0-1背包问题用动态规划的递归实现与非递归实现
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
数据结构与算法题解(10):0-1背包问题与部分背包问题
假设我们有n件物品,分别编号为1, 2...n。其中编号为i的物品价值为vi ,它的重量量为wi 。为了了简
化问题,假定价值和重量量都是整数值。现在,假设我们有一一个背包,它能够承载的重量量是W。现 在,我们希望往包里里里装这些物品,使得包里里里装的物品价值最大大化,那么我们该如何来选择装的东 ⻄西呢?问题结构如下图所示:
}
public void printResult() { for(int i = 0; i < v. length; i++) { for(int j = 0; j <= weight; j++) System.out.print(c[i][j] + " "); System.out.println(); }
一一、0-1背包
1.1 初步分析
对于这个问题,一一开始确实有点不不太好入入手手。一一堆的物品,每一一个都有一一定的质量量和价值,我们
能够装入入的总重量量有限制,该怎么来装使得价值最大大呢?对于这n个物品,每个物品我们可能会 选,也可能不不选,那么我们总共就可能有2n种组合选择方方式。如果我们采用用这种办法来硬算的话,则整体的
动态规划——背包问题python实现(01背包、完全背包、多重背包)
动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。
⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。
result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。
初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。
那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。
算法工程师面试真题单选题100道及答案解析
算法工程师面试真题单选题100道及答案解析1. 以下哪种数据结构适合用于实现快速查找最大值和最小值?A. 栈B. 队列C. 堆D. 链表答案:C解析:堆可以快速地获取最大值和最小值。
2. 快速排序在最坏情况下的时间复杂度是?A. O(nlogn)B. O(n^2)C. O(n)D. O(logn)答案:B解析:快速排序在最坏情况下,每次划分都极不均匀,时间复杂度为O(n^2)。
3. 以下哪种算法常用于在未排序的数组中查找特定元素?A. 冒泡排序B. 二分查找C. 顺序查找D. 插入排序答案:C解析:顺序查找适用于未排序的数组查找特定元素。
4. 一个有向图的邻接表存储结构中,顶点的邻接点是按照什么顺序存储的?A. 随机顺序B. 顶点编号的大小顺序C. 插入的先后顺序D. 无法确定答案:C解析:邻接表中顶点的邻接点是按照插入的先后顺序存储的。
5. 深度优先搜索遍历图的时间复杂度是?A. O(n)B. O(n + e)C. O(n^2)D. O(e)答案:B解析:深度优先搜索遍历图的时间复杂度为O(n + e),其中n 是顶点数,e 是边数。
6. 以下哪种排序算法是稳定的排序算法?A. 快速排序B. 希尔排序C. 冒泡排序D. 选择排序答案:C解析:冒泡排序是稳定的排序算法。
7. 一个具有n 个顶点的无向完全图,其边的数量为?A. n(n - 1) / 2B. n(n - 1)C. n^2D. 2n答案:A解析:无向完全图的边数为n(n - 1) / 2 。
8. 动态规划算法的基本思想是?A. 分治法B. 贪心算法C. 把问题分解成多个子问题并保存子问题的解D. 回溯法答案:C解析:动态规划的基本思想是把问题分解成多个子问题并保存子问题的解,避免重复计算。
9. 以下关于哈希表的说法,错误的是?A. 哈希表的查找时间复杂度为O(1)B. 哈希冲突可以通过开放定址法解决C. 哈希表的空间复杂度是固定的D. 哈希函数的设计会影响哈希表的性能答案:C解析:哈希表的空间复杂度不是固定的,取决于元素数量和负载因子等。
利用动态规划解决01背包问题01背包问题动态规划
利用动态规划解决01背包问题01背包问题动态规划背包问题是一个经典的动态规划模型,很多关于算法的教材都把它作为一道例题,该问题既简单又容易理解,而且在某种程度上还能够揭示动态规划的本质。
将具有不同重量和价值的物体装入一个有固定载重量的背包,以获取最大价值,这类问题被称为背包问题。
背包问题可以扩展出很多种问题,而01背包问题是最常见、最有代表性的背包问题。
一、问题描述给定一个载重量为M的背包及n个物体,物体i的重量为wi、价值为pi,1≤i≤n,要求把这些物体装入背包,使背包内的物体价值总量最大。
此处我们讨论的物体是不可分割的,通常称这种物体不可分割的背包问题为01背包问题。
二、基本思路01背包问题的特点是:每种物体只有一件,可以选择放或者不放。
假设:xi表示物体i被装入背包的情况,xi=0,1。
当xi=0时,表示物体没有被装入背包;当xi=1时,表示物体被装入背包。
根据问题的要求,有如下的约束方程(1)和目标函数(2):三、利用动态规划法求解01背包问题(一)动态规划算法的基本思想动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
我们可以用一个表来记录所有已解的子问题的答案。
不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中,这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。
(二)算法设计假定背包的载重量范围为0~m。
动态规划求解01背包问题
动态规划求解01背包问题问题给定n种物品和⼀个背包,物品(1<=i<=n)重量是w I ,其价值v i,背包容量为C,对每种物品只有两种选择:装⼊背包和不装⼊背包,即物品是不可能部分装⼊,部分不装⼊。
如何选择装⼊背包的物品,使其价值最⼤?想法该问题是最优化问题,求解此问题⼀般采⽤动态规划(dynamic plan),很容易证明该问题满⾜最优性原理。
动态规划的求解过程分三部分:⼀:划分⼦问题:将原问题划分为若⼲个⼦问题,每个⼦问题对应⼀个决策阶段,并且⼦问题之间具有重叠关系⼆:确定动态规划函数:根据⼦问题之间的重叠关系找到⼦问题满⾜递推关系式(即动态规划函数),这是动态规划的关键三:填写表格:设计表格,以⾃底向上的⽅式计算各个⼦问题的解并填表,实现动态规划过程。
思路:如何定义⼦问题?0/1背包可以看做是决策⼀个序列(x1,x2,x3,…,xn),对任何⼀个变量xi的决策时xi=1还是xi=0. 设V(n,C)是将n个物品装⼊容量为C的背包时背包所获得的的最⼤价值,显然初始⼦问题是将前i个物品装如容量为0的背包中和把0个物品装⼊容量为j的背包中,这些情况背包价值为0即V(i,0)=V(0,j)=0 0<=i<=n, 0<=j<=C接下来考虑原问题的⼀部分,设V(I,j)表⽰将前i个物品装⼊容量为j的背包获得的最⼤价值,在决策xi时,已经确定了(x1,x2,…,xi-1),则问题处于下列两种情况之⼀:1. 背包容量不⾜以装⼊物品i,则装⼊前i-1个物品的最⼤价值和装⼊前i个物品最⼤价值相同,即xi=0,背包价值没有增加2. 背包容量⾜以装⼊物品i,如果把物品i装⼊背包,则背包物品价值等于把前i-1个物品装⼊容量为j-wi的背包中的价值加上第i个物品的价值vi;如果第i个物品没有装⼊背包,则背包价值等于把前i-1个物品装⼊容量为j的背包中所取得的价值,显然,取⼆者最⼤价值作为把物品i装⼊容量为j的背包中的最优解,得到如下递推公式为了确定装⼊背包中的具体物品,从V(n,C)的值向前推,如果V(n,C)>V(n-1,C),则表明第n个物品被装⼊背包中,前n-1个物品被装⼊容量为C-wn的背包中;否则,第n个物品没有被装⼊背包中,前n-1个物品被装⼊容量为C的背包中,依次类推,直到确认第⼀个物品是否被装⼊背包中代码C++实现1. // dp_01Knapsack.cpp : 定义控制台应⽤程序的⼊⼝点。
动态规划方案解决算法背包问题实验报告含源代码
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
5.5动态规划求解01背包问题
xn-2,…,x1将依次推导得出
例2的解向量推导
S0={(0,0)}
S1={(0,0),(1,2)}
S2={(0,0),(1,2), (2,3),(3,5)}
● Si的构造
记S1i 是fi-1(X-wi)+pi的所有序偶的集合,则
S1i {( P,W ) | (P pi ,W wi ) S i1}
其中,Si-1是fi-1的所有序偶的集合
Si的构造:由Si-1和 S1i 按照支配规则合并而成。
支配规则:如果Si-1和S1i 之一有序偶(Pj,Wj),另一有(Pk,Wk),
5.5动态规划求解 0/1背包问题
1.问题描述 背包容量M,n个物品,分别具有效益值P1…Pn,物
品重量w1…wn,从n个物品中,选择若干物品放入 背包,物品要么整件放入背包,要么不放入。怎 样决策可以使装入背包的物品总效益值最大?
形式化描述:
目标函数:
约束条件:
max pixi
1i j
wixi M
1in
xi
0或1,
pi
0, wi
0,1
i
n
0/1背包问题:KNAP(1,n,M)
❖ 0/1背包问题:M=6,N=3,W=(3,3,4),P=(3,3,5) ❖ 贪心法:p3/w3 > p1/w1 > p2/w2 ❖ 贪心解 ∑P=5(0,0,1) ❖ 最优解是:∑P=6(1,1,0)
❖ 贪心法求解0/1背包问题不一定得到最优解! ❖ 动态规划求解的问题必须满足最优化原理
算法分析与设计智慧树知到答案章节测试2023年黑龙江工程学院
第一章测试1.算法就是一组有穷的规则,它们规定了解决某一特定类型问题的一系列运算。
()A:对B:错答案:A2.计算机的资源最重要的是内存和运算资源。
因而,算法的复杂性有时间和空间之分。
()A:对B:错答案:A3.时间复杂度是指算法最坏情况下的运行时间。
()A:对B:错答案:B4.下面关于算法的说法中正确的是。
(1)求解某一问题的算法是唯一的。
(2)算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
(3)算法的每一条指令是清晰无歧义的。
(4)算法可以用某种程序设计语言具体实现,所以算法和程序是等价的。
()A:(2)(3)B:(1)(3)C:(1)(2)D:(2)(4)答案:A5.描述算法的基本方法有。
(1)自然语言(2)流程图(3)伪代码(4)程序设计语言()A:(1)(2)(3)B:(1)(3)(4)C:(1)(2)(3)(4)D:(2)(3)(4)答案:C6.算法分析是()A:将算法用某种程序设计语言恰当地表示出来B:证明算法对所有可能的合法出入都能算出正确的答案C:对算法需要多少计算时间和存储空间作定量分析D:在抽象数据数据集合上执行程序,以确定是否产生错误结果答案:C7.算法是由若干条指令组成的有穷序列,而且满足以下叙述中的性质。
(1)输入:有0个或多个输入(2)输出:至少有一个输出(3)确定性:指令清晰、无歧义(4)有限性:指令执行次数有限,而且执行时间有限()A:(1)(2)(3)B:(1)(2)(4)C:(1)(2)(3)(4)D:(1)(3)(4)答案:C8.下面函数中增长率最低的是()A:n2B:log2nC:nD:2n答案:B9.下面属于算法的特性有( )。
A:有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
B:输入:有0个或多个外部量作为算法的输入。
C:确定性:组成算法的每条指令是清晰,无歧义的。
D:输出:算法产生至少一个量作为输出。
答案:ABCD10.当m为24,n为60时,使用欧几里得算法求m和n的最大公约数,需要进行()次除法运算。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
用动态规划法与回溯法实现0-1背包问题的比较
m ≯ “ f
√f ) =
i
() 1 . 2
,时,时间复杂度为长O(n*数),长关 系 。此 时的需要对于状态空 间和决策 间 的维 数 的增 呈 指2 增计 算和存储量 计 算 时 间 和存 储 量 过 大 。 空
回溯 法 : 溯 法 需 要 为 问 题 定 义 一 个 解 空 间, 个 解 空 间必 须 至 回 这
O 1背包 问题 : 定 1种物 品 和一 背 包 。物 品 i 一 给 3 . 的重 量 是 W i其 价 。
将 第 i 物 品 装 入 背包 。 个
可 以 用树 的形 式 将 解 空 间 表 达 出来 。树 中从 第 i 到第 i1层 的 层 + 边 上 的 值 表示 解 向量 中 X 的取 值 , 假 定 第 i 的左 子 树 描 述 第 i i 并 层 个
,
∑魄, {
4
总结
的 最 优值 为 m(,) 即 m(,) 背 包 容 量 为 j 可 悬 着 物 品 为 i+ ij , ij是 , , i 动态规划算法求解背包问题时对子过程用枚举法求解。 而且 约 束 l… . , , o 1 包 问题 的最 优 值 。 n时 - 背 由于 。 1背 包 问 题 的最 优 子 结 构 性 一 条件越多, 决策 的搜 索 范 围越 小 , 求解 也 越 容 易 。但 是对 于规 模 较 大 的 质 , 以建 立 计 算 m(, 的 如下 递 归 式 : 可 i) j 问 题 它 并 不 是 一 个 理想 的 算 法 。从 二 维 数 组 m『1 1 以 看 出当 c 2 n『 可 c >n
【 摘
武汉
4 07 ) 3 0 3
要 】- 背包问题是运筹学 中的著名问题 。 01 也是计算机 算法中的一个经典问题 。 本文采用动态规 划法和 回溯法对该问题进行求解 , 对
0-1背包问题的递归方法
0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。
定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。
递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。
1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。
代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。
背包问题问题实验报告(3篇)
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
0-1背包问题求解方法综述
0-1背包问题求解方法综述算法分析与设计大作业实验题目:0-1背包问题求解方法综述组员:班级:指导老师:0-1背包问题求解方法综述【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实生活中的很多问题都可以以它为模型。
本文首先对背包问题做了阐述,然后用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问题进行求解,分析了0-1背包问题的数学模型,刻划了最优解的结构特征,建立了求最优值的递归关系式。
最后对四种算法从不同角度进行了对比和总结。
【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。
0.引言0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…,n),再给定一个背包,其容量为W。
要求从n个物品中选出一部分物品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。
单个物品要么装入,要么不装入。
很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问题具有较高的实际应用价值。
目前,解决0-1背包问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。
其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。
文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为O(2n)。
1.0-1背包问题描述0-1背包问题(KP01)是一个著名的组合优化问题。
它应用在许多实际领域,如项目选择、资源分布、投资决策等。
背包问题得名于如何选择最合适的物品放置于给定背包中。
本文主要研究背包问题中最基础的0/1背包问题的一些解决方法。
为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。
解决背包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子算法等一些智能算法。
背包问题的各种求解方法
背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。
因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。
则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。
如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。
这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。
1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。
则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。
由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。
因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。
《计算机算法设计和分析》习题及答案解析
《计算机算法设计与分析》习题及答案一.选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是(A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是(B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是(A )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是(D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是(D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为(B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)13.分支限界法解最大团问题时,活结点表的组织形式是(B )。
A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是(B)。
A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是(A )。
A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是(C )。
A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略(B )A.递归函数 B.剪枝函数 C。
2024年9月GESP编程能力认证C++等级考试六级真题试卷(含答案)
2024年9月GESP编程能力认证C++等级考试六级真题试卷(含答案)一、单选题(每题2分,共30分)。
1.以下()没有涉及C++语言的面向对象特性支持。
A.C++中构造一个class或structB.C++中调用printf函数C.C++中调用用户定义的类成员函数D.C++中构造来源于同一基类的多个派生类2.关于以下C++代码,()行代码会引起编译错误。
#include<iostream>using namespace std;class Base{private:int a;protected:int b;public:int c;Base():a(1),b(2),c(3){}};class Derived:public Base{public:void show(){cout<<a<<endl;//Line1cout<<b<<endl;//Line2cout<<c<<endl;//Line3}};A.Line1B.Line2C.Line3D.没有编译错误3.有6个元素,按照6,5,4,3,2,1的顺序进入栈S,下列()的出栈序列是不能出现的()。
A.5,4,3,6,1,2B.4,5,3,1,2,6C.3,4,6,5,2,1D.2,3,4,1,5,64.采用如下代码实现检查输入的字符串括号是否匹配,横线上应填入的代码为()。
#include<iostream>#include<stack>#include<string>using namespace std;bool is_valid(string s){stack<char>st;char top;for(char&ch:s){if(ch=='('||ch=='{'||ch=='['){st.push(ch);//左括号入栈}else{if(st.empty())return false;________________________//在此处填入代码if((ch==')'&&top!='(')||(ch=='}'&&top!='{')||(ch==']'&&top!='[')){return false;}}}return st.empty();//栈为空则说明所有括号匹配成功}A.top=st.top();st.pop();B.st.pop();top=st.top();C.st.pop();top=st.front();D.top=st.front();st.pop();5.下面代码判断队列的第一个元素是否等于,并删除该元素,横向上应填写()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生 出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背 包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可 以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问 题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果 放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的 背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物 品获得的价值w[i]。优化空间复杂度以上方法的时间和空间复杂度均为 (V N),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以 优化到(N)1。这个方程非常重要,基本上所有跟背包相关的问题的方程 都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放 入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不 放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i 件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值 为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下 的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上 通过放入第i件物品获得的价值w[i]。优化空间复杂度以上方法的时间和 空间复杂度均为(V N),其中时间复杂度应该已经不能再优化了,但空 间复杂度却可以优化到(N)。
0-1背包问题的递归实现与非递归实现
分类: 算法2011-10-24 15:19 0人阅读 评论(0) 收藏 编辑 删除
题目有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是 w[i]。求解将哪些物品装入背包可使价值总和最大。基本思路这是最基 础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子 问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获 得的最大价值。则其状态转移方程便是:
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.
void ZeroOnePack(int w, int v) { for(int x = W; x >= w; x--) f[x]=(f[x] > (f[x-w]+v))?f[x]:(f[x-w]+v); }
优化空间复杂度以上方法的时间和空间复杂度均为(V N),其中时间复 杂度应该已经不能再优化了,但空间复杂度却可以优化到(N)1。先考虑 上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来 二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保 证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由 f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即 在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实 上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推 f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。 伪代码如下:
const int number = 5; const int VALUE[] = {60, 20, 10, 60, 100}; const int WEIGHT[] = {20, 30, 50, 60, 80}; //function Make( i {处理到第i件物品} , j{剩余的空间为 j}) :integer; int Make(int i, int j) { int r1 = 0; int r2 = 0; int r = 0; if (i == -1) { return 0; }
非递归实现:
view plain
1. 2. 3. 4. 5. 6. 7. 8. 9.
#include<iostream> using namespace std; const int W = 150; const int number = 5; const int VALUE[] = {60, 20, 10, 60, 100}; const int WEIGHT[] = {20, 30, 50, 60, 80}; int f[151];
递归实现:
view plain
1. #include<iostream> 2. using namespace std; 3. 4. const int W = 150;
5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.
其中的f[v] = maxff[v]; f[v..c[i]]g一句恰就相当于我们的转移方程f[i][v] = maxff[i..1][v]; f[i..1][v .. c[i]]g,因为现在的f[v-c[i]]就相当于原来的f[i .. 1] [v .. c[i]]。如果将v的循环顺序从上面的逆 序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但 它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维 数组解01背包问题是十分必要的。 注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序 写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必 要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加 入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
}
对于非递归的实现思路,我想下面这个例子和相应的图片是最好的说 明了: 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的 试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进 去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1 物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6
if(j >= WEIGHT[i]) //背包剩余空间可以放下物品 i { r1 = Make(i-1,j - WEIGHT[i]) + VALUE[i]; //第i件物品放入 所能得到的价值 25. r2 = Make(i-1,j); //第i件物品不放所能得到的价值 26. r = (r1>r2)?r1:r2; 27. } 28. 29. return r; 30. } 31. 32. 33. void main() 34. { 35. int maxValue = Make(number-1, W); 36. cout<<"maxValue: "<<maxValue<<endl; 37. }
void main() { for (int i=0; i < 151; i++) { f[i] = 0; } for (int j=0; j < number; j++) { ZeroOnePack(WEIGHT[j], VALUE[j]); } cout<<"maxValue: "<<f[W]<<endl;
这张图表刚好说明了调用ZeroOnePackage函数的整个过程,和 ZeroOnePackage函数里的执行for循环的执行过程:
c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先 试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一 排背包容量为4,5,6,....10的时候,最佳方案都是放4.假如1号物品放 入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的 最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包 容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的 时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样. 一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背 包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3 号物品没有被选.选的是1,2号物品.所以得9.)