一种罕见的真菌中分离到1个八肽,它具有防止秃发的作用。
经分析,它的氨基酸组成是:Lys 2,Asp 1,Tyr 1,Phe 1,Gly 1,Ser 1和Ala 1。
此八肽与FDNB 反应并酸水解后。
释放出FDNB-Ala 。
将它用胰蛋白酶酶切后,则得到氨基酸组成为:Lys 1,Ala 1,Ser 1和Gly ,Phe 1,Lys 1的肽,还有一个二肽。
将它与胰凝乳蛋白酶反应后,释放出游离的Asp 以及1个四肽和1个三肽,四肽的氨基酸组成是:Lys 1,Ser 1,Phe 1和Ala 1,三肽与FDNB 反应后,再用酸水解,释放出DNP-Gly 。
生化名词解释简答
生化重点名词解释1、★肽键(peptide bond):指由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合形成的酰胺键。
2、GSH:谷胱甘肽,是人体内重要的抗氧化剂,能保护蛋白质中的巯基3、★蛋白质变性:在某些理化因素(高温、高压、超声波、紫外线、强酸、强碱、尿素等)的作用下,蛋白质的空间结构发生改变,导致生物活性的丧失,以及理化因素发生改变。
4、α—螺旋:蛋白质分子中多个肽单位通过氨基酸α—碳原子的旋转,使多肽链的主链围绕中心轴呈有规律的上升。
5、β—转角:伸展的肽链形成180°回折,即U形转角结构6、肽链:多个氨基酸通过肽键连接而成7、基序(模体):在有些蛋白质分子中,可见一个或多个具有二级结构的肽段,在空间上相互接近,形成一个二级结构的聚集体称为基序。
8、结构域:分子质量大的蛋白质三级结构,常常由两个或多个球状或纤维状的区域组成,每个区域的结构和功能相对独立,称为结构域。
9、氨基酸残基:肽链中的氨基酸分子通过脱水缩合而集团不全,称为氨基酸残基10、变构效应(别构效应):配体与蛋白质结合后,蛋白质的空间结构发生改变,使其适合于功能需要,这个变化称变构效应,也叫别构调节。
11、亚基:在含有两条或多条肽链的蛋白质分子中,每一条多肽链都有其完整的三级结构,称为亚基。
12、蛋白质等电点:当蛋白质溶液在某一pH时,蛋白质解离称阴阳离子的趋势相等,称为兼性离子,静电荷为零,此时溶液的pH称为蛋白质等电点。
13、★蛋白质一级结构(Primary structure):指蛋白质肽链中氨基酸残基的排列顺序,即氨基酸序列。
14、★蛋白质二级结构(Secondary structure):指蛋白质多肽链的主链中某一段肽链的局部空间构象,即指该段肽链主链骨架原子的相对空间排列顺序,不涉及侧链基团。
15、★蛋白质三级结构(Tertiary structure):指整条肽链所有原子在空间中的整体排布位置。
生化名词解释与简答题
第一章蛋白质的结构与功能(一)名词解释1. 肽键2. 结构域 3. 蛋白质的等电点4. 蛋白质的沉淀5. 蛋白质的凝固(三)问答题1. 何谓蛋白质变性?影响变性的因素有哪些?2. 蛋白质变性后,为什么水溶性会降低?3. 举例说明一级结构决定构象。
答案(一)1.肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合所形成的结合键,称为肽键。
2.构域:蛋白质在形成三级结构时,肽链中某些局部的二级结构汇集在一起,形成发挥生物学功能的特定区域称为结构域。
3.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。
4.蛋白质的沉淀:蛋白质分子从溶液中析出的现象称为蛋白质的沉淀。
5.蛋白质的凝固:蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱中,若将pH调至等电点,则蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸或强碱中。
如再加热则絮状物可变成比较坚固的凝块,此凝块不再溶于强酸或强(三)问答题1. 蛋白质在某些物理因素或化学因素的作用下,蛋白质分子内部的非共价键断裂,天然构象被破坏,从而引起理化性质改变,生物活性丧失,这种现象称为蛋白质变性。
蛋白质变性的实质是维系蛋白质分子空间结构的次级键断开,使其空间结构松解,但肽键并未断开。
引起蛋白质变性的因素有两方面:一是物理因素,如紫外线照射等,一是化学因素如强酸、强碱、重金属盐、有机溶剂等。
2. 三级结构以上的蛋白质的空间结构稳定主要靠疏水键和其它副键,当蛋白质在某些理化因素作用下变性后,维持蛋白质空间结构稳定的疏水键、二硫键以及其它次级键断裂,空间结构松解,蛋白质分子变为伸展的长肽链,大量的疏水基团外露,导致蛋白质水溶性降低。
3. 牛胰核糖核酸酶溶液加入尿素和巯基乙醇后变性失活,其一级结构没有改变。
当用透析法去除尿素和巯基乙醇后,牛胰核糖核酸酶自发恢复原有的空间结构与功能,此例充分说明一级结构决定构象。
碱中,这种现象称为蛋白质的凝固作用。
生化试题(含答案)
第一章核酸的结构和功能一、选择题1、热变性的DNA分子在适当条件下可以复性,条件之一是()A、骤然冷却B、缓慢冷却C、浓缩D、加入浓的无机盐2、在适宜条件下,核酸分子两条链通过杂交作用可自行形成双螺旋,取决于()A、DNA的Tm值B、序列的重复程度C、核酸链的长短D、碱基序列的互补3、核酸中核苷酸之间的连接方式是:()A、2’,5’—磷酸二酯键B、氢键C、3’,5’—磷酸二酯键D、糖苷键4、tRNA的分子结构特征是:()A、有反密码环和 3’—端有—CCA序列B、有密码环C、有反密码环和5’—端有—CCA序列D、5’—端有—CCA序列5、下列关于DNA分子中的碱基组成的定量关系哪个是不正确的?()A、C+A=G+TB、C=GC、A=TD、C+G=A+T6、下面关于Watson-Crick DNA双螺旋结构模型的叙述中哪一项是正确的?()A、两条单链的走向是反平行的B、碱基A和G配对C、碱基之间共价结合D、磷酸戊糖主链位于双螺旋内侧7、具5’-CpGpGpTpAp-3’顺序的单链DNA能与下列哪种RNA杂交? ()A、5’-GpCpCpAp-3’B、5’-GpCpCpApUp-3’C、5’-UpApCpCpGp-3’D、5’-TpApCpCpGp-3’8、RNA和DNA彻底水解后的产物()A、核糖相同,部分碱基不同B、碱基相同,核糖不同C、碱基不同,核糖不同D、碱基不同,核糖相同9、下列关于mRNA描述哪项是错误的?()A、原核细胞的mRNA在翻译开始前需加“PolyA”尾巴。
B、真核细胞mRNA在 3’端有特殊的“尾巴”结构C、真核细胞mRNA在5’端有特殊的“帽子”结构10、tRNA的三级结构是()A、三叶草叶形结构B、倒L形结构C、双螺旋结构D、发夹结构11、维系DNA双螺旋稳定的最主要的力是()A、氢键B、离子键C、碱基堆积力 D范德华力12、下列关于DNA的双螺旋二级结构稳定的因素中哪一项是不正确的?()A、3',5'-磷酸二酯键 C、互补碱基对之间的氢键B、碱基堆积力 D、磷酸基团上的负电荷与介质中的阳离子之间形成的离子键13、Tm是指( )的温度A、双螺旋DNA达到完全变性时B、双螺旋DNA开始变性时C、双螺旋DNA结构失去1/2时D、双螺旋结构失去1/4时14、稀有核苷酸碱基主要见于( )A、DNAB、mRNAC、tRNAD、rRNA15、双链DNA的解链温度的增加,提示其中含量高的是()A、A和GB、C和TC、A和TD、C和G16、核酸变性后,可发生哪种效应?()A、减色效应B、增色效应C、失去对紫外线的吸收能力D、最大吸收峰波长发生转移17、某双链DNA纯样品含15%的A,该样品中G的含量为()A、35%B、15%C、30%D、20%二、是非题(在题后括号内打√或×)1、杂交双链是指DNA双链分开后两股单链的重新结合。
生化简答题与名词解释
生物化学(仅供参考)简答题:一、蛋白质的二级结构,主要有哪几种?答:二级结构既肽链主链的局部构象,尤其是那些有规律的周期性的结构,其中有一些非常的稳定,而且在蛋白质中广泛存在,常见的二级结构包括α-螺旋、β–折叠、β–转折,另外把那些没有规律性的局部构象称为无规则卷曲。
二:何为蛋白质的两性电离?答:蛋白质是两性电解质,在蛋白质分子中可解离的基团除再每条肽链上的氨基末端和羧基的末端外,还有肽链侧链上那些可电离的基团。
蛋白质分子在溶液中是解离成正离子还是解离成负离子,既取决于其分子上酸性基团还是碱性基团的多少以及俩者的相对比例,同时还受该溶液PH值影响。
在酸性较强的溶液中,碱性基团被抑制,则蛋白质分子解离成正离子,带正电荷,在碱性较强的溶液中,碱性基团解离被抑制,则蛋白质分子解离成负电荷,带负电。
这种现象被称为蛋白质的俩性电离。
三、简述DNA双螺旋结构的特点?答:1、两个链平行,核苷酸绕同轴但方向相反。
2、磷酸脱氧核糖主链位于螺旋的外侧,碱基位于螺旋内侧。
3、每10个核苷酸螺旋上升一圈,螺距3.4nm直径2nm。
4、两条链之间形成氢键有碱基互补配对规律5、双螺旋稳定性氢键与碱基堆积力。
四、蛋白质的α-螺旋结构?答:是单股右手螺旋,主链由-C-Cα、-N-重复构成,在螺旋的内侧,侧链在氨基酸侧链,在螺旋外侧,每个螺距5.4nm ,含3.6个氨基酸残基。
五、生物体内RNA种类以及功能?答:RNA有rRNA、tRNA 和mRNA三种。
rRNA与蛋白质构成核蛋白体,是蛋白质合成的场所;tRNA携带、运输活化的氨基酸;mRNA是蛋白质合成的模板,三种RNA均参与蛋白质的生物合成。
六、比较DNA与RNA在分子组成和结构的异同点?答:相同点:分子组成都含有碱基、戊糖和磷酸,碱基A、G、C。
分子结构上单核苷酸是基本结构单位,并以3′5′-磷酸二脂键相连成一级结构。
不同点:比较项目DNA RNA化学组成戊糖脱氧核糖核糖碱基AGCT AGCU分子结构二级结构的双螺旋,真核生物三级结构为核小体RNA为单链发夹形结构tRNA的二级结构为三叶草型结构,三级结构为倒L型细胞内分布细胞核其次为线粒体细胞浆其次为细胞仁生理功能遗传信息的储存与传递遗传信息传递参与蛋白质合成七、底物浓度对酶促反应的影响?答:在底物浓度较低时,反应速度随着底物浓度的提高而加快,两者成正比例关系;此后,随着底物浓度继续提高,反应速度还在加快,但是变化幅度越来越小,不再成正比例关系;最后,即使底物浓度在提高,反应速度也已经基本不变。
生化问答题和名词解释重点
1.核酸杂交: 在DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件(温度及离子强度)下,就可以在不同的分子间形成杂化双链。
这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA分子间形成。
这种现象称为核酸分子杂交。
(2分)2.P/O比值:每消耗1mol氧原子时 ADP磷酸化成ATP所需消耗的无机磷的mol数。
3.一碳单位:某些氨基酸在分解代谢过程中产生含有一个碳原子的基因,称为一碳单位。
体内的一碳单位有甲基(—CH3)、甲烯基(—CH2—)、甲炔基(—CH==)、甲酰基(—CHO)、亚氨甲基(—CH==NH)等。
(2分)4.外显子:在断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列。
(2分)5.遗传密码:mRNA分子上从5,至3,方向,由AUG开始,每3个核苷酸为一组,决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号,称为三联体密码。
6.DNA变性: 在某些理化因素作用下,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为DNA变性。
(2分)7. 糖异生: 由非糖化合物 (乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖原的过程称为糖异生。
(2分)8. 底物水平磷酸化:ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程称为底物水平磷酸化。
(2分)9.氨基酸代谢库:食物蛋白质经消化而被吸收的氨基酸(外源性氨基酸)与体内组织蛋白质降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处,参与代谢,称为氨基酸代谢库。
(2分)10. 不对称转录: 转录模板DNA双链中,只有一股链可作为模板指引转录,另一股链不能作为模板;模板链并非永远在同一条单链上,不同基因的模板链可交叉分布在两股链上,这种选择性转录方式称为不对称转录。
生化名词解释及问答题
的双链结构,脱氧核糖基和磷酸骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触。
腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键(A=T),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(C ≡C)。
碱基平面与线性分子结构的长轴相垂直。
一条链的走向是5'→3',另一条链的走向就一定是3'→5'。
(2)DNA 是一右手螺旋结构。
螺旋每旋转一周包含了10对碱基,每个碱基的旋转角度为36°,螺距为3.4nm ,每个碱基平面之间的距离为0.34nm 。
DNA 双螺旋分子存在一个大沟和一个小沟。
(3)DNA 双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
面推动了对生命活动多样性的理解,另一方面在医学上有其特殊的用途。
核苷酸的作用:作为核酸合成的原料;体内能量的作用形式;参与代谢和生理调节;组成辅酶;活化中间代谢物 1)维生素的摄入量不足;(2)机体的吸收利用率降低;(3)食物以外的维生素供给不足;(4)机体对维生素的需要量增加。
及FAD 是体内氧化还原酶的负笈;维生素B 2广泛参与体内的各种氧化还原反应,能促进糖,脂肪和蛋白质的代谢,对维护皮肤,粘膜和视觉的正常功能有一定的作用B 12为甲基移换酶的辅酶,它催化同型半胱氨酸甲基化转变为蛋氨酸,甲基由N 5-CH 3-FH 4提供,所以维生素B 12可以促进游离四氢叶酸的再生。
四氢叶酸是携带一碳单位的载体,一碳单位参与核苷酸的合成,所以维生素B 12和叶酸都可影响一碳单位的代谢,影响细胞的分裂和增殖。
维生素B 12和叶酸的缺乏都可影响红细胞的分裂与成熟,导致巨幼红细胞贫血。
)氧化还原酶类(2)转移酶类(3)水解酶类(4)裂合酶类(5)异构酶类(6)合成酶类特殊特点,在组织中多以功能形式存在,体内一般不贮存,超过机体生理需要量时,可由尿排出。
1)无机离子为维持酶分子活性构,甚至参与活性中心的形成(2)在酶分子中通过氧化还原而传递电子(3)在酶与底物之间起桥梁作用(4)利用离子的电荷影响酶的活性酶原受某种因素作用后,分子结构发生变化,暴露或形成活性中心,转变成具有活性的酶,这一过程叫做酶原的激活。
生化工程原理复习题及答案
生化工程原理复习题及答案一、名词解释1、生化工程:将生物技术的实验室成果经工艺及工程开发,成为可供工业生产的工艺过程,常称为生化工程。
2、灭菌:是指用物理或化学方法杀灭物料或设备中的一切生命物质的过程。
3、惯性冲撞机制:气流中运动的颗粒,质量,速度,具有惯性,当微粒随气流以一定的速度向着纤维垂直运动时,空气受阻改变方向,绕过纤维前进,微粒由于惯性的作用,不能及时改变方向,便冲向纤维表面,并滞留在纤维表面。
4、细胞得率:是对碳的细胞得率。
=生成细胞量某细胞含碳量或=消耗基质量某基质含碳量。
5、生物反应动力学:是研究在特定的环境条件下,微生物的生长、产物的生成、底物的消耗之间的动态关系及规律,以及环境因子对这些关系的影响。
生物反应工程:是一门以生物反应动力学为基础,研究生物反应过程优化和控制以及生物反应器的设计、放大与操作的学科。
6、返混:反应器中停留时间不同的物料之间的混合称为返混。
7、细非结构模型:8、非结构模型:如果把菌体视为单组分,则环境的变化对菌体组成的影响可被忽略,在此基础上建立的模型称为非结构模型。
结构模型:在考虑细胞组成变化基础上建立的微生物生长或相关的动力学模型。
9、限制性底物:是培养基中任何一种与微生物生长有关的营养物,只要该营养物相对贫乏时,就可能成为限制微生物生长的因子,可以是C 源、N源、无机或有机因子。
10、绝对过滤介质:绝对过滤介质的孔隙小于细菌和孢子,当空气通过时微生物被阻留在介质的一侧。
深层过滤介质:深层过滤介质的截面孔隙大于微生物,为了达到所需的除菌效果,介质必须有一定的厚度,因此称为深层过滤介质。
11、均衡生长:在细胞的生长过程中,如果细胞内各种成分均以相同的比例增加,则称为均衡生长。
非均衡生长:细胞生长时胞内各组分增加的比例不同,称为非均衡生长。
二、问答1、试述培养基灭菌通常具有哪些措施?灭菌动力学的重要结论有哪些?答:培养基灭菌措施有:(1)使用的培养基和设备需经灭菌。
生化名词解释(内部资料)
名词解释一、基因与基因组学1.基因(gene):是一段携带功能产物(多肽,蛋白质,tRNA和rRNA和某些小分子RNA)信息的DNA 片段,是控制某种性状的的遗传单位。
2.基因组(genome):是指一个细胞或生物体的一套完整的单倍体遗传物质。
泛指一个有生命体、病毒或细胞器的全部遗传物质;在真核生物,基因组是指一套染色体(单倍体)DNA。
3.C值(C value):基因组的大小通常以一个基因组中的DNA含量来表示。
4.C值佯谬(C value paradox):这种生物体的进化程度与基因组大小之间不完全成比例的现象称为C值佯谬。
5.N值佯谬(N value paradox): 基因组中基因数目与生物进化程度或复杂程度的不对称性6.蛋白质组:一个基因组、一种生物或一种细胞/组织所表达的全套蛋白质.蛋白质组学:就是从整体的角度,分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律的一个新的研究领域7.基因家族(genefamily)概念:指核苷酸序列或编码产物的结构具有一定同源性的一些基因。
8.基因组学(genomics):发展和应用基因作图、DNA测序、基因定位等新技术以及计算机程序,分析生命体(包括人类)全部基因组结构及功能。
9.断裂基因(split gene):基因多为不连续的,被插入序列(IS)所分隔,这种现象称为断裂基因。
断裂基因由内含子(intron)(非编码序列)和外显子(exon)(编码序列)交替组成。
10.基因超家族(gene superfamily):结构上具有一定的相似性,但功能不一定相似,且进化上的亲缘关系较远。
如免疫球蛋白基因超家族、丝氨酸蛋白酶基因超家族等11.假基因(Ψ):在多基因家簇中,有的成员并不表达基因产物,称假基因。
12.家系分析法:通过分析统计家系中有关遗传性状的连锁情况和重组率而进行基因定位的方法。
生化名词解释简答题
第一章:核酸9.核酸的变性、复性:当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。
在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。
这个DNA螺旋的重组过程称为“复性”。
10.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。
11. 减色效应:DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。
12. 噬菌体:一种病毒,它可破坏细菌,并在其中繁殖。
也叫细菌的病毒。
14. DNA的熔解温度(Tm值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(Tm)。
15. 分子杂交:不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。
这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。
3. 答:tRNA一级结构具有以下特点:1)分子量较小,大约由73~95个核苷酸组成。
2)分子中含有较多的修饰成分3)3′末端都具有CpCpA-OH的结构。
5′端多为pG,也有pC4)恒定核苷酸,有十几个位臵上的核苷酸在几乎所有的tRNA中都不变。
5)tRNA约占细胞总RNA的15%tRNA的二级结构呈“三叶草形”。
在结构上具有某些共同之处,即四臂四环:氨基酸接受臂;反密码(环)臂;二氢尿嘧啶(环)臂;T C(环)臂;可变环。
tRNA的三级结构:倒挂的L字母tRNA主要功能:在蛋白质生物合成过程中转运氨基酸。
4. 答:在20世纪50年代初,E.Chargaff等应用纸层析技术及紫外分光光度法,对各种生物的DNA分子的碱基组成进行了定量分析,总结出一些共同的规律,这些规律被人们称之为Chargaff出定则。
生化各章题目及答案
生化各章题目及答案第一章蛋白质(一)名词解释1.两性离子(dipolarion)2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.稀有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid)6.构型(configuration)7.蛋白质的一级结构(protein primary structure)8.构象(conformation)9.蛋白质的二级结构(protein secondary structure)10.结构域(domain)11.蛋白质的三级结构(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级结构(protein quaternary structure)14.离子键(ionic bond)15.超二级结构(super-secondary structure)16.疏水键(hydrophobic bond)17.范德华力( van der Waals force)18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀作用(precipitation)23.凝胶电泳(gel electrophoresis)24.层析(chromatography)(二) 填空题1.蛋白质多肽链中的肽键是通过一个氨基酸的_____基和另一氨基酸的_____基连接而形成的。
2.大多数蛋白质中氮的含量较恒定,平均为___%,如测得1克样品含氮量为10mg,则蛋白质含量为____%。
3.在20种氨基酸中,酸性氨基酸有_________和________2种,具有羟基的氨基酸是________和_________,能形成二硫键的氨基酸是__________.4.蛋白质中的_________、___________和__________3种氨基酸具有紫外吸收特性,因而使蛋白质在280nm处有最大吸收值。
生化考试名词解释
生化考试名词解释2. 别构酶:又称为变构酶,是一类重要的调节酶。
其分子除了与底物结合、催化底物反应的活性中心外,还有与调节物结合、调节反应速度的别构中心。
通过别构剂结合于别构中心影响酶分子本身构象变化来改变酶的活性。
3. 酮体:在肝脏中,脂肪酸不完全氧化生成的中间产物乙酰乙酸、β-羟基丁酸及丙酮统称为酮体。
在饥饿时酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。
4. 糖酵解:生物细胞在无氧条件下,将葡萄糖或糖原经过一系列反应转变为乳酸,并产生少量ATP的过程。
5. EMP途径:又称糖酵解途径。
指葡萄糖在无氧条件下经过一定反应历程被分解为丙酮酸并产生少量ATP和NADH+H+的过程。
是绝大多数生物所共有的一条主流代谢途径。
6. 糖的有氧氧化:葡萄糖或糖原在有氧条件下,经历糖酵解途径、丙酮酸脱氢脱羧和TCA循环彻底氧化,生成C02和水,并产生大量能量的过程。
7. 氧化磷酸化:生物体通过生物氧化产生的能量,除一部分用于维持体温外,大部分通过磷酸化作用转移至高能磷酸化合物ATP中,这种伴随放能的氧化作用而使ADP磷酸化生成ATP的过程称为氧化磷酸化。
根据生物氧化的方式可将氧化磷酸化分为底物水平磷酸化和电子传递体系磷酸化。
8. 三羧酸循环:又称柠檬酸循环、TCA循环,是糖有氧氧化的第三个阶段,由乙酰辅酶A和草酰乙酸缩合生成柠檬酸开始,经历四次氧化及其他中间过程,最终又生成一分子草酰乙酸,如此往复循环,每一循环消耗一个乙酰基,生成CO2和水及大量能量。
9. 糖异生:由非糖物质转变为葡萄糖或糖原的过程。
糖异生作用的途径基本上是糖无氧分解的逆过程---除了跨越三个能障(丙酮酸转变为磷酸烯醇式丙酮酸、1,6-磷酸果糖转变为6-磷酸果糖,6-磷酸果糖转变为葡萄糖)需用不同的酶及能量之外,其他反应过程完全是糖酵解途径逆过程。
10. 乳酸循环:指糖无氧条件下在骨骼肌中被利用产生乳酸及乳酸在肝中再生为糖而又可以为肌肉所用的循环过程。
生化(名词解释及问答题)
37.底物水平磷酸化:在被氧化的底物上发生磷酸化作用就是底物水平磷酸化。
38.糖酵解:1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程为糖酵解。
39.磷酸戊糖途径:是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。
4.何谓酶的抑制剂?酶的抑制剂的主要类别及其特点是什么?
通过改变酶必需基团的化学性质从而引起酶活力降低或者丧失的作用称为抑制作用,具有抑制作用的物质称为抑制剂。主要类别:不可逆抑制剂,可逆抑制剂。不可逆抑制剂与酶的必需集团以共价键结合,引起酶的永久失活。可逆抑制剂与酶蛋白以非共价键结合,引起暂时性失活。
(3)β-折叠结构有平行排列和反平行排列两种。
6.什么是蛋白质的变性作用和复性作用?
蛋白质变性后哪些性质会发生改变?蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导致其性质和生物活性改变的现象。蛋白质变性后会发生以下几方面的变化:
(1)生物活性丧失;
(2)理化性质的改变,包括:溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。
蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。蛋白质的空间结构决定蛋白质的功能。空间结构与蛋白质各自的功能是相适应的。
3.蛋白质的α—螺旋结构有何特点?
(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O 形成氢键。(3)天然蛋白质的α-螺旋结构大都为右手螺旋。
生化重点名词解释+问答知识点
1.兴奋性:生理学中将可兴奋细胞接受刺激后产生动作电位的能力称为兴奋性。
2.内环境:生理学中将围绕在多细胞动物体细胞周围的液体即细胞外液,称为内环境。
3.内环境稳态:是指内环境的理化性质,如温度、PH、渗透压和各种液体成分的相对恒定状态。
4.神经调节:是通过反射而影响生理功能的一种调节方式,是人体生理功能中最主要的一种调节方式。
5.反射:是指机体在中枢神经系统的参与下,对内、外环境作出的规律性应答。
6.正反馈:受控部分发出的反馈信息,促进加强控制部分的活动,最后使受控部分的活动朝着与它原先活动相同的方向改变,称为正反馈。
7.负反馈:受控部分发出的反馈信息,调整控制部分的活动,最终使受控部分的活动朝着与它原先活动相反的方向改变。
称为负反馈。
8.静息电位:静息时,质膜两侧存在着外正内负的电位差,称为静息电位。
9.动作电位:在静息电位的基础上,给细胞一个适当刺激,可触发其发生可传播的膜电位波动称为动作电位。
10.阈电位:产生动作电位时,要使膜去极化是最小的膜电位,称为阈电位。
11.单收缩:当骨骼肌复制一次短促刺激时,可发生一次动作电位,随后出现一次收缩和舒张,这种形式的收缩称为单收缩。
12.不完全强直收缩:如果刺激频率较低,使后一次收缩落在了前一次收缩的舒张期,这个过程称为不完全强直收缩。
13.完全强直收缩:如果刺激频率较高,使后一次收缩落在了前一次收缩的收缩期,这个过程称为完全强直收缩。
14.红细胞比容:血细胞在血液中所占的容积百分比家偶偶血细胞比容。
15.红细胞沉降率:通常以哄细胞在第一小时末下沉的距离来表示红细胞的沉降速度,称为沉降速度。
16.血液凝固:指血液由流动的固体状态变成不能流动的液体状态的过程,其实质是血浆中可溶性纤维蛋白原变成不溶性纤维蛋白的过程。
17.血型:通常是指红细胞膜上特异性抗原的类型。
18.心动周期:心脏的一次收缩和舒张,构成一个机械活动周期,称为心动周期。
19.每搏输出量:一侧心室在一次心搏中射出的血液量,称为每搏输出量,简称每搏量。
生化名词解释及简答
名词解释呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。
电子在逐步的传递过程中释放出能量被机体用于合成ATP,以作为生物体的能量来源。
Km 米氏常数,最大反应速度一半时的底物浓度DNA半保留复制.Semi-conservative replicationDNA在复制时,两条链解开分别作为模板,在DNA聚合酶的催化下按碱基互补的原则合成两条与模板链互补的新链,以组成新的DNA分子。
这样新形成的两个DNA分子与亲代DNA分子的碱基顺序完全一样。
由于子代DNA分子中一条链来自亲代,另一条链是新合成的,这种复制方式称为半保留复制。
全酶 :全酶=酶蛋白+辅因子酶的活性中心:酶分子中直接与底物结合,并和酶催化作用直接有关的区域叫酶的活性中心或活性部位。
酶的活性中心有两个功能部位:第一个是结合部位,由一些参与底物结合的有一定特性的基团组成;第二个是催化部位,由一些参与催化反应的基团组成,底物的键在此处被打断或形成新的键,从而发生一定的化学变化激活剂:能提高(酶)活性的物质糖异生作用:非糖物质转化成糖代谢的中间产物后,在相应的酶催化下,绕过糖酵解途径的三个不可逆反应,利用糖酵解途径其它酶生成葡萄糖的途径称为糖异生氧化磷酸化作用:在底物被氧化的过程中(即电子或氢原子在呼吸链中的传递过程中)伴随有ADP磷酸化生成ATP的作用称为氧化磷酸化作用。
底物水平磷酸化:在底物被氧化的过程中,底物分子中形成高能键,由此高能键提供能量使ADP磷酸化生成ATP的过程称为底物水平磷酸化。
此过程与呼吸链的作用无关。
4.生物氧化:糖、脂肪、蛋白质等物质在生物体内氧化分解,最终生成水和二氧化碳并放出能量的过程。
等电点:蛋白质或氨基酸等静电荷为0时的PH同工酶 :来源不同种属或同一种属,甚至同一个体的不同组织或同一组织、同一细胞中分离出具有不同分子形式但却催化相同反应的酶称之为同工酶。
生化名词解释与问答题(重点版)
名词解释&问答题第一章.蛋白质的结构与功能结构域(domain):指一些较大蛋白质分子,其三级结构中具有两个或多个在空间上可明显区别的局部区域。
等电点(isoelectric point):氨基酸或蛋白质在溶液中解离呈阳离子和阴离子的趋势和程度相等,成为兼性离子,呈电中性,这时溶液的pH为等电点。
第二章.核酸的结构与功能Tm值:DNA热变性过程中,紫外光吸收值增加达到最大值的一半时所对应的温度,Tm时,核酸分子内一半的双链结构被解开。
第三章.酶与维生素酶的竞争性抑制(competitive inhibition) :抑制剂与酶底物结构相似,抑制剂与底物争夺活性中心,从而阻碍酶-底物复合物形成的抑制作用。
Km值:米氏常数,数值上等于酶促反应速度为最大反应速度一半时的底物浓度。
1.酶的特征性常数是什么?简述Km和Vm的意义酶的特征性常数是米氏常数Km。
Km是单底物反应中酶与底物可逆的生成中间产物和中间产物转化为产物这三个反应的速度常数的综合。
Km在数值上等于酶促反应速度达到最大反应速度一半时的底物浓度。
Km=(k1+k2)/k1(1)Km的意义:①Km值等于酶促反应速度达到最大速度一半时的底物浓度。
②当k2≥k3时(ES解离≥ES分解生成产物时)→Km代表酶对底物的亲和力。
且Km越小,亲和力越大。
③Km值是酶的特征性常数之一,每一种酶都有它的Km值,Km只与酶的结构、底物、反应环境有关,与酶的浓度无关。
(2)Vm的意义:Vm是酶完全被底物饱和时的反映速度,与酶的浓度成正比。
2.竞争性抑制作用的特点,并举例说明其临床应用。
竞争性抑制的特点:①抑制剂与底物化学结构相似;②抑制剂以非共价键形式可逆的结合于酶的活性中心,但不被催化为产物;③由于抑制剂与酶的结合可逆,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例;④当抑制剂浓度不变时,增加底物浓度,可以使抑制作用减弱甚至解除,故酶的Vm不变;⑤抑制剂的存在时酶的Km明显↑,说明底物与酶的亲和力↓临床应用:(1)磺胺类药物和磺胺增效剂的抑菌机理:①磺胺类药物敏感菌必须利用PABA才能合成四氢叶酸,从而进一步合成核酸;②磺胺类药物的分子结构十分类似PABA(对氨基苯甲酸),能和PABA互相竞争二氢叶酸合成酶,阻碍二氢叶酸的合成;③磺胺类增效剂(如甲氧苄胺嘧啶TMP)与二氢叶酸结构相似,可与其竞争二氢叶酸还原酶,阻碍四氢叶酸的合成;通过以上两个作用点,磺胺类药物及其增效剂可阻碍细菌体内二氢叶酸及四氢叶酸的合成,从而影响一碳单位的传递及核酸的合成,起到抑菌作用(2)抗代谢物对核酸合成的抑制:①甲氨蝶呤→抑制叶酸合成;②5-氟尿嘧啶→抑制脱氧核苷酸合成③6-巯基嘌呤→一只嘌呤核苷酸合成第四章.生物氧化氧化磷酸化(oxidative phosphorylation):代谢物氧化脱下的氢经过线粒体呼吸链传递给氧生成水,同时释放能量使ADP磷酸化生成ATP的过程。
生化名词解释及填空问答
一、名词解释1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。
2.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein )3.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。
4.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。
5.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。
6.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。
7.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。
8.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA及增强子,弱化子等。
9.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。
10.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。
11.单克隆抗体:只针对单一抗原决定簇起作用的抗体。
12.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。
13.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’3’外切酶活性14.DNA的C值与C值矛盾:一个单倍体基因组和DNA含量总是恒定的,它通常称为该物DNA的C值。
在真核生物中,物种进化的复杂程度与DNA含量C值并不完全一致,成为C值矛盾。
15.基因与基因组:基因就是贮存RNA序列信息及表达这些信息所必须的全部核苷酸序列。
基因组指一个细胞或生物体中的全部DNA.16.回复突变与抑制突变:突变失去的野生型性状可以通过第二次突变得到恢复,第二次突变叫做回复突变。
生化名词解释及大题
生化资料:一、名词解释1.糖有氧氧化:葡萄糖或糖原在有氧条件下彻底氧化分解生成二氧化碳和水的过程。
2.糖酵解:在机体缺氧的条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解,亦称糖的无氧氧化。
3.受体:靶细胞中能识别信息分子并与之结合,引起特定生物学效应的蛋白质,个别为糖脂。
4.维生素:是维持人体正常生理功能所必需的营养素,是人体内不能合成或合成量甚少,必须由食物供给的一组低分子有机化合物。
5.必须脂肪酸:机体需要而体内不能合成,必须从植物中获得的不饱和脂肪酸,包括亚油酸、亚麻酸、花生四烯酸。
6.同工酶:是指具有相同催化功能(即催化的化学反应相同)而酶蛋白的分子结构、理化性质和免疫学性质各不相同的一组酶。
7.等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。
8.酶的活性中心:酶分子中组成氨基酸残基侧链与酶的活性密切相关的一些化学基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异的结合并将底物转化为产物。
这一区域称为酶的活性中心。
9.一碳单位:一碳单位是指氨基酸分解代谢产生的含一个碳原子的有机基团。
二、简答1.简述一碳单位的概念,载体,生理意义?一碳单位是指氨基酸分解代谢产生的含一个碳原子的有机基团。
叶酸的辅酶形式四氢叶酸是一碳单位的载体。
一碳单位的主要功用是参与核苷酸的合成:N5、N10=CH-FH4和N10-CHOFH4参与嘌呤核苷酸合成。
N5、N10-CH2-FH4参与胸腺嘧啶核苷酸合成,核苷酸是合成核酸的原料,故一碳单位在核酸合成中占重要地位。
2.蛋白质的理化性质及其应用?⑴蛋白质是两性电解质:作为两性电解质,不同的蛋白质具有不同的等电点,在同一pH 的溶液中不同的蛋白质带电性质和数量不同,藉此分离、纯化蛋白质的方法有电泳、离子交换层析、等电点沉淀法等。
生化名词解释
1结构域答:多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体,这些三维实体称为结构域。
2蛋白质的一级结构答:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
3超二级结构:答:相邻的二级结构单元可组合在一起,相互作用,形成有规则,在空间上能辨认的二级结构组合体,充当三级结构的构件,称为超二级结构。
4别构效应(变构效应)答:当底物或底物以外的物质和别构酶分子上的相应部位非共价地结合后,通过酶分子构象的变化影响酶的催化活性,这种效应成为别构效应5米氏常数答:酶催化反应速度为最大反应速度一半时的底物浓度。
6熔解温度(Tm)答:通常把加热变性使DNA的双螺旋结构失去一半时的温度,称为该DNA的熔点或熔解温度,用Tm表示7盐析答:是指溶液中加入无机盐类而使某种物质溶解度降低而析出的过程。
如:加浓(NH4)2SO4使蛋白质凝聚的过程。
8同工酶答:同工酶是指催化相同的化学反应,而酶蛋白的分子结构理化性质乃至免疫学性质不同的一组酶。
9酶的活性中心答:酶的活性中心是指酶分子中直接和底物结合,并和酶催化作用直接有关的部位。
10蛋白质等电点答:当溶液在某一定pH值的环境中,使蛋白质所带的正电荷与负荷恰好相等,在电场中既不向阳极移动,也不向阴极移动,这时溶液的pH值称该蛋白质的等电点。
11酶的专一性答:酶对其所催化的底物具有较严格的选择性,即一种酶仅作用于一种或一类化合物,或一定的化学键,催化一定的化学反应并产生一定的产物,酶的这种特性称为酶的特异性。
根据酶对其底物结构选择的严格程度不同,酶的特异性可大致分为三种类型,即绝对特异性,相对特异性和立体异构特异性。
12蛋白质变性答:指蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。
13酶原答:有些酶在细胞内合成或初分泌时只是酶的无活性前体,此前体物质称为酶原。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释1、血糖:血液中的单糖,主要是葡萄糖2、糖原合成与分解:由单糖合成糖原的过程称为糖原合成;糖原分解成葡萄糖的过程称糖原分解。
3、糖异生:由非糖物质合成葡萄糖的过程4、有氧氧化:在供氧充足时,葡萄糖在胞液中分解生成的丙酮酸进入线粒体,彻底氧化生成CO2和H2O,并释放大量能量5、三羧酸循环:在线粒体内,乙酰CoA和草酰乙酸缩合成生成柠檬酸, 柠檬酸经一系列酶促反应之后又生成成草酰乙酸,形成一个循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环6、糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸,称为糖酵解途径。
7、血脂:血浆中脂类的总称。
主要包括甘油三酯、磷脂、胆固醇和游离脂肪酸。
8、血浆脂蛋白:是脂类在血浆中的存在形式和转运形式。
包括脂类和载脂蛋白。
9、脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。
10、酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。
11、必需脂肪酸:人体生命活动所必不可少的几种多不饱和脂肪酸,在人体内不能合成,必需由食物来供给。
有亚油酸、亚麻酸及花生四烯酸三种。
12、必需氨基酸:体内需要而自身又不能合成、必需由食物供给的氨基酸。
包括异亮氨酸、苯丙氨酸、色氨酸、苏氨酸、亮氨酸、甲硫氨酸、赖氨酸和缬氨酸。
13、蛋白质互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。
14、转氨基作用:是指由氨基转移酶催化,将氨基酸的α- 氨基转移到一个α- 酮酸的羰基位置上,生成相应的α-酮酸和一个新的α-氨基酸。
该过程只发生氨基转移,不产生游离的NH3。
15、一碳单位:有些氨基酸在分解代谢过程中可以产生含有一个碳原子的活性基团,称为一碳单位。
16、遗传密码子:从mRNA编码区5’端向3’端按每3个相邻碱基为一组连续分组,每组碱基构成一个遗传密码,称为密码子或三联体密码。
(共有64个密码子,其中有61个密码子编码20种氨基酸。
另3个密码子代表终止信号。
)17、中心法则:是DNA、RNA和蛋白质之间基本功能关系的解释,即DNA是自身复制及转录合成RNA的模板,RNA是翻译合成蛋白质的模板,因此,遗传信息的流向是DNA →RNA →蛋白质18、半保留复制:(半保留复制是DNA复制最重要的特征。
)当DNA进行复制时,亲代DNA 双链必须解开,两股链分别作为模板,按照碱基互补配对原则指导合成一股新的互补链,最终得到与亲代DNA碱基序列完全一样的两个子代DNA分子,每个子代DNA分子都含有一股亲代DNA链和一股新生DNA链,这种复制方式称为半保留复制。
19、逆转录:是以RNA为模板、以dNTP为原料、由逆转录酶催化合成DNA的过程,该过程的信息传递方向是从RNA到DNA,与从DNA转录到RNA的信息传递方向相反,所以称为逆转录。
20、转录:是指生物体按碱基互补配对原则把DNA碱基序列转化成RNA碱基序列、从而将遗传信息传递到RNA分子上的过程。
21、启动子:原核生物和真核生物基因的启动子均由RNA聚合酶结合位点、转录起始位点及控制转录起始的其他调控序列组成,是启动转录的特异序列。
22、翻译:翻译又称为蛋白质的生物合成过程,是核糖体协助tRNA从mRNA读取遗传信息、用氨基酸合成蛋白质的过程,是mRNA碱基序列决定蛋白质氨基酸序列的过程,或者说是把碱基语言翻译成氨基酸语言的过程。
23、点突变:点突变又称错配,即单一碱基配对错误造成的变异,包括转换和颠换。
24、框移突变:DNA损伤可以分为四种类型:错配、缺失、插入和重排。
缺失指的是DNA 链上一个或一段核苷酸的消失,插入指的是原来没有的一个碱基或一段核苷酸链插入到DNA 分子中间。
在为蛋白质编码的序列中如果缺失或插入核苷酸,则发生读框移动,使其后译读的氨基酸序列全部混乱,这种现象称框移突变。
25、基因表达:是指基因经过转录和翻译等一系列复杂过程,指导合成具有特定生理功能的产物。
26、操纵子:原核生物绝大多数基因的转录单位,由启动子、操纵基因和受操纵基因调控的一组结构基因组成。
27、变构调节:指特定物质与酶蛋白活性中心之外的某一部位以非共价键结合结合,改变酶蛋白构像,从而改变其活性。
28、化学修饰调节:通过酶促反应使酶蛋白以共价键结合某种特定基团,或脱去该特定基团,导致酶蛋白构象改变,酶活性也随之改变。
29、顺式作用原件:真核生物的调控序列。
反式作用原件:30、增强子:真核生物促进基因转录的调控序列。
31、外显子:是真核生物基因经过转录加工后保留于RNA中的序列和相应的DNA序列。
内含子:真核生物基因在转录后加工时被切除的RNA序列和相应的DNA序列。
32、胆汁酸的肠肝循环:在肠道中重吸收的各种胆汁酸,经门静脉重新入肝脏。
肝脏再把游离胆汁酸转变成结合胆汁酸,与重吸收的结合胆汁酸一道,重新随胆汁排入肠腔,此过程称为胆汁酸的肠肝循环。
33、胆色素:胆色素是铁卟啉化合物在体内的主要分解代谢产物,包括胆红素、胆绿素、胆素原和胆素等,主要随胆汁、粪便排出。
34、生物转化:肝脏将外源性或内源性非营养物质进行转化,最终增加其水溶性(或极性),使其易于随胆汁或尿液排出体外,这一过程称为生物转化。
35、碱储:血浆NaHCO3的含量在一定程度上代表了机体缓冲酸的能力,习惯上将血浆NaHCO3称为碱储或碱储备。
问答题1、简要说明血糖的来源和去路及机体对其的调节答:血糖来源:①食物糖消化吸收;②肝糖原分解;③肝脏内糖异生作用去路:①氧化分解供能;②合成糖原;③转化成其他糖类或非糖类物质;④血糖过高时随尿液排出机体对其的调节(1)肝脏的调节:肝脏是维持血糖浓度的最主要器官,是通过控制糖原的合成与分解及糖异生来调节血糖的。
当血糖浓度高于正常水平时,肝糖原合成作用加强,促进血糖消耗;糖异生作用减弱,限制血糖补充,从而使血糖浓度降至正常水平。
当血糖浓度低于正常水平时,肝糖原分解作用加强,糖异生作用加强,从而使血糖浓度升至正常水平。
当然,肝脏对血糖浓度的调节是在神经和激素的控制下进行的。
(2)肾脏调节:肾脏对糖具有很强的重吸收能力,其极限值(可以用血糖浓度来表示,为8.9~10.0mmol/L(160~180mg/L),该值)称为肾糖阈。
当血糖浓度低于肾糖阈时,肾小管就能重吸收肾小球滤液中的葡萄糖,以维持正常的血糖浓度。
当血糖浓度高于肾糖阈,从肾小球滤出的糖过多,超过肾小管重吸收糖的能力,就会出现糖尿。
(3)神经和激素调节:正副交感神经调节;胰岛β细胞分泌的胰岛素是唯一能降低血糖的激素;而能升高血糖浓度的激素主要有胰岛细胞分泌的胰高血糖素、肾上腺髓质分泌的肾上腺素、肾上腺皮质分泌的糖皮质激素、腺垂体分泌的生长激素和甲状腺分泌的甲状腺激素等。
这些激素主要通过调节糖代谢的各主要途径来维持血糖浓度。
2、简要说明血浆甘油三酯的来源和去路及激素对其的调节答:(1)、甘油三酯的合成代谢合成的部位:肝脏、脂肪组织、小肠粘膜等原料:①甘油和脂酸主要来自于葡萄糖代谢;②CM中的FFA(来自食物脂肪)。
基本合成过程:①甘油一酯途径(小肠粘膜细胞)。
②甘油二酯途径(肝、脂肪细胞)。
(2)、甘油三酯的分解代谢①脂肪的动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。
其中关键酶是激素敏感性甘油三酯脂肪酶②甘油的氧化:甘油经血运至肝、肾、肠等组织,彻底氧化。
③脂酸的β-氧化:氧化部位:除脑组织外,大多数组织均可进行,其中肝、肌肉最活跃。
过程:(a)脂酸的活化——脂酰 CoA 的生成(胞液)。
(b)脂酰CoA进入线粒体:借助于肉碱的携带。
3、试述五种脂蛋白的组成特点和生理功能(或意义)答:CM【(乳糜微粒)含甘油三酯最多,占脂蛋白颗粒的80%~95%。
】功能主要是转运来自食物的外源性甘油三酯。
VLDL【(极低密度脂蛋白)含甘油三酯占脂蛋白的50%~70%。
】功能主要是转运肝脏合成的内源性甘油三酯。
LDL【(低密度脂蛋白)含40%~50%胆固醇及其酯。
】功能为从肝脏向肝外组织转运胆固醇。
HDL【(高密度脂蛋白)中含蛋白质最多,占50%,密度最高,磷脂占25%,胆固醇占20%。
颗粒最小,密度最大。
】功能主要是从肝外组织向肝脏转运胆固醇。
IDL(中密度脂蛋白)是VLDL在血浆中代谢的中间产物【又称为VLDL残体】。
多数IDL 被肝细胞摄取【,其余IDL的甘油三酯继续被脂蛋白脂酶水解,】这些IDL最后成为【富含胆固醇、胆固醇酯和apoB-100的】LDL。
4、请叙述胆固醇的生物合成与糖代谢的关系答:除了脑组织和成熟红细胞之外,人体各组织都可以合成胆固醇,其中肝脏的合成能力最强,占全身胆固醇总量的80%,另外有10%由小肠合成。
胆固醇的合成场所是细胞液和内质网,合成原料是乙酰CoA,此外还需要NADPH供氢,A TP供能。
乙酰CoA和ATP主要来自糖的有氧氧化,NADPH主要来自磷酸戊糖途径。
5、试叙述进食过量糖类食物可导致发胖的生化机理答:体内糖转化成脂肪的过程:糖代谢产生的乙酰CoA可以合成脂肪酸和胆固醇,糖代谢产生的磷酸二羟丙酮可以还原生成3-磷酸甘油。
糖代谢可产生ATP、NADPH+H+,然后由A TP供能,NADPH+H+供氢,在3-磷酸甘油基础上逐步结合3分子脂肪酸,合成甘油三脂。
所以从食物中摄取的糖可以生成脂肪酸和3-磷酸甘油,进而合成甘油三酯,进入脂库。
因此,进食过量的糖类食物会导致体内脂肪合成增多,从而引起发胖。
6、简述以下代谢的大致过程和生理意义有氧氧化的过程:有氧氧化途径分为三个阶段:(1)葡萄糖在细胞液中氧化分解生成丙酮酸;(2)丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化作用下(氧化脱羧)生成乙酰CoA;(3)乙酰基进入三羧酸循环彻底氧化成CO2和H2O。
生理意义:人体代谢所需的能量主要来自糖的有氧氧化。
三羧酸循环的大致过程:1.乙酰CoA与草酰乙酸缩合成柠檬酸2.柠檬酸异构成异柠檬酸3.异柠檬酸氧化脱羧生成α-酮戊二酸4.α-酮戊二酸氧化脱羧生成琥珀酰CoA5.琥珀酰CoA生成琥珀酸6.草酰乙酸再生生理意义:三羧酸循环是糖类、脂类和蛋白质彻底氧化分解代谢的共同途径;三羧酸循环是糖类、脂类和蛋白质代谢联系的枢纽。
糖原合成的过程:包括4步反应:(1)葡萄糖磷酸化生成6-磷酸葡萄糖;(2)6-磷酸葡萄糖异构成1-磷酸葡萄糖;(3)1-磷酸葡萄糖与UTP反应生成UDP-Glc(葡萄糖);(4)在糖原合酶的催化下,UDP-Glc的葡萄糖残基加到糖原引物(Gn)分子上生成糖原(Gn+1),这样在原有的糖原分子上增加了一个葡萄糖残基。