医学影像学重点(自己整理的)
(完整)医学影像学(自己吐血整理,知识点全面,但标注的考点可略有不同),推荐文档
医学影像学第一章总论一、X线的产生与特性X线的产生:真空管内高速行进的电子流轰击钨靶时产生的。
TX线的特性: 1穿透性:X线成像基础;2荧光效应:透视检查基础;3感光效应:X线射影基础;4电离效应:放射治疗基础。
二、X线成像的三个基本条件(1)穿透性:穿透人体组织(2)人体组织存在密度和厚度的差异,吸收量不同,穿透身体的X线量有差别(3)有差别的剩余X线是不可见的,经过显像,在荧屏或胶片上就形成了具有黑白对比、层次差异的X线影像。
三、X线图象特点1、由黑到白不同灰度的影像组成,是灰阶图像。
2、图像的白影、黑影与人体组织的厚度及组织结构密度的高低有关3、是穿透不同组织结构相互叠加的影像.自然对比:人体组织结构的密度不同,这种组织结构密度上的差别,是产生X线影像对比的基础。
人工对比:对于缺乏自然对比的组织器官,可以认为的引入一定量的在密度上高于或低于它的物质,使之产生对比。
X线造影检查中钡剂主要用于食管及胃肠造影。
五、数字减影血管造影DSA:是运用计算机处理数字影像信息,消除骨骼和软组织,使血管清晰的成像技术。
是一种特殊专用于血管造影和介入治疗的数字化X线设备。
是诊断心血管疾病的金标准。
正常X线不能显示:滋养管、骺板X线计算机体层成像(C T)1.CT图像特点CT值即代表CT图像象素内组织结构线性衰减系数相对值的数值单位:亨氏单位Hu.【考】骨=1000 软组织=20-50 水=0 脂肪-90——-70 空气=-1000【名解】窗宽:是指荧屏图像上包括16个灰阶的CT值范围.在此CT值范围内的组织均以不同的模拟灰度显示,CT值高于此范围的组织均显示为白色,而CT值低于此范围的组织均显示为黑色。
【名解】窗位:又称窗中心,是指观察某一组织结构细节时,以该组织CT值为中心观察.窗位的高低影响图像的亮度,提高窗位图像变黑,降低则变白。
加大窗宽,图像层次增多,组织对比降低;。
2.CT成像的主要优势与局限性【考】(1)密度分辨率高:能够清晰的显示密度差别小的软组织和器官(例如脑、纵隔、腹盆部器官),能敏感地发现病灶并显示其特征(例如脑出血),这是X线成像所不能比拟的。
医学影像学期末重点总结(整理版)
医学影像学总论影像诊断学:X线、CT、DSA、MRI、介入放射学:DSA、超声、CT、MR第一章医学影像学总论一.(概述、优缺点、适用范围)一. X线成像X线成像1.X线产生原理:必须具备以下三个条件①自由活动的电子群②电子群在高压电场和真空条件下高速进行③电子群在高速运行时突然受阻通过人体后的衰减的X线作用于胶片或采集板上使胶片上的化学物质(溴化银)产生化学反应而形成图像2.X线特点①X线是波长极短的电磁波,诊断用X线波长为0.008~0.031nm,比可见光短得多,肉眼不可见②主要特征:(1)穿透作用,能穿透一般可见光不能穿透的物质波长越短,穿透力越强。
X线管电压越高,产生的X线波长越短(2)荧光作用,能激发荧光物质(如铂氰化钡、钨酸钙等)产生肉眼可见的荧光,X线透视的基础(3)感光作用,可使涂有卤化银的胶片感光,X线摄影的基础物质的密度高,比重大,吸收的X线量多,在图像上呈白影。
反之,物质的密度低,比重小,吸收的X线量少,在图像上呈黑影电离作用,可使物质的分子分解为正、负离子。
空气的电离程度(正负离子量)与空气吸收的X线量成正比,放射剂量学的基础生物效应,可使机体和细胞结构受到损害甚至坏死,损害程度与吸收X线量的大小有关,放射治疗学的基础和放射防护必要性的依2.优缺点分类:X线检查方法包括:普通X线检查(荧光透视和摄影)、特殊检查(体层摄影、软线摄影等)、造影检查。
1 透视:①透视的主要优点是可转动患者体位,改变方向进行观察;了解器官的动态变化。
②透视的主要缺点是荧屏亮度较低,影像对比度及清晰度较差,难于观察密度与厚度差别较小的器官以及密度与厚度较大的部位。
2 摄影:①摄影的主要优点是成像清晰,对比度及清晰度均较好;对于较厚部位以及厚度和密度较小的病变比透视容易显示;照片可作永久记录,长期保存,便于复查时对照和会诊。
②摄影的主要缺点是每张照片仅是一个方位和一瞬间的X线影像,为建立立体概念,常需作互相垂直的两个方位摄影;费用比透视稍高,但相较其它影像学检查如CT、MRI则相对低廉。
医学影像学重点(自己整理的)
5、骨龄:是指骨的原始骨化中心和继发骨化中心的出现及骨骺和干骺端骨性愈合的年龄。
(对诊断内分泌疾病和一些先天性畸形综合征有一定价值)6、骨质破坏:是局部骨质为病理组织所代替而造成的骨组织消失。
(见于炎症、肿瘤、肉芽肿) X线:骨质局限性密度下降,骨小梁消失,骨皮质边缘模糊。
1、骨质疏松:指一定体积单位内正常钙化的骨组织减少。
即骨组织的有机成分和钙盐都减少,但故内的有机成分和钙盐含量比例仍正常。
X线:骨质局限性密度下降,骨小梁变细,间隙变宽。
2 骨质软化:骨质软化――指一定单位体积内骨组织的有机成分正常,而矿物质含量减少。
X线表现为骨密度减低,骨小梁和骨皮质边缘模糊7、骨质坏死:是骨组织局部代谢停止,坏死的骨质称为死骨。
形成死骨的原因主要是血液供应中断(多见于慢性化脓性骨髓炎,也见于骨缺血性坏死和外伤骨折后)。
3、骨膜增生:骨膜反应是因骨膜受刺激,骨膜内层成骨细胞活动增加形成骨膜新生骨。
通常有病变存在。
X线:骨骼密度上升,骨皮质、小梁增厚。
8、骨膜三角(Codman三角):恶性肿瘤累及骨膜及骨外软组织,刺激骨膜成骨,肿瘤继而破坏骨膜所形成的骨质,其边缘残存骨质呈三角形高密度病灶,称为骨膜三角。
是恶性骨肿瘤的重要征象。
9、Colles骨折:又称伸展型桡骨远端骨折,为桡骨远端2~3㎝以内的横行或粉碎骨折,骨折远端向背侧移动,断端向掌侧成角畸形,可伴尺骨茎突骨折。
Colles’骨折的临床和影像学特点答:Colles’骨折为桡骨远端3cm范围内横行或粉碎性骨折,常见于中老年人,跌倒时,前臂旋前,手掌着地,引起伸展型桡骨远端骨折。
观察患肢呈银叉畸形、刺枪刀样畸形。
X线表现为:桡骨骨折远端向桡侧、背侧移位,掌侧成角,可见骨折线。
常合并下尺桡关节脱位和尺骨茎突骨折。
10、青枝骨折:在儿童,骨骼柔韧性大,外力不易使骨质完全断裂而形成不完全性骨折,仅表现为骨小梁和骨皮质的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆突。
医学影像学重点知识点大汇总_安医大
医学影像学重点知识点大汇总_安医大医学影像学重点概论:1. X 线产生的条件:1)自由活动的电子群; 2)电子群的高速运动; 3)高速运动的电子群突然受阻 2. X 线影像形成的原理:(1)X 线的三个特性:穿透性荧光作用感光作用 (2)人体组织有密度与厚度的区别:X 线穿透过人体后,经过不同组织的吸收, 产生了 X 线量的差别,在荧光屏及照片上产生不同密度的影像 3. X 线检查方法和选择原则(1)了解各种 X 线检查方法的适应症、禁忌症和优缺点(2)选择安全、准确、简便而经济的方法(3)由简到繁,先透视而后拍平片及造影(4)根据病情,灵活应用 4. X 线分析病变的原则①病变的位置及分布②病变的数目③病变的形状④病变的边缘⑤病变的密度⑥邻近器官及组织的改变⑦器官功能的改变5.CT 的组成:计算机,线圈,探头,球管 6. CT 图象特点:1)体素和像素:体素:一个 CT 值综合代表每一个立方体单元内的物质密度,这些小的单元就称为体素;像素:1/ 3一幅 CT 图像是由许多按矩阵排列的小单元组成,这些组成图形的基本单元称为像素。
2)空间分辨率:在一定的密度差的前提下,显示带分辨组织几何形态的能力。
像素越小,数目越多,构成的图象越细致,空间分辨率越高 ? CT 图象空间分辨力不如 X 线图象高 3)密度分辨率:能分辨两种组织之间最小密度差异的能力。
辨别两个像素最小密度之差的能力 ? 两个像素密度之差越小,密度分辨力越高 ? CT 图象的密度分辨力较 X 线图象高 4) CT 值:定义:在 CT 图象中,度量组织密度的工具.单位: Hu (Hounsfield unit) 亨氏单位举例:水的吸收系数为 1.0, CT 值定为 0 Hu.人体中密度最高的骨皮质吸收系数最高, CT 值定为+1000 Hu,而空气密度最低,定为-1000 Hu.人体中密度不同的各种组织的 CT 值则居于-1000 到+1000 Hu 的 2000 个分度之间. 5)窗宽和窗位:前者是指 16 个灰阶上包括的 CT 值的范围;后者是指窗的中心,如肺窗,软组织窗 6)伪影:指在扫描和信息处理过程中,由于某一种或者几种原因而出现的人体本身并不存在而图像中却显示出来的各种不同类型的影象。
医学影像学重点知识点大汇总
医学影像技术可以在实时监测下对病变进行精准定位,为 介入治疗提供准确的导航和定位信息,提高治疗效果和安 全性。
科学研究
医学影像技术为医学科学研究提供了丰富的数据和可视化 手段,有助于深入了解疾病的发病机制和治疗方法。
医学影像设备简介
X线设备
CT设备
MRI设备
超声设备
核医学设备
包括X线机、数字化X线 摄影系统(DR)等,主 要用于骨骼、胸部等部 位的检查。
一维超声心动图,主要用于心脏和大血管疾 病的诊断。
B型超声
二维超声,可实时观察人体内部结构和病变 ,应用最广泛。
D型超声
多普勒超声,可检测血流方向和速度,用于 心血管和腹部脏器疾病的诊断。
超声诊断价值与局限性
超声诊断价值
可实时动态观察人体内部结构和病变,对软组织分辨率高,可检测血流信息,对心血管 和腹部脏器疾病的诊断具有重要价值。
包括PET/CT、SPECT等 设备,利用放射性核素 进行成像,对于肿瘤、 心血管等疾病的早期诊 断和治疗监测具有重要 意义。
02 X线检查技术
XHale Waihona Puke 成像原理及特点X线成像原理
X线是一种电磁波,具有穿透性、荧光效应和感光效应。当X 线穿过人体不同组织时,由于组织密度和厚度的差异,X线被 吸收的程度不同,从而在荧光屏或胶片上形成不同灰度的影 像。
• 对骨关节疾病的诊断也有一定帮助,如骨 折、关节炎等。
MRI诊断价值与局限性
01
禁忌症
体内有金属异物、心脏起搏器等 患者不宜进行MRI检查。
扫描时间长
02
03
价格相对较高
需要患者保持静止不动,对于不 能配合的患者(如小儿、躁动患 者)成像质量可能受到影响。
医学影像学重点总结
医学影像学重点总结医学影像学是医学的重要分支之一,它利用各种成像技术,如X光、超声波、核医学、磁共振和计算机断层扫描等,对人体进行非侵入性的检查和诊断。
医学影像学在临床诊断、疾病预防和治疗方面具有重要的意义。
以下是医学影像学的一些重点总结:1. X光影像学X光影像学是最常见的临床成像技术之一,它能够提供详细的骨骼结构和某些软组织的图像信息。
通过X光影像学,医生可以初步判断骨骼是否存在骨折、错位等问题,还可以检查肺部、胸腔等内脏的情况。
2. 超声波影像学超声波影像学是一种安全无害、无辐射的成像技术,它能够提供详细的内脏、血管和胎儿等细节信息。
超声波适用于各种部位的检查,如肝脏、肾脏、心脏、血管等。
它可以帮助医生初步判断内脏是否存在肿块、结石等问题。
3. 核医学核医学是利用放射性示踪剂来诊断和治疗疾病的一种成像技术。
核医学主要通过显像、计数和测量放射性示踪剂在人体内的分布情况,来判断疾病的位置和性质。
核医学常用于心脏、甲状腺、骨骼和肿瘤的诊断和治疗。
4. 磁共振成像(MRI)磁共振成像是一种利用核磁共振原理测量和分析人体组织结构的成像技术。
它能够提供高分辨率的图像,可用于检查各种组织和器官,如脑部、脊柱、关节、肌肉等。
MRI对软组织的对比度更好,可以帮助医生准确地诊断肿瘤、脑梗塞、骨折等疾病。
5. 计算机断层扫描(CT)计算机断层扫描是一种将X射线成像与计算机技术结合起来的成像技术,它能够提供更详细的横断面图像。
CT适用于所有部位的检查,如头部、胸部、腹部、骨盆等。
它可以帮助医生准确诊断肿瘤、感染、血管病变、创伤等疾病。
6. 影像学与临床应用影像学在临床诊断中起着至关重要的作用。
医生通过对影像学的观察和分析,可以判断疾病的类型、病灶的位置、大小和性质,从而制定合理的治疗和手术方案。
影像学还可用于随访和评估治疗效果,帮助医生了解病情的进展和变化。
综上所述,医学影像学是临床医学中不可或缺的重要工具。
各种成像技术的应用使医生能够更准确地诊断和治疗疾病,提高患者的治疗效果和生活质量。
医学影像学考试复习重点知识总结
医学影像学考试复习重点知识总结概述:医学影像学是现代医学中不可或缺的一环,它通过不同的成像技术,如X射线、CT扫描、核磁共振等,帮助医生进行疾病的诊断和治疗。
本文将总结医学影像学考试中的重点知识,帮助考生更好地复习和备战考试。
一、医学影像学基础知识1. 影像学的起源和发展:了解影像学的起源和发展历程,包括X射线的发现、超声波和CT技术的出现等。
2. 影像学的分类:了解影像学的分类,包括放射学、超声学、磁共振和核医学等。
3. 影像学的原理:掌握各种成像技术的原理和机制,如X射线的吸收、超声波的回声和磁共振的共振现象等。
二、常见影像学检查技术1. X射线检查:了解X射线的特点、适应症和禁忌症,熟悉X射线片的解读和常见的病变表现。
2. CT扫描:掌握CT扫描的原理和应用,了解不同部位的CT扫描常见疾病的表现和诊断要点。
3. 核磁共振:熟悉核磁共振的原理、安全性和应用范围,了解不同组织在MRI中的信号强度和常见病变的表现。
4. 超声检查:了解超声的应用和优点,掌握超声图像的解读和对常见病变的鉴别诊断。
三、常见疾病的影像表现1. 肿瘤:了解肿瘤在不同影像学检查中的表现,包括肿块的形态、边缘、内部结构和周围组织的受累情况等。
2. 感染性疾病:熟悉感染性疾病在影像学上的特点,如肺炎的X射线表现、骨髓炎的核磁共振示踪和肝脓肿的超声引导穿刺等。
3. 心血管疾病:了解心血管疾病的影像学表现,包括冠脉疾病的CT冠脉造影、心脏瓣膜病的超声检查和主动脉夹层的MRI诊断等。
4. 神经系统疾病:掌握神经系统疾病在影像学上的表现,如脑卒中的CT灌注成像、脑肿瘤的MRI显示和脊柱骨折的X射线诊断等。
四、医学影像学临床应用1. 临床诊断:了解医学影像学在疾病诊断和鉴别诊断中的作用,如CT在肺结节诊断和鉴别诊断中的应用、MRI在脊柱骨折和关节退行性病变的诊断中的应用等。
2. 术前评估:熟悉医学影像学在手术前的评估中的作用,如手术前CT扫描在骨折复位和肿瘤切除手术中的应用、MRI在脑肿瘤手术前的定位和评估中的应用等。
医学影像学重点知识归纳总结
医学影像学重点知识归纳总结医学影像学是一门重要的医学专业,它通过使用不同的成像技术,如X射线、超声波、核磁共振等,为医生提供了直观的内部结构图像,为临床诊断和治疗提供了重要的辅助信息。
在医学影像学中,有一些重点知识是每个从业人员都应该了解和掌握的。
本文将对医学影像学的一些重点知识进行归纳总结。
1. 医学成像技术医学影像学包括了多种成像技术,其中最常见的包括X射线、CT扫描、MRI和超声波等。
X射线是一种常见的成像技术,通过射线的穿透性来观察和检查人体内部的骨骼和组织结构。
CT扫描则是采用了多层次和多角度的X射线成像,可以提供更详细的内部结构信息。
MRI则利用了磁场和无线电波,可以产生高分辨率的图像。
超声波则是通过声波的反射和回声来识别和检测内部组织。
2. 影像学诊断医学影像学在临床诊断中起着重要的作用。
医生通过观察和分析影像学图像,可以判断出病变的位置、大小、形态以及与周围组织的关系。
比如,肺部X射线片可以用来检测肺炎、肺结核和肺癌等疾病;脑部MRI可以用来鉴别和定位脑卒中和脑肿瘤等疾病。
3. 影像学解剖学影像学解剖学是医学影像学中的关键知识。
影像学解剖学通过对正常人体解剖结构的研究,对临床影像学诊断和解剖位置的准确判断起到重要的指导作用。
影像学解剖学主要包括头部、颈部、胸部、腹部、盆腔和四肢等解剖结构的形态、位置、分层和表面标志等内容。
4. 影像学病理学医学影像学病理学是疾病在影像学上的表现和特点的研究。
通过对病理学知识的学习和理解,结合影像学图像,可以判断出病变的类型、性质和阶段等。
比如,肺恶性肿瘤的CT表现包括肺实质结节、肺门淋巴结肿大和胸腔积液等。
而肝癌的超声表现则包括肝内低回声结节和血液动力学异常等。
5. 影像学鉴别诊断影像学鉴别诊断是指通过观察和分析影像学图像,对不同疾病进行鉴别和诊断的过程。
影像学鉴别诊断需要医生具备丰富的临床经验和广泛的知识储备。
比如,对于颈椎病变,鉴别诊断包括了脊髓炎、脊髓肿瘤、血管畸形等不同病变。
医学影像学重点笔记
医学影像学重点笔记1. 介绍医学影像学是一门研究利用不同成像技术观察人体内部结构和功能的学科。
它在临床诊断、治疗计划和疾病监测中起着至关重要的作用。
本篇文章将介绍医学影像学的重点内容,包括不同成像技术、常见影像解剖结构及其疾病特征。
2. 放射学影像学放射学影像学是医学影像学的重要分支,主要包括X线摄影、计算机断层扫描(CT)、磁共振成像(MRI)和超声波成像等技术。
2.1 X线摄影X线摄影是一种常用的成像技术,通过将X射线穿过人体后记录在感光片上,用于检查骨骼、胸部和腹部等区域。
2.2 计算机断层扫描(CT)CT是一种可以提供横断面图像的成像技术,利用多个不同角度的X射线图像来构建三维结构。
CT可以检查器官、血管和肿瘤等病变。
2.3 磁共振成像(MRI)MRI利用强大的磁场和无害的无线电波来生成高分辨率的图像。
MRI适用于检查脑部和脊柱、关节和软组织等。
2.4 超声波成像超声波成像是一种无辐射的成像技术,利用声波来生成图像。
超声波成像适用于检查胎儿、腹部器官和血流等。
3. 影像解剖结构与疾病特征医学影像学的目标是准确识别正常解剖结构和疾病特征。
以下是常见影像解剖结构以及相关疾病特征的简要介绍。
3.1 骨骼系统骨骼系统的影像学表现包括骨折、关节炎、骨肿瘤等。
3.2 呼吸系统呼吸系统的影像学表现包括肺部炎症、结节、肿瘤等。
3.3 心血管系统心血管系统的影像学表现包括冠状动脉狭窄、动脉瘤、心肌梗塞等。
3.4 消化系统消化系统的影像学表现包括胃肠道炎症、肿瘤、结石等。
3.5 泌尿系统泌尿系统的影像学表现包括肾结石、肿瘤、膀胱炎症等。
3.6 神经系统神经系统的影像学表现包括脑卒中、脑肿瘤、神经退行性疾病等。
4. 影像学报告医学影像学的结果通常由放射科医生书写,并以影像学报告的形式提供给其他临床医生。
影像学报告应包括详细的影像描述、疾病诊断和建议进一步检查等内容。
5. 结论医学影像学是现代医学不可或缺的一部分,对于疾病的诊断和治疗起着重要的指导作用。
医学影像学重点总结
医学影像学重点总结第一篇:医学影像学重点总结▲X线为波长极短,肉眼看不见的电磁波,损害血细胞、生殖细胞,不适用儿童;▲高密度对比剂(阳性)有钡剂和碘剂,低密度对比剂(阴性)为气体,已少用。
▲磁共振成像是利用人体中的氢原子核(质子)在磁场中受激发产生磁共振信号。
▲大叶性肺炎经积极治疗,一周后可转入消散期,病程至少为两周。
▲胃肠道穿孔X线检查中,以游离气腹最重要,但没有游离气腹征象并不能排除~。
▲动脉瘤分为真性动脉瘤、假性动脉瘤和主动脉夹层。
▲X线具有穿透性(成像基础)、荧光效应(透视检查的基础)、感光效应(X线摄影的基础)、电离效应(引起生物学改变,即生物效应)。
▲CT扫描为断层图像,常用横断位,分平扫、对比增强扫描和造影扫描。
▲MRI成像的主要参数有T1、T2和质子密度等。
▲肺炎长按病因分感染性、理化性、免疫和变态反应性,感染性最常见;按病变解剖分大叶性、小叶性和间质性肺炎。
▲大叶性肺炎病理分四期:充血期,少量浆液渗出;红色肝变期,肺泡内充盈大量纤维蛋白和红细胞等渗出物;灰色肝变期,肺泡内红细胞减少→大量白细胞;消散期,渗出物大量溶解吸收,肺泡重新充气。
▲肺癌按发生部位分三型:中央型,肺段和段以上支气管,以鳞癌多见;周围型,肺段以下支气管,各类型均可见,以腺癌为主;弥散型,细支气管、肺泡或肺泡壁,成弥散性生长。
根据生物学行为分小细胞肺癌(15%~20%)和非小细胞肺癌(鳞癌、腺癌、腺鳞癌和大细胞癌)。
▲检查主动脉夹层的首选方法有超声、CT和MRI。
▲肠梗阻一般分为机械性(单纯性和绞窄性)、动力性(麻痹性和痉挛性)和血运性(见于肠系膜血管血栓形成或栓塞,有血循环障碍和肠肌运动失调,于肠系膜上动脉,右半结肠部分)三类。
▲肠道穿孔的特点是起病骤然,持续性上腹剧痛,不久可延及全腹,产生腹肌紧张,全腹压痛与反跳痛等腹膜刺激症状。
▲胃后壁穿孔,全部局限于小网膜囊内,形成局限性气腹;胃前壁穿孔,胃十二指肠内容物流入腹腔引起急性腹膜炎、气腹。
医学影像学重点复习完整版
医学影像学重点复习完整版医学影像学是一门集医学、物理学和工程学于一体的学科,通过将放射线、超声波、磁共振等物理现象应用于人体,以获得和诊断疾病的技术。
在临床医学中,医学影像学是不可或缺的重要工具。
本文将为您提供医学影像学的重点复习内容,帮助您回顾和巩固相关知识。
一、放射学1. 放射照影学:放射照影学包括常规放射学和特殊放射学。
常规放射学是指应用X线对人体进行影像学检查,如X线拍片、造影、CT等;特殊放射学是指应用其他放射线或荧光物质进行影像学检查,如核素显像和血管造影。
2. 放射学诊断:放射学诊断是通过观察影像学表现,对疾病进行诊断。
常见的放射学诊断方法有:X线诊断、CT诊断、核磁共振诊断等。
放射学诊断需要医生具备良好的解剖学基础知识和对不同疾病影像学表现的了解。
二、超声影像学1. 超声影像学原理:超声波在人体组织中传播时会发生不同组织间质量、密度和声阻抗的反射、折射和衰减,通过接收反射回来的超声波信号生成图像。
2. 超声影像学应用:超声影像学广泛应用于妇产科、心脏病学、肾脏学、肝胆胰脾疾病等领域。
它具有无创、无辐射、实时性强等优点,能够对人体内脏器官进行形态学和功能学的检查。
三、核医学1. 核医学原理:核医学是通过给患者体内注射放射性同位素,利用放射性同位素的放射性衰变进行疾病的诊断和治疗。
核医学主要包括核素显像和放射性治疗两个方面。
2. 核素显像:核素显像是通过给患者体内注射放射性同位素,利用放射性同位素的放射性衰变进行疾病的诊断。
常见的核素显像检查有骨显像、甲状腺显像、心肌灌注显像等。
四、磁共振成像(MRI)1. MRI原理:磁共振成像利用人体内核磁共振现象,通过患者处于强磁场中,获得患者体内不同组织的信号,再通过计算机重建成影像。
2. MRI应用:MRI广泛应用于脑部、脊柱、关节和盆腔等器官的检查。
它在形态学、功能学和病变定位等方面有着非常高的分辨率和诊断准确性。
五、计算机断层扫描(CT)1. CT原理:CT利用X线束通过人体不同部位的吸收和散射来获取影像。
医学影像学知识点
医学影像学知识点1.成像技术:医学影像学使用各种成像技术来生成图像。
最常见的成像技术包括X射线、超声波、计算机断层扫描(CT)、磁共振成像(MRI)和核医学成像等。
2.解剖学知识:医学影像学需要医生对人体解剖学有深入的了解,以便正确识别图像中的各个结构和器官。
医生需要了解骨骼系统、呼吸系统、循环系统、消化系统等各个系统的结构和相互关系。
3.病理学知识:医学影像学也需要医生对疾病的病理学有一定的了解。
医生需要了解不同疾病的病理变化和其在图像中的表现,以便做出准确的诊断。
4.图像解读:医学影像学需要医生具备良好的图像解读能力。
医生需要能够正确识别图像中的各个结构和病变,并分析其特征和临床意义。
5.比较解剖学:医学影像学需要医生能够对不同个体的图像进行比较,并区分正常和异常的表现。
对于同一疾病在不同个体中的表现差异,医生需要有一定的了解。
6.影像诊断:医学影像学最重要的应用之一就是影像诊断。
医生通过对影像进行综合分析和比较,评估病变的性质、大小和位置等,并做出准确的诊断。
7.病理诊断:医学影像学还可以为病理学提供一些关键信息,如病变的定位、分布和范围等。
医生可以根据影像结果选择合适的病理学检查方法,并解释和评估病理检查结果。
8.治疗干预:医学影像学不仅可以用于诊断,还可以指导治疗干预。
医生可以根据影像结果制定治疗方案,如手术规划、放疗区域定位等。
9.患者管理:医学影像学还可以用于患者的管理和追踪。
医生可以通过监测影像变化评估治疗效果,并调整治疗方案。
10.伦理和法律问题:医学影像学涉及一些伦理和法律问题,如隐私保护、医疗诊断意见的准确性和责任等。
医学影像学的实践需要遵循相关的伦理和法律规定。
这些是医学影像学中的一些重要知识点。
医学影像学在临床实践中起着至关重要的作用,它可以为医生提供有关患者病情的详细信息,帮助医生做出准确的诊断和治疗方案。
随着影像技术的不断发展,医学影像学的应用也在不断扩大,并在医学领域发挥着越来越重要的作用。
医学影像学重点
医学影像学重点
医学影像学是一门专门研究医学影像技术和应用的学科,其中重点内容包括以下几个方面:
1. 影像技术:医学影像学主要涉及的技术包括X射线成像、计算机断层扫描(CT)、核磁共振成像(MRI)、超声波成像、放射性核素成像等。
重点研究各种影像技术的原理、仪器设备的使用和操作方法,以及不同技术间的比较和选择。
2. 影像解剖学:医学影像学重点关注人体内部结构的解剖学,包括各种器官、血管、神经等的位置、形态和关系。
通过影像学技术可以进行三维重建和立体显示,帮助医生了解病变的位置、范围和可能的并发症。
3. 影像病理学:医学影像学通过解读影像,帮助医生了解病变的特征、类型和程度,确定疾病的诊断和分级。
重点研究不同疾病在影像上的表现特点,如肿瘤的边界、密度、血供、浸润情况等,以及炎症、感染、损伤等的影像表现。
4. 影像诊断学:医学影像学通过解读影像,协助医生进行疾病的诊断和鉴别诊断。
重点研究不同疾病在影像上的典型表现和区别诊断要点,如肿瘤的恶性程度、炎症的类型、损伤的程度等。
5. 影像导引治疗:医学影像学在一些治疗过程中起到导引和监测的作用,例如介入放射学、介入超声和放射治疗等。
重点研究影像引导下的微创操作技术、影像引导下的治疗计划制定和
影像监测技术。
总之,医学影像学重点研究影像技术和应用,旨在通过解析和利用不同的医学影像手段,帮助医生进行疾病诊断、分级和治疗。
医学影像学考试重点总结
医学影像学考试重点总结一、影像诊断的基本原则。
咱得知道,影像诊断就像是给身体内部拍照片然后解读一样。
最基本的就是要全面观察影像,不能看一眼就下结论。
比如说看X光片,可不能只盯着一个地方看,要从整体到局部,再从局部回到整体。
这就好比看一幅画,你得先看整幅画的布局,再去瞧细节,然后再回到整体感受这幅画的全貌。
而且要熟悉正常的影像表现,这是基础中的基础。
只有知道正常的长啥样,才能发现不正常的地方。
就像你认识了健康的苹果啥样,看到有个黑斑的苹果,就知道这苹果有点问题啦。
对比观察也很重要,不同体位的片子对比着看,或者同一个人的不同时间的片子对比着看。
这就像你对比自己小时候和现在的照片,能发现好多变化呢。
二、X线成像。
1. X线的特性。
X线就像一个神奇的小使者,它有穿透性、荧光效应、感光效应和电离效应。
穿透性让它能穿过人体,不过不同的组织穿透的程度不一样,骨头就比肉难穿透,所以在片子上骨头就白一些,肉就黑一些。
荧光效应呢,能让它在荧光屏上显示出影像,就像看皮影戏一样。
感光效应就可以让胶片感光成像,这就是咱们看到的那种X光片子啦。
电离效应可有点厉害,它能让物质电离,不过这个在诊断上用得少,在治疗上用得比较多。
2. X线的检查方法。
普通检查就是咱们最常见的透视和摄影。
透视就像是看现场直播,能动态地观察器官的运动,但是图像没有摄影那么清晰。
摄影就像是拍照片,能留下永久的记录,而且可以从不同角度拍,比如正位、侧位啥的。
特殊检查就包括体层摄影、软线摄影这些。
体层摄影就像给身体的某个层面单独拍照片,把其他层面模糊掉,这样能更清楚地看这个层面的结构。
软线摄影对软组织特别友好,能把软组织的情况看得更清楚。
三、CT成像。
CT这东西可就高级一点啦。
它是用X线束对人体某一部位进行断层扫描的。
CT图像的特点就是密度分辨率高,啥意思呢?就是能更清楚地区分不同密度的组织。
比如说能很清楚地看到脑灰质和脑白质的区别。
CT的检查技术也有好几种。
医学影像学整理考试复习重点知识总结
医学影像学第一章、影像诊断学总论1、医学影像诊断学:是应用医学成像技术对人体疾病进行诊断和在医学成像技术引导下应用介入器材对人体疾病进行微创性诊断机治疗的医学学科。
内容:x线诊断(CR、DR、DSA诊断)、超声诊断、CT诊断及MRI诊断(简答回名解+内容)2、数字减影血管造影(DSA):进行血管造影时,通过计算机处理数字影像信息,消除骨骼和软组织影像,使血管清晰显示的成像技术。
3、辐射防护的基本原则(填空):屏蔽保护、距离保护、时间保护4、图像存档与传输系统(PACS);是一种科技含量高,实际应用价值极大的复杂系统,其将数字化成像设备、高速计算机网络、海量存储设备和具备后处理功能的影像诊断工作站结合起来,完成对医学影像信息的采集、传输、存储后处理及显示等功能,使得图像资料得以有效管理和充分利用。
第二章、中枢神经系统1、星形细胞瘤:属于神经上皮组织起源的肿瘤,为中枢神经系统最常见的肿瘤,成人多发生于大脑,儿童多见于小脑。
影像一般规律:密度逐渐不均,边界逐渐不清,水肿逐渐明显,强化逐渐明显。
2、脑膜瘤:最常见的颅内脑实质外肿瘤。
多发于中年女性。
好发于脑表面有蛛网膜颗粒的部位,幕上多见,大脑凸面和矢状窦旁最多见,其次为蝶骨嵴、嗅沟及前颅窝底、鞍结节、小脑桥脑角等。
组织学分:为脑膜皮行、纤维型、砂粒体型、过度型型、血管瘤型等15型CT表现:等或高密度,边界清楚,球形或分叶形,与大脑廉小脑幕颅骨相连,常有钙化,明显均一强化。
MR表现:等T1等T2信号,边界清,有包膜,强化明显,有“硬膜尾征”。
3、垂体瘤:鞍内最常见的肿瘤,绝大多数为垂体腺瘤。
>1.0cm为大腺瘤,<1.0cm为小腺瘤。
大腺瘤CT表现:蝶鞍扩大,葫芦状等或高密度占位,邻近组织受压或侵及,强化明显,常有出血。
大腺瘤MR表现:等T1等T2信号,其它表现同CT。
垂体微腺瘤MR表现:增强早期呈不强化的低信号区。
间接征象为垂体高度>8mm,上缘隆突,垂体柄偏移,鞍底下陷。
《医学影像学》背诵重点
《医学影像学》背诵重点医学影像学是医学领域中的一个重要分支,通过各种影像技术来观察和诊断人体疾病。
在学习医学影像学的过程中,有一些重点知识需要进行背诵和记忆。
本文将介绍一些医学影像学的背诵重点,帮助读者更好地理解和掌握这一学科。
一、医学影像学概述医学影像学是一门研究利用不同影像技术观察和诊断人体疾病的学科。
它包括放射学和超声学两个主要分支,其中放射学又可分为X线摄影学、断层摄影学和核医学。
二、放射学背诵重点1. X线摄影学:X线平片是最常用的影像学检查方法之一,通过吸收不同程度的X射线来观察人体内部结构。
在胸部X线摄影学中,我们要掌握不同肺纹理的表现,如纵隔纹理、膈肌韧带和肺门阴影等。
此外,在骨骼系统的X线摄影学中,了解骨骼的解剖结构和不同骨折类型的特征也是重点。
2. 断层摄影学:断层摄影学主要包括计算机断层摄影(CT)和磁共振成像(MRI)。
在CT影像学中,我们需要学习和背诵不同组织的CT值范围,以及常见疾病在CT上的特征表现。
在MRI影像学中,了解各种脉序的影像特点,以及脑部、脊柱和关节等部位疾病的MRI表现也是必备。
3. 核医学:核医学主要利用放射性同位素来观察和诊断人体疾病。
在核医学中,我们需要掌握各种核素的生物分布和摄取机制,以及不同疾病在核医学图像上的表现特点。
三、超声学背诵重点超声学是以声波作为检查手段的影像学技术,它可以观察和评估人体内部各种组织与器官的形态和功能。
在超声学中,我们需要熟悉不同组织和器官的超声特征,如肝脏的回声模式、甲状腺的结构和血流动力学参数等。
此外,了解不同超声检查方法的适应症和操作技巧也是重要的。
四、其他影像学技术背诵重点除了放射学和超声学,还有一些其他影像学技术也有其特定的背诵重点。
例如,核磁共振波谱学(MRS)可用于检测脑部肿瘤和神经代谢异常,正电子发射计算机断层摄影(PET-CT)可用于评估肿瘤的代谢活性和淋巴结转移等。
五、注意事项在学习医学影像学的过程中,需要注意以下几点:1. 注重理论和实践结合,多进行实际影像学图像的观察和分析。
医学影像学重点总结
医学影像学重点总结医学影像学是一门研究人体结构和病理生理变化的学科,通过各种成像技术可以对人体进行无创的检查和诊断。
医学影像学主要包括X线摄影、超声影像学、CT(计算机断层扫描)、核磁共振成像和放射治疗等多个学科。
本文将重点总结医学影像学的基本概念、主要技术和临床应用。
1.基本概念:2.主要技术:(1)X线摄影:X线摄影是医学影像学最早、也是最常用的成像技术之一、它通过向人体放射离子辐射,使被检查部位的组织吸收该辐射并生成X射线影像。
(2)超声影像学:超声波是一种机械波,通过超声检查仪向人体内部发射超声波,并记录其回波,通过对回波进行处理和解释,生成图像。
(3)CT:CT是一种通过多个方向的X射线成像来重建人体断层图像的技术。
它使用旋转的X射线源和探测器,通过多次成像生成一系列图像,然后利用计算机对这些图像进行处理和重建,得到人体内部的断层图像。
(4)核磁共振成像(MRI):MRI通过在强磁场中,利用人体组织中的水和脂肪分子的旋转特性,引入无创激发和检测的放射信号,然后通过计算机分析和生成图像。
(5)放射治疗:放射治疗是利用高能射线(如X射线、γ射线)对肿瘤进行治疗的一种方法。
它可以通过控制放射线的剂量和方向来杀死癌细胞或抑制其生长。
3.临床应用:(1)疾病诊断:医学影像学可以对各种内外科疾病进行无创检查,提供疾病的影像学表现,帮助医生做出准确的诊断。
如通过X线摄影可以检查肺部病变,超声可以检查器官肿块,MRI可以检查脑部病变等。
(2)疾病评估:医学影像学可以评估疾病的严重程度和预后情况。
如通过CT可以评估肿瘤的大小和侵犯范围,MRI可以评估椎间盘的退变程度。
(3)导向治疗:医学影像学可以用于导引手术或放射治疗。
如放射治疗时使用CT来确定肿瘤的形态和位置,帮助医生制定合理的放疗计划。
(4)随访观察:医学影像学可以对疾病的治疗效果进行随访观察,如通过CT或MRI来判断肿瘤的缩小情况,或复查X线片来判断骨折的愈合情况。
医学影像学重点总结完整版
医学影像学重点总结完整版近年来,医学影像学在医学领域发挥着越来越重要的作用。
通过使用各种影像学技术,医生能够对人体内部的疾病进行准确的诊断和治疗。
本文将总结医学影像学的重点内容,从基本原理到临床应用,为读者提供全面的了解。
第一部分:影像学基本原理医学影像学是以各种成像设备为工具,利用不同物质的特性差异来获取和解读人体内部结构与功能的一门学科。
它主要包括放射学(X 线、CT、MRI等)、超声影像学和核医学影像学等。
这些影像学技术有各自的原理和特点。
放射学是使用X射线来进行成像的技术,其基本原理是X射线被不同组织和器官吸收的程度不同。
通过拍摄并解读X射线的影像,医生可以发现患者是否有骨折、肺部感染等疾病。
超声影像学是利用超声波在人体内部的反射和传播来成像的技术。
超声波在体内的传播受到组织密度的影响,因此能够显示出不同组织和器官的形态和结构。
这项技术广泛应用于孕妇产前检查、肝脏、胰腺疾病的诊断等领域。
核医学影像学则是利用放射性核素来成像的技术。
这些核素会进入患者体内,通过放射性衰变释放出放射性射线,并被探测器捕获。
医生可以通过分析探测器的信号来获得关于患者内部状况的信息。
核医学在癌症诊断和治疗中有重要的应用。
第二部分:常见疾病的影像学表现医学影像学在临床诊断中,尤其是对于一些常见疾病的判断和鉴别诊断方面发挥着重要作用。
以下是几个常见疾病的影像学表现概述。
1. 肺部疾病:在X线胸片上,肺部疾病主要表现为肺实变、肺纹理增加以及积液等。
而CT扫描可以更为精确地显示肺部病变,如结节、肺癌等。
2. 骨折:X线影像是最常见的检查手段,通过X线片可以清晰地看到骨折断端的错位和骨折线。
CT扫描和MRI则可以提供更详细的骨折情况和周围软组织的损伤。
3. 脑部疾病:常见的脑部影像学检查包括CT和MRI。
CT扫描适用于发现脑出血、肿瘤等急性病变,而MRI则可以更准确地显示脑部结构的细节,如白质病变、脑梗死等。
第三部分:未来发展方向和创新应用医学影像学在与其他学科的交叉与融合中不断创新,取得了许多重要的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医学影像学重点(自己整理的)5、骨龄:是指骨的原始骨化中心和继发骨化中心的出现及骨骺和干骺端骨性愈合的年龄。
(对诊断内分泌疾病和一些先天性畸形综合征有一定价值)6、骨质破坏:是局部骨质为病理组织所代替而造成的骨组织消失。
(见于炎症、肿瘤、肉芽肿) X线:骨质局限性密度下降,骨小梁消失,骨皮质边缘模糊。
1、骨质疏松:指一定体积单位内正常钙化的骨组织减少。
即骨组织的有机成分和钙盐都减少,但故内的有机成分和钙盐含量比例仍正常。
X线:骨质局限性密度下降,骨小梁变细,间隙变宽。
2 骨质软化:骨质软化――指一定单位体积内骨组织的有机成分正常,而矿物质含量减少。
X线表现为骨密度减低,骨小梁和骨皮质边缘模糊7、骨质坏死:是骨组织局部代谢停止,坏死的骨质称为死骨。
形成死骨的原因主要是血液供应中断(多见于慢性化脓性骨髓炎,也见于骨缺血性坏死和外伤骨折后)。
3、骨膜增生:骨膜反应是因骨膜受刺激,骨膜内层成骨细胞活动增加形成骨膜新生骨。
通常有病变存在。
X线:骨骼密度上升,骨皮质、小梁增厚。
8、骨膜三角(Codman三角):恶性肿瘤累及骨膜及骨外软组织,刺激骨膜成骨,肿瘤继而破坏骨膜所形成的骨质,其边缘残存骨质呈三角形高密度病灶,称为骨膜三角。
是恶性骨肿瘤的重要征象。
9、Colles骨折:又称伸展型桡骨远端骨折,为桡骨远端2~3㎝以内的横行或粉碎骨折,骨折远端向背侧移动,断端向掌侧成角畸形,可伴尺骨茎突骨折。
Colles’骨折的临床和影像学特点答:Colles’骨折为桡骨远端3cm范围内横行或粉碎性骨折,常见于中老年人,跌倒时,前臂旋前,手掌着地,引起伸展型桡骨远端骨折。
观察患肢呈银叉畸形、刺枪刀样畸形。
X线表现为:桡骨骨折远端向桡侧、背侧移位,掌侧成角,可见骨折线。
常合并下尺桡关节脱位和尺骨茎突骨折。
10、青枝骨折:在儿童,骨骼柔韧性大,外力不易使骨质完全断裂而形成不完全性骨折,仅表现为骨小梁和骨皮质的扭曲,看不到骨折线或只引起骨皮质发生皱折、凹陷或隆突。
11、骨“气鼓”(骨囊样结核):骨干结核初期为骨质疏松,继而在骨内形成囊性破坏,骨皮质变薄,骨干膨胀,故称为骨“气鼓”或骨囊样结核。
12、骺离骨折:发生在儿童长骨骨折时,由于骨骺尚未与干骺端愈合,外力可经过骺板达干骺端而引起骨骺分离,即骺离骨折。
13、肺野:充满气体的两肺在胸片上表现为均匀一致较为透明的区域称为肺野。
14、肺纹理:在充满气体的肺野,可见由肺门向外呈放射分布的树枝状影,称为肺纹理。
15、肺门角:肺门上、下部相交形成一钝的夹角,称为肺门角,而相交点称肺门点,右侧显示较清楚。
16、原发综合征:原发性肺结核(Ⅰ型),肺的原发病灶,淋巴管炎和肺门淋巴结炎。
多见于儿童和青少年,少数为成人。
X线:典型表现呈“哑铃状”,包括:①原发浸润灶②淋巴管炎③肺门纵膈淋巴结肿大17、肺实变:终末细支气管以远的含气腔隙内的空气被病理性液体、细胞或组织所代替,常见于大叶性肺炎、肺泡性肺气肿、肺出血、肺结核、肺泡癌等。
空洞:是由肺内病变组织发生坏死后,经引流支气管排出后形成的。
空腔:是肺内生理腔隙病变扩大,肺大泡,含气肺囊肿、肺气囊都属于~。
18、龛影:钡剂涂抹的轮廓有局限性外突的影像。
溃疡型食管癌可见边缘不规则的局部向外凸的龛影。
19、充盈缺损:钡剂涂抹的轮廓有局限性向内凹陷的表现。
它是因管壁局限性肿块突入腔内所致。
20、憩室:食管壁向外囊袋样膨出,有正常黏膜通入,与龛影不同。
21、半月综合征:为进展期胃癌的龛影表现,多见于溃疡型癌。
其表现为:形状多呈半月形,外缘平直,内缘不整齐而有多个尖角;龛影位于为轮廓内;龛影周围绕以宽窄不等的透明带,称为环堤,其轮廓不规则而锐利,环堤上见结节状和指压迹状充盈缺损(指压迹),这些充盈缺损之间有裂隙状钡剂影(裂隙征)。
法洛四联症:肺动脉、肺动脉瓣或/和瓣下狭窄;室间隔缺损;主动脉骑跨;右心室增厚。
支气管扩张:X线:肺纹理改变粗细不规则的管状透明影。
CT:轨道征、戒指征,高密度不规则增宽,渗出影23、支气管气像:在肺实变的高密度影像中可见到含气的支气管分支影,称为支气管气像或空气支气管征。
24、肺上沟癌:也称潘科斯特(Pancoast )综合症"、"肺尖肿瘤"、"肺尖癌"包绕肺的顶端(即肺尖)的地方,形成了胸壁的一个特殊区域。
来自颈部、支配上肢的感觉和运动的神经纤维均经此区进入上肢。
二、填空题1、数字X线成像(DR)依其结构可分为计算机X线成像(CR)数字X线荧光成像(DF)平板探测器数字X线成像。
2、 CR与普通X线成像比较,重要的改进实现了数字X线成像。
优点是提高了图像密度分辨力和显示能力。
3、数字减影血管造影(DSA)是利用计算机处理数字影像信息,消除骨骼和软组织影像,使血管显影清晰的成像技术。
4、 CT不同于X线成像,它是用X线束对人体层面进行扫面,取得信息,经计算机处理获得的重建图像,是数字成像而不是模拟成像。
5、 CT图像是由一定数目从黑到白不同灰度的像素按矩阵排列所构成的灰阶图像。
这些像素反映的是相应体素的 X线吸收系数。
6、磁共振成像MRI是利用原子核在磁场内所产生的信号经重建成像的一种影像技术。
7、磁共振血管造影MRA是对血管和血流信号特征显示的一种技术。
8、 MRI是有软组织高分辨特点及血管流空效应。
9、 CT图像还可用组织对X线的吸收系数说明密度高低的程度。
但在实际工作中,不用吸收系数,而换算成 CT值,用CT值说明密度,单位为 HU。
10、CT检查分为平扫、对比增强扫描、造影扫描。
11、物质的密度与其本身的比重成正比,物质的密度高,比重大,吸收X线量多,影像在图像上呈白影。
12、对比剂按影像的密度高度分为高密度对比剂和低密度对比剂两类。
高密度对比剂有钡剂和碘剂。
13、水溶性对比剂分两型:离子型和非离子型。
非离子型对比剂具有:低溶性、低粘度、低毒性等优点,减少了毒副作用。
适用于血管造影和CT增强扫描。
14、用碘对比剂时,要注意:了解患者有无用碘禁忌症;做好解释工作,争取患者合作碘剂过敏试验,如阳性,不宜造影检查;严重反应包括周围循环衰竭、心脏停搏、惊厥、喉头水肿和哮喘发作等,应立即终止造影并进行抗休克、抗过敏和对症治疗。
15、X线具有与X线成像和X线检查相关的特性为:穿透性、荧光效应、感官效应、电离效应。
16、X线图像的形成是基于以下三个基本条件:首先X线具有一定的穿透力,能穿透人体的组织结构;第二,被穿透的组织结构存在着密度和厚度的差异,X线在穿透的过程中被吸收的量不同,以致剩余下来的X线量有差别。
第三,这个有差别的剩余X线是不可见的,经过显像过程,例如用X线片显示,就能获得具有黑白对比、层次差异的X线图像。
17、人体组织结构根据密度不同可归纳为三类:属于高密度的有骨组织和钙化灶等;中等密度的有软骨、肌肉、神经、实质脏器、结缔组织以及体液等;低密度的有脂肪组织以及有气体存在的呼吸道、胃肠道、鼻窦和乳突气房等。
18、胸部的肋骨密度高,对X线的吸收多,照片上呈白影19、肺部含气,密度低,对X线吸收少,照片上呈黑影。
20、纵膈为软组织,密度中等,对X线吸收中等,照片呈灰影。
21、人体组织结构和器官形态不同,厚度也不同,厚的部分吸收X线多,透过的X线少,薄的部分相反,于是在X线片上和荧屏上显示出黑白对比和明暗差异的影像。
22、脊锥结核X线结合表现特点:椎体结核主要引起①骨松质的破坏,②椎体坍塌变扁或呈楔形③椎间盘变窄,④受累脊椎节段常出现变形,⑤周围软组织中形成寒性脓肿。
三、简答题3、长骨结核、脊椎结核影像学表现X 线平片:长骨结核——松质骨中出现局限性类圆形、边缘较清楚的骨质破坏区,邻近无明显骨质增生现象;骨膜反应少见;在骨质破坏区有时可见“泥沙状”死骨。
脊椎结核——溶骨性骨松质破坏,以腰椎多见,椎体塌陷变扁或呈楔形;椎间隙变窄或消失,椎体融合;脊椎曲度改变(后突);椎旁脓肿形成(冷性脓肿)。
CT 检查:长骨结核——低密度的骨质破坏区,其内常见多数小斑片状高密度影为死骨;病变周围软组织肿胀;结核性脓肿密度低于肌肉,增强后可有边缘化。
脊椎结核——低密度骨质破坏、死骨和椎旁脓肿的显示优于X 线平片;椎管狭窄;结核性脓肿呈液性密度,增强后呈环化增强。
MRI 检查:脊柱结核的骨破坏区在T1WI 呈低信号,T2WI 为高信号并混有少许低信号影。
骨破坏区周围骨髓反应性水肿在T1WI 上也呈低信号,而T2WI 上呈高信号。
结核性脓肿在T1WI上呈低信号,在T2WI 上呈高信号,其内可见斑点状或索条状低信号影,代表 4、良恶性肿瘤的鉴别诊断 脓肿内的纤维化和钙化,增强后脓肿壁可强化。
5.骨肉瘤(恶性骨肿瘤)的临床影像学表现和分型好发年龄:青少年,11~20岁约占50%好发部位:股骨下端、胫骨上端和肱骨上端。
(干骺端为多发位置)临床特点:局部进行性疼痛、肿胀和功能障碍。
局部皮温常较高并可由浅静脉怒张。
病变进展迅速,早期即可发生远处转移,预后较差。
实验室检查血清碱性磷酸酶常较高。
影像学表现:X 线平片表现为各种形式的骨破坏和瘤骨形成,不同形式的骨膜新生骨及其破坏,软组织肿块,骨破坏区和软组织肿块中的肿瘤骨形成等。
CT 检查:骨肉瘤的骨破坏表现为:骨松质斑片状缺损,骨皮质内表面的侵蚀或骨皮质全层虫蚀状、斑片状破坏甚至大片缺损。
骨质增生表现为:松质骨、骨破坏区和软组织肿块内不规则斑片状高密度影和骨皮质增厚。
软组织肿块常偏于病骨一侧或围绕病骨生长,其边缘大多模糊而与周围正常的肌肉、神经和血管分界不清,其内常见大小不等的坏死囊变区。
MRI 检查:骨质破坏、骨质增生、瘤骨和瘤软骨钙化在T2WI 上显示较好,均表现为低信号影。
根据骨破坏和骨增生的多少,以X 线表现为基础,骨肉瘤大致可分为成骨型、溶骨型和混合型。
其表现分别为:成骨型:以骨质增生、硬化为主,明显时可呈大片致密影称象牙质变,骨破坏较少或不明显。
骨膜增生较明显。
软组织肿块内也有较多肿瘤骨。
溶骨型:以骨质破坏为主,很少或没有骨质增生。
骨破坏呈不规则斑片状或大片低密度区,边缘不清。
骨膜增生骨易被肿瘤破坏,形成骨膜三角。
软组织内大多无瘤骨生成。
混合型:骨增生和破坏程度大致相同。
6.化脓性骨髓炎的临床表现和影像学表现㈠急性 临床表现:1.发病急、高热和明显中毒症状;2.患肢活动障碍和深部疼痛;3.局部红肿和压痛影像学表现:X 线平片:在发病后2周内,软组织改变:1. 肌间隙模糊或消失;2. 皮下组织和肌间分界模糊;良性 恶性 生长状况生长缓慢,无转移 生长迅速,可有转移 局部骨变化呈膨胀性骨质破坏,边缘锐利与正常骨界限清楚,骨皮质变薄、膨胀,保持其连续性 呈浸润性骨破坏,边缘不整,病变区与正常骨界限不清,累及骨皮质,造成不规则破坏和缺损 骨膜新生骨一般无骨膜新生骨,病理骨折后可有少量,无骨膜三角 多出现不同形式的骨膜新生骨,并见骨膜三角 周围软组织变化 不侵及邻近组织,但可引起压迫移位,多无软组织肿块影,如有肿块,边缘清楚 易侵入及邻近组织、器官形成骨外肿块,与周围组织分界不清3.皮下脂肪层内出现致密的条纹影,靠近肌肉的部分呈纵形排列,靠外侧则呈网状。