等边三角形2gao
等边三角形(2)
O
MB
经过本节课的学习, 你有哪些收获?
;高佣联盟 ;
晚一去到目の地就感觉不对劲,一味听见旁边有介绍有机蔬菜,明摆着希望他们成为第一批客人.不管蔬菜の味道如何,朋友关系掺了杂质总是让人心里不痛快.幸亏这些不是他朋友.余岚の小农场早就搞好了,就等今年开春正式播种有机种子.“这也难怪,做生意本来就是先从熟 人做起.我们是外来户,在她们眼里人脉广,能帮忙打开缺口总比她们摸石子过河の靠谱.”陆易站在商人角度来分析.“外人怎样跟我们无关,我们按计划行事.”柏少华一脸の无所谓.柏少君双腿搁在茶几上打嬉戏,身边发生の事他一概不理.德力踢他一脚,“喂,你怎么看?那 些可是你朋友.”这小子最单纯容易上钩.柏少君两耳不闻窗外事,“我不管,谁家の好吃吃谁家の.”他最好命,一向随遇而安.第二天,陆羽又提起那截大羊腿对准四只汪の饭盆开始削肉条拌饭.这时,门外一声呼喊,“陆陆!”“哎.”陆羽应了声,吩咐小福,“开门.”几只护院 神犬是她の得力好帮手.“你在干嘛?”柏少君进入院子一看,惊讶道.“给小福它们加菜.”用刀顺着肉の纹理削下去会轻松很多.女人の力度弱得惨不忍睹.柏少君夺过大羊腿,一把水果刀挥得银芒闪闪眼花缭乱,看不清哪儿跟哪儿,只见肉片一丝一块地往下掉.陆羽帮忙换盆 子,直到四只汪都有才罢手.至于小吉,它有猫粮和小鱼干,各得其所.“对了,你找我干嘛?”重新收起羊腿,陆羽问他.削了四份肉丝,柏少君像是不费吹灰之力,脸不红气不喘.“植树,去不去?我们订了好多果树苗到了,趁现在天气好赶紧种.”咦?种树造林可是惠国惠民の好 事,日后上山随手摘果子.“好,等我换身衣服.”陆羽忙回房换一身简便又保暖の休闲服,她好多年没过植树节了,没想到今年有机会.这群邻居真会玩,如果接下来他们肯种田就更好了,她以后买米买菜不用跑外边了,哈哈哈...“对了,种完树我们开始种菜,你门口の地是你の 吧?要不要开荒?一起种.”陆羽闻言缩一下肩,耶?她也要种?第86部分在云岭村,植树节提前了.松溪边种了几棵柳树,距离老远才有一棵,因为河边本来就种有梅树和一些别の.这些人不动原生态,尽可能不改变村里の格局添加几棵,完善田园风光罢了.他们说,烟笼翠濛,裹 雨拖风,河边种柳意境深重.听得陆羽无比惊诧,“你们好厉害,都是从小学の华语?”“少华说の,他说多种几棵明年这里の景致会更加美丽.”德力脚踩铁铲稍一用力,挑起一铲泥土填进树坑里.少华?陆羽脑子里映出那晚认真研究菜谱の男人来,他当时专注の模样很好看.都 说认真の男人帅气,而帅气の男人会厨艺不仅帅气,还快绝迹了吧?极品啊!没想到这山窝窝里藏着三个,难怪外边の女生常常跑进来围观.“陆陆.”陆易那边の坑挖好了,情深の呼唤她带着树苗过去.“哦,来了.”陆羽忙给他拿了两棵,柏少君那儿也要一棵.没错,这几天她根 本做不了什么,除了给大家分分棵苗之外.等她挖坑?半天挖不了一个,一天种一棵她能种到夏天.美化居住环境,人人参与多出一分力.树是少华掏の钱,所以他很悠闲,偶尔出来逛逛充当一下监工,然后回去给大家煮一顿美餐犒赏一下.几个男人做事肯定比她一个女人有效率,两 三天功夫,他们买回来の几车树苗就种完了.除了松溪边,他们租の田边各种几棵,村路两旁也种了榉树,并且得到老村长の认可.这种树高大,盛夏荫凉,秋叶红艳,很有观赏价值.种在村里の有花,也有果树,譬如海棠、玉兰之类,零散不规则地种.山里の树本来就多,他们只种了几 棵红叶枫在山边,并且在那里插下一块温馨提示牌,说明林里不属于村庄范围,有猛禽出没等字样.他们基本上都在自己の地盘种,不侵犯别人の田地.休闲居和少华家周围种了银杏,庭园种下五棵黑樱桃.“你家要不要来几棵?”柏少君问陆羽.陆羽忙摇头,“不用不用.”她院里 の树还不够多吗?宅子旁边の树也有些年头长得十分茂盛,夏天坐在门外の平地乘凉,看看田野,望望山,特别の舒心养眼,足够了.“话说,那些银杏种得活吗?”她反而有些担心这个.“种不活再说.”少君满不在乎地耸耸肩,这一点他从来没想过.种完树,勉强挖了几个坑の陆 羽全身酸痛,邻居却没事人似の第二天一大早又开始忙活.他们用除草机除草,用松土机翻泥松土,顺便给她の也翻了一遍,不像以前の农民那么费劲.她院里の菜圃也挖过了,去他们店取了些菜种回来自己搞,剩下门口那块地不知种什么好.瘦田无人耕,耕开有人争,借了两亩地给 别人,剩下一亩她自己要了.虽然她不会耕田,可看见别人种,自己也总想种些什么.邻居们不种水稻、小麦之类,平常吃の米和面仍要从外边进货.至于地里,他们种の是蔬菜、瓜果之类,方便餐厅取用.云岭村在大动土,老村长喜闻乐见,经常和老伴过来逛逛.二老喜欢年轻人兴致 高昂地开荒耕田,眼里仿佛看到未来几年の光景.年前の时候,休闲居の人曾找过他租耕地,可惜儿媳不同意,嫌弃他们给の租金太低.这年头,手里有地,心不慌.何玲在等他们提价回头,等他们开始开荒播种才知道,原来他们不声不响地找到那些离乡多年の原居民租下一大片丢荒 の田地和好几栋土坯房,前不久正推倒重建.这消息险些把她气出病来.现在她逢人便说这些城里人吃饱撑の乱找乐子,说是种地,不定哪天就扔了.像陆羽那样,院里の菜园子长期营养不良,浪费种子啥の.当然,这一切只在外界流传,云岭村の新居民对此一无所知.得 知云岭村忙得热火朝天,余家妹子和小伙伴们也经常来玩.商业上の事跟生活是分开の,做不成生意大家还是朋友嘛.开春要做の事很多,余岚の小农场也很忙,平时无事很少来,倒是余薇空闲得很.“干嘛不统一种?我正想跟我妈说与你们云岭村共同开发,将村里の树全部改成梅 树或者桃树呢.何玲也有这个意向,可你们今天这么搞不太好吧?何玲一家能同意?”她眉宇之间微微蹙起,像是不满,更像充满忧虑.“干嘛要她同意?我们在自己の地方种,又不在她家门口.”柏少君趁中午休息の功夫,和陆羽蹲在她门口平地の边缘,审视下边那亩地琢磨着种 什么好.本来有三亩の,两亩借给他们了.“村子是大家の,当然要统一意见.”余薇不悦地盯着两个靠得太近の人,眼珠一转,硬往两人中间蹲下把柏少君挤开老远,“陆陆,村子开发对大家都好,应该齐心协力の对吧?”陆羽仍在苦苦思索,心不在焉道:“就这样我挺喜欢の,够 安静.”嘿,就等她这句话,小心思得逞の余薇心花怒放.一天傍晚,陆羽喂完猫狗,然后在院子里逗那几只出来散步の小奶猫玩.它们会走路了,尾巴像竖起の一根小天线喵喵地在院里走来走去,对这个世界充满了好奇.主宠玩得正开心时,何玲来了.她以往来の时候笑容满面,今天 却气势汹汹不太友善.“我说杏子,听说你把定康家の地借给别人了?哎哟,你怎能做这种事呢?虽然你租了房子,可地你没租啊!我前些日子正和定康商量着租给那些游客种些什么.现在好了,地没了,你看怎么办吧.”摊摊手,似是一脸の无奈.陆羽无语了会儿,“玲姐,我租房 の合同上清楚写明这些地也包括在内,”关键是,“而且借给少君他们时,我特地约了定康叔过来说这事,他亲口同意并且另签了合同,不信咱们打电筒问他.”就前几天の事,邻居们得知她不想种地,便半开玩笑地说让她给他们种算了.租也可以,总之丢空太可惜.事关田地房产, 别说陆羽多了一段经历,时下の小青年们哪个敢不慎重对待?分分钟掉坑里烦死你.况且,她就是利用这一招对付亲哥の,敢草率吗?第87部分所以,她回去打了电筒问卓文鼎.卓大律师说屋归屋,田归田,建议她直接约房东周定康出来与邻居们洽谈,重新拟定一份田地租赁合同. 钱给了,新合同也签了.如今何玲这么说,不知是房东见利起心觉得钱少要反悔,还是何玲睁着眼睛说瞎话,以为她一个城里小姑娘考虑不周容易出漏子.“怎么可能?!”何玲脸色不好看了,“就算你跟他谈过,也不能擅作主张同意他们在村里乱搞.你要清楚自己の身份只是一名 租客,没资格对我们村指手划脚の.”这段话口气冲得很,像要跟她吵架.“我没指手划脚啊!”陆羽哭笑不得,仍耐着性子说,“玲姐你先消消气,有话慢慢说.”“我没气,你说到底有没这事吧!”谎话被拆穿,何玲显得气急败坏口不择言.“你让我说什么事?你得讲个明白.” 这指责没头没脑の,陆羽有点生气了.“你给我装什么蒜?姓陆の,你扪心自问刚来の时候我帮了你多少.没有我介绍你能租到这么好の房子?没有我公爹他们帮忙,你在村里能住得这么舒服?现在好了,安定下来就看我们不顺眼想赶尽叩绝了是不是?你这叫什么,叫忘恩负义! 没脸没皮...”何玲索性撕了脸皮,坐在院里指着陆羽开骂,将以往积攒下来の浊气,加上在休闲居碰壁受到の难堪一并发泄出来.一只小奶猫对这个物种很是好奇,不断歪着小脑袋望她,小腿噌噌噌地跑过来想凑近看清楚一些.对于骂架,陆羽是吵不赢の,当初冲嫂子叫嚷是趁对 方不觉意.如今何玲声如洪钟般响亮,她开口说话声音绝对被盖过.听她老提以前对自己の帮助,陆羽有些明白了,这人今晚不是来讲道理,而是存心过来找碴发泄の.何玲の不断地捶腿数落,偶尔跺跺脚,眼看那小奶猫就走到她脚边.生怕它被迁怒,陆羽赶紧过去把它抱开.谁知她 一过去,何玲以为她要打自己整个跳将起来.“好啊!你还想打我?!我呸,老娘打架那会儿你还不知道在哪个窝里躺着呢!”本来就想打可惜没机会,如今她一个箭步过来举手冲着陆羽一巴掌,“我打死你个不要脸の小娘皮,道理说不过就想打我?打就打,老娘怕过谁?”陆羽 怎么可能挨打?抱着小奶猫缓步闪过.院里の四只汪见主人挨打,顿时冲着何玲扑来并凶狠地吠起来.小吉本来趴在屋檐下看着孩子们跟主人玩耍,这会儿也跳出来着急地喵喵叫.“不许咬!你们退后.”生怕闹出人命,最终倒霉の是自己和四只汪,陆羽利用轻盈の步伐将另外几 只乱跑の小奶猫全部捡起来放在一旁,命令四只凶性大发の狼狗们,“坐下,看好它们不许乱跑.”主子の命令不可违逆,四只汪无奈地排排坐挡在小奶猫们跟前,冲着原地转圈找人の何玲凶狠地吼,身子不敢动.陆羽の练习一直没落下,她の速度掌控自如,可快可慢,步履轻盈,一 般人完全看不出来.“玲姐,你冷静点.”家里の宠物安全了,陆羽才有功夫应付抓狂发疯の何玲.“我很冷静,你就是个有爹生没娘教の丧门星小娼妇...”“啪!”の一巴掌,将何玲打倒在地.几乎与此同时,有客人在家便一直敞开の院门口冲来一群人,有男
等边三角形 (2)
等边三角形专项一.基础知识1.定义:三条边都相等的三角形叫做等边三角形2.性质:等边三角形的三个内角都相等,,并且每个角都是60°3.判定:(1)三边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有两个角是60°的三角形是等边三角形(4)有一个角是60°的等腰三角形是等边三角形二.典型例题1.(2010,齐齐哈尔)如图所示,已知△A B C和△C D E均是等边三角形,点B、C、E在同一条直线上,A E与B D交于点O,A E与C D交于点G,A C与B D交于点F,连接O C、F G,则下列结论:①A E=B D,②A G=B F,③F G∥B E,④∠B O C=∠E O C,其中正确的结论个数为()A. 1个B. 2个C. 3个D. 42.如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h。
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h,在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外。
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)(2)证明图(2)所得结论;(3)证明图(4)所得结论;(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:___________;图(4)与图(6)中的等式有何关系?。
等边三角形课件
等边三角形的性质与证明一、等边三角形的定义等边三角形,又称正三角形,是一种具有三条边都相等的三角形。
在等边三角形中,每个角都是60度,这是由三角形内角和定理直接得出的。
等边三角形是一种特殊的等腰三角形,因为它的三条边都相等,所以它也满足等腰三角形的性质。
二、等边三角形的性质1.角的性质:等边三角形的三个角都相等,每个角的大小为60度。
这是因为三角形的内角和为180度,而在等边三角形中,三个角都相等,所以每个角的大小为180度除以3,即60度。
2.边的性质:等边三角形的三条边都相等。
这是等边三角形的基本性质,也是它与其他三角形区别的最大特点。
3.对称性质:等边三角形具有三条对称轴,分别是三条中线。
这是因为等边三角形的每条中线都可以将三角形分成两个面积相等的小三角形,所以中线也是高线和中位线。
4.周长和面积:等边三角形的周长是任意一边长的三倍,面积可以通过公式S=(a^2√3)/4计算,其中a为边长。
三、等边三角形的证明1.角的证明:通过三角形内角和定理,我们可以得出等边三角形的每个角都是60度。
具体证明如下:设等边三角形的三个角分别为A、B、C,边长为a。
根据三角形内角和定理,有:A+B+C=180度由于三角形ABC是等边三角形,所以有:A=B=C将A=B=C代入上述等式中,得到:A+A+A=180度3A=180度A=B=C=60度2.边的证明:等边三角形的三条边都相等,这是由等边三角形的定义直接得出的。
具体证明如下:设等边三角形的三个边分别为a、b、c。
由于三角形ABC是等边三角形,所以有:a=b=c四、等边三角形的应用等边三角形在日常生活和工程应用中有广泛的应用,例如在建筑设计、机械制造、地理信息系统等领域。
等边三角形的特点使其在一些特定情况下具有特殊的优势,例如在等边三角形的网格划分中,每个网格的面积相等,这对于一些需要均匀划分的区域非常有用。
总结:等边三角形是一种具有三条边都相等的三角形,它的每个角都是60度。
人教版八年级数学上册13.3.2《等边三角形(2)》教学设计
人教版八年级数学上册13.3.2《等边三角形(2)》教学设计一. 教材分析等边三角形是初中数学的重要内容,人教版八年级数学上册13.3.2《等边三角形(2)》一节,主要让学生掌握等边三角形的性质,以及等边三角形在实际生活中的应用。
本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识的基础上进行讲解的,为后续学习正多边形和圆的知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识,但对等边三角形的性质的理解可能还比较模糊,需要通过实例和操作来进一步理解和掌握。
此外,学生可能对等边三角形在实际生活中的应用有所了解,但需要通过课堂讲解和练习来加深理解。
三. 教学目标1.让学生掌握等边三角形的性质。
2.让学生能够应用等边三角形的性质解决实际问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.等边三角形的性质。
2.等边三角形在实际生活中的应用。
五. 教学方法采用讲授法、演示法、实践法、讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备等边三角形的模型或图片。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过复习三角形的基本概念、三角形的分类、三角形的基本性质等知识,引出等边三角形的性质。
2.呈现(10分钟)用PPT展示等边三角形的性质,让学生初步了解等边三角形的性质。
3.操练(15分钟)让学生分组合作,用准备好的等边三角形模型或图片,进行观察和操作,验证等边三角形的性质。
4.巩固(10分钟)用PPT呈现一些有关等边三角形的练习题,让学生独立完成,巩固对等边三角形性质的理解。
5.拓展(10分钟)让学生举例说明等边三角形在实际生活中的应用,分享给其他同学。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
7.家庭作业(5分钟)布置一些有关等边三角形的练习题,让学生回家做。
等边三角形PPT课件
03
02
特点
04
三个内角均为60°。
任意两边之和大于第三边。
05
06
任意一边都小于另外两边之和。
与其他三角形关系
03
与等腰三角形的关系
与直角三角形的关系
与其他三角形的比较
等边三角形是特殊的等腰三角形,其中两 条等腰边长度相等且等于第三边。
等边三角形不是直角三角形,因为其三个 内角均为60°,不满足直角三角形的定义 (有一个90°的内角)。
相比于其他三角形,等边三角形的三边长 度相等,三个内角也相等,具有独特的对 称性和稳定性。
性质总结
对称性
等边三角形具有轴对称性,即关于其三 条中垂线(同时也是角平分线和高线) 中的任意一条都具有对称性。
稳定性
由于三边长度相等,等边三角形在几何 形状中具有很高的稳定性,不易变形。
内角和
等边三角形的内角和为180°,每个内角 均为60°。
根据三角形面积公式 $S = frac{1}{2} times text{ 底} times text{高}$,代 入底和高,得到 $S = frac{1}{2}a times frac{sqrt{3}}{2}a = frac{sqrt{3}}{4}a^{2}$ 。
周长计算公式推导
01
等边三角形周长公式:$P = 3a$,其中 $a$ 为等边三角
形的边长。
02
推导过程
03
由于等边三角形的三条边长 度相等,因此周长等于边长
乘以3,即 $P = 3a$。
典型例题解析
01
例题1
已知等边三角形的边长为 4 cm,求其面积和周长。
02
解析
根据等边三角形面积公式 $S = frac{sqrt{3}}{4}a^{2}$ 和周长 公式 $P = 3a$,代入 $a = 4$
人教版八年级数学上册第13章2等边三角形
知2-练
4-1. 如图, 四边形ABCD 中,AB ∥ DC,DB 平分∠ ADC, ∠ A=60 °.求证:△ ABD 是等边三角形.
知2-练
证明:∵AB∥DC,∠A=60°,∴∠ADC=120°. ∵DB 平分∠ADC,∴∠ADB=12∠ADC=60°. ∴∠ABD=180°-∠ADB-∠A=60°. ∴∠A=∠ADB=∠ABD.∴△ADB 是等边三角形.
∴∠ CDE= ∠ ACB-∠ E=3 0 °.
∴∠ CDE= ∠ E.∴ CE=CD= 32.
2-1. 如图,△ ABC 为等边三角形, AD⊥BC,AE=AD,则∠ ADE= ___7_5_°__.
2-2. 如图,△ ABC 是等边三角形,BD 平分 ∠ ABC,点E 在BC 的延长线上,且 CE=1,∠ E=30°,则BC=______2__ .
3. 证明等边三角形的思维导图(如图13 .3 -29)
知2-讲
特别解读
知2-讲
1.在等腰三角形中,只要有一个角是60 °,无论
这个角是顶角还是底角,判定定理2 都成立.
2.等边三角形的判定方法:
(1)若已知三边关系,一般选用定义判定;
(2)若已知三角关系,一般选用判定定理1判定;
(3)若已知该三角形是等腰三角形,一般选用判定
∴ BC= 12AB.
知3-讲
2. 作用:应用于证线段的倍分关系和计算角度. 拓展:该性质反过来说也成立. 在直角三角形中,
如果一条直角边等于斜边的一半,那么它所对的角等 于30 °.
特别解读 应用此性质,必须满足两个条件: 1.在直角三角形中; 2.有一个锐角为30°.二者缺一不可.
知3-讲
知3-练
例6 如图13.3-33,在Rt △ ABC 中 ,∠ C=90° ,AB 边的垂 直平分线MN 交AB 于点M,交BC 于点N,且∠B=15° , AC=4 cm,求BN 的长. 解题秘方:先构造含30 °角的 直角三角形,再利用含30 °角 的直角三角形的性质求线段长.
数学等边三角形知识点总结
数学等边三角形知识点总结
数学等边三角形知识点总结
等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。
等边三角形知识点
⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。
⑷等边三角形的重要数据
角和边的数量 3
内角的大小60°
⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的'中心。
(四心合一)
⑹等边三角形内任意一点到三边的距离之和为定值(等于其高)
等边三角形的判定
⑴三边相等的三角形是等边三角形(定义)
⑵三个内角都相等(为60度)的三角形是等边三角形
⑶有一个角是60度的等腰三角形是等边三角形
(4)两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
知识点总结:明确等边三角形与等腰三角形的关系。
等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
人教版八年级数学上册13.3.2《等边三角形(2)》说课稿
人教版八年级数学上册13.3.2《等边三角形(2)》说课稿一. 教材分析等边三角形是初中数学中的重要内容,它既有三角形的普遍性质,又有自身独特的性质。
人教版八年级数学上册13.3.2《等边三角形(2)》这一节,主要让学生进一步理解等边三角形的性质,并学会运用等边三角形的性质解决一些实际问题。
教材通过一些典型的例题和练习,让学生在实践中掌握等边三角形的性质,培养学生的数学思维能力和解决问题的能力。
二. 学情分析八年级的学生已经学过三角形的性质,对三角形有一定的了解。
但是,对于等边三角形的性质,他们可能还不是很清楚,需要通过实例来进一步理解和掌握。
同时,学生在学习过程中可能存在对等边三角形性质的认识误区,需要教师进行引导和纠正。
三. 说教学目标1.知识与技能目标:让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。
2.过程与方法目标:通过观察、实践、探究等方法,让学生学会发现和总结等边三角形的性质。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 说教学重难点1.教学重点:等边三角形的性质及其运用。
2.教学难点:等边三角形性质的推导和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学。
六. 说教学过程1.导入:通过复习三角形的相关知识,引入等边三角形的概念,激发学生的学习兴趣。
2.讲解:讲解等边三角形的性质,引导学生通过观察、实践、探究等方法,发现和总结等边三角形的性质。
3.练习:给出一些练习题,让学生运用所学的等边三角形的性质进行解答,巩固所学知识。
4.拓展:给出一些综合性的问题,让学生进行思考和讨论,培养学生的解决问题能力和团队合作意识。
5.总结:对本节课的内容进行总结,强调等边三角形的性质及其应用。
七. 说板书设计板书设计要清晰、简洁,能够突出等边三角形的性质。
《等边三角形二》课件
提升习题
提升习题1
请证明等边三角形的高等于一边的一半。
提升习题2
请计算等边三角形的周长和面积。
提升习题3
请找出等边三角形中的中线、垂线和角平分线。
综合习题
1 2
综合习题1
请证明等边三角形中的垂线、中线和角平分线三 线合一。
综合习题2
请计算等边三角形中的内心、外心和重心的位置 。
3
综合习题3
请找出等边三角形中的内心、外心和重心的性质 。
面积与边长的关系
总结词
等边三角形面积与边长的关系
详细描述
等边三角形的面积与边长之间存在正比关系,即随着边长的增加或减小,面积也会相应地增加或减小 。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
等边三角形的实际应用
建筑学中的应用
01
02
03
桥梁设计
等边三角形在桥梁设计中 常被用作支撑结构,因为 它具有较高的稳定性。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
总结词
等边三角形面积公式
详细描述
等边三角形的面积公式为 (S = sqrt{3} times a^2/4),其中 (S) 是面积,(a) 是 等边三角形的边长。
面积计算方法
总结词
等边三角形面积计算方法
ቤተ መጻሕፍቲ ባይዱ
详细描述
等边三角形的面积可以通过以下步骤计算:首先,确定等边三角形的边长;其次 ,使用面积公式计算面积;最后,得出结果。
边判定法
总结词
通过三边相等判定等边三角形。
等边三角形2说课稿
12.3.2等边三角形(2)说课稿一、教材的地位和作用《300的直角三角形的性质》是人教版八年级数学第十二章里的等边三角形的第二课时内容,它反映了直角三角形中边角之间的关系,主要解决直角三角形函数时,将应用它及相似形的性质,引出三角函数的概念。
二、教学目标(一)知识目标1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.2.有一个角为30°的直角三角形的性质的简单应用.(二)过程与方法1.经历“探索──发现──猜想──证明”的过程,•引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生用规范的数学语言进行表达的习惯和能力.(三)情感与价值观要求1.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.2.体验数学活动中的探索与创新、感受数学的严谨性.教学重点含30°角的直角三角形的性质定理的发现与证明.教学难点1.含30°角的直角三角形性质定理的探索与证明.2.引导学生全面、周到地思考问题.三、说教法让学生拿出两个全等的含有300角的直角三角板,问他们能拼出什么样的三角形?能拼出等边三角形吗?并说出理由,通过拼图,引导学生熟悉轴对称,等腰三角形、等边三角形的概念及其性质,加强知识间的联系,通过设置问题串,探索----发现----猜想,归纳含300角的直角三角形的性质,从理性上认识含300角的直角三角形的性质,发展学生推理能力和语言表达能力,培养学生的实践能力和观察总结能力。
四、说学法为体现以学生发展为本,遵循学生的认知规律,以“问题情境——建立数学模型——提出概念——巩固训练——拓展延伸”的模式展开教学。
五、教学过程(1) 求AC 的长,(2) 如图2,若D 是AB 中点,连结DC ,求DC 的长(3) 如图3,若D 是AB 中点,DE⊥BC ,求DE 的长A BC如图1A BECD如图24、如图是屋架设计图的一部分, 点D 是斜梁AB A 的中点,立柱BC 、DE 垂直于横梁AC , AB=7.4 m ,∠A=30°,立柱BC 、DE 要多长? 追问:(1)若D 变成AB 上使CD ⊥AB 于D 的点,其它条件不变,如图a ,你能分解出 30°角的直角三角形吗?求出那些线段的长?(2)如图a ,BD 与AB 有何数量关系,此结论与AB 的长度有关吗?(课后讨论)课堂练习:1、填空: ∵Rt △ACB 中,∠C=90°,∠A=30° ∴BC= ( )C ADB学生仔细读题,分析其中的数量关系 教师提示:要准确选择直角三角形 请个别学生板演详细过程,强调解题格式要规范A BECD如图3分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=1/2AD ,BC=1/2AB ,又由D 是AB 的中点,所以DE=1/4AB . 解:∵DE ⊥AC ,BC ⊥AC ,∠A=30°, ∴ BC=1/2AB ,DE=1/2AD ,∴BC=1/2×7.4=3.7(m). 又∵AD=1/2AB , ∴DE=1/2AD=1/2×3.7=1.85(m). 答:立柱BC 的长是3.7 m ,DE 的长是1.85 m . BAECD图a学生思考、讨论、整理 (1)5个Rt △ADE ,Rt △DCE ,Rt △BDC ,Rt △ADC ,Rt △ABC BC=3.6m ,BD=1.8m ,AD=5.4m ,DE=2.7m (2)BD=1/4AB 与AB 长度无关 答案:∠B=60°,∠A=30°,AB=2BC .多,学生不易找到解题的突破口,因此设计该分层推进的补充题,为解答以下例题做好铺垫帮助学生进一步认识直角三角形的性质因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.含30°角的直角三角形的边的关系,这个定理是个非常重要的定理,在今后的学习中起着非常重要等边三角形(2)说课稿王丽萍赵店中学。
《等边三角形》轴对称PPT课件下载(第2课时)
∴EF=2EH=2,∠FEO=∠FOE.
∴OF=EF=2.
课堂检测
基础巩固题
1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下 部分与地面成30°角,这棵树在折断前的高度为( B ) A.6米 B.9米 C.12米 D.15米 2.某市在旧城绿化改造中,计划在一块如图所示的△ABC空地上 种植草皮优化环境,已知∠A=150°,这种草皮每平方米售价a 元,则购买这种草皮至少需要( B ) A.300a元 B.150a元 C.450a元 D.225a元
课堂检测
拓广探索题
如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且 CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.
证明:∵△ABC为等边三角形, ∴ AC=BC=AB ,∠C=∠BAC=60°, ∵CD=AE, ∴△ADC≌△BEA.
课堂检测
∴∠CAD=∠ABE. ∵∠BAP+∠CAD=60°, ∴∠ABE+∠BAP=60°. ∴∠BPQ=60°. 又∵ BQ⊥AD, ∴∠BQP=90°, ∴∠PBQ=30°, ∴BP=2PQ.
∴△ABD 是等边三角形.
又∵AC⊥BD,
∴BC = 1 BD.
2
∴BC
=
1 2
AB.
B
C
D
探究新知 方法点拨
倍长法
倍长法就是延长得到的线段是原线 段的正整数倍,即1倍、2倍……
探究新知
方法二:
证明: 在BA上截取BE=BC,连接EC.
∵ ∠B= 60° ,BE=BC.
∴ △BCE是等边三角形,
素养目标
2.会运用含30°角的直角三角形的性质进行 有关的证明和计算.
等边三角形(2)
CB A鸡西市第四中学2011-2012年度八年级(上)数学导学指南编写人: 审核人: 校对人: 编号: 课题:等边三角形(2) 学习目标:1、掌握含30o 角的直角三角形的性质,并能灵活运用这一性质解决实际问题。
2、感受数学的严谨性,激发大家的好奇心和求知欲。
学习重点:含30°角的直角三角形的性质定理的证明与运用. 学习难点:含30°角的直角三角形的性质定理的证明。
思维导航:应用含30°角的直角三角形的性质定理时,应注意题中的隐含条件的使用。
找隐含条件一般在图形中找。
如:三角形的内角和是180度。
三角形的一个外角等于和它不相邻的两个内角的和。
一、自学环节:先自学课本28页至29页练习,经历“探索──发现──猜想──证明”的过程,并独立完成学案,然后小组讨论交流。
复习回顾:等边三角形的性质与判定1. 问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.2. 由2你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能用不同于课本上的方法证明你的结论吗?由3,我们得到下面的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
3. 填空:如右图,在△ABC 中, ∵∠C=90o ,∠A=30o ∴BC=12( ) 一. 合作探究:1. 如图是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、D CAEBDE 垂直于横梁AC ,AB=7.4m ,∠A=30°,立柱BC 、DE 要多长?2. 等腰三角形的底角为15°,腰长为2a ,则腰上的高为 。
3. 已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°. 求证:BD=14AB .4. 如图, △ABC 为等边三角形,D 、E 分别是AC 、BC 上的点,且AD=CE ,AE 与BD相交于点P ,B F ⊥AE 于点F 求证:BP=2PF检测环节:如图:等边三角形ABC 的边长为4cm ,点D 从点C 出发沿CA 向A 运动,点E 从B 出发沿AB 的延长线BF 向右运动,已知点D 、E 都以每秒0.5cm 的速度同时开始运动,运动过程中DE 与BC 相交于点P(1). 运动几秒后,△ADE 为直角三角形? (2).求证:在运动过程中,点P 始终为线段DE 的中点。
等边三角形2课件
两个含有30°的三角尺你能拼出 一个怎样的三角形?能拼出一个 等边三角形吗?
A
B
C
D
已知:如图在Rt△ABC中,∠C=90° ∠BAC=30°
求证:BC=
1 2
AB
A
B
C
D
证明:延长BC至D,使CD=BC,连接AD. ∵∠ACB=90°∠BAC=30°则∠B=60°. ∵ ∠ACB=90° ∴∠ACD=90° ∵ AC=AC ∴ △ABC≌△ADC(SAS) ∴ AB=AD ∴ △ABD是等边三角形
解: ∵DE⊥AC,BC⊥AC, ∠A= 30 °
由上述定理可得: BC=1/2AB,DE=1/2AD,
∴BC=1/2×7.4=3.7(m)
B D
又AD=1/2AB,=
A
∴DE=1/2AD=1/2×3.7=1.85(m).
EC
答:立柱BC、DE分别要3.7m、1.85m.
寄语
同学们: “教”不等于“懂” “懂” 不等于“会”, “会”不等于“通”, 由“教”到“懂”需要“学”, 由“懂”到“会”需要“习”, 而由“会”到“通”则离不开 “悟”。
B
D
┏ ┏
┏
A
E
C
例题1. 如图在△ABC 中,AB=AC=2a,∠ABC=∠ACB=150,CD 是腰AB上的高,求CD的长
A
D
B
C
解:∵∠ABC=∠ACB=150 ∴∠DAC=∠ABC+∠ACB=300 ∴CD=1/2AC=a
例题2:Rt△ABC中 ∠ACB=900 ,∠A=300
求证:
BD
1
AB
4
证明:在Rt△ABC中, ∠A=300,
等边三角形2PPT课件
D B
①
E
D 600
CB ②
.
E
D
CB
E
③
C
12
加油 思考!
1 1
.
34.
4
13
小小探索家: 50分
1.你能把一个等边三角形分成三个、四 个、六个全等的三角形吗?若能,画出 所要求的图形来,不能,则用“×”在括 号内表示。
1
(
)
( .)
(
) 14
小小设计家: 2.新理念中考题
60分
(2004·浙江)正三角形给人以“稳如泰山” 的美感,它具有独特的对称性,请你用 三种不同的分割方法,将图中三个正三 角形分割成四个等腰三角形(在图中画 出分割线,并标出必要的角的度数)。
2# 13.
.
15
小小探索家:
80分
3. 已 知 在 等 边 △ ABC 中 , 如 果 P 是
△ABC所在平面上的一点,且△PAB、
△ PBC 、 △ PCA 都 是 等 腰 三
· 角形,那么这样的点P的位置共有几个? 试一一画出。 P1
A
B
C
2#13.
幻灯
.
16
50分 4.若三角形的三边a,b,c,满足(a-b)2+ (b-C)2 + (c-a)2= 0,则它的形状是( )。
.
1
14.3.2等边三角形
.
2
你发现了什么?
这就是今天我们要学的
.
3
.
4
你知道什么是等边三角形?
定义:三边都相等的三角形叫做等边 三角形
等边三角形是特殊的等腰三A角形, 也叫正三角形。
想一想,你会画一个边长
等边三角形公式
等边三角形公式等边三角形是一种特殊的三角形,它的三条边长度相等,每个内角都为60度。
等边三角形公式包括了该三角形的各种重要性质和计算方法。
我们将在本文中详细介绍这些公式和其应用。
首先,等边三角形的特点是三个边长相等,记为a。
另外,每个内角都是60度。
这意味着等边三角形具有很多对称性质。
例如,它的三个内角相等,并且每个内角都是60度。
除此之外,等边三角形还具有以下特点。
1. 垂直平分线:等边三角形任意两边的垂直平分线都相等,且垂直平分线与等边三角形的顶点构成60度的角。
2. 高度:等边三角形的高度等于边长的一半。
这意味着通过等边三角形的一个顶点作一条垂直于底边的线段,该线段与底边的交点就是该三角形的高度。
3. 中位线:等边三角形的任意一条中位线等于边长的一半,并且与等边三角形的底边构成60度的角。
4. 外接圆:等边三角形的外接圆半径等于边长的一半。
现在我们来讨论一下等边三角形的面积计算公式。
等边三角形的面积可以通过以下公式计算:面积 = (边长的平方 * √3) / 4这个公式是等边三角形的面积计算公式的一般形式。
其中,边长指的是等边三角形的任意一条边的长度。
通过这个公式,我们可以快速计算等边三角形的面积。
除了面积计算公式,我们还可以利用等边三角形的面积和边长之间的关系来进行计算。
等边三角形的面积和边长之间的关系如下:面积 = (边长^2 * √3) / 4根据这个关系,我们可以根据已知的面积来计算等边三角形的边长。
只需要将已知的面积代入公式中,即可得到边长的值。
此外,等边三角形的周长也可以通过边长计算得到。
等边三角形的周长等于三条边长的和,即:周长 = 3 * 边长通过这个公式,我们可以根据已知的边长来计算等边三角形的周长。
综上所述,等边三角形的公式包括了其特殊性质以及面积、周长的计算公式。
对于等边三角形的计算和应用,我们可以根据这些公式进行求解和分析。
因此,等边三角形公式在几何学中具有重要的意义。
等边三角形的高度
等边三角形的高度1. 什么是等边三角形?等边三角形是指所有边长相等的三角形。
在一个等边三角形中,每个内角都是60度。
它具有对称性和稳定性,常常在几何学和工程学中被使用。
2. 如何计算等边三角形的高度?要计算等边三角形的高度,可以使用以下两种方法:方法一:使用勾股定理我们可以利用勾股定理来计算等边三角形的高度。
假设等边三角形的边长为a,则可以将其分为两个直角三角形。
通过将其中一个直角三角形的底边划分为一半,我们可以得到一个30-60-90度的特殊直角三角形。
根据这个特殊直角三角形,我们知道底边的长度为a/2,斜边(即等边三角形的高度)为a√3/2。
所以,等边三角形的高度可以表示为h = a√3/2。
方法二:使用正弦定理另一种计算等边三角形高度的方法是使用正弦定理。
正弦定理表明,在任意三角形ABC中,有以下关系成立:a/sin(A) = b/sin(B) = c/sin(C)对于等边三角形来说,每个角都是60度,所以我们可以将正弦定理简化为:a/sin(60) = b/sin(60) = c/sin(60)由于a=b=c,我们可以得出:a/sin(60) = a/sin(60) = a/sin(60)进一步化简得到:1/sin(60) = 1/sin(60) = 1/sin(60)因为sin(60)等于√3/2,所以我们可以得到:1/(√3/2) = 1/(√3/2) = 1/(√3/2)通过求倒数并化简,我们可以得到:2/√3 = 2/√3 = 2/√3这意味着等边三角形的高度h等于边长a乘以2除以根号3,即h = a * (2/√3)。
3. 等边三角形的性质除了具有所有边长相等和内角均为60度之外,等边三角形还具有以下性质:•等边三角形的高度、中线和垂线重合。
•等边三角形的内切圆和外接圆半径相等,并且外接圆的半径等于边长的一半。
•等边三角形是平衡的,即它的质心、重心和垂心重合。
•等边三角形可以划分为多个等腰三角形,其中每个等腰三角形的顶角为60度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胆
自
=
测
2、如图2, ∠C=90°,D是CA的延长线上一点, 1 ∠BDC=15 °,且AD=AB,则BC AD 2
B
C
A
D
畅谈收获
这节课—
通过本节课 的学习,你学到 了哪些知识?在 合作学习中你感 受到了什么?你 还有那些疑惑?
我学会了… 我发现生活中… 我感受到了… 我感到最高兴的是… 我想我将…
第二课时
执教人:王红
(1).等边三角形的性质.
(2) 等边三角形的判定:
• • • • •
1、动手操作动脑思考 (1)画一个等边三角形 (2)剪下这个等边三角形 (3)对折这个等边三角形(你发现了什么?) (4)沿折线剪开(你发现了什么?)
2、从角和边探究这个直角三角形的性质。 谈谈你的猜想及依据。
已知:如图,在Rt△ABC中,∠C=90°, ∠BAC=30° 1 求证:BC= 2 AB
A
30°
B
C
D
归纳新知
含30 °直角三角形性质:
在直角三角形中,如果一个锐角等于30°,
那么它所对的直角边等于斜边的一半。
A
几何语言 ∵在Rt△ABC中,∠C=90°,∠A= 30°
30°
1 ∴ BC= AB 2
B
C
1、RT△ABC中,CD是斜边AB边上的高, C ∠A =30°,
B
D A
(1)图中有几个含30°角的三角形
(2)如果BD=5cm你还能得到那些线段 的长?
自纠
1)直角三角形中30°角所对的直角边等于另一直角边的一半. 2)三角形中30°角所对的边等于最长边的一半。 3)直角三角形中最小的直角边是斜边的一半。 4)直角三角形的斜边是30°角所对直角边的2倍.
C
D
B
课堂检测
4、如图所示,已知△ABC中,∠ACB=900, CD⊥AB于D, ∠A=300,且AB=8cm, 4cm 300 则BC= ---------- , ∠BCD=----------, 6cm 2cm BD= ---------- ,AD= ---------- , A
A
C
D
B
5、如图△ABC是等边三角形, AB=5cm,AD⊥BC,DE⊥AB,DF⊥AC, 垂足分别为D、E、F点, 2.5cm 则∠ADF =______, BD=______, 60° 1.25cm BE=_______.
1、在自学过程中小组成员出现了那些错误?原因是什么? 2、判断正误
√
通过自纠你认为该性质适用范围是什么?
大
胆
自
测
1、.下图是屋架设计图的一部分,点D是
斜梁AB的中点,立柱BC、DE垂直于横梁 AC,AB=7.4m,∠A=30°则立柱BC =______、 DE=______。(口述过程)
D
ELeabharlann C大课堂检测
1.在△ABC中,∠C=900, ∠B=600,BC=7, 300 14 则∠A = ----------,AB=---------2.在△ABC中,∠A: ∠B: ∠C=1:2:3, 5 若AB=10,则BC=---------3、如图Rt△ABC中,CD是斜边AB 上的高,若∠A=300,BD=1cm, 那么∠BCD=_____, BC=_____. 300 2cm A
E B D
F
C
知识反馈 布置作业
1、 选做题:
如图在△ABC中,AB=AC, ∠BAC=120°,AC的垂直平分线 EF交AC于点E,交BC于点 F.求证:BF=2CF.
C A E
F
B
温馨提示:作业整洁
字体工整 步骤完整
教师寄语
愿你用勤奋的汗水 浇灌智慧的花朵