2014年浙江省高考理科数学真题试题及答案解析(完整版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(浙江卷)

数 学(理科)

一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.

(1)设全集{}2|≥∈=x N x U ,集合{}

5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{

(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件

(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902

cm B. 1292

cm C. 1322

cm D. 1382

cm

4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )

A.向右平移4π个单位

B.向左平移4π

个单位 C.向右平移12π个单位 D.向左平移12

π

个单位

5.在4

6

)

1()1(y x ++的展开式中,记n

m y

x 项的系数为),(n m f ,则

=+++)3,0(2,1()1,2()0,3(f f f f ) ( )

A.45

B.60

C.120

D. 210

6.已知函数则且,3)3()2()1(0,)(2

3

≤-=-=-≤+++=f f f c bx ax x x f ( )

A.3≤c

B.63≤

C.96≤

D. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a

log )(),0()(=≥=的图像可能是( )

8.记,max{,},x x y x y y x y ≥⎧=

⎨<⎩,,min{,},y x y

x y x x y

≥⎧=⎨

<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤ B.min{||,||}min{||,||}a b a b a b +-≥ C.2

222min{||

,||}||||a b a b a b +-≥+ D.2

222min{||

,||}||||a b a b a b +-≤+

9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.

(a )放入i 个球后,甲盒中含有红球的个数记为()1,2i

i ξ

=;

(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则

A.()()1212,p p E E ξξ><

B.()()1212,p p E E ξξ<>

C.()()1212,p p E E ξξ>>

D.()()1212,p p E E ξξ<<

10.设函数21)(x x f =,),(2)(2

2x x x f -=|2sin |31)(3x x f π=

,99,,2,1,0,99

==i i

a i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则 A.321I I I << B. 312I I I << C. 231I I I << D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.

11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.

12.随机变量ξ的取值为0,1,2,若()1

05

P ξ==

,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪

--≤⎨⎪≥⎩

时,14ax y ≤+≤恒成立,则实数a 的取值范围是

________.

14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).

15.设函数()⎪⎩⎪⎨⎧≥-<+=0

,0

,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______

16.设直线)0(03≠=+-m m y x 与双曲线122

22=-b y a x (0a b >>)两条渐近线分别交于点

B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________

17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人 为了准确瞄准目标点,需计算由点观察点的仰角的大小. 若则的最大值

三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

19(本题满分14分)

已知数列{}n a 和{}n b 满足()()*

∈=

N n a a a n

b n 221 .若{}n

a 为等比数列,且

.6,2231b b a +==

(1)求n a 与n b ; (2)设()

*∈-=

N n b a c n

n n 11。记数列{}n c 的前n 项和为n S . (i )求n S ;

(ii )求正整数k ,使得对任意*∈N n ,均有n k S S ≥.

20. (本题满分15分)如图,在四棱锥BCDE A -中,平面⊥ABC 平面

======∠=∠AC BE DE CD AB BED CDE BCDE ,1,2,90,02.

(1)证明:⊥DE 平面ACD ; (2)求二面角E AD B --的大小

21.本题满分15分) 图,设椭圆(),01:22

22>>=+b a b

y a x C 动直线l 与椭圆C 只有一

个公共点P ,且点P 在第一象限.

相关文档
最新文档