数字电路中元器件的应用

合集下载

电路中的元器件

电路中的元器件

电路中的元器件电路中的元器件是指在电路中起到特定功能的各种电子元件,如电阻、电容、电感、二极管、三极管、场效应管、操作放大器、集成电路等。

这些元器件可以被组合起来构成各种不同的电路,从而完成不同的电子功能。

下面将对其中常见的元器件进行简单介绍:1. 电阻:电路中最常见的元器件之一,其作用是限制电流,调节电路的电压和功率。

电阻的阻值可以根据需要选择不同大小。

2. 电容:电路中另一种常见的元器件,其作用是储存电荷和能量,并能在电路中起到滤波和耦合作用。

不同类型的电容器有不同的特性和应用。

3. 电感:电路中还有一种重要的元器件是电感,其作用是储存磁场能量,并能在电路中起到滤波和耦合作用。

电感的大小和特性可以根据需要选择。

4. 二极管:二极管是一种半导体元器件,其作用是将电流限制在一个方向上流动。

二极管有很多种类型,如整流二极管、Zener二极管等,应用广泛。

5. 三极管:三极管是一种由三个半导体材料构成的元器件,其作用是放大和控制电流。

在电子电路中,三极管广泛应用于放大器、开关等电路中。

6. 操作放大器:操作放大器是一种高增益的电子元器件,其作用是将输入信号放大,并输出放大后的信号。

操作放大器在信号处理、传感器等领域都有广泛应用。

7. 集成电路:集成电路是将多个电子元件集成在一个芯片上的元器件,其作用是实现复杂的电子功能。

集成电路种类繁多,应用广泛,如微处理器、存储器、数字信号处理器等。

以上仅是电路中常见的元器件之一,还有许多其他类型的元器件,如晶体管、场效应管、放大器、开关等。

这些元器件可以组合起来形成各种复杂的电子电路,实现不同的功能,是电子领域中不可缺少的基础元件。

431上拉下拉电阻作用-定义说明解析

431上拉下拉电阻作用-定义说明解析

431上拉下拉电阻作用-概述说明以及解释1.引言1.1 概述上拉电阻和下拉电阻是电路中常见的元件,它们在数字电路和模拟电路中起着重要的作用。

上拉电阻和下拉电阻通常用于控制电路中的开关状态,以确保正确的信号传输和电路逻辑运算。

本文将详细探讨上拉电阻和下拉电阻的作用,并介绍它们在不同应用场景下的具体应用。

上拉电阻和下拉电阻是一种电阻器,用于将电路中的信号电压拉高或拉低到特定的电平。

上拉电阻将信号电压拉高,下拉电阻则将信号电压拉低。

在数字电路中,上拉电阻通常用于将逻辑门的输入端连接到高电平,以确保输入信号在断开状态下保持稳定。

下拉电阻则用于将逻辑门的输入端连接到低电平,同样也是为了保持输入信号在断开状态时的稳定性。

在模拟电路中,上拉电阻和下拉电阻用于调整信号的电平。

通过改变电阻的阻值,可以控制信号的幅值和频率响应。

上拉电阻和下拉电阻的作用在模拟电路中更加广泛,涵盖了信号放大、滤波和匹配等多个方面。

在这些应用中,上拉电阻和下拉电阻的精确选择和设计对电路性能至关重要。

总的来说,上拉电阻和下拉电阻在电路中扮演着至关重要的角色。

它们可以确保信号的稳定性和正确传输,以及调整信号的电平和频率响应。

对于电路设计者和工程师来说,了解上拉电阻和下拉电阻的作用和应用是非常重要的,这将有助于优化电路的性能和可靠性。

在接下来的正文部分,我们将更详细地探讨上拉电阻和下拉电阻的作用,并介绍它们在具体应用中的技术要点和实际应用案例。

1.2文章结构文章结构:本文共分为引言、正文和结论三个部分。

引言部分主要概述了上拉下拉电阻的作用和本文结构,引出了文章的目的。

正文部分主要包含了上拉电阻的作用、下拉电阻的作用以及上拉下拉电阻的应用。

结论部分对上拉下拉电阻的作用进行了总结,比较了二者的优劣,并展望了上拉下拉电阻的未来发展。

通过这样的结构安排,本文旨在全面介绍上拉下拉电阻的作用,并探讨其在实际应用中的潜力和发展前景。

1.3 目的本文的目的是探讨431上拉下拉电阻在电路中的作用。

电子元器件的分类与功能

电子元器件的分类与功能

电子元器件的分类与功能电子元器件是电子设备中的组成部分,它们具有不同的功能和特点。

电子元器件根据其功能和用途可以分为不同的类型。

本文将介绍几种常见的电子元器件,并详细解释它们的分类和功能。

1. 电阻器(Resistor)- 电阻器用于限制电流流动,通过产生电阻来控制电路中的电压和电流。

- 根据电阻值的大小可分为固定电阻器和变阻器。

固定电阻器的电阻值固定,而变阻器可以调节电阻值。

- 常见的电阻器有碳膜电阻、金属膜电阻、线绕电阻等。

2. 电容器(Capacitor)- 电容器用于存储和释放电荷。

它由两个带电极板和介质组成。

- 根据介质的类型可以分为小型电容器、陶瓷电容器、铝电解电容器等。

- 电容器具有吸收噪声、滤波和能量存储等功能。

3. 电感器(Inductor)- 电感器用于储存和释放磁能,通过电流的变化来产生电场和磁场。

- 电感器主要由线圈和铁芯组成。

- 电感器在电源滤波、频率选择和振荡器等电路中有重要作用。

4. 二极管(Diode)- 二极管是一种用来控制电流流动方向的元器件。

- 它具有单向导通的特性,正向导通时电流可以流动,反向截止时电流无法通过。

- 常用的二极管有普通二极管、稳压二极管、肖特基二极管等。

5. 三极管(Transistor)- 三极管是一种具有放大和开关功能的半导体器件。

- 它由三个区域组成,分别为基极、发射极和集电极。

通过控制基极电流可以控制集电极电流的变化。

- 三极管广泛应用于放大器、振荡器、计算机逻辑门等电路中。

6. 集成电路(Integrated Circuit)- 集成电路是多个电子元件以及其它传导材料集成在一个晶片上的芯片。

- 它具有体积小、功耗低和可靠性高等优点。

- 集成电路根据应用可以分为模拟集成电路和数字集成电路。

7. 传感器(Sensor)- 传感器是将非电信号转换成电信号的装置。

- 它可以感知各种物理量和环境信号,如温度、压力、光线等。

- 传感器广泛应用于工业自动化、环境监测、医疗设备等领域中。

电子元器件的制造技术及其应用

电子元器件的制造技术及其应用

电子元器件的制造技术及其应用电子元器件是电子技术的基础。

无论是电视、电脑、手机还是汽车、医疗器械,都必须依赖电子元器件。

因此,电子元器件的制造技术和应用一直是电子行业的重要课题。

本文将介绍电子元器件的制造技术及其应用,并探究电子元器件在未来的发展趋势。

一、电子元器件的制造技术1、半导体器件制造技术半导体器件是电子元器件的主要种类,其制造技术涉及晶体生长、晶片制造、器件加工等多个环节。

其中,晶体生长是制造半导体器件的首要步骤。

传统晶体生长技术主要包括Czochralski法和Bridgman法。

Czochralski法是将单晶硅熔体从炉中拉出,使其冷却凝固形成单晶硅。

Bridgman法则是在高温炉中,将熔融材料缓慢冷却而形成单晶。

在晶片制造方面,主要采用刻蚀和光刻技术。

刻蚀技术是利用化学反应将不需要的部分蚀去。

而光刻技术则是将芯片表面覆盖光刻胶,制作出芯片上的图案。

2、印制电路板制造技术印制电路板是将电子器件封装在基板上,是电子产品的关键部件之一。

印制电路板的制造技术包括布线、印制、钻眼以及表面处理等多个环节。

在布线方面,主要实现导线与器件之间的连通。

而印制则是在基板上涂覆有铜箔或其他物质,制成电路路径。

钻眼则是为了实现不同层之间的连通。

最后,表面处理则可以增强印制电路板的耐腐蚀性和可靠性。

3、封装技术封装技术是在电子元器件表面覆盖一层无机或有机材料,用以保护元件不受外部环境影响,并实现在电路板上的连接。

常用的封装方法有贴装封装和插装封装。

贴装封装是将芯片放置在印制电路板上,使用贴片机进行精确的贴装,然后进行焊接。

而插装封装则是通过将元件管脚直接插入印制电路板孔径,实现与印制电路板的连接。

二、电子元器件的应用1、医疗器械电子元器件在医疗器械中的应用越来越重要。

医疗器械中的电子元器件不仅可以实现医学诊断、治疗和康复功能,还可以实现医疗器械的自动化和智能化。

例如,近年来与毒品滥用有关的尿液检测器、心脏起搏器、可穿戴医疗设备等都离不开电子元器件。

总结译码器和数据选择的使用体会

总结译码器和数据选择的使用体会

总结译码器和数据选择的使用体会
译码器和数据选择是数字电路设计中常用的元器件。

在我的学习和实践中,我对它们
的使用有了一些体会。

首先,对于译码器的使用,需要明确它的作用。

译码器可以将输入的数字信号转换为
对应的输出信号。

在实际的电路设计中,我们可以使用译码器来减少逻辑门的使用,从而
降低电路的成本和复杂度。

例如,在设计一个计数器时,我们可以使用译码器将二进制计
数器的输出转换为七段数码管的控制信号,这样可以实现数字的显示,同时电路的成本和
复杂度都会降低。

其次,数据选择器也是数字电路设计中常用的元器件。

它可以根据控制信号从多个输
入信号中选择一个输出信号。

数据选择器的使用可以帮助我们简化电路结构,减少逻辑门
的使用,提高电路的可读性和可维护性。

例如,在设计一个多路选择器时,我们可以使用
数据选择器来对控制信号进行译码,并从多个输入信号中选择一个输出信号。

需要注意的是,在使用译码器和数据选择器时,我们要仔细考虑控制信号的设计和输
入信号的排列方式。

如果控制信号设计不当,容易出现选错信号的情况。

而如果输入信号
排列不合理,可能会导致电路结构复杂,难以维护。

此外,在实际的电路设计中,我们还需要考虑译码器和数据选择器的延迟时间和功耗。

如果延迟时间过长,可能会导致电路运行速度变慢;而功耗过高,则会浪费电能,造成电
路故障和损害。

计数器在数字电路中的应用

计数器在数字电路中的应用

计数器在数字电路中的应用
计数器是数字电路中常见的一种基本电路元件,主要用于对输入的信号进行计数及产生相应的输出。

它的应用十分广泛,在电子时钟、电子计时器、频率计、计数器等众多领域都有着重要的作用。

首先,计数器能够对输入信号的脉冲进行计数,输出相应的数字信号。

在电子计数器和计时器中,计数器可以实时记录输入信号的数量和频率,并输出相应的结果。

例如,计算器能够自动记录并计算,根据输入的脉冲信号来提供测量精度高,快速可靠的计数措施。

其次,计数器可以被用来实现频率压缩。

频率压缩是一个重要的信号处理技术,广泛应用于电信、声学、遥控等领域。

例如,频率压缩可以使用计数器来实现,通过减小输入信号频率的倍数,将输入信号压缩为较低的频率。

因此,计数器是频率压缩技术的重要组成部分。

同时,计数器还可以用来测量时间和频率。

例如,在钟表和计时器中,计数器能够计算出一个特定的时间或进行频率分析。

实际上,我们可以通过基于计数器的数字时钟来确保时间的准确性和精度。

而频率计可以使用计数器来测量信号的频率,从而快速、准确地分析各种信号的特征。

另外,在音乐合成器中,计数器也有着重要的应用,可以控制不同音调的声音发生器,产生优美的音乐效果。

在硬件设计领域中,计数器也被广泛应用于逻辑控制电路的设计,例如在自
动化控制系统中,计数器可以帮助工程师开发出快速响应和高效控制的系统,提高工业生产效率。

总之,计数器在数字电路中的应用是十分广泛的,不仅可以进行计数和计时,还能实现频率压缩、音乐合成等功能。

作为数字电路中的基本元器件之一,计数器已成为现代科技的不可或缺的一部分。

电子元器件的选型与用途分析

电子元器件的选型与用途分析

电子元器件的选型与用途分析随着科技的发展,电子元器件的选择和应用越来越重要。

在电子设备的设计和制造中,选择合适的电子元器件是至关重要的。

在这篇文章中,我们将讨论如何选择电子元器件以及它们在不同的应用中的用途和特点。

一、电子元器件的种类电子元器件是电路中的基本构成部分,它是指电子技术所需要的各种元器件。

根据其功能,电子元器件可以分为源件、受控元件和功能元件三类。

1.源件源件的作用是作为电路信号的源头,提供控制信号或功率的输入。

包括二极管、晶体管、集成电路等。

2.受控元件受控元件是电路中可以通过外部信号控制其工作状态的元器件。

包括三极管、场效应管、继电器等。

3.功能元件功能元件是完成特定功能的元器件,包括电容、电感、电阻、变压器等。

二、电子元器件的选型1.电子元器件的参数在选择电子元器件时,需要了解电子元器件的参数。

这些参数包括:电压、电流、功率、频率、容量、电感、电阻等。

根据电子元器件的工作环境和工作条件,我们可以选择适合的电子元器件。

2.电子元器件的品质和性价比在选择电子元器件时,需要考虑其品质和性价比。

品质好的元器件可能价格昂贵,但相对来说也更可靠,更耐用,同时也更能防止短路、过载等问题。

3.待选电子元器件的多样性在选择电子元器件方面,需要根据电子元器件的功能和特点选择不同的型号。

例如,如果需要选择一个电阻器,可以选择不同阻值、不同容差、不同功率的电阻器。

在某些特殊环境下,我们还需要选择经过氧化铝、有机硅等特殊处理的电阻器。

三、电子元器件的用途分析1.电源电路在电源电路中,电子元器件的选型和应用非常重要。

例如,在直流电源电路中,我们需要使用稳压器、大电容电解电容、大功率空心电感等组成稳压器电源。

在开关电源中,我们则需要选择功率较大的 MOSFET 来控制开关。

2.射频电路射频电路是无线电通信的一部分。

在射频电路中,我们需要考虑信号的追踪和降噪处理。

例如,在无线电通信场景中,我们需要使用高精度的电阻、电容等元器件来提高信号的精确度。

三极管应用实例及举例

三极管应用实例及举例

三极管应用实例及举例三极管是一种电子元器件,通常用于放大和开关电路中。

它有很多应用实例,在各个领域都发挥着重要的作用。

下面我将举几个应用实例来详细说明三极管的用途。

1. 放大器:三极管最常见的应用就是作为放大器。

在音频领域,三极管被广泛应用于音响设备中,用于放大收音机、CD播放器、功放等音频信号。

当音频信号输入到三极管的基极时,三极管的放大特性会将输入信号放大,从而输出一个更大的信号。

这样可以增强声音的音量和强度,使音乐在扩音器中更加清晰响亮。

2. 电路开关:除了作为放大器外,三极管也可以作为开关使用。

在数字电路中,三极管可以实现逻辑门电路,如与门、或门、非门等。

当输入信号满足特定条件时,三极管的导通状态会改变,从而实现电路的开关。

这种应用在计算机、手机等电子设备中非常常见,用于控制和传输数字信号。

3. 驱动器:三极管可以作为驱动器来控制其他高功率设备的开关。

一个经典的应用实例是继电器驱动器。

继电器是一种电磁设备,用于控制高功率的电路开关。

当输入信号通过三极管时,三极管的放大特性将输入信号增强,从而控制继电器的工作。

这样可以实现对高功率设备的控制,如机器人、自动化设备等。

4. 电压调节器:由于三极管具有电流放大和调节的能力,它还可以用来制造电压调节器。

三极管可以将一个高压电源输出转换为一个稳定的低压电源输出。

这对于需要稳定电压供应的电子设备非常重要,如手机充电器、电脑电源适配器等。

三极管通过调节输入信号的电流和电压,使其输出的电压保持在一个恒定的水平。

5. 温度探测器:由于三极管具有温度敏感的特性,它还可以作为温度探测器使用。

当温度发生变化时,三极管的电流和电压也会发生变化。

通过测量这些变化,可以判断出温度的变化情况。

这种应用在温度计、恒温设备等领域非常常见。

总的来说,三极管作为一种重要的电子元器件,具有广泛的应用领域。

除了上述几个应用实例外,三极管还可以用于频率调谐器、振荡器、放大器等电路中。

各种电子元器件的用途

各种电子元器件的用途

各种电子元器件的用途电子元器件是电子设备中不可缺少的组成部分,它们用于控制、调节和转换电信号。

下面是各种常见的电子元器件及其用途的简要介绍。

1. 电阻器:电阻器用于阻碍电流,消耗电能,稳定电压和电流。

它们通常用于电流限制、分压和电压调节。

2. 电容器:电容器储存电荷,能够在不同的频率上通过电流。

它们通常用于储存能量、平滑电压和过滤电流。

3. 电感器:电感器用于储存磁场能量,抵抗电流变化。

它们通常用于滤波、调理电流和储存能量。

4. 二极管:二极管只允许电流在一个方向上通过,它们通常用于整流(将交流电转换为直流电)、保护电路和信号调制。

5. 三极管:三极管是一种放大器和开关,能够控制电流流动。

它们广泛应用于放大信号、开关控制和逻辑电路中。

6. 可变电阻器:可变电阻器是一种电阻值可调节的电阻器,它们通常用于电压调节、微调电路和传感器电路。

7. 可变电容器:可变电容器是一种电容值可调节的电容器,它们通常用于调制频率、调节振荡电路和电子电路的容量变化。

8. 可控硅:可控硅是一种带有控制端的半导体器件,可以控制电流的导通和截止。

它们通常用于电源开关、控制电机和照明调光。

9. 功率放大器:功率放大器是一种用于增强电信号功率的电子装置。

它们被广泛应用于音频放大器、射频发射器和激光器。

10. 操作放大器:操作放大器是一种电压放大器,用于放大电压信号。

它们被广泛应用于信号放大、信号滤波和仪器测量。

11. 逻辑门:逻辑门是一种用于执行逻辑运算的电子设备。

它们通常用于数字电路、计算机逻辑和控制系统。

12. 传感器:传感器是一种将物理量转换为电信号的装置。

它们通常用于测量、监测和控制应用,如温度传感、压力传感和光传感。

13. 继电器:继电器是一种用电信号控制电流的电器开关。

它们通常用于电路切换、保护和自动控制。

14. 集成电路:集成电路是大量电子元件集成在一个芯片上的电子装置。

它们通常用于计算机、通信、存储和控制设备中。

常用电子元器件及使用常识

常用电子元器件及使用常识

常用电子元器件及使用常识电子元器件是电子产品中不可或缺的组成部分,它们具有不同的功能和特性,用途广泛,涵盖了电源、传感器、模拟器件、数字器件等多个领域。

下面是一些常用的电子元器件及其使用常识。

1. 电源模块:电子产品通常需要稳定的直流电源供电,电源模块可以将交流电转换为稳定的直流电。

常见的电源模块有稳压二极管(Zener diode)、稳压管(Voltage regulator)、开关电源(Switching power supply)等。

2. 传感器:传感器可将物理量转换为电信号,常用于测量温度、光强、压力、湿度等。

常见的传感器包括温度传感器(Thermistor)、光敏电阻(Photoresistor)、压力传感器(Pressure sensor)等。

3. 模拟器件:模拟器件可以处理模拟信号,常用于放大、滤波、调节信号等。

常见的模拟器件有运算放大器(Operational amplifier)、二极管(Diode)、三极管(Transistor)等。

4. 数字器件:数字器件用于处理数字信号,常用于逻辑运算、计数、存储等。

常见的数字器件包括逻辑门(Logic gate)、触发器(Flip-flop)、计数器(Counter)等。

5. 存储器件:存储器件用于存储数据,分为随机存取存储器(RAM)和只读存储器(ROM)等。

常见的存储器件有动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存(Flash memory)等。

6. 开关器件:开关器件用于控制电路的开关状态。

常见的开关器件有继电器(Relay)、场效应管(Field effect transistor)、双极型晶体管(Bipolar junction transistor)等。

7. 接口器件:接口器件用于连接电路之间的信号传递和数据交流。

常见的接口器件有USB接口、串行通信接口(UART)、并行通信接口(Parallel interface)等。

电子元器件了解电子元器件的种类功能和应用领域

电子元器件了解电子元器件的种类功能和应用领域

电子元器件了解电子元器件的种类功能和应用领域电子元器件了解电子元器件的种类、功能和应用领域电子元器件是构成电子设备的基本组成部分,广泛应用于通信、计算机、工业控制、家电等领域。

了解电子元器件的种类、功能和应用领域对于电子工程师和爱好者来说至关重要。

一、电子元器件的分类根据功能和结构特点,电子元器件可以分为以下几类:1. 电源元器件:主要包括变压器、整流器、稳压器等,用于供电和电压稳定。

2. 接触器:用于电路的开关控制,常见的有继电器、开关等。

3. 半导体器件:包括二极管、晶体三极管、场效应管等,用于信号放大、整流和开关控制。

4. 传感器:用于感知和采集环境信息,常见的有温度传感器、光敏元件等。

5. 集成电路:集成了多个电子元器件的芯片,分为数字集成电路和模拟集成电路。

6. 电容器:用于储存电荷和能量,常见的有电解电容器、陶瓷电容器等。

7. 电感器:用于储存磁场能量和抑制电流变化,常见的有电感线圈、变压器等。

8. 电阻器:用于限制电流,常见的有固定电阻器、可变电阻器等。

二、电子元器件的功能电子元器件根据自身特性具有不同的功能,主要包括:1. 放大和控制信号功能:半导体器件如晶体三极管可以放大信号,控制电流的开关状态。

2. 整流和滤波功能:二极管可以将交流信号转换为直流信号,电容器和电感器可对信号进行滤波和调整。

3. 存储和处理功能:集成电路可实现复杂的计算和数据处理,存储器件如EEPROM可以长期保存数据。

4. 感知和检测功能:传感器通过感知环境信息,如温度传感器可检测温度变化,光敏元件可感知光线强度。

5. 控制和保护功能:电源元器件如稳压器可稳定电压,继电器可控制电路的开关状态。

三、电子元器件的应用领域电子元器件应用广泛,涵盖了各个领域,常见的应用包括:1. 通信和无线电:电子元器件在通信设备中起着关键作用,如信号放大器、滤波器、天线等。

2. 计算机和信息技术:集成电路在计算机硬件中扮演重要角色,如处理器、内存、芯片组等。

各个元器件的作用和用法

各个元器件的作用和用法

各个元器件的作用和用法
各个元器件的作用和用法有很多种,下面是一些常见的元器件及其作用和用法的简要介绍:
1. 电阻器(Resistor):用于限制电流、分压或者提供电阻。

常用于电路中调节电压、控制电流和改变电路特性等。

2. 电容器(Capacitor):用于储存和释放电荷。

常用于滤波、储能、降噪和产生时间延迟等。

3. 电感器(Inductor):用于储存和释放磁能。

常用于滤波、频率选择、储能和电流干扰抑制等。

4. 二极管(Diode):用于控制电流的方向。

常用于整流、保护、反向电流防止和信号调制等。

5. 晶体管(Transistor):用于放大电信号或者控制电流。

常用于开关、放大器、振荡器和数字电路等。

6. 整流器(Rectifier):用于将交流电转换为直流电。

常用于电源、电机驱动和DC电路等。

7. 运算放大器(Operational Amplifier):用于放大和处理电信号。

常用于放大器、滤波器、振荡器和比较器等。

8. 电位器(Potentiometer):用于通过调节电阻值来控制电路的工作。

常用于调节电压、控制音量和调节亮度等。

9. 继电器(Relay):用于控制大功率电路的开关。

常用于电机控制、自动化系统和电路保护等。

10. 光敏元件(Photoresistor):用于检测光强度的变化。

常用于光控开关、曝光补偿和自动光线调节等。

这里只是列举了一部分常见的元器件和其用途,实际上还有很多其他的元器件,而且同一种元器件可能有多种用途,具体的使用还需根据具体的电路设计和应用需求来确定。

电子元器件的制造与应用

电子元器件的制造与应用

电子元器件的制造与应用电子元器件是现代电子产业的基石,也是现代化社会中各种电子产品不可或缺的组成部分。

在当前电子技术日新月异的背景下,电子元器件的制造和应用也在不断地更新和升级,为各行各业的发展提供了巨大的助力。

一、电子元器件的种类电子元器件主要包含三类:被动元器件、主动元器件以及电子器件模块。

1. 被动元器件:指的是不具有放大、振荡、开关等功能的元器件,如电阻器、电容器、电感等。

被动元器件以其体积小、价格低、性能稳定等特点,广泛应用于电源、通信、计算机等领域。

2. 主动元器件:指的是具有放大、振荡、开关等功能的元器件,如晶体管、场效应管、二极管等。

主动元器件以其性能好、可靠性高、工作速度快等特点,被广泛应用于计算机、通信、雷达等高科技领域。

3. 电子器件模块:指的是将多个电子元器件组合成一个整体的电子器件,如单片机、DSP模块等。

电子器件模块以其优秀的性能、易于操作、体积小等特点,被广泛应用于各种电子系统的设计和开发。

二、电子元器件的制造过程电子元器件的制造过程主要包含三个环节:芯片制造、包装测试和封装。

1. 芯片制造:芯片制造是电子元器件制造的核心环节,它主要包含晶片生长、器件制作、器件测试等步骤。

晶片生长是将单晶硅制成晶片的过程,其过程中需保证晶片的质量和晶格完整度。

器件制作是将电路图转化为电路结构,并采取光刻、蒸镀等工艺,制作出电子器件,以此来实现各种功能。

器件测试则是对制作出的芯片进行测试,确保其符合性能规范。

2. 包装测试:包装测试是芯片制造的附加环节。

它主要包含了晶片分装、批测试和选分。

晶片分装是将制作好的芯片封装至封装体中,以此来确保其稳定性和可靠性。

批测试是对封装好的芯片进行测试,以此来排除不合格品种。

选分是将不同性能等级的芯片选别出来,供应不同的市场和用户。

3. 封装:封装是将封装好的芯片与其他电器元件组合成整体电子器件的过程。

这个过程中,需要根据不同的应用需求,采纳不同的封装方式,以此来实现各种不同的功能。

数字电路举例

数字电路举例

数字电路举例数字电路是由数字电子元器件组成的电路,它的基础是数字信号的处理和传输。

数字电路常常用于实现逻辑运算、控制信号和信号处理等方面。

下面我们将举例介绍数字电路在实际生活中的应用。

1. 计算器计算器是一种广泛使用的数字电路应用。

它通常由数字显示器、数字键盘、控制电路和计算电路等组成。

在计算器中,数字电路用于处理用户输入的数值并进行数学运算,最终将计算结果显示在数字显示器上。

数字电路的高速运算和精确计算使计算器成为现代人们不可缺少的工具。

2. 数码相机数码相机也是一种大规模使用数字电路的产品。

它的传感器采用数字信号处理技术来转换成数字图像信号,并通过数字电路的高速运算对图像进行处理和压缩,以提高图像的清晰度和色彩还原度。

数码相机的数字电路还可以实现录像、存储、传输和打印等功能,成为了现代家用器具中的重要组成部分。

3. 手机手提电话是数字电路的另一个典型应用。

它不仅包括基础的电话通信功能,还具有多种数字电路功能,如计算器、日历、照相、录像、GPS导航、互联网接入等。

它的通信和数据传输采用数字信号处理技术,使得数据传输稳定、信号清晰,而且还可以通过数字电路进行音频和视频的压缩传输。

数字电路的广泛应用,使得手机成为人们生活中的必需品。

4. 洗衣机在洗衣机中,数字电路提供了多种控制和调节的功能,如控制洗衣机的开关、定时启动、清洗水位的控制、温度控制以及故障的检测和自动保护等,数字电路的使用使得洗衣机具有了更高的自动化程度,提高了它的操作易用性与可靠性。

5. 电子秤电子秤是一种数字电路应用,在重量测量和显示方面具有高度精确性和灵敏度。

它通常由传感器、模数转换器、数字显示和控制电路等构成。

在电子秤中,当物品放在秤盘上时,传感器将重量转化为电信号,并通过数字电路对其进行处理和显示。

数字电路的高精度测量和显示使得电子秤成为了现代商业和家庭生活中必备的物品。

总结:数字电路应用之广泛,涉及生活、工业等各领域,它将数字信号的传输、处理与控制集成在一起,促进了电子工业的发展,也推进了人类文明的进步。

数字法:电路图中的元件连接表示法

数字法:电路图中的元件连接表示法

数字法:电路图中的元件连接表示法数字法在电路图中主要用于表示元件之间的连接方式,具体方法如下:
1.串联:在串联电路中,所有元件的电流路径都是相同的,即从电源的正极
出发,依次流过每个元件,最终回到电源的负极。

在电路图中,可以并排画出元件符号,并在元件符号之间标注数字来表示元件的顺序和数量。

2.并联:在并联电路中,所有元件被连接到了同一电位点上,即它们共享相
同的电压。

在电路图中,可以垂直画出元件符号,并在元件符号之间标注数字来表示元件的顺序和数量。

数字法通过使用数字来表示元件之间的连接顺序和数量,有助于理解和分析电路的工作原理和功能。

通过标注数字,可以清晰地展示电路中的元件连接方式和数量,使得电路图更加直观和易于理解。

电路中的计数器有哪些常见应用

电路中的计数器有哪些常见应用

电路中的计数器有哪些常见应用计数器是一种常见的电子元器件,在电路中有许多应用。

本文将介绍一些常见的计数器应用,包括时序测量、频率分析、序列产生器和事件计数等。

1. 时序测量计数器可以用于测量时间和时序。

通过将计数器与时钟信号连接,可以精确地测量过程的时间长度。

例如,在数字信号处理中,计数器可用于测量两个事件之间的时间差。

此外,计数器还可以用于测量脉冲持续时间、周期和延迟等参数。

2. 频率分析计数器也广泛应用于频率分析。

通过将计数器与频率源相连,可以实时测量信号的频率。

这对于无线通信系统、音频处理和振动分析等领域来说非常重要。

通过统计某一时间段内信号发生的次数,可以计算出信号的频率,并用于进一步的分析和处理。

3. 序列产生器计数器可以用作序列产生器,用于生成各种数字序列。

例如,二进制计数器可以生成从0到2^n-1的数值序列,这对于控制逻辑和状态机设计非常有用。

计数器还可以用于生成不同进制的序列,如十进制、十六进制或BCD码等。

序列产生器在数字系统的设计中起到重要作用,可用于产生时钟、地址、控制信号等。

4. 事件计数计数器常用于事件计数,如测量信号的脉冲数量或触发事件的总数。

例如,在计步器、计数器和起重机等设备中,计数器可以用于记录特定事件的数量。

计数器的数字输出可以实时显示所计数的事件数量,方便用户进行观察和管理。

总结:计数器在电路中有着广泛的应用,包括时序测量、频率分析、序列产生器和事件计数等。

它们可以帮助我们测量时间、分析频率、生成数字序列,以及计数各种事件。

计数器在数字系统和电子设备中起到重要的作用,为我们提供了有效的计量和控制手段。

3极管的电路应用

3极管的电路应用

3极管的电路应用
三极管是一种常见的电子元器件,通常被用于各种电路中。

以下是一些三极管的典型电路应用:
1. 放大器:三极管可用作放大器,通过控制基极电流来调节集电极(collector)和发射极(emitter)之间的电流,从而实现信号放大的功能。

放大器电路广泛应用于音频放大、射频放大等领域。

2. 开关:三极管还可以用作开关,实现开关电路的控制功能。

在数字逻辑电路中,三极管可以用作开关,实现逻辑门电路和存储单元的功能。

3. 振荡器:三极管可以组成振荡器电路,产生频率稳定的交流信号。

振荡器广泛应用于射频发射、接收和时钟电路等领域。

4. 调制解调器:在通讯领域,三极管可以用于组成调制解调器电路,实现信号的调制和解调。

5. 电源电路:在稳压电源、开关电源等电源电路中,三极管也有广泛的应用。

总的来说,三极管是一种非常重要的电子元件,广泛应用于各种电路中,包括放大器、开关、振荡器、调制解调器、电源电路等领域。

元器件的原理讲解和应用

元器件的原理讲解和应用

元器件的原理讲解和应用一、什么是元器件?元器件是指用于电子设备中的可独立交换的部件,它们具有特定的电气参数和功能特性,可以用于构建电子电路和系统。

元器件是电子工程中非常重要的组成部分,广泛应用于通信、计算机、控制、能源等领域。

二、元器件的分类1.被动元器件:–电阻器:用来限制电流,分为可变电阻和固定电阻。

–电容器:用来储存电荷,分为电解电容器、陶瓷电容器等。

–电感器:用来储存和释放磁场能量,分为铁芯电感器和无铁芯电感器。

–电感元件:用于将直流电变成脉动流、变压、隔离等。

2.主动元器件:–晶体管:用于放大电流和开关电路。

–二极管:用于整流、开关和局部锁相。

–集成电路:包含多个功能模块的芯片。

常见的有逻辑门、计数器、存储器等。

–放大器:用于将信号放大,提高信号的幅度和质量。

可分为运算放大器、功率放大器等。

3.应用特定元器件:–传感器:用于将感知的物理量转换为电信号,如温度传感器、光学传感器等。

–液晶显示器:用于显示图像和文字,广泛应用于电子产品中。

–激光二极管:用于激光器、光通信等领域。

–动力元件:如电机、继电器、开关等。

三、元器件的原理讲解1. 电阻器电阻器是一种被动元器件,用于限制电流。

其工作原理基于电阻的物理特性。

电阻器的电气参数为阻抗和功率。

常见的电阻器有固定电阻器和可变电阻器。

固定电阻器阻值固定,可用于稳压、限流等电路;可变电阻器可以通过旋钮或滑片进行调节,广泛用于音量控制、光亮度调节等场景。

电容器是一种被动元器件,用于储存电荷。

其工作原理基于电场的存在。

电容器的电气参数为电容和工作电压。

电容器可以储存电荷,并在需要释放电荷时释放。

电容器可分为固定电容器和可变电容器,常见的有电解电容器、陶瓷电容器等。

3. 电感器电感器是一种被动元器件,用于储存和释放磁场能量。

其工作原理基于电感的物理特性。

电感器的电气参数为电感和工作电流。

电感器可以储存能量,当电流变化时可以释放储存的能量。

根据是否有铁芯可以分为铁芯电感器和无铁芯电感器。

电子元器件图解与应用

电子元器件图解与应用

常用电子元器件的识别电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。

电阻在电路中的主要作用为分流、限流、分压、偏置等。

1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。

换算方法是:1兆欧=1000千欧=1000000欧,电阻的参数标注方法有3种,即直标法、色标法和数标法。

a、数标法主要用于贴片等小体积的电路,如:472 表示 47×100Ω(即4.7K); 104则表示100Kb、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色 / x0.01 ±10金色 / x0.1 ±5黑色 0 +0 /棕色 1 x10 ±1红色 2 x100 ±2橙色 3 x1000 /黄色 4 x10000 /绿色 5 x100000 ±0.5蓝色 6 x1000000 ±0.2紫色 7 x10000000 ±0.1灰色 8 x100000000 /白色 9 x1000000000 /电容1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。

电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。

电容的特性主要是隔直流通交流。

电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。

容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。

2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。

电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。

其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。

常见的数字电路元件及应用

常见的数字电路元件及应用

常见的数字电路元件及应用数字电路是现代电子技术的基础,它由各种数字电路元件组成,这些元件在计算机、通信设备、嵌入式系统等领域有着广泛的应用。

本文将介绍几种常见的数字电路元件及其应用。

一、逻辑门逻辑门是数字电路中最基本的元件之一。

常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)等。

与门输出只有在所有输入都为高电平时才为高电平,或门只要有一个输入为高电平输出就为高电平,非门则是将输入信号取反。

逻辑门可用于数制转换、逻辑运算、控制信号处理等方面。

二、触发器触发器是存储器元件,用于存储和延时输入信号。

常见的触发器有RS触发器、D触发器、JK触发器等。

触发器可以在时钟信号作用下改变自身状态,并输出相应的结果。

触发器广泛应用于数字时序电路、计数器、寄存器等电路中。

三、计数器计数器是一种用于计数的数字电路元件。

它可以根据输入信号的变化进行计数,并输出对应的计数结果。

常见的计数器有二进制计数器、BCD计数器、模数计数器等。

计数器被广泛应用于时钟、频率分析器、信号发生器等电路中。

四、译码器译码器是一种将多位输入信号转换成特定输出信号的电路元件。

它将输入的数字信号与逻辑运算相结合,输出对应的译码结果。

常见的译码器有BCD译码器、数值译码器等。

译码器主要用于信号解码、数码管显示、地址译码等电路中。

五、多路选择器多路选择器是一种具有多个输入端和一个输出端的电路元件。

它根据选择信号决定哪个输入信号传递到输出。

常见的多路选择器有2:1选择器、4:1选择器等。

多路选择器主要用于信号选择和数据交叉等场合。

六、振荡器振荡器是一种能够产生稳定振荡信号的电路元件。

它由反馈网络和放大器组成,在特定的条件下产生连续的振荡信号。

常见的振荡器有RC振荡器、LC振荡器、晶体振荡器等。

振荡器广泛应用于时钟信号生成、频率合成、通信设备等领域。

七、缓冲器缓冲器是一种能够放大输入信号并保持其波形不变的电路元件。

它提供了高阻抗输入和低阻抗输出,能够有效地隔离输入和输出电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分:硬件知识一、数字信号1、TTL和带缓冲的TTL信号2、RS232和定义3、RS485/422(平衡信号)4、干接点信号二、模拟信号视频1、非平衡信号2、平衡信号三、芯片1、封装2、74073、74044、74005、74LS5736、ULN20037、74LS2448、74LS2409、74LS24510、74LS138/23811、CPLD(EPM7128)12、116113、max69114、max485/7517615、mc148916、mc148817、ICL232/max23218、89C51四、分立器件1、封装2、电阻:功耗和容值3、电容1) 独石电容2) 瓷片电容3) 电解电容4、电感5、电源转换模块6、接线端子7、LED发光管8、8字(共阳和共阴)9、三极管2N555110、蜂鸣器五、单片机最小系统1、单片机2、看门狗和上电复位电路3、晶振和瓷片电容六、串行接口芯片1、eeprom2、串行I/O接口芯片3、串行AD、DA4、串行LED驱动、max7129七、电源设计1、开关电源:器件的选择2、线性电源:1) 变压器2) 桥3) 电解电容3、电源的保护1) 桥的保护2) 单二极管保护八、维修1、电源2、看门狗3、信号九、设计思路1、电源:电压和电流2、接口:串口、开关量输入、开关量输出3、开关量信号输出调理1) TTL―>继电器2) TTL―>继电器(反向逻辑)3) TTL―>固态继电器4) TTL―>LED(8字)5) 继电器―>继电器6) 继电器―>固态继电器4、开关量信号输入调理1) 干接点―>光耦2) TTL―>光耦5、CPU处理能力的考虑6、成为产品的考虑:1) 电路板外形:大小尺寸、异形、连接器、空间体积2) 电路板模块化设计3) 成本分析4) 器件的冗余度1. 电阻的功耗2. 电容的耐压值等5) 机箱6) 电源的选择7) 模块化设计8) 成本核算1. 如何计算电路板的成本?2. 如何降低成本?选用功能满足价格便宜的器件十、思考题1、如何检测和指示RS422信号2、如何检测和指示RS232信号3、设计一个4位8字的显示板1) 电源:DC122) 接口:RS2323) 4位3”8字(连在一起)4) 亮度检测5) 二级调光4、设计一个33位1”8字的显示板1) 电源:DC5V2) 接口:RS2323) 3排11位8字,分4个、3个、4个3组,带行与行之间带间隔4) 单片机最小系统5) 译码逻辑6) 显示驱动和驱动器件5、设计一个PCL725和MOXA C168P的接口板1) 电源:DC5V2) 接口:PCL725/MOXA 8个RS2321. PCL725,直立DB37,孔2. MOXA C168P,DB62弯3) 开关量输出信号调理:6个固态继电器和8个继电器,可以被任何一路信号控制和驱动,接口:固态继电器5.08直立,继电器3.81直立4) 开关量输入调理:干接点闭合为1或0可选,接口:3.81直立5) RS232调理:1. LED指示2. 前4路RS232全信号,后4路只需要TX、RX、03. 无需光电隔离4. 接口形式:DB9(针)直立第二部分:软件知识一、汇编语言二、C51该部分可以从市场上买到的N种开发板上学到,至于第一部分,需要人来带吧。

为什么要掌握这些知识?实际上,电子工程师就是将一堆器件搭在一起,注入思想(程序),完成原来的这些器件分离时无法完成的功能,做成一个成品。

所需要的技能越高、功能越复杂、成本越低、市场上对相应的东东的需求越大,就越成功。

这就是电子工程师的自身的价值。

从成本到产品售出,之间的差价就是企业的追求。

作为企业的老板,是在市场上去寻找这样的应用;对电子工程师而言,是将老板提出的需求或者应用按照一定的构思原则(成本最低、可靠性最高、电路板最小、功能最强大等)在最短的时间内完成。

最短的时间,跟电子工程师的熟练程度、工作效率和工作时间直接有关。

这就是电子工程师的价值。

将电子产品抽象成一个硬件的模型,大约有以下组成:1) 输入2) 处理核心3) 输出输入基本上有以下的可能:1) 键盘2) 串行接口(RS232/485/can bus/以太网/USB)3) 开关量(TTL,电流环路,干接点)4) 模拟量(4~20ma、0~10ma、0~5V(平衡和非平衡信号))输出基本上有以下组成:1) 串行接口(RS232/485/can bus/以太网/USB)2) 开关量(TTL、电流环路、干接点、功率驱动)3) 模拟量(4~20ma,0~10ma,0~5V(平衡和非平衡信号))4) LED显示:发光管、八字5) 液晶显示器6) 蜂鸣器处理核心主要有:1) 8位单片机,主要就是51系列2) 32位arm单片机,主要有atmel和三星系列51系列单片机现在看来,只能做一些简单的应用,说白了,这个芯片也就是做单一的一件事情,做多了,不如使用arm来做;还可以在arm上加一个操作系统,程序既可靠又容易编写。

最近三星的arm受到追捧,价格便宜,以太网和USB的接口也有,周立功的开发系统也便宜,作为学习ARM的产品来说,应该是最好的;作为工业级的控制,是不是合适,在网友中有不同的看法和争议。

本公司使用atmel ARM91系列开发的1个室外使用的产品,在北京室外使用,没有任何的通风和加热的措施,从去年的5月份到现在,运行情况良好。

已经有个成功应用的案例。

但对于初学者来说,应该从51着手,一方面,51还是入门级的芯片,作为初学者练手还是比较好的,可以将以上的概念走一遍;很多特殊的单片机也是在51的核的基础上增加了一些I/O和A/D、D/A;也为今后学习更高一级的单片机和ARM打下基础。

再说了,哪个老板会将ARM级别的开发放在连51也没有学过的新手手中?在51上面去做复杂的并行扩展是没有必要的,比如,扩展I/O口和A/D、D/A等等,可以直接买带有A/D、D/A的单片机;或者直接使用ARM,它的I/O口线口多。

可以使用I2C接口的芯片,扩展I/O口和A/D、D/A,以及SPI接口扩展LED显示,例如:MAX7219等芯片。

市面上一些比较古老的书籍中还有一些并行扩展的例子,如:RAM、EPROM、A/D、D/A等,我觉得已经没有必要去看了,知道历史上有这些一回事就行了;这些知识,是所有产品都具备的要素。

所以要学,再具体应用。

说一个小的故事:野人献曝。

从前,有一个农民,冬天干了活后,休息晒太阳。

好舒服呀。

他想,这么舒服的享受,我要献给国王,让他也能得到享受。

于是他兴冲冲地到了王宫,将他的宝贵经验献给了国王。

我现在就象这个农民,把自己认为很宝贵的经验献给大家。

希望大家多提宝贵意见;拍板砖也可以,骂我也无所谓,呵呵,随便。

第一课:51单片机最小系统实际上,51单片机核心外围电路是很简单的,一个单片机+一个看门狗+一个晶振+2个磁片电容;1. 单片机:atmel的89C51系列、winbond的78E52系列,还有philips的系列,都差不多;现在有一些有ISP(在线下载的),就更好用了;2. 看门狗:种类很多,我常用的有max691/ca1161和DS1832等,具体看个人习惯、芯片工作电压、封装等。

Max系列和DS系列,还有IMP公司的,种类很多,一般只需要有最基本的功能就可以了;原来我使用max691,但是max691比较贵,因为它有电池切换功能,后来新设计电路板,就都采用ca1161了。

很早以前的电路设计中,现在可能还有人使用,使用一个电阻和一个电容达成的上电复位电路;但是,这样的复位电路一个是不可靠,为什么不可靠,网络上能找得到专门论述复位电路的文章;更重要的是,51系列的单片机比较容易受到干扰;没有看门狗电路是不行的,当程序跑飞时,回不来了,死在那里。

常规的做法是买一个专门的看门狗电路,完成复位电路和看门狗电路的功能。

这些芯片的资料很容易在网络上找到,通常使用百度搜索就可以了;看见有PDF的字样,就点击下载;使用网际快车flashget下载也是最好的;这些资料通常是pdf格式的文件,所以,还需要一个pdf的阅读器。

实际上,有了百度和其它的搜索引擎,很方便下载到这些芯片的资料,比光盘还方便,不需要去到处找。

单片机和单片机抗干扰能力是不一样的。

如果你的产品是工作在干扰比较大的环境,可以试试选用不同品牌的单片机;原来我在一个光电所,做YAG激光治疗机的控制部分,脉冲激光机的电源放电的时候,能量是很大的,在采取了所有能够想到的光电隔离等措施之后,还是不行;后来,选用了intel的8031,就可以了。

小声的说:当时的philips的单片机抗干扰性能是最差的,可能跟Philips主要是用在民用领域有关。

现在不知道怎么样了,有人知道的话告诉我。

单片机的输入输出口线是最容易引进干扰的地方;在严重干扰的情况下,需要将所有的口线光电隔离。

3. 晶振:一般选用11.0592M,因为可以准确地得到9600波特率和19200波特率;也可以使用36.864M,这个频率是1.8432M的20倍,看别人的电路板上用过,我也没有用到。

这2种晶振很容易买到,价钱跟12M的一样。

书上说,12M的晶振也能得到9600的波特率,但是,实际用的时候,会每隔一段时间就出错一次,好像累积误差一样,比较奇怪。

即使你的单片机系统不使用RS232接口,也可以做一个Rs232,留着做测试,或者预留等等,没有坏处。

除非你的单片机系统的口线不够用了。

4. 磁片电容:22pf~30pf,可以在有些书上找到什么晶振频率对应什么容量的磁片电容,但是,我都是随便拿来使用,反正在11.0592M下,都没有问题;如果你用到了更高的频率,最好还是找找资料看看。

参见以下电路图:如果你的单片机系统没有工作,检查步骤如下:1. 查看门狗的复位输出,可能的话在电路板上加一个LED,下拉,这样看起来就更方便;要是看门狗复位信号有,往下;2. 查单片机,看看管脚有没有问题;一般编程器能够将程序写入,说明单片机是好的;最好手头上准备一个验证过的单片机,内部有一个简单的程序,比如,在某个口线上输出1个1秒占空比的方波等,可以使用万用表测量。

加一句:设计产品时,要在关键的地方:电源、串口、看门狗的输出和输入、I/O口等加不同颜色的LED指示,便于调试;作为批量大的产品,可以去掉部分LED,一方面是降低成本、一方面是流程保密;3. 再查磁片电容,有些瓷片电容质量不行,干脆换了;顺便说一下,换器件最好使用吸锡带,将焊盘内的锡吸干净,再将器件拔出,这样不会损伤焊盘内的过孔;再将新的瓷片电容焊接上去的时候,用万用表量量是好的再焊;4. 最后只有换晶振了;切记要买好的晶振,有些品牌质量比较好。

相关文档
最新文档