2020年海淀区高三期中试题
海淀区2020届高三期中英语试题及答案
海淀区2020届高三期中英语试题及答案第一部分:听力理解(共三节,30 分)第一节(共 5 小题;每小题分,共分)听下面 5 段对话,每段对话有一道小题,从每题所给的 A、B、C 三个选项中选出最佳选项,听完每段对话后,你将有 10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
1. What will the two speakers do togetherA. Sign up for a club.B. Meet the teacher.C. Have a study group.2. Where does this conversation probably take placeA. In a hotel.B. At an airport.C. In a restaurant.3. Why is the woman worriedA. She takes the wrong bus.B. She gets off at the wrong stop.C. She goes to the wrong hospital.4. What will the speakers have for dinnerA. Japanese food.B. Mexican food.C. Chinese food.5. What is the possible relationship between the two speakersA. Mother and son.B. Husband and wife.C. Teacher and student.第二节(共10小题;每小题分,共15分)听下面4段对话或独白。
每段对话或独白后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有5秒钟的时间阅读每小题。
听完后,每小题将给出5秒钟的作答时间。
每段对话或独白你将听两遍。
2020年北京市海淀区高三(上)期中数学试卷
高三(上)期中数学试卷题号一 二 三 总分 得分一、选择题(本大题共8小题,共40.0分)1. 已知集合A ={x|x +1≤0},B ={x|x ≥a},若A ∪B =R ,则实数a 的值可以为( )A. 2B. 1C. 0D. −22. 下列函数中,在区间(0,+∞)上不是单调函数的是( )A. y =xB. y =x 2C. y =x +√xD. y =|x −1|3. 已知等差数列{a n }的前n 项和为S n ,若S 3=a 3,且a 3≠0,则S4S 3=( )A. 1B. 53C. 83D. 34. 不等式1x >1成立的一个充分不必要条件是( )A. 0<x <12B. x >1C. 0<x <1D. x <05. 如图,角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,则sin(π2+α)的值为( )A. −35B. 35C. −45D. 456. 在四边形ABCD 中,AB//CD ,设AC ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ (λ,μ∈R).若λ+μ=32,则|CD ⃗⃗⃗⃗⃗||AB⃗⃗⃗⃗⃗⃗ |=( )A. 13B. 12C. 1D. 27. 已知函数f(x)=x 3+x 2−2|x|−k.若存在实数x 0,使得f(−x 0)=−f(x 0)成立,则实数k 的取值范围是( )A. [−1,+∞)B. (−∞,−1]C. [0,+∞)D. (−∞,0]8. 设集合A 是集合N ∗的子集,对于i ∈N ∗,定义φi (A)={1,i ∈A0,i ∉A,给出下列三个结论:①存在N ∗的两个不同子集A ,B ,使得任意i ∈N ∗都满足φi (A ∩B)=0且φi (A ∪B)=1;②任取N∗的两个不同子集A,B,对任意i∈N∗都有φi(A∩B)=φi(A)⋅φi(B);③任取N∗的两个不同子集A,B,对任意i∈N∗都有φi(A∪B)=φi(A)+φi(B)其中,所有正确结论的序号是()A. ①②B. ②③C. ①③D. ①②③二、填空题(本大题共6小题,共30.0分)9.已知向量a⃗=(1,2),b⃗ =(3,x),若a⃗//b⃗ ,则实数x=______ .10.函数f(x)=x−√x−6的零点个数是______.11.已知数列{a n}的前n项和为S n=log2n,则a1=______,a5+a6+a7+a8=______.12.如图,网格纸上小正方形的边长为1.从A,B,C,D四点中任取两个点作为向量b⃗ 的始点和终点,则a⃗⋅b⃗ 的最大值为______.13.已知数列{a n}的通项公式为a n=lnn,若存在p∈R,使得a n≤pn对任意的n∈N∗都成立,则p的取值范围为______.14.已知函数f(x)=√2sinωx,g(x)=√2cosωx,其中ω>0,A,B,C是这两个函数图象的交点,且不共线.①当ω=1时,△ABC面积的最小值为______;②若存在△ABC是等腰直角三角形,则ω的最小值为______.三、解答题(本大题共6小题,共80.0分)15.已知数列{a n}为各项均为正数的等比数列,S n为其前n项和,a2=3,a3+a4=36(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若S n<121,求n的最大值.16.已知函数f(x)=2sinxcos(x+π3)+√32.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若f(x)+m≤0对x∈[0,π2]恒成立,求实数m的取值范围.17.已知函数f(x)=13ax3+x2+bx+c,曲线y=f(x)在(0,f(0))处的切线方程为y= x+1.(Ⅰ)求b,c的值;(Ⅱ)若函数f(x)存在极大值,求a的取值范围.18.在△ABC中,a=7,b=5,c=8.(Ⅰ)求sin A的值;(Ⅱ)若点P为射线AB上的一个动点(与点A不重合),设APPC=k.①求k的取值范围;②直接写出一个k的值,满足:存在两个不同位置的点P,使得APPC=k.19.已知函数f(x)=lnx.e x(Ⅰ)判断函数f(x)在区间(0,1)上的单调性,并说明理由;(Ⅱ)求证:f(x)<1.220.已知集合M⊆N∗,且M中的元素个数n大于等于5.若集合M中存在四个不同的元素a,b,c,d,使得a+b=c+d,则称集合M是“关联的”,并称集合{a,b,c,d}是集合M的“关联子集”;若集合M不存在“关联子集”,则称集合M是“独立的”.(Ⅰ)分别判断集合{2,4,6,8,10}和集合{1,2,3,5,8}是“关联的”还是“独立的”?若是“关联的”,写出其所有的关联子集;(Ⅱ)已知集合{a1,a2,a3,a4,a5}是“关联的”,且任取集合{a i,a j}⊆M,总存在M 的关联子集A,使得{a i,a j}⊆A.若a1<a2<a3<a4<a5,求证:a1,a2,a3,a4,a5是等差数列;(Ⅲ)集合M是“独立的”,求证:存在x∈M,使得x>n2−n+9.4答案和解析1.【答案】D【解析】【分析】本题考查描述法表示集合的定义,以及并集的定义及运算.可以求出A={x|x≤−1},根据A∪B=R即可得出a≤−1,从而得出a的值可以为−2.【解答】解:∵A={x|x≤−1},B={x|x≥a},且A∪B=R,∴a≤−1,∴a的值可以为−2.故选:D.2.【答案】D【解析】【分析】本题主要考查了基本初等函数的单调性的判断,属于基础试题.结合一次函数,二次函数,幂函数的性质可进行判断.【解答】解:由一次函数的性质可知,y=x在区间(0,+∞)上单调递增;由二次函数的性质可知,y=x2在区间(0,+∞)上单调递增;由幂函数的性质可知,y=x+√x在区间(0,+∞)上单调递增;结合一次函数的性质可知,y=|x−1|在(0,1)上单调递减,在(1,+∞)上单调递增.故选:D.3.【答案】C【解析】【分析】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=a3,且a3≠0,∴3a 1+3d =a 1+2d ,化为:−2a 1=d ≠0. ∴S 4S 3=4a 1+4×32d 3a 1+3×22d=23×2a 1+3×(−2a 1)a 1−2a 1=83. 故选:C .4.【答案】A【解析】 【分析】本题考查充分不必要条件的定义,属于基础题. 解出不等式,进而可判断出其一个充分不必要条件. 【解答】解:该不等式的解集为:(0,1),则其一个充分不必要条件可以是:(0,12); 故选:A .5.【答案】B【解析】 【分析】本题主要考查任意角的三角函数的定义,属于基础题. 由题意利用任意角的三角函数的定义,求得sin(π2+α)的值. 【解答】解:角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,则sin(π2+α)=cosα=35,故选:B .6.【答案】B【解析】 【分析】本题考查了向量平行四边形法则、向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于中档题.过C 作CE//AD ,又CD//AB.可得四边形AECD 是平行四边形.AC ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,根据AC ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ (λ,μ∈R).可得μ=1,AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,又λ+μ=32,可得λ=12.即可得出结论.【解答】 解:如图所示,过C 作CE//AD ,又CD//AB . ∴四边形AECD 是平行四边形. ∴AC ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ , 又AC ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ (λ,μ∈R). ∴μ=1,AE⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ , 又λ+μ=32,∴λ=12. 则|CD⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗⃗ |=|AE⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗⃗ |=12.故选:B .7.【答案】A【解析】 【分析】本题考查了函数与方程的应用,考查了转化思想和数形结合思想,属于基础题. 存在实数x 0,使得f(−x 0)=−f(x 0),转化为x 2−2|x|=k 有根,进而转化为y =x 2−2|x|与y =k 的图象有交点. 【解答】解:∵f(x)=x 3+x 2−2|x|−k 且f(−x 0)=−f(x 0),∴−x 03+x 02−2|x 0|−k =−(x 03+x 02−2|x 0|−k)整理得x 02−2|x 0|=k ,∴原题转化为y =x 2−2|x|与y =k 的图象有交点, 画出y =x 2−2|x|的图象如下:x =1时y =−1,由图可知,k ≥−1. 故选A .8.【答案】A【解析】 【分析】本题考查了命题正误的判断,考查了推理能力与计算能力,属于中档题.对题目中给的新定义要充分理解,对于i ∈N ∗,φi (A)=0或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【解答】解:∵对于i ∈N ∗,定义φi (A)={1,i ∈A0,i ∉A,∴①例如A ={正奇数},B ={正偶数},∴A ∩B =⌀,A ∪B =N ∗,∴φi (A ∩B)=0;φi (A ∪B)=1,故①正确;②若φi (A ∩B)=0,则i ∉(A ∩B),则i ∈A 且i ∉B ,或i ∈B 且i ∉A ,或i ∉A 且i ∉B ;∴φi (A)⋅φi (B)=0;若φi (A ∩B)=1,则i ∈(A ∩B),则i ∈A 且i ∈B ;∴φi (A)⋅φi (B)=1;∴任取N ∗的两个不同子集A ,B ,对任意i ∈N ∗都有φi (A ∩B)=φi (A)⋅φi (B);正确,故②正确;③例如:A ={1,2,3},B ={2,3,4},A ∪B ={1,2,3,4},当i =2时,φi (A ∪B)=1;φi (A)=1,φi (B)=1;∴φi (A ∪B)≠φi (A)+φi (B);故③错误;∴所有正确结论的序号是:①②;故选:A.9.【答案】6【解析】【分析】本题考查向量共线,考查计算能力.直接利用向量的共线的充要条件求解即可.【解答】解:由向量a⃗=(1,2),b⃗ =(3,x),若a⃗//b⃗ ,可得x=2×3=6.故答案为:6.10.【答案】1【解析】【分析】本题考查方程的根与函数零点的关系,求函数的零点,就是确定方程的根,也就是求函数的图象与x轴的交点的横坐标.解方程,根据方程的根的个数,即可得出f(x)的零点个数.【解答】解:由题意可知x≥0时,f(x)=x−√x−6=0,可得(√x)2−√x−6=0,解得√x=−2(舍去)或√x=3,∴x=9;函数f(x)=x−√x−6的零点个数是1.故答案为:1.11.【答案】0 ;1【解析】【分析】本题考查数列的前n项和的应用,主要考查学生的运算能力,属于基础题型.直接利用题目所给的数列的前n项和公式求出数列的首项和a5+a6+a7+a8的值.【解答】解:数列{a n}的前n项和为S n=log2n,则a1=S1=log21=0.则a5+a6+a7+a8=S8−S4=log28−log24=1.故答案为:0;1.12.【答案】3【解析】【分析】本题考查向量的数量积与投影的应用,向量的数量积最大,需要两个向量的模以及两个向量的夹角的余弦函数值的乘积取得最大值,转化为向量的投影值即可.【解答】解:由题意可知:a⃗⋅b⃗ =|a⃗|⋅|b⃗ |cos<a⃗,b⃗ >=|b⃗ |cos<a⃗,b⃗ >,其几何意义是b⃗ 在a⃗方向上的投影值,由图形可知:向量b⃗ =AC⃗⃗⃗⃗⃗ 时,投影值最大,且最大值为3.故答案为:3.13.【答案】[ln33,+∞)【解析】【分析】本题考查的知识要点:利用函数的导数求出函数的单调区间和最值,恒成立问题的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.直接利用数列的关系式,进一步进行转换,再利用函数的导数的应用求出函数的单调区间和最值,进一步利用函数的恒成立问题的应用求出结果.【解答】解:数列{a n}的通项公式为a n=lnn,若存在p∈R,使得a n≤pn对任意的n∈N∗都成立,故p≥(lnnn)max,设f(x)=lnxx ,则f′(x)=1x⋅x−lnxx2,令f′(x)=1−lnxx2=0,解得x=e,0<x<e时,f′(x)>0,x>e时,f′(x)<0,故函数的单调增区间为(0,e),函数的减区间为(e,+∞),所以函数在x=e时函数取最大值,由于n ∈N ∗,当n =3时函数值为ln33,当n =2时函数值为ln22,易知ln33>ln22,所以p 的取值范围是[ln33,+∞).故答案为:[ln33,+∞).14.【答案】2π ;π2【解析】 【分析】本题考查的知识要点:三角函数的图象和性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于一般题型.①直接利用函数的图象和性质的应用求出三角形的底和高,进一步求出三角形的面积. ②利用等腰直角三角形的性质的应用求出ω的最小值. 【解答】解:①当ω=1时,f(x)=√2sinx ,g(x)=√2cosx ,当△ABC 面积最小时, 如图所示:所以第一象限的两个交点间的距离为一个周期2π,△ABC 的高为√2⋅√22+√22⋅√2=2.所以:S △ABC =12⋅2π⋅2=2π. 当ω=1时,△ABC 面积的最小值为2π;②若存在△ABC 是等腰直角三角形,利用直角三角形斜边的中线等于斜边的一半, 则2πω=2⋅(√2⋅√22+√2⋅√22), 解得ω的最小值为π2. 故答案为:2π;π2.15.【答案】解:(Ⅰ)设等比数列{a n }的公比为q ,q >0,∵a2=3,a3+a4=36,∴3(q+q2)=36,解得q=3.又3a1=3,解得a1=1,∴a n=3n−1.(Ⅱ)S n=3n−13−1<121,3n<243,解得:n<5.∴满足S n<121,n的最大值为4.【解析】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.(Ⅰ)设等比数列{a n}的公比为q,由a2=3,a3+a4=36,可得3(q+q2)=36,解得q.又3a1=3,解得a1,进而求得数列{a n}的通项公式.(Ⅱ)S n=3n−13−1<121,即可得出结论.16.【答案】解:(Ⅰ)函数f(x)=2sinxcos(x+π3)+√32.=2sinx(12cosx−√32sinx)+√32=sinxcosx−√3sin2x+√3 2=12sin2x+√32cos2x=sin(2x+π3).所以函数的最小正周期为T=2π2=π.(Ⅱ)f(x)+m≤0对x∈[0,π2]恒成立,所以f(x)max+m≤0,由于x∈[0,π2],所以2x+π3∈[π3,4π3].当2x+π3=π2时,即x=π12时,m+1≤0时,实数m的取值范围为(−∞,−1].【解析】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(Ⅰ)首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅱ)利用函数的恒成立问题的应用和函数的最值的应用求出结果.17.【答案】解:(Ⅰ)f ′(x)=ax 2+2x +b ,∵曲线y =f(x)在(0,f(0))处的切线方程为y =x +1, ∴{f′(0)=1f(0)=1,解得:{b =1c =1; (Ⅱ)法一:由(Ⅰ)f(x)=13ax 3+x 2+x +1,①当a =0时,f(x)=x 2+x +1不存在极大值,不合题意, ②当a >0时,f ′(x)=ax 2+2x +1, 令ax 2+2x +1=0,(i)当△=4−4a ≤0即a ≥1时,不合题意, (ii)当△=4−4a >0即0<a <1时,方程ax 2+2x +1=0有2个不相等的实数根, 设方程两根为x 1,x 2,且x 1<x 2, x ,f ′(x),f(x)的变化如下:故f(x 1)为极大值;③当a <0时,△=4−4a >0恒成立, 设方程两根为x 1,x 2且x 1<x 2, x ,f ′(x),f(x)的变化如下:故f(x 2)为极大值,综上,若函数f(x)存在极大值, 则a 的取值范围是(−∞,0)∪(0,1). 法二:f ′(x)=ax 2+2x +1, 若函数f(x)存在极大值,则{a ≠0△=4−4a >0,解得:a <1且a ≠0, 故a 的取值范围是(−∞,0)∪(0,1).【解析】本题考查了导数的几何意义,考查运用导数研究函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是中档题.(Ⅰ)求出函数的导数,结合切线方程得到关于b ,c 的方程组,解出即可;(Ⅱ)法一:求出函数的导数,通过讨论a 的范围,求出函数的单调区间,结合函数存在极大值,确定a 的范围即可,法二:结合二次函数以及极大值的定义判断即可.18.【答案】解:(Ⅰ)在△ABC 中,a =7,b =5,c =8.利用余弦定理cosA =b 2+c 2−a 22bc=12,由于A ∈(0,π),所以sinA =√1−(12)2=√32;(Ⅱ)①由APPC =k .根据正弦定理CPsinA =APsin∠ACP , 所以k =APCP =sin∠ACP sin∠A =sin∠ACPsin π3=2√33sin∠ACP , 由于点P 为射线AB 上的一个动点(与点A 不重合), 所以∠ACP ∈(0,2π3),所以k 的取值范围为(0,2√33]. ②由于P 为射线AB 上的一个动点,所以k 的取值只要在区间(1,2√33)上即可, 故k =32时,满足条件.【解析】本题考查的知识要点:正弦定理、余弦定理的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(Ⅰ)直接利用余弦定理的应用求出A 的余弦值,进一步求出正弦值. (Ⅱ)①直接利用正弦定理和关系式的变换的应用求出k 的取值范围. ②根据共线的条件求出在区间(1,2√33)上即可.19.【答案】解:(Ⅰ)函数f(x)在区间(0,1)上是单调递增函数.理由如下:由f(x)=lnxe x ,得f′(x)=1x−lnxe x;因为x∈(0,1),所以1x>0,lnx<0,因此1x−lnx>0.又因为e x>0,所以f′(x)>0恒成立.所以f(x)在区间(0,1)上是单调递增函数.(Ⅱ)证明“f(x)<12”等价于证明“f(x)max<12”.由题意可得,x∈(0,+∞),因为f′(x)=1x−lnxe x,再令g(x)=1x−lnx,则g′(x)=−1x2−1x<0.所以g(x)在(0,+∞)上单调递减.因为g(1)=1>0,g(e)=1e−1<0,所以存在唯一实数x0,使得g(x0)=0,其中x0∈(1,e).x,f′(x),f(x)变化如下表所示:所以f(x0)为函数f(x)的极大值.因为函数f(x)在(0,+∞)有唯一的极大值.所以f(x)max=f(x0)=lnx0e x0.因为1x0=lnx0,所以f(x)max=f(x0)=lnx0e x0=1x0⋅e x0.设m(x)=xe x,x∈(1,e),m′(x)=(x+1)e x>0,故m(x)在(1,e)上单调递增,故m(x)>m(1)=e.因为x0∈(1,e),所以f(x)max=1x0e x0<1e<12.所以f(x)<12.【解析】本题考查了函数单调性求法,函数极值与最值的求法,属于导数在函数中综合应用,属于综合题.(Ⅰ)对f(x)求导,判断f′(x)的符号,即可得函数的单调性;(Ⅱ)证明“f(x)<12”等价于证明“f(x)max<12”.求f(x)的最大值即可证明.20.【答案】解:(Ⅰ){2,4,6,8,10}是“关联的”,关联子集有{2,4,6,8},{4,6,8,10},{2,4,8,10}.{1,2,3,5,8}是“独立的”.(Ⅱ)记集合M的含有四个元素的集合分别为:A1={a2,a3,a4,a5},A2={a1,a3,a4,a5},A3={a1,a2,a4,a5},A4={a1,a2,a3,a5},A5={a1,a2,a3,a4},所以,M至多有5个“关联子集”,若A2={a1,a3,a4,a5}为“关联子集”,则A1={a2,a3,a4,a5},不是“关联子集”,否则a1=a2,同理可得若A2={a1,a3,a4,a5}为“关联子集”,则A3,A4不是“关联子集”,所以集合M没有同时含有元素a2,a5的“关联子集”,与已知矛盾.所以A2={a1,a3,a4,a5}一定不是“关联子集”,同理A4={a1,a2,a3,a5}一定不是“关联子集”,所以集合M的“关联子集”至多为A1,A3,A5,若A1不是“关联子集”,则此时集合M一定不含有元素a3,a5的“关联子集”,与已知矛盾;若A3不是“关联子集”,则此时集合M一定不含有元素a1,a5的“关联子集”,与已知矛盾;若A5不是“关联子集”,则此时集合M一定不含有元素a1,a3的“关联子集”,与已知矛盾;所以A1,A3,A5都是“关联子集”,所以有a2+a5=a3+a4,即a5−a4=a3−a2;a1+a5=a2+a4,即a5−a4=a2−a1;a1+a4=a2+a3,即a4−a3=a2−a1;所以a5−a4=a4−a3=a3−a2=a2−a1,所以a1,a2,a3,a4,a5是等差数列.(Ⅲ)不妨设集合M={a1,a2,…,a n}(n≥5),a i∈N∗,i=1,2,…,n,且a1<a2<⋯<a n,记T ={t|t =a i +a j ,1≤i <j ≤n,i ,j ∈N ∗},因为集合M 是“独立的”的,所以容易知道T 中恰好有C n2=n(n−1)2个元素,假设结论错误,即不存在x ∈M ,使得x >n 2−n+94,所以任取x ∈M ,x ≤n 2−n+94,因为x ∈N ∗,所以x ≤n 2−n+84,所以a i +a j ≤n 2−n+84+n 2−n+84−1=n 2−n+82−1=n 2−n 2+3,所以任取t ∈T ,t ≤n 2−n 2+3,任取t ∈T ,t ≥1+2=3,所以T ⊆{3,4,…,n 2−n 2+3},且T 中含有C n2=n(n−1)2个元素,(i)若3∈T ,则必有a 1=1,a 2=2成立,因为n ≥5,所以一定有a n −a n−1>a 2−a 1成立,所以a n −a n−1≥2, 所以a n +a n−1≤n 2−n+84+n 2−n+84−2=n 2−n 2+2,所以T ={t|3≤t ≤n 2−n 2+2,t ∈N ∗},所以a n =n 2−n+84,a n−1=n 2−n+84−2,因为4∈T ,所以a 3=3,所以有a n +a 1=a n−1+a 3,矛盾; (ii)若3∉T ,则T ⊆{4,5,…,n 2−n 2+3},而T 中含有C n 2=n(n−1)2个元素,所以T ={t|4≤t ≤n 2−n 2+3,t ∈N ∗}所以a n =n 2−n+84,a n−1=n 2−n+84−1,因为4∈T ,所以a 1=1,a 2=3, 因为n 2−n 2+2∈T ,所以n 2−n 2+2=a n−2+a n ,所以a n−2=n 2−n+84−2,所以a n +a 1=a n−2+a 3,矛盾,所以命题成立.【解析】本题属于信息题,考查接受新知识,理解新知识,运用新知识的能力,反证法,等差数列,组合,属于高难题; (Ⅰ)根据题意即可求解;(Ⅱ)根据题意,A 1={a 2,a 3,a 4,a 5},A 2={a 1,a 3,a 4,a 5},A 3={a 1,a 2,a 4,a 5},A 4={a 1,a 2,a 3,a 5},A 5={a 1,a 2,a 3,a 4},进而利用反证法和等差数列的定义求解; (Ⅲ)不妨设集合M ={a 1,a 2,…,a n }(n ≥5),a i ∈N ∗,i =1,2,…,n ,且a 1<a 2<⋯<a n ,记T ={t|t =a i +a j ,1≤t <j ≤n,i ,j ∈N ∗},进而利用反证法求解;。
2020年海淀区高三第一学期期中考试语文试题、答案及解析
(取材于叶适《母杜氏慕志》)
注释:【1】外王父:外祖父。【2】僦:租赁。【3】生事:生i∣∙° [3] JiS匹:端、匹皆为古代布帛讣
虽爪位。[5]时姑:公婆。[6]畴昔:从前。
6.下列对句中加点词的解释,不正确的一项是(3分)
• • •
A•夫人既归而岁大水归:出嫁
■
B.凡迁二十一所凡:总共
■
C・此人为之缪耳缪:通“谬”,错误
(取材于殷波的相关文幸)1∙请在材料一的横线处分别填写一个10字以内的语句,使上下文语意连贯。(2分)2.根据材料一,下列说法不正确的一项是(3分)
• • •
A.追求个性化,差异化的商品,反映出人们对精神文化消费越来越重视。
B.文创产业持续发展使基于优秀传统文化开发设讣的文创产品开始热销。
C.文化精神的创新表达能够促进文创研发从文化遗产到文化资源的转化。
发掘它与手机充电器的诸多联系,实现对文化精神的创新表达。
2.本大题共6小题,共25分。
(一)阅读下面文言文,完成6〜10题。(共19分)
2020-2021第一学期海淀区高三数学期中试题及答案
4 / 47 2 海淀区 2020~2021 学年第一学期期中练习高三数学参考答案2020.11一、选择题共 10 小题,每小题 4 分,共 40 分。
题号 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 答案ACCDBCABAB二、填空题共 5 小题,每小题 5 分,共 25 分。
题号 (11)(12)(13) (14)(15)答案2-3253 41 2π 3 π32 三、解答题共 6 小题,共 85 分。
(16)(本小题共 14 分)解:(Ⅰ)由正弦定理得:b sin B =c .sin C因为 sin B = 2sin C , 所以 b = 2c .因为 cos A = 3, 0 < A < π ,4所以 sin A =因为 S = ,= 7 .4所以 S = 1 bc sin A = 1 ⨯ 2c 2⨯ sin A = 2 2所以 c 2 = 4 .7 .所以 c = 2 .(Ⅱ)由(Ⅰ)知 b = 2c .因为 cos A = 3,4所以 a 2 = b 2 + c 2 - 2bc cos A = 4c 2 + c 2 - 4c 2 ⨯ 3= 2c 2 .4所以 a = 2c .所 以 a= .c(17)(本小题共 14 分)解:(Ⅰ)设等差数列{a n } 的公差为 d ,则 a n = a 1 + (n -1)d .数学答案 第 1 页(共 10 页)1- cos 2 A⎩ 因为 a 5 = 9 , a 3 + a 9 = 22 ,⎧a 1 + 4d = 9, 所以 ⎨2a+ 10d = 22. ⎩ 1⎧a 1 = 1,解得: ⎨d = 2.所以 a n = 2n -1 .(Ⅱ)选择①②设等比数列{a n } 的公比为 q .因为 b 1 = a 1 , b 3 = a 1 + a 2 ,所以 b 1 = 1, b 3 = 4 .因为 S 3 = 7 ,所以 b 2 = S 3 - b 1 - b 3 = 2 . 所 以 q =b 2= 2 .b 1b (1 - q n ) 所以 S n = 1= 2n -1 .1 - q因为 S n < 2020 ,所以 2n -1 < 2020 . 所以 n ≤ 10 .即n 的最大值为10 .选择①③设等比数列{a n } 的公比为 q .因为 b 1 = a 1 , b 3 = a 1 + a 2 ,所以 b 1 = 1, b 3 = 4 . 所以 q 2 =b 3= 4 , q = ±2 .b 1因为 b n +1 > b n ,数学答案 第 2 页(共 10 页)所以 q = 2 .b (1 - q n ) 所以 S n = 1= 2n -1 .1 - q因为 S n < 2020 ,所以 2n -1 < 2020 . 所以 n ≤ 10 .即n 的最大值为10 .选择②③设等比数列{a n } 的公比为 q .因为 S 3 = 7 , b 1 = 1,所以 1 + q + q 2 = 7 . 所以 q = 2 ,或 q = -3 .因为 b n +1 > b n , 所以 q = 2 .b (1 - q n )所 以 S n = 11 - q= 2n -1 .因 为 S n < 2020 ,所以 2n -1 < 2020所以 n ≤ 10 .即n 的最大值为10 .(18)(本小题共 14 分)解:(Ⅰ)因为e x > 0 ,由 f (x ) = e x (2x 2 - 3x ) > 0 ,得2x 2 - 3x > 0 . 所以 x < 0 ,或 x > 3 .2所以 不等式 f (x ) > 0 的解集为{x x < 0, 或 x > 3}.2(Ⅱ)由 f (x ) = e x (2x 2 - 3x ) 得: f '(x ) = e x (2x 2 + x - 3)数学答案 第 3 页(共 10 页)= e x(2x + 3)(x -1) .令f '(x) = 0 ,得x =1 ,或x =-3 (舍).2f (x) 与f '(x) 在区间[0, 2] 上的情况如下:x0 (0,1)1(1, 2) 2f '(x)- 0 +f (x) 0 ↘-e ↗2e2所以当x = 1 时,f (x) 取得最小值 f (1) =-e ;当x = 2 时,f (x) 取得最大值f (2) = 2e2.(19)(本小题共14 分)解:(Ⅰ)因为所以所以y = sin x 的单调递减区间为[2kπ +π, 2kπ +3π] (k ∈Z ).2 22kπ +π≤x +π≤ 2kπ +3π , k ∈Z .2 6 22kπ +π≤x ≤ 2kπ +4π , k ∈Z .3 3所以函数f (x) 的单调递减区间为[2kπ +π, 2kπ +4π] (k ∈Z ).3 3(Ⅱ)因为所以因为所以f (x) = 2sin(x +π) ,6f (x -π) = 2sin x .6g(x) =f (x) f (x -π) ,6g(x) = 4sin(x +π)sin x6= 4(3sin x +1cos x)sin x2 2= 2 3 sin2x + 2 cos x sin x= 3 (1- cos 2x)+ sin 2x= 2sin(2x -π) +33 .因为0 ≤x ≤m ,所 以-π≤ 2x -π≤ 2m -π .3 3 3因为g(x) 的取值范围为[0, 2 + 3] ,数学答案第 4 页(共10 页)所以 sin(2x -π) 的取值范围为[-33,1].2所 以 π≤ 2m -π≤4π.2 3 3解得: 5π≤m ≤5π .12 6所以m 的最大值为5π. 6(20)(本小题共14 分)解:由 f (x) =ax3- 3ax2+ 2 + 4a 可得: f '(x) = 3ax2- 6ax = 3ax(x - 2) .(Ⅰ)当a =-1 时,f (3) =-2 , f '(3) =-9 .所以曲线y =f (x) 在点(3, f (3)) 处的切线方程为y =-9x + 25 .(Ⅱ)①当a = 0 时,f (x) = 2 在R 上不具有单调性.②当a > 0 时,令 f '(x) = 0 得 x1= 0, x2= 2 .f (x) 与f '(x) 在区间(-∞, +∞) 上的情况如下:x(-∞,0)0(0, 2)2(2, +∞)f '(x)+ 0- 0+f (x)极大值极小值所以 a ≥ 2 .③当a < 0 时,f (x) 与f '(x) 在区间(-∞, +∞) 上的情况如下:x(-∞,0)0(0, 2)2(2, +∞)f '(x)- 0+ 0-f (x)极小值极大值所以 a + 3 ≤ 0 ,即a ≤-3 .综上所述,a 的取值范围是(-∞, -3] [2, +∞) .(Ⅲ)先证明: f (x1) +f (x2 ) ≥ 4 .由(Ⅱ)知,当a > 0 时,f (x) 的递增区间是(-∞,0) ,(2, +∞) ,递减区间是(0, 2) .因为 x1+x2> 2 ,不妨设 x1≤x2,则 x2> 1.数学答案第 5 页(共10 页)m - 4 a< a n 0 2 2 2 ①若 x 1 ≤ 0 ,则 x 2 > 2 - x 1 ≥ 2 .所以 f (x 1) + f (x 2) > f (x 1) + f (2 - x 1) = 4 + 4a > 4 .②若 x 1 > 0 ,因为 x 2 > 1,所以 f (x 1) + f (x 2 ) ≥ f (2) + f (2) = 4 ,当且仅当 x 1 = x 2 = 2 时取等号. 综上所述,f (x 1) + f (x 2 ) ≥ 4 .再证明: f (x 1) + f (x 2 ) 的取值范围是[4, +∞) .假设存在常数 m ( m ≥ 4 ),使得对任意 x 1 + x 2 > 2 , f (x 1) + f (x 2) ≤ m .取 x = 2 ,且 x > 2 + ,则1 2f (2) + f (x ) = 2 + ax 3 - 3ax 2 + 2 + 4a= 2 + ax (x - 2)2 + a (x - 2)2 + 2 > a (x - 2)2 + 4 > m ,2 222与 f (x 1) + f (x 2) ≤ m 矛盾.所以 f (x 1) + f (x 2 ) 的取值范围是[4, +∞) .(21)(本小题共 15 分)解:(Ⅰ)取i =1, j = 2 ,则存在a k ( 2 < k < 4 ),使得 a k = 2a 2 - a 1 ,即 a 3 = 2a 2 - a 1 .因为 a 1 = a = 3 , a 2 = b = 5 ,所以 a 3 = 2a 2 - a 1 = 7 .(Ⅱ)假设{a n } 中仅有有限项为0 ,不妨设 a m = 0 ,且当 n > m 时,a n 均不为0 ,则m ≥ 2 .取i = 1, j = m ,则存在a k ( m < k < 2m ),使得a k = 2a m - a 1 = 0 ,与 a k ≠ 0 矛盾.(Ⅲ)①当a < b 时,首先证明数列{a n } 是递增数列,即证∀n ∈ N * , a n < a n +1恒成立.若不然,则存在最小的正整数 n 0 ,使得a n ≥ a n +1 ,且 a 1 < a 2 <.显然 n 0 ≥ 2 .取 j = n 0 ,i = 1, 2, , n 0 -1,则存在a k ( n 0 < k < 2n 0 ),使得数学答案 第 6 页(共 10 页)。
2020年海淀区高三第一学期期中考试语文试题、答案及解析
海淀区2020—2021学年度第一学期期中练习(含答案和解析)高三语文2020.11 本试卷共8页,150分。
考试时长150分钟。
考生务必将答案答在答题纸上。
在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
一、本大题共5小题,共17分。
阅读下面材料,完成1~5题。
材料一随着我国居民精神文化消费比重的显著提高,人们开始追求个性化,差异化的商品,关注其蕴含的精神内涵。
在互联网技术的助推下,信息交流、品牌文化传播等不断增强,许多基于中华优秀传统文化开发设计的文创产品呈热销态势,由此带动了文创产业的持续发展。
在这一热潮中,也存在产品开发同质化、定位模糊、质量不高等问题。
那么,如何通过文创产品使优秀传统文化焕发生机,成为滋养当代人生活的养分呢?文创产品研发的重心应是实现从文化遗产到文化资源的转化,而文化遗产转化为文化资源,关键之处在于对文化精神的创新表达。
从传统造物的形状、色彩、纹饰中提取元素,把它凝练为直观鲜明的文化艺术符号,形成具有中国特色的文创产品,是较为常见的设计方式。
比如故宫文创的口红,膏体颜色取自故宫院藏国宝器物,外观取自宫廷绣裳纹饰;敦煌文创的胸章,选用六合莲花等盛唐时期的藻井纹饰。
文创产品的创新设计,不仅__________,而且____________。
比如有的文创产品围绕二十四节气发挥创意,表现人与自然、物候之间的联系;有的文创产品运用“图必有意,意必吉样”的造型语言,表现中国人追求美好生活、积极向上的态度;有的文创产品展视中华悠久历史文化,表现中华文明海纳百川的广阔胸襟。
中华文化保存在典籍文献,遗址文物中,更蕴藏在人们衣食住行用的目常生活里。
文化传统只有存续在生活中,才能不断焕发生机与活力。
过去,不少文博场馆的纪念品远离生活,缺乏创意。
消费者买来后,大多将其置于角落,任其蒙尘。
当下,一系列文创产品从日常生活需要出发进行创意设计:小到胶带,便笺、行李牌,大到公共空间的装饰品;古典的如古器复刻,新颖的有数码周边;时令性的如春茶、月饼、夏季的遮阳帽,冬天的披肩。
2020年北京市海淀区高三年级第二学期期中英语试题
2020年北京市海淀区高三年级第二学期期中练习英语试题本试卷分第I卷(选择题)和第二卷(非选择题)两部分,共150分。
考试时间120分钟。
注意事项:1.答试卷第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案选中涂满涂黑,黑度以盖住框内字母为准。
如需改动,用橡皮擦除干净后再选涂其他答案项。
在试卷上答题无效。
2.答试卷第II卷时,必须用黑色字迹的签字笔按题号顺序答在答题卡上II的答题区域相应位置内,未在对应的答题区域作答或超出答题区域作答不得分。
在试卷上答题无效。
第I卷(选择题,共115分)第一部分:听力理解(共两节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。
每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
1.When will the man meet his uncle?A.At 9:55. B.At 10:05. C.At 10:15.2.What does the woman want to have?A.Ice water B.Coffee C.Tea3.Who was injured in the accident ?A.No one. B.A baby C.Three women4.What is the girl going to do during the weekend?A.See a film B.Make a plan C.Prepare for a test 5.Where are the speakers?A.At a shop B.At a bank. C.At a hotel第二节(共15小题:每小题1.5分,共22.5分)听下面6段对话或独白。
每段对话或独白后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有5秒钟的时间阅读每小题。
2020北京海淀高三(上)期中英语含答案
2020北京海淀高三(上)期中英语2020.11本试卷共10页,100分。
考试时长90分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分:知识运用(共两节,25分)第一节完形填空(共10小题;每小题1分,共10分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题纸上将该项涂黑。
Lesson PlanIt was just an ordinary day. There was the usual 1 as the children greeted each other. I looked over my plan book and I never felt better. It would be a good day and we would 2 a lot. After we settled in for our reading class, I started to check their workbooks.When I came to Troy, he had his head down as he showed his unfinished 3 in front of me. He tried to pull himself back out of my sight as he sat on my right-hand side. 4,I looked at the incomplete work and said, “Troy, this is not finished."He looked up at me with the most pleading eyes I have seen in a child and said, “I couldn't do it last night because my mother is dying." The sobs that followed 5 the entire class.How 6 I was that he was sitting next to me. I took him in my arms and his head rested against my chest. His sobs echoed through the room and tears flowed. The children sat with tear-filled eyes in dead silence. Only Troy's sobs broke the stillness of that morning class. One child 7 for the tissue box while I just pressed his little body closer to my heart.What do I do for a child who is losing his mother? Choking back my tears, I said to the group, "Let's pray for the recovery of his mother." And everyone did so.After some time, Troy looked up at me and said, "I think I will be okay now. "He had exhausted his supply of tears; he released the 8 in his heart. Later that afternoon, Troy's mother died.When I went to the funeral(葬礼),Troy rushed to greet me. He fell into my arms and just rested there awhile. He seemed to gain strength and courage, and then he led me to the coffin.There he was able to look into the face of his mother, to face 9 even though he might never be able to understand the mystery of it.That night I went to bed feeling lucky for the good sense lo 10 my reading plan and to hold the broken heart of a child in my own heart.1. A. Embarrassment B. excitement C. astonishment D. disappointment2. A. accomplish B. demand C. miss D. recall3. A. experiment B. assignment C. document D. argument4. A. Gradually B. Hopefully C. Accidentally D. Naturally5. A. frightened B. annoyed C. shocked D. impressed6. A. glad B. surprised C. proud D. curious7. A. wished B. raced C. prepared D. waited8. A. desire B. power C. burden D. guilt9. A. difficulty B. failure C. death D. sorrow10. A. carry out B. carry on C. set up D. set aside第二节语法填空(共10小题;每小题1.5分,共15分)阅读下列短文,根据短文内容填空。
2020届北京市海淀区高三第一学期期中练习语文试卷
海淀区高三年级第一学期期中练习语文2019.11一、本大题共8小题,共24分阅读下面材料,完成1—8题。
材料一“三山五园”是对三山五园是对北京西郊皇家园林的总称,这种说法出现于清朝中晚期。
“三山五园”包括香山静宜园、玉泉山静明园、万寿山清漪园(颐和园)、畅春园和圆明园。
静宜园位于地势较高的香山,园中建筑因山就势,参差错落,散点式镶嵌在山体之中。
“园林之胜,重在山水。
”水池作为点缀,或出现在殿前以丰富较窄的院落空间,或处于园中以增加园林趣味。
静宜园占地149公顷,1677年成为康熙的行宫,后来虽有添建,但一直保持着非常好的自然生态,深邃优雅。
静明园的个性与静宜园不同。
静明园所在的玉泉山,湖山尺度非常有限,占地仅65公顷。
玉泉山虽因泉水丰沛而得名,但水面并不大,山体狭长,呈南北走向。
在这种地形上如何建设园林呢?建筑要和湖山尺度配合好,建筑群采用散点布局,高低相映。
山顶上的香岩寺和玉峰塔规模不大,山脚下的建筑多一层。
这样就凸显出玉峰塔的高耸。
乾隆非常喜欢玉泉山的风光,亲自为静明园内十六景命名,正殿名为“廓然大公”,后殿名为“涵万象”,意蕴深远。
畅春园位于今北京大学西墙外畅春园宿舍一带,原是明代武清侯李伟修建的私家园林“清华园”,也叫“李园”,康熙时更名为畅春园。
畅春园以水景为主,水面宽阔,“江淮以北亦当第一也”,清朝改建时仍“因水成景”。
畅春园的叠山艺术也堪称一绝,原来的土山和新添建的假山,岗峰连接;加之遍植各色鲜花树木,绿树成荫,给人天人合一之感,是兼有政治和游乐功能的离宫型园林。
被称为“万园之园”的圆明园,既有金碧辉煌的宫殿,也有玲珑剔透的亭台楼阁,又吸取了欧洲的建筑形式,是世界园林的集大成者。
圆明园也是中国古典园林中平地造园的典范,园内步移景易,景观层出不穷,特色之多,首屈一指....。
圆明园占地350公顷,在“三山五园”中规模最大。
有仙境、欧式园林等景观,也有理政、居住、宗教等场所,这些层峦叠嶂....的建筑都是雍正至咸丰五朝皇帝改造的结果,也大多体现出其治国理念。
北京市海淀区2020高三(上)期中英语试卷及答案
北京市海淀区2020⾼三(上)期中英语试卷及答案2020北京海淀⾼三(上)期中英语2020.11本试卷共10页,100分。
考试时长90分钟。
考⽣务必将答案答在答题纸上,在试卷上作答⽆效。
考试结束后,将本试卷和答题纸⼀并交回。
第⼀部分:知识运⽤(共两节,25分)第⼀节完形填空(共10⼩题;每⼩题1分,共10分)阅读下⾯短⽂,掌握其⼤意,从每题所给的A、B、C、D四个选项中,选出最佳选项,并在答题纸上将该项涂⿊。
Lesson PlanIt was just an ordinary day. There was the usual 1 as the children greeted each other. I looked over my plan book and I never felt better. It would be a good day and we would 2 a lot. After we settled in for our reading class, I started to check their workbooks.When I came to Troy, he had his head down as he showed his unfinished 3 in front of me. He tried to pull himself back out of my sight as he sat on my right-hand side. 4,I looked at the incomplete work and said, “Troy, this is not finished."He looked up at me with the most pleading eyes I have seen in a child and said, “I couldn't do it last night because my mother is dying." The sobs that followed 5 the entire class.How 6 I was that he was sitting next to me. I took him in my arms and his head rested against my chest. His sobs echoed through the room and tears flowed. The children sat with tear-filled eyes in dead silence. Only Troy's sobs broke the stillness of that morning class. One child 7 for the tissue box while I just pressed his little body closer to my heart.What do I do for a child who is losing his mother? Choking back my tears, I said to the group, "Let's pray for the recovery of his mother." And everyone did so.After some time, Troy looked up at me and said, "I think I will be okay now. "He had exhausted his supply of tears; he released the 8 in his heart. Later that afternoon, Troy's mother died.When I went to the funeral(葬礼),Troy rushed to greet me. He fell into my arms and just rested there awhile. He seemed to gain strength and courage, and then he led me to the coffin.There he was able to look into the face of his mother, to face 9 even though he might never be able to understand the mystery of it.That night I went to bed feeling lucky for the good sense lo 10 my reading plan and to hold the broken heart of a child in my own heart.1. A. Embarrassment B. excitement C. astonishment D. disappointment2. A. accomplish B. demand C. miss D. recall3. A. experiment B. assignment C. document D. argument4. A. Gradually B. Hopefully C. Accidentally D. Naturally5. A. frightened B. annoyed C. shocked D. impressed6. A. glad B. surprised C. proud D. curious7. A. wished B. raced C. prepared D. waited8. A. desire B. power C. burden D. guilt9. A. difficulty B. failure C. death D. sorrow10. A. carry out B. carry on C. set up D. set aside第⼆节语法填空(共10⼩题;每⼩题1.5分,共15分)阅读下列短⽂,根据短⽂内容填空。
2020北京海淀高三(上)期中物理含答案
2020北京海淀高三(上)期中物 理本试卷共8页,100分。
考试时长90分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
一、本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的。
全部选对的得3分,选不全的得2分,有选错或不答的得0分。
把正确的答案填涂在答题纸上。
1. 如图1所示,用同样大小的力1F 、2F 提一桶水沿水平路面做匀速直线运动。
已知两个力1F 、2F 在同一竖直平面内。
下列说法中正确的是A.两个力间的夹角大些比小些省力B.两个力间的夹角小些比大些省力C.两个力间的夹角变大,1F 、2F 的合力也变大D.两个力间的夹角变大,1F 、2F 的合力保持不变2. 二维运动传感器设计原理如图2甲所示,通过1B 、2B 两个接收器,计算机可以记录各个时刻运动物体A 的位置坐标。
计算机可以根据位置坐标,分别绘出物体A 的水平分速度大小x υ (用虚线表示)和竖直分速度大小y υ (用斜实线表示)随时间变化的-t υ图像,如图2乙所示。
根据题中信息A.可以看出物体A 在竖直方向的分运动是匀加速运动B.可以看出物体A 在水平方向的分运动是匀速运动C.可以求出物体A 在竖直方向的加速度的大小D.无法求出物体A 做平抛运动初速度的大小3. 如图3所示,不可伸长的轻质细绳的一端固定于O点,另一端系一个小球,在O点的正下方钉一个钉子A,小球从右侧某一高度,由静止释放后摆下,不计空气阻力和细绳与钉子相碰时的能量损失。
下列说法中正确的是A.小球摆动过程中,所受合力大小保持不变B.小球在左侧所能达到的最大高度可能大于在右侧释放时的高度C.当细绳与钉子碰后的瞬间,小球的向心加速度突然变小D.钉子的位置越靠近小球,在细绳与钉子相碰时绳就越容易断4. 某同学用如图4所示实验来认识超重和失重现象,先保持手指和钩码静止,感受套在手指上的橡皮筋对手指的压力。
2020年北京市海淀区高三(上)期中数学试卷
高三(上)期中数学试卷题号一 二 三 总分 得分一、选择题(本大题共8小题,共40.0分)1. 已知集合A ={x|x +1≤0},B ={x|x ≥a},若A ∪B =R ,则实数a 的值可以为( )A. 2B. 1C. 0D. −22. 下列函数中,在区间(0,+∞)上不是单调函数的是( )A. y =xB. y =x 2C. y =x +√xD. y =|x −1|3. 已知等差数列{a n }的前n 项和为S n ,若S 3=a 3,且a 3≠0,则S4S 3=( )A. 1B. 53C. 83D. 34. 不等式1x >1成立的一个充分不必要条件是( )A. 0<x <12B. x >1C. 0<x <1D. x <05. 如图,角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,则sin(π2+α)的值为( )A. −35B. 35C. −45D. 456. 在四边形ABCD 中,AB//CD ,设AC ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ (λ,μ∈R).若λ+μ=32,则|CD ⃗⃗⃗⃗⃗||AB⃗⃗⃗⃗⃗⃗ |=( )A. 13B. 12C. 1D. 27. 已知函数f(x)=x 3+x 2−2|x|−k.若存在实数x 0,使得f(−x 0)=−f(x 0)成立,则实数k 的取值范围是( )A. [−1,+∞)B. (−∞,−1]C. [0,+∞)D. (−∞,0]8. 设集合A 是集合N ∗的子集,对于i ∈N ∗,定义φi (A)={1,i ∈A0,i ∉A,给出下列三个结论:①存在N ∗的两个不同子集A ,B ,使得任意i ∈N ∗都满足φi (A ∩B)=0且φi (A ∪B)=1;②任取N∗的两个不同子集A,B,对任意i∈N∗都有φi(A∩B)=φi(A)⋅φi(B);③任取N∗的两个不同子集A,B,对任意i∈N∗都有φi(A∪B)=φi(A)+φi(B)其中,所有正确结论的序号是()A. ①②B. ②③C. ①③D. ①②③二、填空题(本大题共6小题,共30.0分)9.已知向量a⃗=(1,2),b⃗ =(3,x),若a⃗//b⃗ ,则实数x=______ .10.函数f(x)=x−√x−6的零点个数是______.11.已知数列{a n}的前n项和为S n=log2n,则a1=______,a5+a6+a7+a8=______.12.如图,网格纸上小正方形的边长为1.从A,B,C,D四点中任取两个点作为向量b⃗ 的始点和终点,则a⃗⋅b⃗ 的最大值为______.13.已知数列{a n}的通项公式为a n=lnn,若存在p∈R,使得a n≤pn对任意的n∈N∗都成立,则p的取值范围为______.14.已知函数f(x)=√2sinωx,g(x)=√2cosωx,其中ω>0,A,B,C是这两个函数图象的交点,且不共线.①当ω=1时,△ABC面积的最小值为______;②若存在△ABC是等腰直角三角形,则ω的最小值为______.三、解答题(本大题共6小题,共80.0分)15.已知数列{a n}为各项均为正数的等比数列,S n为其前n项和,a2=3,a3+a4=36(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若S n<121,求n的最大值.16.已知函数f(x)=2sinxcos(x+π3)+√32.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若f(x)+m≤0对x∈[0,π2]恒成立,求实数m的取值范围.17.已知函数f(x)=13ax3+x2+bx+c,曲线y=f(x)在(0,f(0))处的切线方程为y= x+1.(Ⅰ)求b,c的值;(Ⅱ)若函数f(x)存在极大值,求a的取值范围.18.在△ABC中,a=7,b=5,c=8.(Ⅰ)求sin A的值;(Ⅱ)若点P为射线AB上的一个动点(与点A不重合),设APPC=k.①求k的取值范围;②直接写出一个k的值,满足:存在两个不同位置的点P,使得APPC=k.19.已知函数f(x)=lnx.e x(Ⅰ)判断函数f(x)在区间(0,1)上的单调性,并说明理由;(Ⅱ)求证:f(x)<1.220.已知集合M⊆N∗,且M中的元素个数n大于等于5.若集合M中存在四个不同的元素a,b,c,d,使得a+b=c+d,则称集合M是“关联的”,并称集合{a,b,c,d}是集合M的“关联子集”;若集合M不存在“关联子集”,则称集合M是“独立的”.(Ⅰ)分别判断集合{2,4,6,8,10}和集合{1,2,3,5,8}是“关联的”还是“独立的”?若是“关联的”,写出其所有的关联子集;(Ⅱ)已知集合{a1,a2,a3,a4,a5}是“关联的”,且任取集合{a i,a j}⊆M,总存在M 的关联子集A,使得{a i,a j}⊆A.若a1<a2<a3<a4<a5,求证:a1,a2,a3,a4,a5是等差数列;(Ⅲ)集合M是“独立的”,求证:存在x∈M,使得x>n2−n+9.4答案和解析1.【答案】D【解析】【分析】本题考查描述法表示集合的定义,以及并集的定义及运算.可以求出A={x|x≤−1},根据A∪B=R即可得出a≤−1,从而得出a的值可以为−2.【解答】解:∵A={x|x≤−1},B={x|x≥a},且A∪B=R,∴a≤−1,∴a的值可以为−2.故选:D.2.【答案】D【解析】【分析】本题主要考查了基本初等函数的单调性的判断,属于基础试题.结合一次函数,二次函数,幂函数的性质可进行判断.【解答】解:由一次函数的性质可知,y=x在区间(0,+∞)上单调递增;由二次函数的性质可知,y=x2在区间(0,+∞)上单调递增;由幂函数的性质可知,y=x+√x在区间(0,+∞)上单调递增;结合一次函数的性质可知,y=|x−1|在(0,1)上单调递减,在(1,+∞)上单调递增.故选:D.3.【答案】C【解析】【分析】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=a3,且a3≠0,∴3a 1+3d =a 1+2d ,化为:−2a 1=d ≠0. ∴S 4S 3=4a 1+4×32d 3a 1+3×22d=23×2a 1+3×(−2a 1)a 1−2a 1=83. 故选:C .4.【答案】A【解析】 【分析】本题考查充分不必要条件的定义,属于基础题. 解出不等式,进而可判断出其一个充分不必要条件. 【解答】解:该不等式的解集为:(0,1),则其一个充分不必要条件可以是:(0,12); 故选:A .5.【答案】B【解析】 【分析】本题主要考查任意角的三角函数的定义,属于基础题. 由题意利用任意角的三角函数的定义,求得sin(π2+α)的值. 【解答】解:角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,则sin(π2+α)=cosα=35,故选:B .6.【答案】B【解析】 【分析】本题考查了向量平行四边形法则、向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于中档题.过C 作CE//AD ,又CD//AB.可得四边形AECD 是平行四边形.AC ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,根据AC ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ (λ,μ∈R).可得μ=1,AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,又λ+μ=32,可得λ=12.即可得出结论.【解答】 解:如图所示,过C 作CE//AD ,又CD//AB . ∴四边形AECD 是平行四边形. ∴AC ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ , 又AC ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ (λ,μ∈R). ∴μ=1,AE⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ , 又λ+μ=32,∴λ=12. 则|CD⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗⃗ |=|AE⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗⃗ |=12.故选:B .7.【答案】A【解析】 【分析】本题考查了函数与方程的应用,考查了转化思想和数形结合思想,属于基础题. 存在实数x 0,使得f(−x 0)=−f(x 0),转化为x 2−2|x|=k 有根,进而转化为y =x 2−2|x|与y =k 的图象有交点. 【解答】解:∵f(x)=x 3+x 2−2|x|−k 且f(−x 0)=−f(x 0),∴−x 03+x 02−2|x 0|−k =−(x 03+x 02−2|x 0|−k)整理得x 02−2|x 0|=k ,∴原题转化为y =x 2−2|x|与y =k 的图象有交点, 画出y =x 2−2|x|的图象如下:x =1时y =−1,由图可知,k ≥−1. 故选A .8.【答案】A【解析】 【分析】本题考查了命题正误的判断,考查了推理能力与计算能力,属于中档题.对题目中给的新定义要充分理解,对于i ∈N ∗,φi (A)=0或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【解答】解:∵对于i ∈N ∗,定义φi (A)={1,i ∈A0,i ∉A,∴①例如A ={正奇数},B ={正偶数},∴A ∩B =⌀,A ∪B =N ∗,∴φi (A ∩B)=0;φi (A ∪B)=1,故①正确;②若φi (A ∩B)=0,则i ∉(A ∩B),则i ∈A 且i ∉B ,或i ∈B 且i ∉A ,或i ∉A 且i ∉B ;∴φi (A)⋅φi (B)=0;若φi (A ∩B)=1,则i ∈(A ∩B),则i ∈A 且i ∈B ;∴φi (A)⋅φi (B)=1;∴任取N ∗的两个不同子集A ,B ,对任意i ∈N ∗都有φi (A ∩B)=φi (A)⋅φi (B);正确,故②正确;③例如:A ={1,2,3},B ={2,3,4},A ∪B ={1,2,3,4},当i =2时,φi (A ∪B)=1;φi (A)=1,φi (B)=1;∴φi (A ∪B)≠φi (A)+φi (B);故③错误;∴所有正确结论的序号是:①②;故选:A.9.【答案】6【解析】【分析】本题考查向量共线,考查计算能力.直接利用向量的共线的充要条件求解即可.【解答】解:由向量a⃗=(1,2),b⃗ =(3,x),若a⃗//b⃗ ,可得x=2×3=6.故答案为:6.10.【答案】1【解析】【分析】本题考查方程的根与函数零点的关系,求函数的零点,就是确定方程的根,也就是求函数的图象与x轴的交点的横坐标.解方程,根据方程的根的个数,即可得出f(x)的零点个数.【解答】解:由题意可知x≥0时,f(x)=x−√x−6=0,可得(√x)2−√x−6=0,解得√x=−2(舍去)或√x=3,∴x=9;函数f(x)=x−√x−6的零点个数是1.故答案为:1.11.【答案】0 ;1【解析】【分析】本题考查数列的前n项和的应用,主要考查学生的运算能力,属于基础题型.直接利用题目所给的数列的前n项和公式求出数列的首项和a5+a6+a7+a8的值.【解答】解:数列{a n}的前n项和为S n=log2n,则a1=S1=log21=0.则a5+a6+a7+a8=S8−S4=log28−log24=1.故答案为:0;1.12.【答案】3【解析】【分析】本题考查向量的数量积与投影的应用,向量的数量积最大,需要两个向量的模以及两个向量的夹角的余弦函数值的乘积取得最大值,转化为向量的投影值即可.【解答】解:由题意可知:a⃗⋅b⃗ =|a⃗|⋅|b⃗ |cos<a⃗,b⃗ >=|b⃗ |cos<a⃗,b⃗ >,其几何意义是b⃗ 在a⃗方向上的投影值,由图形可知:向量b⃗ =AC⃗⃗⃗⃗⃗ 时,投影值最大,且最大值为3.故答案为:3.13.【答案】[ln33,+∞)【解析】【分析】本题考查的知识要点:利用函数的导数求出函数的单调区间和最值,恒成立问题的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.直接利用数列的关系式,进一步进行转换,再利用函数的导数的应用求出函数的单调区间和最值,进一步利用函数的恒成立问题的应用求出结果.【解答】解:数列{a n}的通项公式为a n=lnn,若存在p∈R,使得a n≤pn对任意的n∈N∗都成立,故p≥(lnnn)max,设f(x)=lnxx ,则f′(x)=1x⋅x−lnxx2,令f′(x)=1−lnxx2=0,解得x=e,0<x<e时,f′(x)>0,x>e时,f′(x)<0,故函数的单调增区间为(0,e),函数的减区间为(e,+∞),所以函数在x=e时函数取最大值,由于n ∈N ∗,当n =3时函数值为ln33,当n =2时函数值为ln22,易知ln33>ln22,所以p 的取值范围是[ln33,+∞).故答案为:[ln33,+∞).14.【答案】2π ;π2【解析】 【分析】本题考查的知识要点:三角函数的图象和性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于一般题型.①直接利用函数的图象和性质的应用求出三角形的底和高,进一步求出三角形的面积. ②利用等腰直角三角形的性质的应用求出ω的最小值. 【解答】解:①当ω=1时,f(x)=√2sinx ,g(x)=√2cosx ,当△ABC 面积最小时, 如图所示:所以第一象限的两个交点间的距离为一个周期2π,△ABC 的高为√2⋅√22+√22⋅√2=2.所以:S △ABC =12⋅2π⋅2=2π. 当ω=1时,△ABC 面积的最小值为2π;②若存在△ABC 是等腰直角三角形,利用直角三角形斜边的中线等于斜边的一半, 则2πω=2⋅(√2⋅√22+√2⋅√22), 解得ω的最小值为π2. 故答案为:2π;π2.15.【答案】解:(Ⅰ)设等比数列{a n }的公比为q ,q >0,∵a2=3,a3+a4=36,∴3(q+q2)=36,解得q=3.又3a1=3,解得a1=1,∴a n=3n−1.(Ⅱ)S n=3n−13−1<121,3n<243,解得:n<5.∴满足S n<121,n的最大值为4.【解析】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.(Ⅰ)设等比数列{a n}的公比为q,由a2=3,a3+a4=36,可得3(q+q2)=36,解得q.又3a1=3,解得a1,进而求得数列{a n}的通项公式.(Ⅱ)S n=3n−13−1<121,即可得出结论.16.【答案】解:(Ⅰ)函数f(x)=2sinxcos(x+π3)+√32.=2sinx(12cosx−√32sinx)+√32=sinxcosx−√3sin2x+√3 2=12sin2x+√32cos2x=sin(2x+π3).所以函数的最小正周期为T=2π2=π.(Ⅱ)f(x)+m≤0对x∈[0,π2]恒成立,所以f(x)max+m≤0,由于x∈[0,π2],所以2x+π3∈[π3,4π3].当2x+π3=π2时,即x=π12时,m+1≤0时,实数m的取值范围为(−∞,−1].【解析】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(Ⅰ)首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅱ)利用函数的恒成立问题的应用和函数的最值的应用求出结果.17.【答案】解:(Ⅰ)f ′(x)=ax 2+2x +b ,∵曲线y =f(x)在(0,f(0))处的切线方程为y =x +1, ∴{f′(0)=1f(0)=1,解得:{b =1c =1; (Ⅱ)法一:由(Ⅰ)f(x)=13ax 3+x 2+x +1,①当a =0时,f(x)=x 2+x +1不存在极大值,不合题意, ②当a >0时,f ′(x)=ax 2+2x +1, 令ax 2+2x +1=0,(i)当△=4−4a ≤0即a ≥1时,不合题意, (ii)当△=4−4a >0即0<a <1时,方程ax 2+2x +1=0有2个不相等的实数根, 设方程两根为x 1,x 2,且x 1<x 2, x ,f ′(x),f(x)的变化如下:故f(x 1)为极大值;③当a <0时,△=4−4a >0恒成立, 设方程两根为x 1,x 2且x 1<x 2, x ,f ′(x),f(x)的变化如下:故f(x 2)为极大值,综上,若函数f(x)存在极大值, 则a 的取值范围是(−∞,0)∪(0,1). 法二:f ′(x)=ax 2+2x +1, 若函数f(x)存在极大值,则{a ≠0△=4−4a >0,解得:a <1且a ≠0, 故a 的取值范围是(−∞,0)∪(0,1).【解析】本题考查了导数的几何意义,考查运用导数研究函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是中档题.(Ⅰ)求出函数的导数,结合切线方程得到关于b ,c 的方程组,解出即可;(Ⅱ)法一:求出函数的导数,通过讨论a 的范围,求出函数的单调区间,结合函数存在极大值,确定a 的范围即可,法二:结合二次函数以及极大值的定义判断即可.18.【答案】解:(Ⅰ)在△ABC 中,a =7,b =5,c =8.利用余弦定理cosA =b 2+c 2−a 22bc=12,由于A ∈(0,π),所以sinA =√1−(12)2=√32;(Ⅱ)①由APPC =k .根据正弦定理CPsinA =APsin∠ACP , 所以k =APCP =sin∠ACP sin∠A =sin∠ACPsin π3=2√33sin∠ACP , 由于点P 为射线AB 上的一个动点(与点A 不重合), 所以∠ACP ∈(0,2π3),所以k 的取值范围为(0,2√33]. ②由于P 为射线AB 上的一个动点,所以k 的取值只要在区间(1,2√33)上即可, 故k =32时,满足条件.【解析】本题考查的知识要点:正弦定理、余弦定理的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(Ⅰ)直接利用余弦定理的应用求出A 的余弦值,进一步求出正弦值. (Ⅱ)①直接利用正弦定理和关系式的变换的应用求出k 的取值范围. ②根据共线的条件求出在区间(1,2√33)上即可.19.【答案】解:(Ⅰ)函数f(x)在区间(0,1)上是单调递增函数.理由如下:由f(x)=lnxe x ,得f′(x)=1x−lnxe x;因为x∈(0,1),所以1x>0,lnx<0,因此1x−lnx>0.又因为e x>0,所以f′(x)>0恒成立.所以f(x)在区间(0,1)上是单调递增函数.(Ⅱ)证明“f(x)<12”等价于证明“f(x)max<12”.由题意可得,x∈(0,+∞),因为f′(x)=1x−lnxe x,再令g(x)=1x−lnx,则g′(x)=−1x2−1x<0.所以g(x)在(0,+∞)上单调递减.因为g(1)=1>0,g(e)=1e−1<0,所以存在唯一实数x0,使得g(x0)=0,其中x0∈(1,e).x,f′(x),f(x)变化如下表所示:所以f(x0)为函数f(x)的极大值.因为函数f(x)在(0,+∞)有唯一的极大值.所以f(x)max=f(x0)=lnx0e x0.因为1x0=lnx0,所以f(x)max=f(x0)=lnx0e x0=1x0⋅e x0.设m(x)=xe x,x∈(1,e),m′(x)=(x+1)e x>0,故m(x)在(1,e)上单调递增,故m(x)>m(1)=e.因为x0∈(1,e),所以f(x)max=1x0e x0<1e<12.所以f(x)<12.【解析】本题考查了函数单调性求法,函数极值与最值的求法,属于导数在函数中综合应用,属于综合题.(Ⅰ)对f(x)求导,判断f′(x)的符号,即可得函数的单调性;(Ⅱ)证明“f(x)<12”等价于证明“f(x)max<12”.求f(x)的最大值即可证明.20.【答案】解:(Ⅰ){2,4,6,8,10}是“关联的”,关联子集有{2,4,6,8},{4,6,8,10},{2,4,8,10}.{1,2,3,5,8}是“独立的”.(Ⅱ)记集合M的含有四个元素的集合分别为:A1={a2,a3,a4,a5},A2={a1,a3,a4,a5},A3={a1,a2,a4,a5},A4={a1,a2,a3,a5},A5={a1,a2,a3,a4},所以,M至多有5个“关联子集”,若A2={a1,a3,a4,a5}为“关联子集”,则A1={a2,a3,a4,a5},不是“关联子集”,否则a1=a2,同理可得若A2={a1,a3,a4,a5}为“关联子集”,则A3,A4不是“关联子集”,所以集合M没有同时含有元素a2,a5的“关联子集”,与已知矛盾.所以A2={a1,a3,a4,a5}一定不是“关联子集”,同理A4={a1,a2,a3,a5}一定不是“关联子集”,所以集合M的“关联子集”至多为A1,A3,A5,若A1不是“关联子集”,则此时集合M一定不含有元素a3,a5的“关联子集”,与已知矛盾;若A3不是“关联子集”,则此时集合M一定不含有元素a1,a5的“关联子集”,与已知矛盾;若A5不是“关联子集”,则此时集合M一定不含有元素a1,a3的“关联子集”,与已知矛盾;所以A1,A3,A5都是“关联子集”,所以有a2+a5=a3+a4,即a5−a4=a3−a2;a1+a5=a2+a4,即a5−a4=a2−a1;a1+a4=a2+a3,即a4−a3=a2−a1;所以a5−a4=a4−a3=a3−a2=a2−a1,所以a1,a2,a3,a4,a5是等差数列.(Ⅲ)不妨设集合M={a1,a2,…,a n}(n≥5),a i∈N∗,i=1,2,…,n,且a1<a2<⋯<a n,记T ={t|t =a i +a j ,1≤i <j ≤n,i ,j ∈N ∗},因为集合M 是“独立的”的,所以容易知道T 中恰好有C n2=n(n−1)2个元素,假设结论错误,即不存在x ∈M ,使得x >n 2−n+94,所以任取x ∈M ,x ≤n 2−n+94,因为x ∈N ∗,所以x ≤n 2−n+84,所以a i +a j ≤n 2−n+84+n 2−n+84−1=n 2−n+82−1=n 2−n 2+3,所以任取t ∈T ,t ≤n 2−n 2+3,任取t ∈T ,t ≥1+2=3,所以T ⊆{3,4,…,n 2−n 2+3},且T 中含有C n2=n(n−1)2个元素,(i)若3∈T ,则必有a 1=1,a 2=2成立,因为n ≥5,所以一定有a n −a n−1>a 2−a 1成立,所以a n −a n−1≥2, 所以a n +a n−1≤n 2−n+84+n 2−n+84−2=n 2−n 2+2,所以T ={t|3≤t ≤n 2−n 2+2,t ∈N ∗},所以a n =n 2−n+84,a n−1=n 2−n+84−2,因为4∈T ,所以a 3=3,所以有a n +a 1=a n−1+a 3,矛盾; (ii)若3∉T ,则T ⊆{4,5,…,n 2−n 2+3},而T 中含有C n 2=n(n−1)2个元素,所以T ={t|4≤t ≤n 2−n 2+3,t ∈N ∗}所以a n =n 2−n+84,a n−1=n 2−n+84−1,因为4∈T ,所以a 1=1,a 2=3, 因为n 2−n 2+2∈T ,所以n 2−n 2+2=a n−2+a n ,所以a n−2=n 2−n+84−2,所以a n +a 1=a n−2+a 3,矛盾,所以命题成立.【解析】本题属于信息题,考查接受新知识,理解新知识,运用新知识的能力,反证法,等差数列,组合,属于高难题; (Ⅰ)根据题意即可求解;(Ⅱ)根据题意,A 1={a 2,a 3,a 4,a 5},A 2={a 1,a 3,a 4,a 5},A 3={a 1,a 2,a 4,a 5},A 4={a 1,a 2,a 3,a 5},A 5={a 1,a 2,a 3,a 4},进而利用反证法和等差数列的定义求解; (Ⅲ)不妨设集合M ={a 1,a 2,…,a n }(n ≥5),a i ∈N ∗,i =1,2,…,n ,且a 1<a 2<⋯<a n ,记T ={t|t =a i +a j ,1≤t <j ≤n,i ,j ∈N ∗},进而利用反证法求解;。
2020届海淀区高三期中数学试卷及答案
海淀区高三年级第一学期期中练习数 学(理科) 2013.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{1,1,2}A =-,{|10}B x x =+≥,则A B =( A )A. {1,1,2}-B. {1,2}C. {1,2}-D. {2}2. 下列函数中,值域为(0,)+∞的函数是( C )A. ()f x =B. ()ln f x x =C. ()2x f x =D. ()tan f x x =3. 在ABC ∆中,若tan 2A =-,则cos A =( B )B.D. 4. 在平面直角坐标系xOy 中,已知点(0,0),(0,1),(1,2),(,0)O A B C m -,若//OB AC ,则实数m 的值为( C )A. 2-B. 12-C. 12D. 25.若a ∈R ,则“2a a >”是“1a >”的( B )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知数列{}n a 的通项公式2(313)nn a n =-,则数列的前n 项和n S 的最小值是( B ) A. 3SB. 4SC. 5SD. 6S7. 已知0a >,函数2πsin ,[1,0),()21,[0,),x x f x ax ax x ⎧∈-⎪=⎨⎪++∈+∞⎩若11()32f t ->-,则实数t 的取值范围为( D ) A. 2[,0)3- B. [1,0)- C. [2,3) D. (0,)+∞8. 已知函数sin cos ()sin cos x xf x x x+=,在下列给出结论中:① π是()f x 的一个周期;② ()f x 的图象关于直线x 4π=对称; ③ ()f x 在(,0)2π-上单调递减. 其中,正确结论的个数为( C ) A. 0个B.1个C. 2个D. 3个二、填空题:本大题共6小题,每小题5分,共30分。
海淀区2020届高三第二学期期中英语试题
海淀区2020届高三第二学期期中英语试题本试卷共 10 页,120 分。
考试时长 100 分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分:知识运用(共两节,45 分)第一节语法填空(共 10 小题;每小题 1.5 分,共 15 分)阅读下列短文,根据短文内容填空。
在未给提示词的空白处仅填写 1 个适当的单词,在给出提示词的空白处用括号内所给词的正确形式填空。
AAt 8, I started taking art lessons 1 (improve) my painting skills. However, later, I found that I focused too much on mastering different techniques. Eventually, I became more distressed when my expectations weren't matched. So, in the 11th Grade, I returned to the basics. On 2 sketchbook I forced myself to draw whatever interested me. Over time, I have been released from the tight control. I have learned that a good painting is not about having perfect technique. In fact, all I need to do is trust my 3 (create) talents and find moments of joy in life.BIn recent years, trampolining (蹦床)has become a new craze among Chinese youths. Short videos 4 (show) people's excitement about jumping back and forth on the colourful trampolines are regularly uploaded to social media. Most videos feature teenagers, but adults too have jumped on the trend, hoping to relive their childhood. Compared with soccer, basketball, tennis or any other competitive sports,5 various injuries occur from time to time, trampolining is relatively6 (safe). However, preparation and safety always come first. You must do warm-up exercises before playing and you can't lose concentration during the movements.CA news report shows that China's urban pet consumer market 7 (expect) to break through the 200 billion yuan threshold this year. Young people in big cities arethe main contributors. Nowadays, with the cost of living rising, young people 8 (suffer) from greater loneliness and pressure. They are busy working all day in a competitive environment, leaving little time for fun and friends. That may explain9 more and more young people are choosing to keep pets 10companionship. Apart from relieving loneliness, many scientific studies have shownthat keeping a pet reduces stress and may even improve overall health.第二节完形填空(共20 小题;每小题L 5 分,共30 分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D 四个选项中,选出最佳选项,并在答题纸上将该项涂黑。
2020届北京市海淀区高三上学期期中数学试题(解析版)
北京市海淀区高三上学期期中数学试题一、单选题1.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =U ,则实数a 的值可以为( ) A .2 B .1C .0D .2-【答案】D【解析】由题意可得{|1}A x x =≤-,根据A B R =U ,即可得出1a ≤-,从而求出结果. 【详解】{|},1{|}A x x B x x a =≤-=≥Q ,且A B R =U ,1a ∴≤-,∴a 的值可以为2-. 故选:D . 【点睛】考查描述法表示集合的定义,以及并集的定义及运算. 2.下列函数值中,在区间(0,)+∞上不是..单调函数的是( )A .y x =B .2y x =C .y x =D .1y x =-【答案】D【解析】结合一次函数,二次函数,幂函数的性质可进行判断. 【详解】由一次函数的性质可知,y x =在区间(0,)+∞上单调递增; 由二次函数的性质可知,2y x =在区间(0,)+∞上单调递增; 由幂函数的性质可知,y x =+(0,)+∞上单调递增;结合一次函数的性质可知,1y x =-在()0,1上单调递减,在()1,+∞ 上单调递增. 故选:D . 【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题. 3.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43S S =( ) A .1 B .53C .83D .3【答案】C【解析】利用等差数列的通项公式与求和公式即可得出结果. 【详解】设等差数列{}n a 的公差为d ,33S a =Q ,且30a ≠,11332a d a d ∴+=+,可得120a d -=≠.∴()11143111434232282 3232332a da a S S a a a d ⨯++⨯-==⨯=⨯-+. 故选:C . 【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.4.不等式11x >成立的一个充分不必要条件是( ) A .102x << B .1x > C .01x <<D .0x <【答案】A【解析】解出不等式,进而可判断出其一个充分不必要条件. 【详解】 不等式11x >的解集为()0,1,则其一个充分不必要条件可以是10,2⎛⎫⎪⎝⎭; 故选:A . 【点睛】本题考查了充分、必要条件的判断与应用,属于基础题.5.如图,角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,则sin()2απ+的值为( )A .35-B .35C .45-D .45【答案】B【解析】由题意利用任意角的三角函数的定义,求得sin()2απ+的值. 【详解】角α以Ox 为始边,它的终边与单位圆O 相交于点P ,且点P 的横坐标为35,所以3cos 5α=则sin()3cos 52παα==+; 故选:B . 【点睛】本题主要考查任意角的三角函数的定义,属于基础题.6.在四边形ABCD 中,//AB CD ,设(,)AC AB AD R λμλμ=+∈u u u r u u u r u u u r .若32λμ+=,则=CDABu u u r u u u r ( ) A .13B .12C .1D .2【答案】B【解析】作出草图,过C 作//CE AD ,又//CD AB .可得四边形AECD 是平行四边形. AC AE AD =+u u u r u u u r u u u r,根据() ,AC AB AD R λμλμ+∈u u u r u u u r u u u r =.可得1,AE AB μλ==u u u r u u u r ,又3 2λμ+=,可得12λ=,据此即可得出结果.【详解】如图所示,过C作//CE AD,又//CD AB.∴四边形AECD是平行四边形.AC AE AD∴=+u u u r u u u r u u u r,又(),AC AB AD Rλμλμ+∈u u u r u u u r u u u r=.1,AE ABμλ∴==u u u r u u u r,又3122λμλ+=∴=,,则1==2CD AEAB ABu u u r u u u ru u u r.故选:B.【点睛】本题考查了向量平行四边形法则、向量共线定理、平面向量基本定理、方程思想方法,考查了推理能力与计算能力,属于中档题.7.已知函数32()2f x x x x k=+--.若存在实数0x,使得00()()f x f x-=-成立,则实数k的取值范围是()A.[1,)-+∞B.(,1]-∞-C.[0,)+∞D.(,0]-∞【答案】A【解析】根据题意将存在实数x,使得00()()f x f x-=-成立转化为()()00f x f x-=-有根,再根据方程变形可得,原问题转化为22x x k-=有根,进而转化为22y x x=-与y k=的图象有交点,根据数形结合即可求出结果.【详解】∵32()2f x x x x k =+--且00()()f x f x -=-,323222x x x k x x x k ∴-+--=-+--() 整理得22x x k -= ,∴原问题转化为22y x x =-与y k =的图象有交点, 画出22y x x =-的图象如下:当1x =时,1y =-,由图可知,1k ≥-. 故选:A . 【点睛】本题考查了转化思想和数形结合思想,属于基础题.8.设集合A 是集合*N 的子集,对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ∈N 都满足()0i A B ϕ=I 且()1i A B ϕ=U ;②任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i A B ϕ=I ()i A ϕg ()i B ϕ;③任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i A B ϕ=U ()+i A ϕ()i B ϕ;其中,所有正确结论的序号是( )A .①②B .②③C .①③D .①②③【答案】A【解析】根据题目中给的新定义,对于*,0i i N Aϕ∈=()或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i Aϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*A B A B N ∴=∅=I U ,()()01i i A B A B ϕϕ∴==I U ;,故①正确;对于②,若()0i A B ϕ=I ,则()i A B ∉I ,则i A ∈且i B ∉,或i B ∈且i A ∉,或i A ∉且i B ∉;()()0i i A B ϕϕ∴⋅=;若()1i A B ϕ=I ,则()i A B ∈I ,则i A ∈且i B ∈; ()()1i i A B ϕϕ∴⋅=;∴任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i i A B Ai B ϕϕϕ=⋅I ()();正确,故②正确;对于③,例如:{}{}{}1232341234A B A B ===U ,,,,,,,,,,当2i =时,1i A B ϕ=U ();()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+U ; 故③错误;∴所有正确结论的序号是:①②; 故选:A . 【点睛】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、填空题9.已知向量()1,2,(3,)a b t ==r r ,且//a b r r,则t = _____ 【答案】6【解析】直接利用向量的共线的充要条件求解即可. 【详解】由向量()()1,2, 3,a b x ==r r ,若 //a b r r,可得236x =⨯=. 故答案为:6.【点睛】本题考查平行向量坐标运算公式的应用,考查计算能力.10.函数()6f x x =的零点个数是________ 【答案】1【解析】首先求出函数()f x 的定义域为{}|0x x ≥,将原问题转化为260=,解方程,即可得出()f x 的零点个数.【详解】由题意可知()f x 的定义域为{}|0x x ≥,令()60f x x =-=,可得260-=,2=-(舍去)或3=,9x ∴=;所以函数()6f x x =的零点个数为1个. 故答案为:1. 【点睛】本题把二次函数与二次方程有机的结合来,由方程的根与函数零点的关系可知,求方程的根,就是确定函数的零点.11.已知数列{}n a 的前n 项和为2log n S n =,则1a =____,5678a a a a +++=_____ 【答案】0 1【解析】直接利用数列的递推关系式11n nn S a S S -⎧=⎨-⎩12n n =≥,求出数列的首项和5678a a a a +++的值.【详解】数列{}n a 的前n 项和为2log n S n =, 则112log 10a S ===; 又567884567822,log 8log 41a a a a S S a a a a +++=-∴+++=-=; 故答案为:0,1. 【点睛】本题考查了数列的数列的递推关系式11n nn S a S S -⎧=⎨-⎩12n n =≥的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.如图,网格纸上小正方形的边长为1.从,,,A B C D 四点中任取两个点作为向量b r的始点和终点,则a b ⋅r r的最大值为____________【答案】3【解析】由图可知,要使a b ⋅r r 取到最大值,即要求向量b r 在向量a r上的投影最大,然后再根据图形即可求出结果. 【详解】由题意可知:则 cos cos ,a b a b a b b a b ⋅=⋅<⋅>=<>r r r r r r r r r,所以要使a b ⋅r r 取到最大值,即要求向量b r 在向量a r上的投影最大, 由图形可知:当向量b AC =r u u u r 时,向量b r 在向量a r上的投影最大,即cos ,=1010a b b a b ⋅=<>r r r r r 即a b ⋅r r的最大值为3.故答案为:3. 【点睛】本题考查向量的数量积几何意义的应用,考查数形结合以及计算能力.13.已知数列{}n a 的通项公式为ln n a n =,若存在p R ∈,使得n a pn ≤对任意*n N ∈都成立,则p 的取值范围为__________ 【答案】ln 3,3⎡⎫+∞⎪⎢⎣⎭【解析】根据题意,利用数列的关系式,进一步进行转换,再利用函数的导数的应用求出函数的单调区间和最值,进一步利用函数的恒成立问题的应用求出结果. 【详解】数列{}n a 的通项公式为ln n a n =,若存在p R ∈,使得n a pn ≤对任意的*n N ∈都成立, 则maxln n p n ⎛⎫⎪⎝⎭≥, 设()ln x f x x=,则()21ln x xx f x x⋅-'= ,令()21ln 0xf x x-'==,解得x e =, 所以函数的单调增区间为()0,e ,函数的减区间为(),e +∞, 所以函数在x e =时函数取最大值, 由于n N ∈,所以当3n =时函数最大值为ln 33. 所以p 的取值范围是ln 3,3⎡⎫+∞⎪⎢⎣⎭. 故答案为:ln 3,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题主要考查了利用函数的导数求出函数的单调区间和最值,恒成立问题的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.14.已知函数(),()f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图像的交点,且不共线.①当1ω=时,ABC ∆面积的最小值为___________;②若存在ABC ∆是等腰直角三角形,则ω的最小值为__________.【答案】2π2π【解析】①利用函数的图象和性质的应用求出三角形的底和高,进一步求出三角形的面积;②利用等腰直角三角形的性质的应用求出ω的最小值. 【详解】函数(),()f x x g x x ωω==,其中0>ω,,,A B C 是这两个函数图象的交点,当1ω=时,()2sin ,()2cos f x x g x x ωω==. 所以函数的交点间的距离为一个周期2π,高为22 22222⋅+⋅=. 所以:()121122ABC S ππ∆⋅⋅+==. 如图所示:①当1ω=时,ABC ∆面积的最小值为2π;②若存在ABC ∆是等腰直角三角形,利用直角三角形斜边的中线等于斜边的一半,则222222πω⎭⋅=, 解得ω的最小值为 2π. 故答案为:2π, 2π. 【点睛】本题主要考查了三角函数的图象和性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.三、解答题15.已知数列{}n a 为各项均未正数的等比数列,n S 为其n 前项和,23a =,3436a a +=.()1求数列{}n a 的通项公式; ()2若121nS<,求n 的最大值.【答案】()113-=n n a ;()2 4【解析】(1)设等比数列{}n a 的公比为q ,由2343,36a a a =+=,可得123113,36.a q a q a q =⎧⎨+=⎩,即可求出结果. (2)3112131n n S -=<- ,即可得出结论.【详解】解:()1在等比数列{}n a 中,设{}n a 公比为q . 因为2343,36a a a =+=所以123113,36.a q a q a q =⎧⎨+=⎩ 所以23336q q +=.即2120q q +-=. 则3q =或4q =-. 因为0n a >, 所以0q >, 所以3q =. 因为213a a q ==, 所以11a =.所以数列{}n a 的通项公式1113n n n a a q --==()2在等比数列{}n a 中,因为()()1111nn a q S q q-=?-所以()13131132n nn S -==--因为121n S <, 所以()1311212nn S =-<. 所以3243n <. 所以5n <.因为*n N ∈.所以4n ≤.即n 的最大值为4. 【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.16.已知函数π()=2sin cos()3f x x x ++.()1求函数()f x 的最小正周期; ()2若()0f x m +≤对π[0,]2x ∈恒成立,求实数m 的取值范围. 【答案】()1π;()2(,1]-∞-【解析】(1)首先利用三角函数关系式的恒等变换,把函数的关系式的变形成正弦型函数,进一步求出函数的最小正周期.(2)利用函数的恒成立问题的应用和函数的最值的应用求出结果. 【详解】解:()1因为()2sin cos 32f x x x π⎛⎫=++ ⎪⎝⎭2sin cos cos sin sin 33x x x ππ⎛⎫=-+ ⎪⎝⎭12sin cos 2x x x ⎛⎫=-+ ⎪ ⎪⎝⎭2sin cos x x x =1sin 2cos 222x x =+ sin 23x π⎛⎫=+ ⎪⎝⎭所以()f x 的最小正周期为22T ππ== ()2“()0f x m +≤对0,2x π⎡⎤∈⎢⎥⎣⎦恒成立”等价于“()max 0f x m +≤”因为0,2x π⎡⎤∈⎢⎥⎣⎦所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦当232x ππ+=,即12x π=时()f x 的最大值为112f π⎛⎫= ⎪⎝⎭.所以10m +≤,所以实数m 的取值范围为(,1]-∞-. 【点睛】本题考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 17.已知函数321()3f x ax x bx c =+++,曲线()y f x =在(0,(0))f 处的切线方程为1y x =+()1求,b c 的值;()2若函数()f x 存在极大值,求a 的取值范围.【答案】()111b c =⎧⎨=⎩;()2()(),00,1-∞⋃ 【解析】(1)求出函数的导数,结合切线方程得到关于,b c 的方程组,解出即可; (2)求出函数的导数,通过讨论a 的范围,结合二次函数,求出函数的单调区间,结合函数的存在极大值,确定a 的范围即可. 【详解】解:()1()2'2f x ax x b =++因为()f x 在点()()0,0f 处的切线方程为1y x =+,所以()()0101f f ⎧=⎪⎨='⎪⎩解得11b c =⎧⎨=⎩()2()32113f x ax x x =+++,①当0a =时,()21f x x x =++不存在极大值,不符合题意.②当0a >时,()221f x ax x =++.令2210ax x ++=.(i )当440a =-≤V ,即1a ≥时,不符合题意.(ii )当440a =->V,即01a <<时,方程2210ax x ++=有两个不相等的实数根. 设方程两个根为12,x x ,且12x x <.()(),,x f x f x '的变化如表所示:所以()1f x 为极大值.③当0a <时,440a =->V恒成立.设方程两个根为12,x x ,且12x x <. ()(),,x f x f x '的变化如表所示:所以,()2f x 为极大值.综上,若函数()f x 存在极大值,a 的取值范围为()(),00,1-∞⋃. 【点睛】本题考查了切线方程问题,导数在函数的单调性和极值问题中的应用,考查分类讨论思想,转化思想等数学思想,是一道综合题. 18.在ABC ∆中,7,5,8a b c ===.()1求sin A 的值;()2若点P 为射线AB 上的一个动点(与点A 不重合),设APk PC=. ①求k 的取值范围;②直接写出一个k 的值,满足:存在两个不同位置的点P ,使得APk PC=.【答案】()1()2①⎛ ⎝⎦;②答案不唯一,取值在区间⎛ ⎝⎭上均正确 【解析】(1)利用余弦定理的应用求出A 的余弦值,进一步求出正弦值; (2)①直接利用正弦定理和关系式的变换的应用求出k 的取值范围;②根据共线的条件求出在区间1,3⎛⎫⎪ ⎪⎝⎭上即可【详解】解:()1在ABC V 中,7,5,8,a b c ===根据余弦定理2222b c a cosA bc +-=所以2225871cos 2582A +-==⨯⨯因为()0,A π∈,所以sinA ==()2①在ABC V 中,根据正弦定理,得sin sin CP APA ACP =∠sin sin sin sin3AP ACP ACP k ACPPC A π∠∠====∠ 因为点P 为射线AB 上一动点, 所以20,3ACR π⎛⎫∠∈ ⎪⎝⎭所以k的取值范围为⎛ ⎝⎦②答案不唯一.取值在区间⎛ ⎝⎭上均正确.【点睛】本题主要考查了正弦定理余弦定理和三角形面积公式的应用,考查学生的运算能力和转换能力及思维能力,属于基础题型. 19.已知函数ln ()xx f x e =. ()1判断函数()f x 在区间(0)1,上的单调性,并说明理由; ()2求证:1()2f x <.【答案】()1单调递增,理由见解析;()2证明见解析【解析】(1)因为()0,1x ∈,对()f x 求导,可证()0f x '>恒成立,即可证明结果; (2)证明“()12f x <”等价于证明“()max 12f x <”.求()f x 的最大值即可证明.【详解】()1函数()f x 在区间()0,1上是单调递增函数.理由如下:由()x lnx f x e=,得()1xlnxx f x e -'= 因为()0,1x ∈,所以11,ln 0x x ><. 因此10lnx x->.又因为0x e >, 所以()0f x '>恒成立.所以()f x 在区间()0,1上是单调递增函数.()2证明“()12f x <”等价于证明“()max 12f x <”由题意可得,(0,)x ∈+∞.因为()1xlnxx f x e -'=令()1lnx xg x -=,则()2110g x x x '=--<.所以()g x 在()0,∞+上单调递减 因为()()1110,10g g e e=>=-<, 所以存在唯一实数0x ,使得()00g x =,其中()01,x e ∈.()(),, x f x f x '的变化如表所示:所以()0f x 为函数()f x 的极大值. 因为函数()f x 在(0,)+∞有唯一的极大值. 所以()()00max ln ox x f x f x e ==因为001lnx x =,所以()()000max 0ln 1o x x x f x f x e x e === 因为()01,x e ∈ 所以()0max 01112x f x x e e =<< 所以()12f x < 【点睛】本题主要考查了导数在函数单调性中的应用,以及利用导数求函数极值与最值,熟练掌握导数的相关性质是解题的关键,本题属于综合题.20.已知集合*M N ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a b c d ,,,,使得a b c d +=+,则称集合M 是“关联的”,并称集合{},,,a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.()1分别判断集合{}2,4,6,8,10和集合{}12,3,5,8,是“关联的”还是“独立的”?若是“关联的”,写出其所有..的关联子集; ()2已知集合{}12345,,,,a a a a a 是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的关联子集A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:12345,,,,a a a a a 是等差数列;()3集合M 是“独立的”,求证:存在x M ∈,使得294n n x -+>.【答案】()1{}2,4,6,8,10是关联的,关联子集有{}{}{}2,4,6,84,6,8,102,4,8,10,,;{}1,2,3,5,8是独立的;()2证明见解析; ()3证明见解析【解析】(1)根据题中所给的新定义,即可求解;(2)根据题意,{}12345,,,A a a a a =,{}21345 ,,,A a a a a =,{}31245 ,,,A a a a a =,{}41235 ,,,A a a a a =, {}51234 ,,,A a a a a =,进而利用反证法求解;(3)不妨设集合{}12,,(),5n M a a a n =⋅⋅⋅≥,*,1,2,...,i a N i n ∈=,且12...n a a a <<<.记{}*,1,i j T t t a a i j j N ==+<<∈,进而利用反证法求解;【详解】解:()1{}2,4,6,8,10是“关联的”关联子集有{}{}{}2,4,6,84,6,8,102,4,8,10,,;{}1,2,3,5,8是“独立的”()2记集合M 的含有四个元素的集合分别为:{}12345,,,A a a a a =,{}21345 ,,,A a a a a =,{}31245 ,,,A a a a a =,{}41235 ,,,A a a a a =, {}51234 ,,,A a a a a =.所以,M 至多有5个“关联子集”.若{}21345,,,A a a a a =为“关联子集”,则{}12345,,,A a a a a =不是 “关联子集”,否则12a a =同理可得若{}21345,,,A a a a a =为“关联子集”,则34,A A 不是 “关联子集”. 所以集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾.所以{}21345,,,A a a a a =一定不是“关联子集” 同理{}41235,,,A a a a a =一定不是“关联子集”. 所以集合M 的“关联子集”至多为135,,A A A .若1A 不是“关联子集”,则此时集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾;若3A 不是“关联子集”,则此时集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾;若5A 不是“关联子集”,则此时集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾;所以135,,A A A 都是“关联子集”所以有2534a a a a +=+,即5432a a a a -=-1524a a a a +=+,即5421a a a a -=-.1423a a a a +=+,即4321=a a a a --,所以54433221a a a a a a a a -=-=-=-. 所以12345,,,,a a a a a 是等差数列.()3不妨设集合{}12,,(),5n M a a a n =⋅⋅⋅≥,*,1,2,...,i a N i n ∈=,且12...n a a a <<<. 记{}*,1,i j T t t a a i j j N==+<<∈.因为集合M 是“独立的”的,所以容易知道T 中恰好有()212n n n C -=个元素.假设结论错误,即不存在x M ∈,使得294n n x -+>所以任取x M ∈,294n n x -+≤,因为*x ∈N ,所以284n n x -+≤所以22228881134422i j n n n n n n n na a -+-+-+-+≤+-=-=+所以任取t T ∈,232n nt -≤+任取,123t T t ∈≥+=,所以23,4,,32n n T ⎧⎫-⊆⋅⋅⋅+⎨⎬⎩⎭,且T 中含有()212n n n C -=个元素. (i )若3T ∈,则必有121,2a a ==成立.因为5n ≥,所以一定有121n n a a a a -->-成立.所以12n n a a --≥.所以22218822442n n n n n n n na a --+-+-+≤+-=+*232,2n n T t t t N ⎧⎫-⎪⎪=≤≤+∈⎨⎬⎪⎪⎩⎭,284n n a n -+=,21824n n a n --+-=所以4T ∈,所以33a =,113n a a a a -+=+n 有矛盾,(ii )若3T ∉,23,4,,32n n T ⎧⎫-⊆⋅⋅⋅+⎨⎬⎩⎭而T 中含有()212n n n C -=个元素,所以*243,2n n T t t t N ⎧⎫-⎪⎪=≤≤+∈⎨⎬⎪⎪⎩⎭第 21 页 共 21 页 所以284n n a n -+=,21814n n a n --+-= 因为4T ∈,所以121,3a a ==. 因为222n n T -+∈,所以2222n n n n a a --+=+ 所以22824n n a n --+-= 所以123n a a a a -+=+n ,矛盾.所以命题成立.【点睛】本题属于新定义题,考查接受新知识,理解新知识,运用新知识的能力,反证法,等差数列,不等式缩放法,排列组合,本题属于难题.。
北京市海淀区一零一中学2020届高三数学上学期期中试题(含解析)
O外一点
uuur
uuuv
uuuv
b的取值范围是_________.
Q,若OP
aOA
bOB,则a
【答案】0,1
【分析】
【剖析】
uuur
uuur
uuur
OP
uuur
uuur
uuur
设OP
kOQ,可得出k
uuur
0,1,并设OQ
OA
OB,利用三点共线得出
OQ
1,进而可得出a b的取值范围.
i
0,1,2,3, L
,8
的纸张的长度为ai
1,则数列
an
成以
2为公比的等比数列,
2
设Ai的纸张的面积
Si
1,则数列
Sn
成以
1为公比的等比数列,而后利用等比数列的通项
2
公式求出数列Sn
的首项,并利用等比数列的乞降公式求出
Sn
的前9
项之和.
【详解】可设Ai i
0,1,2,3, L
,8的纸张的长度为
ai 1,面积为Si 1,Ai
.
所:
0,1.
【点睛】 此题考察利用平面向量基底表示求参数和的取值范围,解题时要充足利用三点共
线的结论来转变,考察剖析问题和解决问题的能力,属于中等题.
14.设f ( x), g( x)是定义在R上的两个周期函数,f ( x)的周期为4,g( x)的周期为2,且
k( x 2),0 x
f 0 f 0 1,f 0
1,
令x1=x,x2=-x,
则f
0
f
x
f
x
1,
所以f x
1
f
海淀区“2020届高三期中语文考试
海淀区高三年级第一学期期中练习语文2010.11第一部分(27分)一、本大题共5小题,每小题3分,共15分。
1.下列词语中,字形和加点的字的读音全都正确的一项是A.糟塌耳熟能详累.(lěi)及所向披靡.(mí)B.翱翔融会贯通内疚.(jiù)返璞.(pú)归真C.宣泄两全齐美胆怯.(què) 安步当.(dànɡ)车D.沧桑闻过饰非恫.(dònɡ)吓大笔如椽.(yuán)2.依次填入下列各句横线处的词语,最恰当的一组是①我们写文章要在遣词造句上多下功夫,因为一篇好文章中的任何一个词语和句子都应该能够经得起读者的反复。
②本世纪以来,中国博士生招生规模逐年膨胀,数量与美国相当,而质量却在下滑,这种情况受到有识之士的。
③我们有非常好的疫苗体系,一旦疫苗被举报有问题,疾病预防控制中心就会极其迅速的作出反应。
A.捉摸诟骂监测 B.捉摸诟病检测C.琢磨诟骂检测 D.琢磨诟病监测3.下列句子中,加点的成语使用不恰当...的一项是A.有些家长不善于和孩子沟通,对孩子从来不赞一词....,只是一味地指责,导致孩子产生自卑心理,甚至自暴自弃。
B.我们长期以来提倡的对中外文化遗产的继承,绝不是陈陈相因....,而是去粗取精,去伪存真,在前人的基础上发展创新。
C.老舍先生的《猫城记》揭露了旧中国的腐败,针砭了洋奴思想,同时也流露出对革命的误解,是一部瑕瑜互见....的作品。
D.赵春霖先生在花甲之年,克服许多困难,惨淡经营近五载,终于完成了150万字的鸿篇巨制....《萨尔浒殇祭》。
4.下列句子中,没有语病的一句是A.何老师是一个为人诚恳,人际关系融洽,善于与人沟通,具有良好的团结协作精神,有扎实的专业基础知识和很好的语言表达能力。
B.近年来当地政府不断完善立法标准和漏洞,与民间组织密切配合,使反对家庭暴力成为全社会的共识,有效地遏制了家庭暴力的发生。
C.在网络语言中,“粉丝”不是食品,“钢丝”不是建筑材料,有人说这是一个词典更新速度远远赶不上流行词汇产生速度的时代。