粤教版物理选修3-2《第一章电磁感应》知识点总结
2020粤教版物理课件选修3-2 第1章 章末复习课 电磁感应
1.方法步骤
识
整
(1)画出等效电路图.
合
章 末
(2)求出导体棒上电流的大小及方向.
综
合
提 升
(3)确定导体棒所受安培力的大小及方向.
测 评
层
• 能
(4)分析其他外力,列动力学或平衡方程求解.
力
强
化
返 首 页
巩
固
层 •
2.动力学分析
知
识
整 合
导体受力 运动产生 感应电动势
→
感应 电流
→
通电导 体受安 培力
合
提
测
升
评
层
•
能
力
强
化
返 首 页
巩
固
层
• 知
1.明确哪一部分电路产生感应电动势,则这部分电路就是等效电源,该
识
整 部分电路的电阻是电源的内阻,而其余部分电路则是用电器,是外电路.
合
章 末
2.分析电路结构,画出等效电路图.
综
合
提 升
3.用法拉第电磁感应定律确定感应电动势的大小,再运用闭合电路欧姆
测 评
识
整 合
方形导线框 abcd,从图示位置开始沿 x 轴正方向以速度 v 匀速穿过磁场区域.取
章 末
沿 a→b→c→d 的感应电流为正,则下列选项中表示线框中电流 i 随 bc 边的位 综
合
提 升
置坐标 x 变化的图象正确的是(
)
测 评
层
•
能
力
强
化
图 1-2
返 首
页
巩
固
层
• 知
识
整 合
章
高中物理第一章归纳与整理课件粤教版选修3_2
������ ������
专题一
专题二
Hale Waihona Puke 专题三i=Δ������ ⑥ Δ������
ΔQ也是平行板电容器极板在时间间隔(t,t+Δt)内增加的电荷量. 由④式得ΔQ=CBLΔv⑦ 式中,Δv为金属棒的速度变化量.按定义有
Δ������ a= ⑧ Δ������
金属棒所受到的摩擦力方向斜向上,大小为 Ff'=μFN⑨ 式中,FN是金属棒对于导轨的正压力的大小,有 FN=mgcos θ⑩ 金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿 第二定律有mgsin θ-Ff-Ff'=ma
· =ma③
������ 2
������ 2
2
联立 ①③解得 a= sin θ,选项 C 对 ;
当导体棒速度达到2v以后匀速运动的过程中,R上产生的焦耳热 等于拉力和重力所做的功之和,选项D错.
专题一
专题二
专题三
专题二 怎样求解电磁感应中的电路及能量问题 1.电磁感应经常与电路问题综合考查,求解这类问题需要注意: (1)确定电源:首先判断产生电磁感应现象的那一部分导体(电源). 切割磁感线的导体一定是电源,内部磁通量发生变化的线圈是电源. (2)如果需要判断电势高低,还应根据楞次定律或右手定则判断感 应电流方向,且注意在电源内部,电流从低电势流向高电势,在外电 路,电流从高电势流向低电势. Δ������ (3)利用E=n Δ������ 或E=BLvsin θ求感应电动势的大小. (4)分析电路结构,画出等效电路图,利用欧姆定律和串、并联电 路的规律求解.
专题一
专题二
专题三
答案:0.4 m/s2
2A
3 m/s
专题一
高中物理选修3-2::第一章 第三节 感应电流的方向 (2013粤教版)
磁感应强度增大时,杆 ab 将向右移动
B.若磁场方向垂直纸面向外,并且 磁感应强度减小时,杆 ab 将向右移动
图 1-3-8
C.若磁场方向垂直纸面向里,并且磁感应强度减小时,杆
ab 将向右移动
D.若磁场方向垂直纸面向里,并且磁感应强度增大时,杆
ab 将向右移动
【配对训练】 1.如图 1-3-2 所示,导线框 abcd 与导线在同一平面内, 直导线通有恒定电流 I,当线框由左向右匀速通过直导线时,线 框中感应电流的方向是( D ) A.先 abcd,后 dcba,再 abcd B.先 abcd,后 dcba C.始终 dcba D.先 dcba,后 abcd,再 dcba 图 1-3-2
垂直 指垂直,让磁感线_____穿入手心,使拇指指向导体运动的方向, 四指所指的方向 这时_______________就是感应电流的方向.
知识点 3 楞次定律的正确理解及应用 1.楞次定律:感应电流具有这样的方向,即感应电流的磁 阻碍 场总要______引起感应电流的磁通量的变化. (1)当磁通量增大时,感应电流的磁场方向与原回路中的磁 相板 场方向______,该感应电流阻碍原回路中磁通量的增大.
【例题】纸面内有 U 形金属导轨,AB 部分是直导线,如 图 1-3-3 所示.虚线范围内有向纸里的均匀磁场,AB 右侧有 圆线圈 C,为了使 C 中产生顺时针方向的感应电流,贴着导轨 的金属棒 MN 在磁场里的运动情况是( )
图 1-3-3 A.向右匀速运动 B.向左匀速运动 C.向右加速运动 D.向右减速运动
第三节
感应电流的方向
知识点 1 感应电流的方向
1.实验结果表明:在电磁感应现象中,闭合回路中因发生
磁通量的变化而产生的感应电流的方向在不同的情况下是不同 的. 磁通量的变化 2.感应电流的方向与_________________有关.
粤教版高中物理选修3-2第一章电磁感应第七节
高中物理学习材料金戈铁骑整理制作第七节涡流现象及其应用1.在一根导体外面绕上线圈,并让线圈通入交变电流,在整个导体中,就形成一圈圈环绕导体轴线流动的感应电流,就好像水中的旋涡一样,这种现象称为涡流现象.导体的外周长越长,交变磁场的频率越高,涡流就越大.2.涡流热效应的应用为高频感应炉冶炼金属、电磁灶等涡流磁效应的应用为金属探测器.3.当导体在磁场中运动时,导体中产生的涡流与磁场相互作用产生一个动态阻尼力,从而提供制动力矩,这种制动方式常应用于电表的阻尼制动、高速机车制动的涡流闸等.4.下列做法中可能产生涡流的是()A.把金属块放在匀强磁场中B.让金属块在匀强磁场中匀速运动C.让金属块在匀强磁场中做变速运动D.把金属块放在变化的磁场中答案 D解析涡流就是整个金属块中产生的感应电流,所以产生涡流的条件就是在金属块中产生感应电流的条件,即穿过金属块的磁通量发生变化.而A、B、C中磁通量不变化,所以A、B、C错误;把金属块放在变化的磁场中时,穿过金属块的磁通量发生了变化,有涡流产生,所以D项正确.5.(双选)磁电式仪表的线圈通常用铝框当骨架,把线圈绕在铝框上,这样做的目的是()A.防止涡流而设计的B.利用涡流而设计的C.起电磁阻尼的作用D.起电磁驱动的作用答案BC解析线圈通电后,在安培力作用下发生转动,铝框随之转动,并切割磁感线产生感应电流,就是涡流.涡流阻碍线圈的转动,使线圈偏转后较快停下来.所以,这样做的目的是利用涡流来起电磁阻尼的作用.6.如图1所示,在光滑绝缘水平面上,有一铝质圆形金属球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场过程中(磁场宽度大于金属球的直径),则小球()图1A.整个过程匀速运动B.进入磁场过程中球做减速运动,穿出磁场过程中做加速运动C.整个过程都做匀减速运动D.穿出时的速度一定小于初速度答案 D解析小球进出磁场时,有涡流产生,要受到阻力,故穿出时的速度一定小于初速度.7.高频感应炉是用来熔化金属对其进行冶炼的,如图2所示为冶炼金属的高频感应炉的示意图,炉内放入被冶炼的金属,线圈通入高频交变电流,这时被治炼的金属就能被熔化,这种冶炼方法速度快,温度易控制,并能避免有害杂质混入被炼金属中,因此适于冶炼特种金属.该炉的加热原理是()图2A.利用线圈中电流产生的焦耳热B.利用线圈中电流产生的磁场C.利用交变电流的交变磁场在炉内金属中产生的涡流D.给线圈通电的同时,给炉内金属也通了电答案 C【概念规律练】知识点一涡流及其应用1.如图3所示,在一个绕有线圈的可拆变压器铁芯上分别放一小铁锅水和一玻璃杯水.给线圈通入电流,一段时间后,一个容器中水温升高,则通入的电流与水温升高的是()图3A.恒定直流、小铁锅B.恒定直流、玻璃杯C.变化的电流、小铁锅D.变化的电流、玻璃杯答案 C解析通入恒定直流时,所产生的磁场不变,不会产生感应电流,通入变化的电流,所产生的磁场发生变化,在空间产生感生电场,铁锅是导体,感生电场在导体内产生涡流,电能转化为内能,使水温升高;涡流是由变化的磁场在导体内产生的,所以玻璃杯中的水不会升温.点评涡流是在导体内产生的,而且穿过回路的磁通量必须是变化的,此题能说明电磁炉的原理.2.(双选)机场的安检门可以利用涡流探测人身上携带的金属物品,安检门中接有线圈,线圈中通以交变电流,关于其工作原理,以下说法正确的是()A.人身上携带的金属物品会被地磁场磁化,在线圈中产生感应电流B.人体在线圈交变电流产生的磁场中运动,产生感应电动势并在金属物品中产生感应电流C.线圈产生的交变磁场会在金属物品中产生交变的感应电流D.金属物品中感应电流产生的交变磁场会在线圈中产生感应电流答案CD解析一般金属物品不一定能被磁化,且地磁场很弱,即使金属被磁化磁性也很弱,作为导体的人体电阻很大,且一般不会与金属物品构成回路,故A、B错误;安检门利用涡流探测金属物品的工作原理是:线圈中交变电流产生交变磁场,使金属物品中产生涡流,故C 正确;该涡流产生的磁场又会在线圈中产生感应电流,而线圈中交变电流的变化可以被检测,故D项正确.点评金属探测利用了涡流的磁效应.知识点二电磁阻尼3.有一个铜盘,轻轻拨动它,能长时间地绕轴自由转动.如果在转动时把蹄形磁铁的两极放在铜盘边缘,但并不与铜盘接触,如图4所示,铜盘就能在较短时间内停止转动,分析这个现象产生的原因.图4答案见解析解析铜盘转动时如果加上磁场,则在铜盘中产生涡流,磁场对这个涡流的作用力阻碍它的转动,故在较短的时间内铜盘停止转动.点评当导体在磁场中运动时,导体中的感应电流受到安培力的作用阻碍导体运动,即安培力为电磁阻尼的阻力.4. 如图5所示,是称为阻尼摆的示意图,在轻质杆上固定一金属薄片,轻质杆可绕上端O点为轴在竖直面内转动,一有界磁场垂直于金属薄片所在的平面.使摆从图中实线位置释放,摆很快就会停止摆动;若将摆改成梳齿状,还是从同一位置释放,摆会摆动较长的时间.试定性分析其原因.图5答案见解析解析第一种情况下,阻尼摆进入有界磁场后,在金属薄片中会形成涡流,涡流使金属薄片受安培力的作用,阻碍其相对运动,所以会很快停下来;第二种情况下,将金属摆改成梳齿状,阻断了涡流形成的回路,从而减弱了涡流,受到安培力的阻碍会比先前小得多,所以会摆动较长的时间.点评防止电磁阻尼的途径为阻止或减弱涡流的产生.【方法技巧练】涡流能量问题的处理技巧5.弹簧上端固定,下端悬挂一根磁铁.将磁铁托起到某一高度后放开,磁铁能上下振动较长时间才停下来.如图6所示,如果在磁铁下端放个固定的闭合线圈,使磁铁上下振动时穿过它,磁铁就会很快地停下来,解释这个现象,并说明此现象中能量转化的情况.图6答案见解析解析当磁铁穿过固定的闭合线圈时,在闭合线圈中产生感应电流,感应电流的磁场会阻碍磁铁向线圈靠近或离开,也就使磁铁振动时除了空气阻力外,还有线圈的磁场力作为阻力,克服阻力需要做的功较多,弹簧振子的机械能损失较快,因而会很快停下来.损失的机械能主要转化为电能再转化为内能.方法总结此题中涡流损耗了机械能.6.如图7所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉至某一位置并释放,圆环摆动过程中(环平面与磁场始终保持垂直)经过有界的水平匀强磁场区域,A、B为该磁场的竖直边界,若不计空气阻力,则()图7A.圆环向右穿过磁场后,还能摆至原来的高度B.在进入和离开磁场时,圆环中均有感应电流C.圆环进入磁场后,离最低点越近速度越大,感应电流也越大D.圆环最终将静止在最低点答案 B解析在圆环进入和穿出磁场的过程中环中磁通量发生变化,有感应电流产生,即圆环的机械能向电能转化,其机械能越来越小.上升的高度越来越低,选项A错误,B正确;但在环完全进入磁场后,不再产生感应电流,选项C错误;最终圆环将不能摆出磁场,从此再无机械能向电能转化,其摆动的幅度不再变化,选项D错误.方法总结当导体中的磁通量变化时,产生感应电流,损失机械能;当导体中的磁通量无变化时,不产生感应电流,不损失机械能.1.(双选)下列哪些仪器是利用涡流工作的()A.电磁炉B.微波炉C.金属探测器D.电饭煲答案AC2.(双选)变压器的铁芯是利用薄硅钢片叠压而成的,而不是采用一整块硅钢,这是为了()A.增大涡流,提高变压器的效率B.减小涡流,提高变压器的效率C.增大铁芯中的电阻,以产生更多的热量D.增大铁芯中的电阻,以减小发热量答案BD解析不使用整块硅钢而是采用很薄的硅钢片,这样做的目的是增大铁芯中的电阻,来减少电能转化成铁芯的内能,提高效率,是防止涡流而采取的措施.3.下列关于涡流的说法中正确的是()A.涡流跟平时常见的感应电流一样,都是因为穿过导体的磁通量变化而产生的B.涡流不是感应电流,而是一种有别于感应电流的特殊电流C.涡流有热效应,但没有磁效应D.在硅钢中不能产生涡流答案 A解析涡流就是一种感应电流,同样是由于磁通量的变化产生的.4.如图8所示,金属球(铜球)下端有通电的线圈,今把小球拉离平衡位置后释放,此后关于小球的运动情况是(不计空气阻力)()图8A.做等幅振动B.做阻尼振动C.振幅不断增大D.无法判定答案 B解析金属球在通电线圈产生的磁场中运动,金属球中产生涡流,故金属球要受到安培力作用,阻碍它的相对运动,做阻尼振动.5.(双选)如图9所示是电表中的指针和电磁阻尼器,下列说法中正确的是()图9A.2是磁铁,在1中产生涡流B.1是磁铁,在2中产生涡流C.该装置的作用是使指针能够转动D.该装置的作用是使指针能很快地稳定答案AD解析这是涡流的典型应用之一.当指针摆动时,1随之转动,2是磁铁,那么在1中产生涡流,2对1的安培力将阻碍1的转动.总之不管1向哪个方向转动,2对1的效果总起到阻尼作用.所以它能使指针很快地稳定下来.6.如图10所示,矩形线圈放置在水平薄木板上,有两块相同的蹄形磁铁,四个磁极之间的距离相等,当两块磁铁匀速向右通过线圈时,线圈仍静止不动,那么线圈受到木板的摩擦力方向是()图10A.先向左,后向右B.先向左,后向右,再向左C.一直向右D.一直向左答案 D解析根据楞次定律的“阻碍变化”知“来拒去留”,当两磁铁靠近线圈时,线圈要阻碍其靠近,线圈有向右移动的趋势,受木板的摩擦力向左;当磁铁远离时,线圈要阻碍其远离,仍有向右移动的趋势,受木板的摩擦力方向仍是向左的,故选项D正确.7.(双选)如图11所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝处产生大量热量,将金属熔化,把工件焊接在一起,而工件其它部分发热很少,以下说法正确的是()图11A.交流电的频率越高,焊缝处的温度升高得越快B.交流电的频率越低,焊缝处的温度升高得越快C.工件上只有焊缝处温度升得很高是因为焊缝处的电阻小D.工件上只有焊缝处温度升得很高是因为焊缝处的电阻大答案AD解析交流电频率越高,则产生的感应电流越强,升温越快,故A项对.工件中各处电流相同,电阻大处产生热多,故D项对.8.我们用作煮食的炉子有各种各样的款式,它们的工作原理各不相同.有以天然气、液化石油气等作燃料的,例如天然气炉;还有以直接用电热方式加热的,例如电饭锅,下面介绍的是以电磁感应原理生热的电磁炉.图12如图12所示是描述电磁炉工作原理的示意图.炉子的内部有一个金属线圈,当电流通过线圈时,会产生磁场,这个磁场的大小和方向是不断变化的,这个变化的磁场又会引起放在电磁炉上面的铁质(或钢质)锅底内产生感应电流,由于锅底有电阻,所以感应电流又会在锅底产生热效应,这些热能便起到加热物体的作用从而煮食.电磁炉的特点是:电磁炉的效率比一般的炉子都高,热效率高达90%,炉面无明火,无烟无废气,电磁火力强劲,安全可靠.因为电磁炉是以电磁感应产生电流,利用电流的热效应产生热量,所以不是所有的锅或器具都适用.对于锅的选择,方法很简单,只要锅底能被磁铁吸住的就能用.适合放在电磁炉上烹饪的器具有不锈钢锅、不锈钢壶、平底铁锅;不适用的有陶瓷锅、圆底铁锅、耐热玻璃锅、铝锅、铜锅等.(1)在电磁炉加热食物的过程中涉及的物理原理有(回答三个即可):①________________________________________________________________________;②________________________________________________________________________;③________________________________________________________________________.(2)电磁炉的锅不能用陶瓷锅、耐热玻璃锅的原因是____________________________;电磁炉所用的锅不能用铝锅、铜锅的原因是______________________.(3)在锅和电磁炉中间放一纸板,则电磁炉还能起到加热作用吗?为什么?答案(1)①电流的磁效应(或电生磁)②电磁感应现象(或磁生电)③电流的热效应(或焦耳定律)(2)不能产生电磁感应现象电阻率小,电热少,效率低(3)能起到加热作用.由于线圈产生的磁场能穿透纸板到达锅底,在锅底产生感应电流,利用电流的热效应起到加热作用.9.如图13所示,在光滑水平桌面上放一条形磁铁,分别将大小相同的铁球、铝球和木球放在磁铁的一端且给它一个初速度,让其向磁铁滚去,观察小球的运动情况.图13答案见解析解析(1)铁球将加速运动,其原因是铁球被磁化后与磁铁之间产生相互吸引的磁场力.(2)铝球将减速运动,其原因是铝球内产生了感应电流,感应电流的磁场阻碍相对运动.(3)木球将匀速运动,其原因是木球既不能被磁化,也不能产生感应电流,所以磁铁对木球不产生力的作用.10.人造卫星绕地球运行时,轨道各处地磁场的强弱并不相同,因此,金属外壳的人造地球卫星运行时,外壳中总有微弱的感应电流.分析这一现象中的能量转化情形.它对卫星的运动可能产生怎样的影响?答案见解析解析当穿过人造卫星的磁通量发生变化时,外壳中会有涡流产生,这一电能的产生是由机械能转化来的.它会导致卫星机械能减少,会使轨道半径减小,造成卫星离地高度下降.11.一金属圆环用绝缘细绳悬挂,忽略空气阻力,圆环可做等幅摆动,若在圆环正下方放置一条形磁铁如图14所示,圆环将如何运动.图14答案见解析解析条形磁铁置于圆环正下方,圆环运动时,穿过圆环的磁通量保持为零不变,所以环中无感应电流,圆环仍做等幅摆动.12.如图15所示,一狭长的铜片能绕O点在纸面平面内摆动,有界的磁场其方向垂直纸面向里,铜片在摆动时受到较强的阻尼作用,很快就停止摆动.如果在铜片上开几个长缝,铜片可以在磁场中摆动较多的次数后才停止摆动,这是为什么?图15答案见解析解析没有开长缝的铜片绕O点在纸面内摆动时,由于磁场有圆形边界,通过铜片的磁通量会发生变化,在铜片内产生较大的涡流,涡流在磁场中所受的安培力总是阻碍铜片的摆动,因此铜片很快就停止摆动.如果在铜片上开有多条长缝时,就可以把涡流限制在缝与缝之间的铜片上,较大地削弱了涡流,阻力随之减小,所以铜片就可以摆动较多的次数.。
高中物理选修3-2::第一章 第四节 法拉第电磁感应定律 (2013粤教版)
随着 E2 的不断增大,F 合不断减小,当 F 合=0 时,cd 棒以 最大速度 vm 做匀速运动. E1+E2 F 合=mcgsin 30° -BL R =0 解得 vm=3.5 m/s. (2)对 ab、cd 两棒进行研究,由平衡条件可知 Fa-magsin 30° cgsin 30° -m =0,得 Fa=1.5 N 则所求外力的功率 P=Favm=1.5×3.5 W=5.25 W.
2.当穿过某回路的磁通量的变化率为恒定值时,产生的电 动势将为恒量,在闭合回路中可形成恒定电流. ΔΦ 计算线圈中的磁通量发生变化产生电 3.利用公式 E=n Δt 动势时,n 为线圈的匝数.
【例题】如图 1-4-1 所示,abcd 区域里有一匀强磁场, 现有一竖直的圆环,使它匀速下落,在下落过程中,它的左半 部通过水平方向的磁场.O 是圆环的圆心,AB 是圆环竖直直径 的两个端点,那么(
圈的磁通量为Φ2,则:①磁通量的变化量ΔΦ=Φ2-Φ1;
ΔΦ Φ2-Φ1 = Δt t2-t1 ②磁通量的变化率______________. (2)磁通量Φ虽然没有方向,但Φ1、Φ2 可正可负. (3)磁通量的变化量反映磁通量变化的多少,而磁通量的变 化率反映磁通量变化的快慢.
知识点2 法拉第电磁感应定律 1.内容:电路中的感应电动势的大小,跟穿过这一电路的 磁通量的变化率成正比. ΔΦ E=k Δt 2.表达式:__________. 3.单位之间的换算关系:1 V=1 Wb/s. ΔΦ E=n 4.推广式:__________,n 为线圈的匝数. Δt
题型2
公式 E=BLv 的应用
【例题】如图 1-4-6 所示,两条平行光滑金属滑轨与水平
方向夹角为 30°,匀强磁场的磁感应强度的大小为 0.4 T、方向垂
物理选修3-2第一章知识点总结
第一章电磁感应1.磁通量:穿过某一面积的磁感线条数;标量,但有正负;Φ=BS·sinθ;单位Wb,1Wb=1T·m2。
2.电磁感应现象:利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。
3.感生电场:变化的磁场在周围激发的电场。
4.感应电动势:分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。
5.楞次定律:感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。
6.右手定则:让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。
7.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比;E=n ∆Φ /∆t8.动生电动势的计算:法拉第电磁感应定律特殊情况;E=Blv·sinθ。
9.互感两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势。
10.自感:由于导体本身的电流发生变化而产生的电磁感应现象。
11.自感电动势:由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L∆I/∆t。
12.自感系数:E=L∆I/∆t式中的比例系数L叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。
13.涡流:线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。
物理粤教版选修3-2预习导航:第一章第五节法拉第电磁
第五节 法拉第电磁感应定律应用(一)【思维激活】观察法拉第电机原理图,分析产生感应电动势的原理。
提示:导体棒在磁场中切割磁感线产生感应电流【自主整理】1.法拉第电机是应用导体棒在磁场中切割磁感线而产生感应电流的原理,产生电动势的导体相当于电源,此电源于其他部分的导体或线框构成了闭合电路,遵从闭合电路欧姆定律。
2.在法拉第电机中,产生电动势的那部分导体相当于电源如果它用电器连接就组成 了闭合电路,在电源内部,感应电流方向是从电源的负极流向正极:在外电路中,电流从电源的正极经用电器流向负极。
【高手笔记】法拉第电磁感应定律是本节课的重点,也是易错点,特别是当导体在匀强磁场中倾斜切割磁感线时,所产生感应电动势E 的大小究竟是BLυsin θ还是BLυcos θ的判定。
(1)导体切割磁感线时,所产生的感应电动势不能死记教材中的E =BLυsin θ而是要记住处理问题的方法和普遍适用的公式E =BL υ⊥。
(2)导体小于运动时,其速度υ与磁感线方向平行导体切割磁感线,此时产生的感应电动势E =0。
(3)倒替倾斜切割磁感线时,应把速度υ沿平行磁感线方向和垂直磁感线方向分解。
(4)导体棒的端点为轴,在垂直于磁感线的匀强磁场中匀速转动产生的感应电动势E =21BL 2W (平均速度取中点位置线速度21LW )。
【名师解惑】如何理解感应电动势剖析:有电流产生,电路中就一定有点动势,闭合电路中有感应电流产生就一定有感应电动势,要理解感应电动势,则必须先考虑电动势的 产生条件。
如图1-5-1所示,矩形线框向右做切割磁感线运动,闭合路中无感应电路,但线框上下边间有感应电动势,既ab 两点有电势差,虽然穿过闭合电路的磁通量没有变化,但线框在切割磁感线。
图1-5-1可见,产生感应电动势的条件,无论电路是否闭合,只要穿过电路的磁通量发生变化或导体切割磁感线,就会有感应电动产生,产生感应电动势的那部分导体相当于电源,电路中有感应电流则电路中一定有感应电动势,若电路中感应电动势,不一定有感应电流。
【精选】_高中物理第一章电磁感应章末总结课件粤教版选修3_2
例1 圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管 b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图1所示的电路. 若将滑动变阻器的滑片P向下滑动,下列表述正确的是 答案 解析 A.线圈a中将产生俯视顺时针方向的感应电流 B.穿过线圈a的磁通量变小 C.线圈a有扩张的趋势
√D.线圈a对水平桌面的压力FN将增大
答案 1.3 J 图4
解析
设cd棒运动过程中在电路中产生的总热量为Q总,由能量守恒
定律有m2gxsin θ=Q总+12m2v2
又 Q=R1+R1R2Q 总 解得Q=1.3 J.
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/8/4
最新中小学教学课件
29
谢谢欣赏!
2019/8/4
最新中小学教学课件
30
(3)2 s内通过R1的电荷量q. 答案 0.8 C
解析 2 s内的磁感应强度变化量为
ΔB=ΔΔBt ·t=0.2×2 T=0.4 T
图3
通过R1的电荷量为 ΔΦ
q= I ·Δt=nRΔ总t ·Δt=nΔRΦ总 =n·SΔR总B
=100×0.2×01.04 C=0.8 C.
总结提升
路端电压、电动势和某导体两端的电压三者的关系: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积. (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电 阻的乘积,或等于电动势减去内电压,当其内阻不计时路端电压等于电源 电动势. (3)某段导体作为电源且电路断路时,导体两端的电压等于电源电动势.
高中物理选修3-2::第一章 第一节 电磁感应 第二节 产生感应电流的条件(2013粤教版)
题型3
产生感应电流条件
【例题】如图 1-1-9 所示,矩形线框 abcd 的一边 ad 恰
与长直导线重合(互相绝缘).现使线框绕不同的轴转动,不能
使框中产生感应电流的是( A.以 ad 边为轴转动 B.以 OO′为轴转动 C.以 bc 边为轴转动 D.以 ab 边为轴转动 )
图 1-1-9
解析:产生感应电流的条件是闭合电路的磁通量发生变化, 线框 abcd 是闭合电路,只要通过它的磁通量发生变化就可以产 生感应电流.通有电流的长直导线产生的磁场是以长直导线为 中心的同心圆并且离导线越远磁感线越疏.以ad 边为轴转动时 通过线框abcd 的磁通量没有发生变化,不产生感应电流,以
得 A 激发的磁场发生了变化,引起B 中产生感应电流,所以C
错误;闭合开关,移动滑动变阻器的滑片,使得 A 中的电流发 生了变化,引起 B 中产生感应电流,D 错误. 答案:AB
【触类旁通】 1.如图 1-1-5 所示,有两个同心导体圆环,内环中通有 顺时针方向的电流,外环中原来无电流.当内环中电流逐渐增 大时,外环中( A ) A.一定有电流
解析:当穿过闭合回路的磁通量发生变化时,闭合回路中就一定
有感应电流.
知识点 4 磁通量发生变化的正确理解 1.磁通量是双向标量,没有方向,但穿过某回路的磁感线 如果存在穿出和穿入的情况,即有方向相反的磁感线同时穿过 这个回路,则磁通量可以互相抵消.因此,磁通量是总的效果,
磁通量的变化也是这种总的效果的变化. 2.磁通量与面积有关,但不一定是面积越大,磁通量越大.
知识点 2 磁通量和磁通量的变化 垂直穿过回路平面 1.磁通量:___________________的磁感线的条数叫磁通 量,用Φ表示.在匀强磁场中,当磁场与某回路平面垂直时,
(完整版)高中物理选修3-2知识点清单(非常详细)
(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。
粤教版高中物理选修3-2第一章1.1电磁感应现象1.2产生感应电流产生的条件
运动时,有感应电流产生
实验2:探究磁铁在线圈中运动是否产生感应电流
G
+
-
+
NS
N极插入
NS N极抽出
S极插入
S极抽出
实验操作 N极插入线圈 N极停在线圈中
N极从线圈中抽出
S极插入线圈 S极停在线圈中
S极从线圈中抽出
实验现象(有无电流)
有 无 有 有 无 有
分析论证
线圈中的磁场 变化 线圈中有感应电流; 线圈中的磁场 不变 线圈中无感应电流
形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa
和Φb大小关系为( A)
A.Φa>Φb
B.Φa<Φb
C.Φa=Φb
D.无法比较
穿过同一平面但方向相反的两条磁感线计算磁通 量时可以互相抵消。
1、电与磁有联系吗?19世纪20年代之前的“偏执”
二者显然肯 定是独立的,
无关的。
法物理学家库仑
法物理学家安培
26
2.判断磁通量如何变化并确定是否产生感应电流
φ减__小_
φ增__大__
φ增_大__
φ减__小_
φ_增_大___
φ减__小_
(1)(2)(3)(4)(5)(6)有感应电流产生
磁场 不变时,线圈
B中无感应电流
模型归类
①切割类
②变化类
条件分析
B不变,S变 Φ=BS
S不变,B变 Φ=BS
相对运动 Φ=BS 变! 磁场变化
结论
只要穿过闭合电路的磁通量发生 变化,闭合电路中就有感应电流。
感应电流产生的条件: 1.电路要闭合 2.穿过电路的磁通量发生变化
1.关于感应电流产生的条件,下列说法中正确的是 ( CD) A.只要闭合电路内有磁通量,闭合电路中就有感应电流产生 B.穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应 电流产生 C.线圈不闭合时,即使穿过线圈的磁通量发生变化,线圈中也 没有感应电流 D.只要穿过闭合电路的磁感线条数发生变化,闭合电路中就有 感应电流
物理选修32第一章电磁感应知识点总结
物理选修32第一章电磁感应知识点总结电磁感应的知识是高中物理的重要知识点,下面是店铺给大家带来的物理选修32第一章电磁感应知识点总结,希望对你有帮助。
物理电磁感应知识点1、产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
2、感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变化。
这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
3、关于磁通量变化在匀强磁场中,磁通量Φ=B S sinα(α是B与S的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S、α不变,B改变,这时ΔΦ=ΔB Ss inα②B、α不变,S改变,这时ΔΦ=ΔS Bsinα③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1)高中物理学习方法一、及时完成学习任务,注重基础知识的掌握。
进入高二,同学们应该适时调整学习时间,要注意当天的学习任务要当天完成,不能留下问题,免得积少成多,问题越多,学习压力越大,这样会影响到学好物理的信心。
基本概念和基本规律是学习物理的基础,首先必须很好地掌握基本概念和规律。
高中物理知识体系严密而完整,知识的系统性较强。
因此,应注重掌握系统的知识、培养研究问题的方法。
二、注意培养阅读、语言表达和动手的能力。
学生应能独立阅读教材,找出主要内容,写出读书笔记;能用正确的物理术语描述物理概念及规律,能把一般的物理过程表达出来;高二的电学实验是高中物理的难点,也是高考常考的内容,因此一定要学好这部分的内容。
在做实验之前一定要弄清楚实验的原理及步骤,注意观察,做好每一个实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3-2第一章电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的方法.$(1)磁铁运动。
(2)闭合电路一部分运动。
(3)磁场强度B变化或有效面积S变化。
注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。
不管是动生电流还是感生电流,我们都统称为“感应电流”。
3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
4、分析是否产生感应电流的思路方法./(1)判断是否产生感应电流,关键是抓住两个条件:①回路是闭合导体回路。
②穿过闭合回路的磁通量发生变化。
注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。
(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况:①穿过闭合回路的磁场的磁感应强度B发生变化。
②闭合回路的面积S发生变化。
③磁感应强度B和面积S的夹角发生变化。
三、感应电流的方向…1、楞次定律.(1)内容:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。
②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。
(2)楞次定律的因果关系:闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。
(3)“阻碍”的含义.①“阻碍”可能是“反抗”,也可能是“补偿”.·当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。
(“增反减同”)②“阻碍”不等于“阻止”,而是“延缓”.感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。
当由于原磁通量的增加引起感应电流时,感应电流的磁场方向与原磁场方向相反,其作用仅仅使原磁通量的增加变慢了,但磁通量仍在增加,不影响磁通量最终的增加量;当由于原磁通量的减少而引起感应电流时,感应电流的磁场方向与原磁场方向相同,其作用仅仅使原磁通量的减少变慢了,但磁通量仍在减少,不影响磁通量最终的减少量。
即感应电流的磁场延缓了原磁通量的变化,而不能使原磁通量停止变化,该变化多少磁通量最后还是变化多少磁通量。
③“阻碍”不意味着“相反”.在理解楞次定律时,不能把“阻碍”作用认为感应电流产生磁场的方向与原磁场的方向相反。
事实上,它们可能同向,也可能反向。
(“增反减同”)(4)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(5)“阻碍”的形式.}(6)适用范围:一切电磁感应现象.(7)研究对象:整个回路.(8)使用楞次定律的步骤:①明确(引起感应电流的)原磁场的方向.(B o的方向)②明确穿过闭合电路的磁通量(是指合磁通量)是增加还是减少.③根据楞次定律(增反减同)确定感应电流的磁场方向.(B’的方向)④利用安培定则确定感应电流的方向.。
2、右手定则.(1)内容:伸开右手,让拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,让磁感线垂直(或倾斜)从手心进入,拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方向。
(2)作用:判断感应电流的方向与磁感线方向、导体运动方向间的关系。
(3)适用范围:导体切割磁感线。
(4)研究对象:回路中的一部分导体。
(5)右手定则与楞次定律的联系和区别.①联系:右手定则可以看作是楞次定律在导体运动情况下的特殊运用,用右手定则和楞次定律判断感应电流的方向,结果是一致的。
②区别:右手定则只适用于导体切割磁感线的情况(产生的是“动生电流”),不适合导体不运动,磁场或者面积变化的情况,即当产生“感生电流时,不能用右手定则进行判断感应电流的方向。
也就是说,楞次定律的适用范围更广,但是在导体切割磁感线的情况下用右手定则更容易判断。
<【小技巧】:左手定则和右手定则很容易混淆,为了便于区分,把两个定则简单地总结为“通电受力用左手,运动生电用右手”。
“力”的最后一笔“丿”方向向左,用左手;“电”的最后一笔“乚”方向向右,用右手。
四、法拉第电磁感应定律 .1、法拉第电磁感应定律 .(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量变化率成正比。
>(2)公式:t E ∆∆Φ=(单匝线圈) 或 tn E ∆∆Φ=(n 匝线圈).对表达式的理解:①tE ∆∆Φ=。
若线圈有n 匝,且穿过每匝线圈的磁通量变化率相同,则相当于n 个相同的电动势t ∆∆Φ串联,所以整个线圈中电动势为tn E ∆∆Φ= (本式是确定感应电动势的普遍规律,适用于所有电路,此时电路不一定闭合).② 在tnE ∆∆Φ=中(这里的ΔΦ取绝对值,所以此公式只计算感应电动势E 的大小,E 的方向根据楞次定律或右手定则判断),E 的大小是由匝数及磁通量的变化率(即磁通量变化的快慢)决定的,与Φ或ΔΦ之间无大小上的必然联系(类比学习:关系类似于a 、v 和Δ v 的关系)。
③ 当Δ t 较长时,t nE ∆∆Φ=求出的是平均感应电动势;当Δ t 趋于零时,tn E ∆∆Φ=求出的是瞬时感应电动势。
2、E =BLv 的推导过程 .如图所示闭合线圈一部分导体ab 处于匀强磁场中,磁感应强度是B ,ab 以速度v 匀速切割磁感线,求产生的感应电动势 推导:回路在时间t 内增大的面积为:ΔS =L (v Δt ) . %穿过回路的磁通量的变化为:ΔΦ = B ·ΔS= BLv ·Δt . 产生的感应电动势为:BLv ttBLv t E =∆∆⋅=∆∆Φ=(v 是相对于磁场的速度).若导体斜切磁感线(即导线运动方向与导线本身垂直,但跟磁感强度方向有夹角),如图所示,则感应电动势为E =BLvsin θ(斜切情况也可理解成将B 分解成平行于v 和垂直于v 两个分量) 3、E =BLv 的四个特性 . (1)相互垂直性 .公式E =BLv 是在一定得条件下得出的,除了磁场是匀强磁场外,还需要B 、L 、v 三者相互垂直,实际问题中当它们不相互垂直时,应取垂直的分量进行计算。
—若B 、L 、v 三个物理量中有其中的两个物理量方向相互平行,感应电动势为零。
(2)L 的有效性 (有效长度: 直导线(或弯曲导线)在垂直速度方向上的投影长度。
)公式E =BLv 是磁感应强度B 的方向与直导线L 及运动方向v 两两垂直的情形下,导体棒中产生的感应电动势。
L 是直导线的有效长度,即导线两端点在v 、B 所决定平面的垂线方向上的长度。
实际上这个性质是“相互垂直线”的一个延伸,在此是分解L ,事实上,我们也可以分解v 或者B ,让B 、L 、v 三者相互垂直,只有这样才能直接应用公式E =BLv 。
E =BL (v sin θ)或E =Bv (L sin θ) E = B ·2R ·v(3)瞬时对应性 .;对于E =BLv ,若v 为瞬时速度,则E 为瞬时感应电动势;若v 是平均速度,则E 为平均感应电动势。
(4)v 的相对性 .公式E =BLv 中的v 指导体相对磁场的速度,并不是对地的速度。
只有在磁场静止,导体棒运动的情况下,导体相对磁场的速度才跟导体相对地的速度相等。
4、公式tnE ∆∆Φ=和E =BLvsin θ的区别和联系 . (1)两公式比较 .tnE ∆∆Φ= …E =BLvsin θ区 别研究对象 整个闭合电路 回路中做切割磁感线运动的那部分导体 适用范围各种电磁感应现象只适用于导体切割磁感线运动的情况 计算结果 一般情况下,求得的是Δ t 内的平均感应电动势一般情况下,求得的是某一时刻的瞬时感应电动势适用情形 常用于磁感应强度B 变化所产生的电磁感应现象(磁场变化型) 常用于导体切割磁感线所产生的电磁感应现象(切割型) 联系E =Blv sin θ是由tnE ∆∆Φ=在一定条件下推导出来的,该公式可看作法拉第电磁感应定律的一个推论或者特殊应用。
(2)两个公式的选用 .① 求解导体做切割磁感线运动产生感应电动势的问题时,两个公式都可以用。
'② 求解某一过程(或某一段时间)内的感应电动势、平均电流、通过导体横截面的电荷量(q = I Δ t )等问题,应选用tnE ∆∆Φ= . ③ 求解某一位置(或某一时刻)的感应电动势,计算瞬时电流、电功率及某段时间内的电功、电热等问题,应选用E =BLv sin θ 。
5、感应电动势的两种求解方法 . (1)用公式t nE ∆∆Φ=求解: tn E ∆∆Φ=是普遍适用的公式,当ΔΦ仅由磁场的变化引起时,该式可表示为S tBn E ∆∆=;若磁感应强度B 不变,ΔΦ仅由回路在垂直于磁场方向上得面积S 的变化引起时,则可表示为公式B tSn E ∆∆=,注意此时S 并非线圈的面积,而是线圈内部磁场的面积。
(2)用公式E =BLv sin θ求解:① 若导体平动垂直切割磁感线,则E =BLv ,此时只适用于B 、L 、v 三者相互垂直的情况。
② 若导体平动但不垂直切割磁感线,E =BLv sin θ(此点参考P 4“ E =BLv 的推导过程”)。
?6、反电动势.电源通电后,电流从导体棒的a 端流向b 端,用左手定则可判断ab 棒受到的安培力水平向右,则ab 棒由静止向右加速运动。
而ab 棒向右运动后,会切割磁感线,从而产生感应电动势(判得感应电流由a 到b ,所以感应电动势b 端为负极a 端为正极,如图示),此感应电动势阻碍电路中原来的电流,即感应电动势的方向跟外加电压(原来电源电压)的方向相反,这个感应电动势称为“反电动势”。
五、电磁感应规律的应用 .1、法拉第电机 . (1)电机模型 .,(2)原理:应用导体棒在磁场中切割磁感线而产生感应电动势。
.① 铜盘可看作由无数根长度等于铜盘半径的导体棒组成,导体棒在转动过程中要切割磁感线。
② 大小:ω221BL E =(其中L 为棒的长度,ω为角速度) |对此公式的推导有两种理解方式:E =BLvtnE ∆∆Φ= 棒上各点速度不同,其平均速度为棒上中点的速度:ωω⋅=⋅=L r v 21中。