药代动力学
药代动力学
药代动力学
药物代动力学是药物体内活动和作用过程的研究,是药物学研究的一部分。
它
表现为药物从给药途径进入机体,通过组织及血液循环,穿过血脑屏障,最终达到特定细胞或组织,在该部位发挥作用,再经过有效代谢或排泄而离开机体的全过程。
药物代动力学是药物研发和分析过程中不可或缺的环节,它通过对药物的实验
模型,对药物的口服消化、吸收和分布规律,在体内活动和作用力学行为等方面,分析药物的传递路线,在人体生物体系中探究药物作用机制,从而获得更多药物药效学的相关知识。
药物代动力学的研究内容包括物理、化学和生物学,在药物的吸收和排泄及代
谢等过程中的各种反应机制及反应的衍生关系。
其目的是更好地了解药物在机体内的流动路径和活动规律,提高药物的疗效,并且能够更好地应用有效的药物剂量,减少药物的毒副反应。
此外,还可以利用药物代动力学解决小剂量药物在治疗过程中效果不佳、毒副
反应大、药物反应性不稳定甚至目标细胞机制不明等问题,以便设计更巧妙、更优化的用药方案。
总之,药物代动力学是药物药效学研究的重要内容,它为药物分析、计量和调
整药物剂量等提供了有力的技术支持。
药代动力学kp-概述说明以及解释
药代动力学kp-概述说明以及解释1.引言1.1 概述概述部分的内容:药代动力学(Pharmacokinetics,简称PK)是研究药物在机体内的吸收、分布、代谢和排泄过程的科学。
药代动力学研究对于评价药物的有效性和安全性至关重要,它可以帮助人们理解药物在体内的行为规律,为临床应用提供科学依据。
药代动力学研究的主要内容包括药物的吸收过程、分布过程、代谢过程和排泄过程。
药物的吸收过程研究药物从给药部位进入血液循环的过程,包括口服、注射、经皮等途径。
分布过程研究药物在体内的分布情况,包括药物在血液中的浓度分布以及药物与组织器官之间的互作。
代谢过程研究身体如何将药物分解和转化成代谢产物,通常由肝脏的酶系统参与。
排泄过程研究通过尿液、粪便、呼吸以及乳汁等途径,将药物及其代谢产物从机体内排出来。
药代动力学参数对于评价药物在体内的行为很重要,常用的参数有药物的生物利用度、血药浓度峰值、半衰期等。
这些参数可以帮助我们判断药物的疗效、剂量以及用药频率,从而更好地指导临床用药。
本文将就药代动力学的基本概念、研究方法以及应用领域进行详细阐述,旨在帮助读者更全面地了解药代动力学的重要性和价值,进而在临床实践中更科学地应用药代动力学知识。
1.2 文章结构本文将按照以下结构进行论述和分析:1. 引言:在文章引言部分,我们首先会概述药代动力学(Pharmacokinetics,简称PK)的基本概念和研究对象,介绍其在药物研发和合理用药中的重要性和应用价值。
同时,我们会明确写作的目的和意义,以及本文的主要内容安排。
2. 正文:正文部分是文章的核心部分,包括以下几个方面的内容:2.1 药代动力学的基础知识:在这一部分,我们将介绍药代动力学的基本原理和基础概念,如吸收、分布、代谢和排泄等过程。
同时,我们会阐述这些过程在药物治疗中的意义,以及药代动力学参数的测定方法和评价标准。
2.2 药代动力学的应用:在这一部分,我们将详细介绍药代动力学在临床药物治疗中的应用。
药物的药代动力学与药效动力学
药物的药代动力学与药效动力学药物的药代动力学与药效动力学是药物研发和应用的重要概念和原理。
药代动力学研究药物在体内的吸收、分布、代谢和排泄过程,而药效动力学研究药物对生物体产生的药理效应。
一、药代动力学1. 药物吸收药物吸收是指药物从给药部位进入血液循环的过程。
吸收速度和程度直接影响药物的药效。
吸收途径包括口服、注射、吸入等。
药物在吸收过程中受到许多因素的影响,如溶解度、pH值、渗透性等。
2. 药物分布药物分布是指药物在体内分布到各组织器官的过程。
药物与血浆蛋白结合率、脂溶性、离子化程度等因素都会影响药物的分布。
此外,血液供应充足的组织器官吸收药物更多,而脂溶性较高的药物则更容易穿过细胞膜。
3. 药物代谢药物代谢是指药物在体内被酶系统代谢为代谢产物的过程。
主要发生在肝脏中的肝酶系统。
药物代谢会影响药物的活性和持续时间,也是药物相互作用的重要因素。
代谢产物可能具有药理活性,也可能是毒性产物。
4. 药物排泄药物排泄是指将代谢产物从体内排出的过程。
主要通过肾脏排泄尿液,也可以通过粪便、呼吸、汗液等途径。
药物的排泄速度与药物的解离速度、肾小管分泌速率等因素有关。
二、药效动力学药效动力学是研究药物对生物体产生的药理效应的学科。
它可以描述药物的剂量-效应关系、治疗窗口、作用机制等。
药物的药效动力学特性是影响临床应用的重要因素。
1. 剂量-效应关系剂量-效应关系研究药物剂量与产生的效应之间的关系。
通常可以分为线性和非线性关系。
线性关系表示药物剂量增加或减少,效应也相应等比例增加或减少。
非线性关系则表示剂量增加或减少,效应并不等比例变化。
2. 治疗窗口治疗窗口是指药物在体内能够产生治疗效果的浓度范围。
在治疗窗口内,药物能够发挥治疗作用;而超出治疗窗口,剂量过高或过低都可能导致药物的不良反应或治疗失败。
3. 作用机制药效动力学也研究药物的作用机制,即药物与靶点结合后产生的药理效应的分子机制。
药物的作用机制研究对于合理用药、药物研发和药物治疗具有重要意义。
药代动力学
药物-机体相互作用一方面是药物对机体的作用,产生药效、毒性或副作用,表现为药物的药理作用或毒理作用,决定于特定的化学结构,具有较强的结构特异性。
另一方面是机体对药物的作用:吸收、分布,生物转化和排泄,表现为药物的药代动力学性质。
主要取决于药物的溶解性、脂水分配系数、电荷等药物分子整体的理化性质,结构特异性不强。
药代动力学性质的重要性随着药物化学的发展及人类健康水平的不断提高,对药物的药代动力学性质的要求越来越高:判断一个药物的应用前景特别是市场前景,不单纯是疗效强,毒副作用小;更要具备良好的药代动力学性质。
肽类药物就是最典型的例子。
一般来说,体内的许多生物活性肽如内啡肽等均具有高效低毒的特点,但是,体内不稳定,口服无效。
对药代动力学性质的要求给药方便:口服有效,一次或两次/日(消炎镇痛药、抗高血压药物、抗菌药常用药)靶向分布或靶向活化:抗肿瘤药物起效快:抗过敏药物、镇痛药物药物相互作用少:有利于联合用药,如降脂药与抗高血压药物的合用长期使用不产生耐药性:如抗菌药、抗癌药、抗病毒药。
无蓄积:如果药物或其代谢物不能通过有效途径排出体外,会在体内蓄积,产生毒性.为了表述的方便,常把体内过程分为三个时相:药剂相:片剂或胶囊崩解、溶出,成为可被吸收的形式。
药剂学研究内容。
药代动力相:药物吸收、分布、代谢与排泄。
药代动力学研究内容。
药效相:药物与作用靶点相互作用,通过刺激和放大,引发一系列的生物化学和生物物理变化,导致宏观上可以观察到的活性或毒性。
药理学或毒理学研究内容。
三个时相依次发生,但是可能同时存在:如缓释药物,一部分药物已完成分布、发挥药理作用,但是另一部分还在释放和吸收的过程中。
特别是药代动力相和药效相一般同时存在。
药物的体内过程吸收:药物口服后,进入消化道,在不同部位口腔、胃、肠吸收,进入血液。
分布:进入血液的药物进入作用部位,产生治疗作用或毒副作用。
代谢转化:药物在肝脏或胃肠道通过酶催化的一系列氧化还原反应发生生物转化。
药代动力学的研究意义
药代动力学的研究意义药代动力学(pharmacokinetics,简称PK)是研究药物在体内的吸收、分布、代谢和排泄过程的科学,对药物的合理使用和药物治疗的个体化具有重要的意义。
下面将从以下几个方面阐述药代动力学的研究意义。
1. 揭示药物的作用机制:药代动力学研究可以表征药物的生物转化过程,比如药物在体内的吸收、分布、代谢和排泄等。
通过揭示药物的作用机制,可以更好地理解药物的药理学效应,从而指导合理的药物使用。
2. 优化药物治疗方案:药物治疗的效果和安全性很大程度上依赖于药物在体内的动力学过程。
研究药代动力学可以测定药物的血药浓度-时间曲线,通过分析药物的药代动力学参数,可以推测药物的剂量和给药方案。
例如,对于具有剂量依赖性的药物,了解其药代动力学特征可以合理地调整药物的剂量,避免过量用药和副作用的发生。
此外,研究药代动力学还可以指导药物联合应用和个体化药物治疗方案的制定,提高药物治疗效果。
3. 预测药物的药效和毒性:药代动力学研究可以通过建立药物的药动学模型,预测药物的药效和毒性。
通过测定药物在体内的浓度,可以估计药物的最大效应和半数最大效应浓度(EC50),从而预测药物的治疗效果。
此外,药代动力学研究可以提示药物的潜在毒性和副作用,为药物的临床应用提供评估依据,减少不良反应的发生。
4. 个体化药物治疗:药代动力学研究可以揭示药物在不同个体之间的差异,为个体化药物治疗提供依据。
不同个体对药物的代谢、吸收和排泄能力存在着差异,这些差异可能会导致个体之间对药物的反应不同。
通过研究药代动力学,可以了解药物的药物代谢酶类型,判断个体对药物的代谢能力,从而个性化地调整药物的剂量和给药方案,提高治疗效果。
5. 提高新药研发效率:药代动力学研究可以在早期发现药物的代谢和排泄特征,为新药的开发提供参考依据。
通过药代动力学研究,可以了解药物在体内的代谢途径、药代动力学参数和剂量依赖性。
同时,药代动力学还可以评估药物在临床中的药效和安全性,加速新药的临床试验和上市进程。
药代动力学主要参数意义及计算
应用:UC常用 于药物的剂量调 整、药物相互作 用研究以及新药 开发过程中的药 代动力学评价。
04
药代动力学参数在药物研发中的应用
药物吸收阶段的预测
预测药物在体内的吸收速率 评估药物在特定组织中的分布情况 预测药物在不同生理条件下的吸收程度 指导药物制剂的改进和优化
药物分布阶段的预测
预测药物在组织中的浓度 分布
添加标题
添加标题
添加标题
添加标题
开发新型药物代谢动力学模型满 足个性化治疗需求
加强国际合作与交流共同推动药 物代谢动力学领域的发展
感谢观看
汇报人:
参数计算方法:药代动力学参数的计算方法有多种包括非房室模型和房室 模型等需要据具体研究情况和数据选择合适的计算方法。
药代动力学参数的分类
吸收参数:描述 药物从给药部位 进入血液循环的 速度和程度
分布参数:描述 药物在体内的分 布情况包括组织 分布和细胞内分 布
代谢参数:描述 药物在体内代谢 的情况包括代谢 速率和代谢产物 的性质
表观分布容积(Vd)
定义:指药物 在体内分布达 到平衡后按测 得的浓度计算 药物应占有的
体液容积
计算方法: Vd=给药量/血
药浓度
意义:反映药 物在体内分布 的 广 泛 程 度 Vd 越大药物在体
内分布越广
影响因素:药 物的脂溶性、 组织亲和力、 血浆蛋白结合
率等
清除率(Cl)
定义:清除率是指 单位时间内从体内 清除的药物量与血 浆药物浓度之间的 比值
利用药代动力学 参数制定个性化 的给药方案
通过药代动力学 研究优化给药方 案以提高疗效和 降低不良反应
根据患者的生理 和病理情况调整 给药方案以确保 药物的有效性和 安全性
药代动力学参数及其意义
药代动力学参数及其意义1. 引言药代动力学(Pharmacokinetics,简称PK)是研究药物在体内吸收、分布、代谢和排泄过程的科学。
药代动力学参数是描述药物在体内动力学过程的定量指标,对于药物的疗效和安全性评价具有重要意义。
2. 药代动力学参数的分类药代动力学参数主要分为吸收动力学参数、分布动力学参数、代谢动力学参数和排泄动力学参数。
2.1 吸收动力学参数吸收动力学参数描述药物从给药部位到达循环系统的过程。
常用的吸收动力学参数有峰浓度(Cmax)、时间峰浓度(Tmax)、面积下曲线(AUC)等。
•Cmax是药物在体内达到的最高血药浓度,反映了药物在给药后的吸收速度和程度。
•Tmax是药物达到最高血药浓度的时间点,可以用来评估药物的快慢吸收。
•AUC是药物在一定时间内血药浓度与时间曲线下的面积,反映了药物在体内的总体吸收程度。
2.2 分布动力学参数分布动力学参数描述药物在体内分布到各组织和器官的过程。
常用的分布动力学参数有分布容积(Vd)和蛋白结合率。
•Vd是药物在体内分布的虚拟容积,反映了药物在体内的分布广度。
•蛋白结合率是药物与血浆蛋白结合的比例,影响药物的分布和药效。
2.3 代谢动力学参数代谢动力学参数描述药物在体内经肝脏等器官代谢的过程。
常用的代谢动力学参数有清除率(CL)和半衰期(t1/2)。
•CL是药物在单位时间内从体内清除的量,反映了药物的代谢速度。
•t1/2是药物在体内消失一半的时间,反映了药物的代谢速度和持续时间。
2.4 排泄动力学参数排泄动力学参数描述药物从体内排除的过程。
常用的排泄动力学参数有排泄率和清除率。
•排泄率是药物从体内排泄的速率,反映了药物的排泄速度。
•清除率是药物从体内清除的速率,反映了药物的总体排泄能力。
3. 药代动力学参数的意义药代动力学参数对于药物的疗效和安全性评价具有重要意义。
3.1 疗效评价药代动力学参数可以反映药物的吸收速度、峰浓度和总体吸收程度,对药物的疗效产生影响。
药代动力学
组织分布
影响组织分布的因素 • 组织血流量、细胞膜通透性、蛋白结合 率、药物与组织的亲合性等 • 血脑屏障 • 母体胎盘屏障 • 肝肠循环
代谢
药物在体内经历化学结构的变化 分: • 1 相反应(功能基团导入) • 2 相反应(结合反应)
• 代 谢 器 官 : 肝 脏 、 胃 肠 道 代谢反应的酶:特异性酶和非特异性酶 • P450酶:肝微粒体中的一种色素,在还 原状态下与CO结合在450nm处有明显吸 收。分许多亚型 • 酶的诱导与抑制 • 药物相互作用(同一P450酶代谢的药物(GC, HPLC, EC), ng/ml(LC-MS), pg/ml(放免)。 • 干扰产物多: 蛋白结合药物,游离药物, 代谢产物(活性),内源性物质,联合 用药。 • 随时间变化: • 受量的限制:
生物样品及其测定
• 标本的代表性
– 血液:可以反映药物即刻的变化与药物的疗 效、不良反应紧密相关。 – 尿液:反映药物经过肾脏排泄的量 – 粪便:反映药物经过肠道排泄的量 – 其它:组织分布的浓度和量
• 生物等效性研究的目的 生物等效性研究的目的:评价同一药物的质量一致性, 用于注册目的和临床应用。
– 医生在使用2种或以上品牌或不同口服制剂的药物时,如果药 物之间存在生物等效性,两种药物可以互相代替,而不导致 药效和不良反应的变化。如通用药物代替专利药物,国产药 物代替进口药物
• 评价药物是否具有临床意义上的等效的方法
处置(disposition)包括分布、排泄、代谢 消除(elimination)包括代谢消除、排泄消 消除 除。 概念: 概念:药物动力学和药代动力学
• 群体药代动力学 群体药代动力学(population pharmacokinetics, PPK)- 利用稀疏数据研究群体的特征、变异和各种因素对药 代动力学影响的药代动力学方法。主要用于个体化给 药方案设计 • 临床药代动力学 临床药代动力学(clinical pharmacokinetics)-在人体中 进行的药代动力学研究。 • 相关学科:药理学→临床药理学→临床药代动力学。 相关学科:
药物动力学常见参数及计算方法PK
*
*
*
*
吸收 AUC 反映吸收程度、Ka反映吸收速度 分布 Vd 是表观分布容积. Vd接近0.1 L/kg说明药物主要在血中 Vd>>1 L/kg则说明该药有脏器浓集现象 消除 包括排泄及代谢, ke,β是消除速率常数 t1/2,t1/2β,CL反映药物的消除速度. 尿排率 过大者,肾功能不佳时应注意减量或延时 过小者,提示代谢为主,肝功不佳时慎用 该药易出现药物相互干扰,联用时应注意 个体差异 AUC,Vd及t1/2的变异系数大于50%者, 临床用药时应注意剂量调控.
药动学模型 为了定量研究药物体内过程的速度规律而建立的模拟数学模型。常用的有房室模型和消除动力学模型。
*
*
房室模型
房室(compartment)
房室的划分是相对的 房室模型的客观性 房室模型的时间性 房室模型的抽象性 开放式和封闭式模型
房室划分
单室模型 多室模型
中央室 周边室
*
*
一室模型 二室模型 ka---吸收速率常数 ke,k10--消除速率常数 k12--1室到2室的k k21-----2室到1室的k Vd---表观分布容积 V1----1室的分布容积
非线性消除动力学模型
*
*
ln C-T曲线
C-T曲线
线性 C-T图上恒为曲线
线性 lnC-T图上恒为直线
非线性 lnC-T图上 曲线为主,低段趋直线
非线性 C-T图上 直线为主,低段趋曲线
*
*
线性或非线性动力学的比较
线性 非线性 AUC 与剂量呈直线关系 与剂量呈曲线关系 与剂量呈正比 与剂量呈超比例增加 T1/2 基本不变 大剂量时,T1/2延长 Cmax 与剂量基本呈正比 与剂量呈超比例增加 模型 房室模型 米氏方程模型 动力学 一级动力学 非线性动力学 先零级,后一级 C-T图 曲线 先直线后曲线 lnC-T图 直线 先曲线后直线 药物 多数药物 少数药物
药药代动力学研究方法
药药代动力学研究方法目录一、内容概览 (2)1. 研究背景与意义 (3)1.1 药物研发的重要性 (4)1.2 药物代谢动力学研究的目的与意义 (5)2. 研究方法与论文结构 (6)2.1 研究方法介绍 (7)2.2 论文组织结构 (9)二、药代动力学基础概念与理论 (10)1. 药代动力学定义及研究内容 (11)1.1 药代动力学的概念 (13)1.2 药代动力学研究的主要内容 (13)2. 药物在体内的过程 (15)2.1 药物的吸收 (16)2.2 药物的分布 (18)2.3 药物的代谢 (20)2.4 药物的排泄 (21)三、药代动力学研究方法与技术 (22)1. 实验设计 (23)1.1 实验动物的选择与分组 (24)1.2 给药方案的设计 (26)1.3 采样点的设置与样本处理 (26)2. 药学实验技术与方法应用 (28)一、内容概览药药代动力学(Pharmacokinetics,简称PK)研究方法主要关注药物在体内的动态变化过程,包括药物的吸收、分布、代谢和排泄等过程。
这些研究方法的应用对于理解药物的安全性、有效性和合理性具有重要意义。
在本研究中,我们采用多种先进的药药代动力学研究方法,以确保结果的准确性和可靠性。
具体包括:血药浓度法:通过测定不同时间点血液中的药物浓度,计算出药物的消除速率常数、生物利用度等参数。
这种方法适用于大多数口服和静脉注射给药的药物。
生理药物代动力学模型:基于解剖学和生理结构建立的药物体内动态模型,能够模拟药物在体内的分布、代谢和排泄过程,提供更为精确的药代动力学参数。
统计矩方法:通过对血药浓度时间曲线进行拟合,计算出药物的吸收速率常数、达峰时间、半衰期等参数。
这种方法适用于非线性药动学特征明显的药物。
生物效应法:通过观察药物对生物体的药理效应,间接反映药物在体内的动态变化过程。
这种方法适用于那些药理作用与血药浓度无直接关系的药物。
模型模拟与实验验证:将建立的数学模型与实验数据进行对比和分析,不断优化模型的结构和参数,以提高研究的准确性和可靠性。
药理学 第2章 药物代谢动力学
等量等间隔多次给药血中积累药物总药量
t1/2数
给药后的
经过半衰期药量
1
100% A0
50% A0
2
150% A0
75% A0
3
175% A0
87.5% A0
4
187.5% A0
93.8% A0
5
193.8% A0
96.9% A0
6
196.9% A0
98.4% A0
7
198.4% A0
99.2% A0
常用药动学参数
1.. 血浆半衰期:
Half-life (in Conc.-Time Curve)
是临床用药间隔的依据
Half-Life The amount of time required to rid the body of half of the initial concentration of the drug.
三、药物的分布:
影响药物分布的因素: 1.药物与血浆蛋白结合; 2.局部器官的血流量; 3.体液pH; 4.组织亲和力; 5.体内屏障,包括血脑屏障和胎盘屏障。
血浆蛋白结合(Plasma protein binding)
D+P
DPc
可逆性(Reversible equilibrium) 可饱和性(Saturable)
血脑屏障
(Blood-brain barrier, BBB)
由毛细血管 壁和N胶质细 胞构成
Blood Brain Barrier
四、生物转化 (transformation / metabolism)
又称为药物代谢,是药物在体内发生的 化学变化,药物经转化后成为极性高的 水溶性代谢物而利于排出体外。
药代动力学
前言药物代谢动力学是定量研究药物在生物体内吸收、分布、排泄和代谢规律的一门学科。
随着细胞生物学和分子生物学的发展,在药物体内代谢物及代谢机理研究已经有了长足的发展。
通过药物在体内代谢产物和代谢机理研究,可以发现生物活性更高、更安全的新药。
近年来,国内外在创新研制过程中,药物代谢动力学研究在评价新药中与药效学、毒理学研究处于同等重要的地位。
药物进入体内后,经过吸收入血液,并随血流透过生物膜进入靶组织与受体结合,从而产生药理作用,作用结束后,还须从体内消除。
通过在实验的基础上,建立数学模型,求算相应的药物代谢动力学参数后,对可以药物在体内过程进行预测。
因此新药和新制剂均需要进行动物和人体试验,了解其药物代谢动力学过程。
药物代谢动力学已成为临床医学的重要组成部分。
中国药科大学药物代谢动力学研究中心为本科生、研究生开设《药物代谢动力学》课程教学已有二十多年历史,本书是在原《药物动力学教学讲义》基础,经多年修正、拓展而成的。
全书十三章,三十余万字,重点阐述围绕药物代谢动力学理论及其在新药研究中的作用,与其它教材相比,创新之处在于重点阐述现代药物代谢动力学理论及其经典药物代谢动力学在新药及其新制剂研究中的应用以及目前迅速发展的药物代谢动力学体外研究模型等新内容。
本书编著者均是长期在药物代谢动力学教学和研究第一线的教师。
因此,本书的实践性与理论性较强,可作为高年级本科生、硕士生教材使用,也可作为从事药物代谢动力学研究及相关科研人员的参考书。
编者药物代谢动力学主编:王广基副主编:刘晓东,柳晓泉编者(姓氏笔画为序)王广基、刘晓东、陈西敬、杨劲、柳晓泉内容提要:药物代谢动力学是定量研究药物在机体内吸收、分布、排泄和代谢规律的一门学科。
在创新研制过程中,药物代谢动力学研究与药效学、毒理学研究处于同等重要的地位,已成为药物临床前研究和临床研究重要组成部分。
本书重点阐述围绕药物代谢动力学理论及其在新药研究中的作用,与其它教材相比,创新之处在于重点阐述现代药物代谢动力学理论及其经典药物代谢动力学在新药及其新制剂研究中的应用以及目前迅速发展的药物代谢动力学体外研究模型等新内容。
药代动力学-PPT
斜率为
:体形变异指数 常数
药物间的主要差别在于
多数组织重量的约等于1
与机体功能有关的在0.65-0.8之间(GFR,耗氧量等)
帕尼培南(碳青霉烯类抗生素)
氨替比林
内 在 清 除 率
苯妥英
氨替比林和苯妥英肝内在清除率和体重的关系
注意点:
1,异速增大方程对多数药物适用,但也有预测值 与实测值相差大的药物,此时用校正法校正。
周边室 Xp。Vp
dXc dt =-(k12+k10)Xc+k21Xp dXp dt =k12Xc- k21Xp 经拉普拉斯转换
Ct=A e- t + B e- t
计算药代动力学参数的程序
PCNONLIN, 3P87, 3P97, PK-BP-NI等
k10k21 k21 k12 k10
4)效应为间接的, 存在时间差。
3.药物效应超前于血药浓度变化
如果按时间顺序进行浓度-效应一对一作图,得到曲线呈顺时 针滞后环(clockwise-hysteresis)
造成这种现象的原因
1)快速耐受性(受体的下向调节或非活性产物增多) 2)形成抑制代谢物 3)立体选择性代谢仍然用消旋体表示。
② 生化参数如酶活性参数(Vmax,Km)
③药物热力学性质如脂溶性, 电离性等
④药物与机体相互作用性质, 如膜通透 性、药物与血浆蛋白结合率以及药物与 组织亲和力等。
组织/血浆中药物浓度比Kp测定
1)稳态给药方法 非消除性组织
Kp
CT ,ss CA,ss
消除性组织 2)面积法
非消除性组织
Kp
CT ,ss C A,ss (1 E)
4,消除过程为物理性 5,有足够的数据回归
药代动力学
1、药代动力学参数计算 受试者在不同时间周期给一定剂量的受试制 剂(T)和标准参比制剂(R)后,测定血药浓度时间数据,求算相应的AUC。假定药物在体 内的清除率不变,则有: 相对生物利用度 Frel = AUCT./AUCR× 100%
1、药代动力学参数计算
当试验制剂(Dt)和参比制剂剂量(Dr)不同时,按
剂量给予校正:
Frel =[﹙AUCt×Dr﹚/﹙AUCr×Dt﹚]×100%
1、药代动力学参数计算 对于多次给药的BA和BE研究,应当提供供
试验药品和参比药品的三次谷浓度数据
(Cmin),稳态下的AUCSS Cmax Tmax T0.5 和Frel Frel = AUCSS.T/AUCSS,R ×100 % 其中AUCSS.T和AUCSS,R 分别为T和R稳态条件 下一个给药间隔的AUC
Tmax T0.5 F等参数及其平均值和标准差。
Cmax和Tmax均为实测值
AUC0~t 以梯度法计算
AUC0~∞ =AUC0~t +Ct /λz
1、药代动力学参数计算 其中 t为最后一次可实测血药浓度的采样时间;
Ct 为末次可测定样本药物浓度;
λ z 为根据对数血药浓度-药时曲线末端直
线部分的斜率求得的消除速率常数;
2、统计分析 无效假设H0:
备选假设H1:
其中 和 分别为试验制剂和参比制 剂AUC或Cmax 对数平均数,r1 和 r2为参数的 上、下限
2、统计分析 检验统计学剂量计算:
2、统计分析 S为样本误差均方的平均根
N为样品数
t1和t2符合自由度v = n-2的t分布 临界值为t1-a
2、统计分析
2、统计分析 分析方法:方差分析
药物代谢动力学
药物代谢动力学药物代谢动力学是指药物在体内代谢过程中的速率和方式。
了解药物代谢动力学对于合理用药和安全用药非常重要,因为药物代谢的速度直接影响药物在体内的浓度和作用时间。
药物代谢动力学主要包括吸收、分布、代谢和排泄四个过程。
吸收是指药物从给药途径进入体内。
不同的给药途径会影响药物的吸收速度和程度。
例如,通过口服给药的药物首先要经过胃肠道吸收,然后通过肠道壁进入血液循环。
而经皮给药的药物需要通过皮肤屏障进入血液循环。
分布是指药物在体内不同组织和器官间的分布。
药物通过血液循环到达不同的组织和器官,如肝脏、肾脏、肺等,从而产生药物在体内的浓度梯度。
药物的脂溶性、蛋白结合率以及组织的血流量等因素都会影响药物的分布。
代谢是指药物在体内经过化学反应转化为代谢产物的过程。
药物主要在肝脏中进行代谢,但其他组织和器官如肾脏、肠道等也能参与药物代谢。
药物代谢的主要目的是通过改变药物的化学结构来提高其水溶性,使其更容易被排泄出体外。
其中,药物代谢的主要途径包括氧化、还原、水解和酰基转移等。
排泄是指药物从体内排出的过程。
主要通过肾脏、肝脏、肺和肠道四个途径排出。
药物在肾脏中通过肾小球滤过和肾小管分泌和再吸收等过程,经尿液排出体外。
肝脏通过胆汁分泌药物代谢产物,然后经肠道排出。
肺脏通过呼吸作用排出药物气体和挥发性物质。
肠道的排泄主要通过粪便排出。
药物代谢动力学的研究可以通过测定药物在体内的浓度变化来获得。
主要有口服给药后的血浆药物浓度-时间曲线和尿液中的药物代谢产物浓度变化。
通过分析药物在体内的浓度变化可以获得药物的代谢速率(代谢净速度),以及代谢的半衰期、清除率等参数,从而了解药物在体内的代谢过程。
药物代谢动力学的知识对于临床用药具有重要的指导意义。
了解药物的代谢特点可以预测和调整药物的剂量、给药方式和给药时间。
对于肝功能或肾功能受损患者,药物代谢动力学的研究可以帮助调整药物的剂量和给予频率,避免药物在体内积累和毒副作用的发生。
(整理)药代动力学完整版
1.代谢分数fm:药物给药后代谢物的AUC和等mol的该代谢物投用后代谢物的AUC的比值。
第二章药物体内转运1. 药物肠跨膜转运机制:药物通过不搅动水层;药物通过肠上皮;药物透过细胞间隙;药物通过淋巴吸收。
2. 血浆蛋白:白蛋白、α1-糖蛋白、脂蛋白3. 被动转运的药物的膜扩散速度取决于:油/水分配系数4. 血脑屏障的特点:脂溶性药物易于透过、低导水性、高反射系数、高电阻性。
5. 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。
6. 肝肠循环:某些药物,尤其是胆汁排泄分数高的药物,经胆汁排泄至十二指肠后,被重吸收。
一、药物跨膜转运的方式及特点1. 被动扩散特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量2. 孔道转运特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关3. 特殊转运包括:主动转运、载体转运、受体介导的转运特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性4. 其他转运方式包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物二、影响药物吸收的因素有哪些①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用三、研究药物吸收的方法有哪些,各有何特点?1. 整体动物实验法能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。
缺点:①不能从细胞或分子水平上研究药物的吸收机制;②生物样本中的药物分析方法干扰较多,较难建立;③由于试验个体间的差异,导致试验结果差异较大;④整体动物或人体研究所需药量较大,周期较长。
2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。
3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。
4. Caco-2细胞模型法Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。
药物代谢动力学药动学
第三章药物代谢动力学药物代谢动力学(pharmacokinetics,PK)简称药代动力学或药动学,是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化规律的科学。
体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。
吸收、分布、排泄通称药物转运(tranportation of drug)。
代谢也称生物转化(biotransformation)。
代谢和排泄合称为消除(elimination)。
图3-1 药物体内过程示意图第一节药物的跨膜转运生物膜:生物膜是细胞膜和细胞内各种细胞器膜(如核膜、线粒体膜、内质网膜和溶酶体膜等)的总称。
一、转运方式(一)被动转运(passive transport)1.脂溶扩散(lipid diffusion;简单扩散,simple diffusion)2.水溶扩散(aqueous diffusion;滤过,filtration through pores)3.易化扩散(facilitated diffusion)(需转运体,有饱和、竞争抑制)特点:顺差(浓度、电位),不耗能;无饱和、竞争抑制。
(二)主动转运(active transport)1.膜泵转运(pump transport)特点:逆差(浓度、电位),耗能;需转运体,有饱和、竞争抑制。
2.膜动转运(cytopsis transport)(1)胞饮(pinocytosis)(2)胞吐(exocytosis)图3-2 药物转运方式示意图二、药物转运体易化扩散和膜泵转运均需要依赖生物膜上的载体介导,这些载体即药物转运体(drug transporter;药物转运蛋白)。
药物转运体分布广泛,影响药物体内过程的各个环节,进而影响药理活性。
药物转运是药物在体内跨越生物膜的过程。
药代动力学名词解释
药代动力学名词解释药代动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的科学,是了解药物在体内的药物浓度和效应之间关系的重要工具。
以下是对药代动力学相关名词的解释:1. 药物动力学:药物动力学研究药物在体内的吸收、分布、代谢和排泄等过程以及与药物浓度和治疗效果之间的关系。
它是药代动力学的一个重要组成部分。
2. 药物吸收:药物吸收是指药物从给药途径(如口服、静脉注射等)进入体内的过程。
吸收速度和程度是影响药物整体药效的重要因素。
3. 药物分布:药物分布是指药物在体内不同组织和器官之间的传输、分布和积累过程。
体内各个组织和器官的分布差异会影响药物的效果和副作用。
4. 药物代谢:药物代谢是指药物在体内发生化学转化的过程。
药物代谢通常发生在肝脏中,包括氧化、还原、水解等反应,使药物易于被排泄和转化为活性或无活性代谢产物。
5. 药物排泄:药物排泄是指将代谢或未代谢的药物及其代谢产物从体内排出的过程。
主要通过尿液、粪便、呼吸和乳汁等途径进行排泄。
6. 药物半衰期:药物半衰期是指药物浓度下降到初始浓度的一半所需的时间。
半衰期是评价药物在体内停留时间和给药频率的重要指标。
7. 药效学:药效学研究药物的化学和生物学特性以及其在体内的药理作用和治疗效果。
它是药代动力学的另一个重要组成部分。
8. 生物利用度:生物利用度是指药物经口给药后进入循环系统的程度。
它能够反映药物吸收的效率和速度。
9. 最高浓度(Cmax):最高浓度是指药物在给药后在体内达到的最高浓度。
最高浓度通常与药物的吸收速度和给药途径有关。
10. 靶向药物浓度:靶向药物浓度是指药物在体内达到特定靶点的浓度。
靶向药物浓度与药物的给药剂量、吸收、分布和代谢等因素密切相关。
11. 药物作用持续时间:药物作用持续时间是指药物在体内产生治疗效果的持续时间。
药物的代谢和排泄速度决定了其作用持续时间的长短。
12. 药物相互作用:药物相互作用是指多种药物在体内相互影响,改变其药代动力学和药效学特性的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主动转运: 即逆浓度或电位梯度的转运,药物由低浓度一侧向 高浓度一侧转运。 特点 是在转运过程中消耗能量;需要载体转运,载体对药物 有特异的选择性。因此,如果两个药物均由相同的载体转运, 则它们之间存在竞争性抑制现象,且转运能力有饱和性。如药 物自肾小管的分泌排泄过程属于主动转运。
易化扩散和滤过
舌下及直肠给药,虽然吸收面积小,但血流丰富,吸收也比 较迅速,并且可以避免首关消除。如:硝酸甘油舌下片,约2~3 分钟起效,5分钟达到最大效应。
(2)注射给药 静脉注射可使药物迅速而准确地进入体循环,没有吸收过
程。肌肉注射和皮下注射一般也较口服给药吸收快。动脉注射 可以直接将药物输送至该动脉血管的分布部位。
易化扩散和滤过也属于被动转运。
二、药物的吸收及影响因素
药物自给药部位进入血液循环的过程称为吸收(absorption)。 1、体液pH与药物吸收
酸性药物在胃中吸收多,碱性药物在小肠吸收多
2、给药方式与药物吸收 (1)胃肠道给药
有些药物在胃肠粘膜吸收后,首先经门静脉进入肝脏,当 通过肠粘膜及肝脏时部分药物发生转化,使进入体循环的有效 药量减少,这种现象称首关消除(first pass elimination)。
肾排泄 药物及其代谢物经肾排泄,包括肾小球滤过、 肾小管分泌及肾小管重吸收三种方式。
尿液pH值的改变可影响药物排泄。尿液偏酸性时,弱碱 性药物解离型多,脂溶性低,重吸收少,排泄多,而弱酸性 药物则相反。
胆汁排泄 许多药物及其代谢物可经胆汁排泄进入肠道,但一 些药物在肠道内又被重吸收,可形成肝肠循环(hepatoenteral circulation)。 其他 有些药物可按简单扩散的方式由乳汁排泄,乳汁略呈 酸性,又富含脂质,所以脂溶性高的药物和弱碱性药物如吗 啡、阿托品等可自乳汁排出。挥发性药物、全身麻醉药可通 过肺呼气排出体外,有些药物还可以从唾液、汗液、泪液等 排出。
残留期是指药物浓度已降至最小有效浓度以下,但尚未 自体内完全消除的时间。此期的长短与消除速度有关。如在 此时间内第二次给药,则需考虑前次用药的残留作用。一次 用药的时效曲线提供的信息可作为制定临床用药方案的参考 (用量、给药时间及两次给药间隔等)。
多次给药的血药浓度及其规律
临床治疗常需连续给药以维持有效血药浓度。在一级动力 学药物中,开始恒速给药时药物吸收快于药物消除,体内药物 蓄积。约经过5个半衰期,给药速度与消除速度趋于相等,用 药量与消除量达到动态平衡时,锯齿形曲线将在某一水平范围 内波动,即到稳态血药浓度(steady state plasma concentration,Css)。
(3)吸入给药 由肺部吸收进入血液循环。肺泡表面积大、血流量大, 吸收及其迅速。2~5分钟起效
(4)经皮给药 脂溶性药物可以缓慢通过,吸收缓慢,不规则。常
用来做缓释贴皮剂。
吸收快慢顺序: 吸入>舌下>直肠>肌肉注射>皮下>口服>经皮 吸收程度: 舌下>肌肉注射>吸入>皮下注射>直肠>口服
三、药物的分布及影响因素
药物的生物转化酶主要是肝微粒体中的细胞色素P450酶 系,也称肝药酶。P450酶系是一个庞大的多功能酶系,它由 多种酶组成。
肝药酶的特点是专一性很低、活性和含量是不稳定的,且 个体差异大,又易受某些药物的影响。有些药物能使肝药酶的 活性增强或合成增加称为肝药酶诱导剂,可加速药物自身和其 它药物的代谢,而降低自身及其它药物的血浓度和药效。有些 药物能使药酶活性降低或合成减少称为肝药酶抑制剂,能减慢 其它药物的代谢,而使其血浓度增加,药效增强或毒性增大。
第二节 体内药量变化的时间过程
➢一次给药的药-时曲线及其意义 血药浓度-时间曲线(药时曲线) 药时曲线分期及其临床意义
➢多次给药的血药浓度及其规律
【相关连接】 药时曲线分期及其临床意义
药时曲线一般可分为三期:潜伏期、持续期和残留期。潜伏 期指用药后到开始出现作用的时间,它主要反映药物的吸收、 分布过程。在处理急症时尤须考虑药物的起效时间。持续期指 药物维持有效浓度的时间,这与药物的吸收及消除速度有关。 从给药时至峰值浓度的时间称为达峰时间,在应用须密切观察 和控制最大作用的药物(如降血糖药)时,更应注意这一参数。
易化扩散 是靠载体顺浓度梯度跨膜转运方式,其特点是
不需要能量,但有较高的特异性,并运的。其吸收速度较快。
滤过 又称水溶扩散。指直径小于膜孔的水溶性小分子药 物,借助膜两侧的流体静压和渗透压差被水携至低压侧的过程。 如水、乙醇、乳酸等水溶性物质,O2、CO2等气体分子可通过 膜孔滤过扩散。
药物从血循环通过多种生理屏障转运到各组织器官的过程 称为分布(distribution)。
药物与血浆蛋白的结合能力 体液的pH 器官血流量 组织的亲和力 生理屏障对药物分布和转运的影响
四、药物的代谢及影响因素
药物的代谢(metabolism)也称为生物转化(biotransformation)。 药物生物转化后其生物活性有三种变化: ➢多数药物经代谢转化后失活,其代谢物的药理作用减弱或消失, 称灭活; ➢有些药物经代谢转化后,其代谢产物的药理活性与母药相当; 还有些药物本身无活性或活性较低,经代谢转化后变成有活性或 活性强的产物,称活化。 ➢有些由无毒或毒性小的药物变成毒性代谢物,如异烟肼的乙酰 化代谢产物对肝脏有较大的毒性。
第二章 药物代谢动力学
第一节 药物体内过程 第二节 体内药量变化的时间过程 第三节 药物代谢动力学基本参数
第一节 药物体内过程
一、药物的跨膜转运及影响因素
被动转运: 是药物依赖于膜两侧的浓度差,从浓度高的一侧 向浓度低的一侧扩散渗透,当细胞膜两侧药物浓度达到平衡 时,转运即停止。 简单扩散: 是被动转运的主要形式,特点 是在转运过程中不 消耗能量;不需载体,无饱和性;没有竞争性抑制。药物分 子量大小、脂溶性高低、解离度的大小可以影响被动转运。 分子量小、脂溶性高、未解离型的药物易于通过细胞膜。
【课堂活动】 口服苯妥英钠几周后又加服氯霉素,测得苯妥英
钠血药浓度明显升高,讨论出现这种现象的原因?
【参考答案】 氯霉素为肝药酶的抑制剂,使肝药酶活性降低,
苯妥英钠在肝脏中代谢减慢,血药浓度升高。
五、药物的排泄及影响因素
药物在体内经吸收、分布、代谢后,以原形或代谢产物 经不同途径排出体外的过程称排泄(excretion)。