频谱分析仪应用解惑之频率分辨力
频谱分析仪的工作原理和使用方法ppt课件
3.2 选择性
3 dB
3 dB BW
60 dB 60 dB BW 60 dB BW 3 dB BW
节到混频器的最佳信号电平,已防止发生混频压缩和失真。 信号经过预选器和低通滤波器进入混频器。 信号经过混频后,在其输出端有原来的信号、本振信号,两个输入信号 的和频信号/差频信号,以及其他高次谐波信号。通常我们取其差频信号, 称之为中频信号。 中频滤波器滤出中频信号并进行放大。 中频信号经检波和视频滤波后加到显示器上进行显示,视频滤波器的作 用是对显示屏上所显示的扫迹进行平均或平滑。 频谱仪所显示的谱线是被测信号叠加上频谱仪内部的噪声的总效应。为 了减小噪声对信号幅度的影响,要对经检波后的信号进行视频滤波或视 频平均。 当所选择的视频带宽等于或小于所选择的分辨力带宽(RBW)时,视频电 路的响应已经跟不上中频电路信号的变化,因此对所显示的信号就进行 了平均和平滑,两者之间的比值越小,平滑的效果越好。 视频平均是智能频谱仪为平滑提供的另一种选择。它对多次扫描的数据 逐点进行平均,因此显示的谱线更加平滑。
镜像频率干扰
频谱仪是一台超外差式接收机,它
的混频器是宽带的,因此在用频谱 仪测量信号时除了出现所需的信号 频率谱线外,还会显示出不需要的 镜像频谱。如图所示只要满足;,条 件时,和都会出现在频谱仪的显示 屏幕上,这就是镜像频率干扰。 有两种方案可以抑制镜像频率响应 的干扰:采用预选器和上变频的高 中频。
3.1 分辨力带宽 (RBW)
混频器 3 dB BW
输入频谱
3 dB
检波器
LO
本振
中频滤波器/分辨率带宽滤波器 扫频
分辨率 带宽 显示
3.1 分辨力带宽 (RBW)
10 kHz RBW 3 dB
频谱分析仪基础知识-性能指标及实用技巧
频谱分析仪基础知识性能指标及实用技巧频谱分析仪是用来显示频域信号幅度的仪器,在射频领域有“射频万用表”的美称。
在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。
本讲从频谱分析仪的种类与应用入手,介绍频谱分析仪的基本性能指标、操作要点和使用方法,供初级工程师入门学习;同时深入总结频谱分析仪的实用技巧,对频谱分析仪的常见问题以Q/A的形式进行归纳,帮助高级射频的工程师和爱好者进一步提高。
频谱分析仪的种类与应用频谱分析仪主要用于显示频域输入信号的频谱特性,依据信号处理方式的差异分为即时频谱分析仪和扫描调谐频谱分析仪两种。
完成频谱分析有扫频式和FFT两种方式:FFT适合于窄分析带宽,快速测量场合;扫频方式适合于宽频带分析场合。
即时频谱分析仪可在同一时间显示频域的信号振幅,其工作原理是针对不同的频率信号设置相对应的滤波器与检知器,并经由同步多工扫瞄器将信号输出至萤幕,优点在于能够显示周期性杂散波的瞬时反应,但缺点是价格昂贵,且频宽范围、滤波器的数目与最大多工交换时间都将对其性能表现造成限制。
扫瞄调谐频谱分析仪是最常用的频谱分析仪类型,它的基本结构与超外差式接收器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。
基于快速傅立叶转换(FFT)的频谱分析仪透过傅立叶运算将被测信号分解成分立的频率分量,进而达到与传统频谱分析仪同样的结果。
新型的频谱分析仪采用数位方式,直接由类比/数位转换器(ADC)对输入信号取样,再经傅立叶运算处理后而得到频谱分布图。
频谱分析仪透过频域对信号进行分析,广泛应用于监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域,是从事电子产品研发、生产、检验的常用工具,特别针对无线通讯信号的测量更是必要工具。
频谱分析仪的原理及应用
频谱分析仪的原理及应用(远程互动方式)一、实验目的:1、熟悉远程电子实验系统客户端程序的操作,了解如何控制远地服务器主机,操作与其连接的电子综合实验板和PCI-1200数据采集卡,具体可参照实验操作说明。
2、了解FFT 快速傅立叶变换理论及数字式频谱分析仪的工作原理,同时了解信号波形的数字合成方法以及程控信号源的工作原理。
3、在客户端程序上进行远程实验操作,由程控信号源分别产生正弦波、方波、三角波等几种典型电压波形,并由数字频谱分析仪对这几种典型电压波形进行频谱分析,并对测量结果做记录。
二、实验原理:1、理论概要数字式频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处理器系统或计算机来处理和显示,与模拟仪器相比,数据的量化更精确,而且很容易实现存储、传输、控制等智能化的功能。
电压测量的分辨率取决于A/D 采样器件的位数,例如12位A/D 采样的分辨率是1/4096。
在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越接近原始信号,在频谱上展现的频带就越宽。
本实验系统基于虚拟仪器构建,数字频谱分析仪是通过PCI-1200数据采集卡来实现的。
通过虚拟仪器软件提供的网络通信功能,实现客户端与服务器之间的远程通信。
由客户端程序发出操作请求,由服务器接受并按照要求控制硬件实验系统,然后将采集到的实验数据发给客户端,由客户端程序进行处理。
频谱分析仪是在频域进行信号分析测量的仪器之一,它采用滤波或傅立叶变换的方法,分析信号中所含各个频率份量的幅值、功率、能量和相位关系。
频谱仪按工作原理,大致可分为滤波法和计算法两大类,本实验所用的数字频谱分析仪采用的是计算法。
计算法频谱分析仪的构成如图1所示:图1 计算法频谱分析仪构成方框图数据采集部分由数据采集部分由抗混低通滤波(LP )、采样保持(S/H )和模数转换(A/D )几个部分组成。
什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?
什么是频谱分析仪,频谱分析仪的工作原理是什么,频谱分析仪怎样使用?什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等。
现代频谱分析仪能以模拟方式或数字方式显示分析结果,能分析1赫以下的甚低频到亚毫米波段的全部无线电频段的电信号。
仪器内部若采用数字电路和微处理器,具有存储和运算功能;配置标准接口,就容易构成自动测试系统。
频谱分析仪的工作原理以及应用方面推广:频谱分析仪的组成及工作原理图1所示为扫频调谐超外差频谱分析仪组成框图。
输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。
LO 的频率由扫频发生器控制。
随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。
然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。
随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。
该迹线示出了输入信号在所显示频率范围内的频率成分。
频谱仪各部分作用及显示信号分析输入衰减器:保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。
混频器:完成信号的频谱搬移,将不同频率输入信号变换到相应中频。
在低频段(《3GHz)利用高混频和低通滤波器抑制镜像干扰;在高频段(》3GHz)利用带通跟踪滤波器抑制镜像干扰。
本振(LO):它是一个压控振荡器,其频率是受扫频发生器控制的。
其频率稳定度锁相于参考源。
扫频发生器:除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。
频谱分析仪的使用
频谱分析仪的正确使用由于频谱仪是一种比较贵重的综合性仪器,一般每台价格都在二十万元以上,一旦损坏,相应的维修费用比较高,且维修周期比较长,因此使用时应格外小心。
首先,对于频谱仪来说电源是非常重要的,在给频谱仪加电之前,一定要确保电源接法正确,保证地线可靠接地。
频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,千万不要使用没有保护地的电源线,以防止可能造成的人身伤害。
其次,在对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。
第三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。
如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。
若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。
记住这点非常重要,一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。
如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。
当对所测信号的性质不太了解时,我们可采用以下的办法来保证频谱仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。
我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平频谱分析仪的使用频谱分析仪的使用一、什么是频谱分析仪在频域内分析信号的图示测试仪。
以图形方式显示信号幅度按频率的分布,即X轴表示频率,Y轴表示信号幅度。
二、原理:用窄带带通滤波器对信号进行选通。
三、主要功能:显示被测信号的频谱、幅度、频率。
史上最好的频谱分析仪基础知识(收藏必备)
频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
v1.0 可编辑可修改图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
频谱分析仪
频谱分析仪主要技术指标1.频率范围:2Hz – 50GHz,2.频率分辨率:0.001Hz3.扫描时间:1µS ---6000S (扫宽 0Hz); 扫宽≥10Hz时 1ms~2000s4.温度稳定度:1.5 x 10^-85.分辨率滤波器带宽精度: (RBW=1Hz~100kHz)精度: 0.5% (0.022 dB)6.分辨率滤波器形状因子 (–60 dB/–3 dB): < 4.1:17.最小分辨率带宽 (RBW):1Hz8.分析带宽:160MHz9.频率响应误差: ±0.16 dB @3.6GHz;±0.82 dB @26.5GHz10.前置放大器增益(9 kHz - 3.6 GHz): +20 dB,(26.5-50GHZ):+40dB,11.前置放大器噪声系数 (9 kHz - 3.6 GHz): 8 dB12. DANL显示平均噪声电平 (频率1 GHz): -172 dBm13. 相位噪声 (中心频率1GHz): -146dBc/Hz @ 1MHz offset-158dBc/Hz @ 10MHz offset14.外部参考信号输入: 1 ~ 50MHz15.中频AD变换器:400MHz, 14Bits16.衰减器切换不确定度:±0.003dB@50MHz,±0.3dB@3.6GHz,,±0.7dB@26.5GHz17.显示刻度保真度 (进入混频器的电平<-18dBm时) :±0.07 dB18.三阶交调指标TOI (保证值/典型值): +23 dBm @13.6GHz;+17 dBm @26.5GHz19.衰减器变化步进2dB, 设置范围0 to 70 dB20.中频输出带宽:900MHz21.辅助中频输出:可提供10MHz到75MHz步进为0.5MHz的任意中频频率输出22.具有专门的相位噪声测量选件:可以自动完成相位噪声(RMS noise)以及相位抖动(RMS jitter)和剩余调频(Residual FM)的测量;23.具有内置的快捷测试功能:包括信道功率;谐波失真;杂散发射;脉冲信号峰值功率等的简单快速测量。
频谱分析仪应用解惑之带宽
图 9 不同 RBW 的底噪高低 在测量靠近中心频率的发射分量时,需要采用较窄的分辨带宽。RBW 设置的大小能决定是否能把两个 相临很近的信号分开,只有设置 RBW 大于或等于工作带宽时,读数才准确;但是如果信号太弱而底噪又太 高,频谱仪则无法准确分辨信号,此时即使 RBW 大于工作带宽读数也会不准。 测试信道的功率或是链路噪声时,既不能太大,也不能太小,应该与信号的带宽相对应,一般的测试 规范中会给出相应的 RBW 条件。分辨率带宽常小于参考信道的带宽时,测量结果应为参考带宽内各分量的 总和(其和应为功率求 和,除非特别要求杂散信号按照电压求和) ,此时通常会使用频谱分析仪中 Meas 的 Channel Power 或 ACPR 等功能。
图 5 成型滤波器移动选择频率
如此来说,极端细致分辨能力的滤波器,相当于使用一个冲击函数去选择出需要的频率。如何构造一 个冲击函数形状的滤波器呢,它在时域上是时间无穷幅度不变的,也就是不可能构造出来。退一步讲,使 用一个矩形(形状因子为极限 1)作为选择的形状,仍然面临非常长的响应时间。也就是说矩形系数越好, 分辨能力越细的滤波器实现成本越高,所以说,把一个理论上本来就很干净的正弦波检测为一根同样干净 的细细的谱线,实现成本是非常巨大的,我们的工作就是在理想和现实之间寻找一个成本合适的平衡点: 这个滤波器既要有良好的形状选择性,又要易于实现,还要对于各种测量场景(功率,噪声,分析等)表 现较为一致的结果。 这时候高斯(Gaussian)滤波器闪亮登场了!是的,就是那个历史上最伟大没有之一的数学天才高斯, 拿破仑东征曾经因为他在哥根廷大学执教而放弃了炮轰这座城市。我们小学时有高斯计算 1+2+3+...+99+100 等差数列的故事, 中学时有高斯函数[x], 大学时有高斯分布, 高斯不等式, 高斯过程…… 那么频谱分析仪中的高斯滤波器是什么样子,为什么频谱分析仪的频率选择使用了高斯滤波器?
正确设置频谱仪带宽
正确设置频谱仪带宽在测量一些CATV系统指标中,常常要用到频谱仪,为了使测量结果准确,在频谱仪的使用上常涉及到一个分辨带宽设置的问题。
要弄清这个问题,得要知道一些频谱仪的基本原理。
图1是频谱仪的基本原理框图。
图中的中频频率(输入信号通过与本振信号的和频或差频产生),本振受斜波发生器的控制,在斜波发生器的控制下,本振频率将从低到高的线性变化。
这样在显示时,斜波发生器产生的斜波电压加到显示器的X轴上,检波器输出经低通滤波器后接到Y轴上,当斜波发生器对本振频率进行扫描时显示器上将自动绘出输入信号的频谱。
检波器输出端的低通滤波器称为视频滤波器,用在分析扫描时对响应进行平滑。
1、分辨带宽 在频谱分析仪中,频率分辨率是一个非常重要的概念,它是由中频滤波器的带宽所确定的,这个带宽决定了仪器的分辨带宽。
例如,滤波器的带宽是100KHZ。
那么谱线频率就有100KHZ的不定性,也即在一个滤波器的带宽频率范围内,出现了两条谱线的话,则仪器不能检出这两条谱线,而只显示一条谱线,此时仪器所反映的谱线电平(功率)是这两条谱线的电平功率的叠加。
因此会出现测量误差。
所以,对于两条紧密相关的谱线,其分辨力取决于滤波器的带宽。
我们以测量载波电平为例,对仪器的分辨带宽设置加以比较,图2是分辨带宽分别是(由下到上)30KHZ、300KHZ、3MHZ的频谱曲线(输入为单个载波信号),在设置分辨带宽时,我们考虑的是仪器是否能充分响应输入信号时有足够的带宽,正确的方法是展宽滤波器的带宽,当在屏幕上观察到信号载波幅度不再增加时,就表示中频滤波器对输入信号的响应已有足够的带宽了。
在。
(工作分析)频谱分析仪工作原理和应用
(工作分析)频谱分析仪工作原理和应用频谱分析仪工作原理和应用《频谱分析仪工作原理和应用》原始文档本章除了说明频谱分析仪工作原理、操作使用说明之外,也将其应用领域范围作详细的介绍,尤其应用于天线特性的量测技术将有完整说明。
本章的内容包括:本章要点1-1概论1-2频谱分析仪的工作原理1-3频谱分析仪的应用领域实习一频谱分析仪1-1概论就量测信号的技术观之,时域方面,示波器为一项极为重要且有效的量测仪器,它能直接显示信号波幅、频率、周期、波形与相位之响应变化,目前,一般的示波器至少为双轨迹输出显示装置,同时也具有与绘图仪连接的 IEEE-488、IEEE-1394 或 RS-232 接口功能,能将屏幕上量测显示的信息绘出,作为研究比较的依据,但它仅局限于低频的信号,高频信号则有其实际的困难。
频谱分析仪乃能弥补此项缺失,同时将一含有许多频率的信号用频域方式来呈现,以识别在各个频率的功率装置,以显示信号在频域里的特性。
图 1.1 说明方波在时域与频域的关系,此立体坐标轴分别代表时间、频率与振幅。
由傅立叶级数(Fourier Series)可知方波包含有基本波(Fundamental Wave)及若干谐波(Harmonics),信号的组合成份由此立体坐标中对应显示出来。
低频时,双轨迹模拟与数字示波器为目前信号时域的主要量测设备,模拟示波器可量测的输入信号频率可达 100 MHz,数字示波器有 100 MHz 与 400(或 500)MHz 等多种。
屏幕上显示信号的意义为横轴代表时间,纵轴代表信号电压的振幅,用示波器量测可得到信号时间的相位及信号与时间的关系,但无法获知信号失真的数据,亦即无法获知信号谐波分量的分布情况,同时量测微波领域(如 UHF 以上的频带)信号时,基于设备电子组件功能的限制、输入端杂散电容等因素,量测的结果无可避免地将产生信号失真及衰减,为解决量测高频信号上述的问题,频谱分析仪为一适当而必备的量测仪器,频谱分析仪的主要功能是量测信号的频率响应,横轴代表频率,纵轴代表信号功率或电压的数值,可用线性或对数刻度显示量测的结果。
频谱分析仪的几大技术指标及解决方案
频谱分析仪的几大技术指标及解决方案频谱分析仪的几大技术指标频谱分析仪用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
频谱分析仪的几大技术指标1、输入频率范围指频谱仪能够正常工作的最大频率区间,以HZ表示该范围的上限和下限,由扫描本振的频率范围决议,现代频谱仪的频率范围通常可从低频段至射频段,甚至微波段,如1KHz~4GHz,这里的频率是指中心频率,即位于显示频谱宽度中心的频率。
2、辨别力带宽指辨别频谱中两个相邻重量之间的最小谱线间隔,单位是HZ,它表示频谱仪能够把两个彼此靠得很近的等幅信号在规定低点处辨别开来的本领,在频谱仪屏幕上看到的被测信号的谱线实际是一个窄带滤波器的动态幅频特性图形(仿佛钟形曲线),因此,辨别力取决于这个幅频生的带宽,定义这个窄带滤波器幅频特性的3dB带宽为频谱仪的辨别力带宽。
3、灵敏度指在给定辨别力带宽、显示方式和其他影响因素下,频谱仪显示最小信号电平的本领,以dBm、dBu、dBv、V等单位表示,超外差频谱仪的灵敏度取决于仪器的内噪声,当测量小信号时,信号谱线是显示在噪声频谱之上的,为了易于从噪声频谱中看清楚信号谱线,一般信号电平应比内部噪声电平高10dB,另处,灵敏度还与扫频速度有关,扫频速度赶快,动态幅频特性峰值越低,导致灵敏度越低,并产生幅值差。
4、动态范围指能以规定的精准度测量同时显现在输入端的两个信号之间的最大差值,动态范围的上限爱到非线性失真的制约,频谱仪的幅值显示方式有两种:线性的对数,对数显示的优点是在有限的屏幕有效的高度范围内,可获得较大的动态范围,频谱仪的动态范围一般在60dB以上,有时甚至达到100dB以上。
5、频率扫描宽度(Span)另有分析谱宽、扫宽、频率量程、频谱跨度等不同叫法。
通常指频谱仪显示屏幕最左和最右垂直刻度线内所能显示的响应信号的频率范围(频谱宽度),依据测试需要自动调整,或人为设置,扫描宽度表示频谱仪在一次测量(也即一次频率扫描)过程中所显示的频率范围,可以小于或等于输入频率范围,频谱宽度通常又分为三种模式:①全扫频:频谱仪一次扫描它的有效频率范围;②每格扫频:频谱仪一次只扫描一个规定的频率范围,用每格表示的频谱宽度可以更改;③零扫频频率宽度为零,频谱仪不扫频,变成调谐接收机;6、扫描时间(Sweep Time,简作ST)即进行一次全频率范围的扫描、并完成测量所需的时间,也叫分析时间,通常扫描时间越短越好,但为保证测量精度,扫描时间必需适当,与扫描时间相关的因素紧要有频率扫描范围、辨别率带宽、视频滤波,现代频谱仪通常有多档扫描时间可选择,最小扫描时间由测量通道的电路响应时间决议。
频谱分析仪基础知识
幅度 (功率)
时域测量 (示波器)
频域测量 (频谱仪)
2 频谱分析仪结构及原理
频谱分析仪的类型:傅立叶频谱分析仪和超外差式频谱分析 仪 FFT频谱分析仪:被分析的信号通过模数转换器采样,变成 离散信号,采样值被保存在一个存储器中,经过离散FFT变 换计算,计算出信号的频谱 FFT频谱分析仪不足之处:FFT分析仪不适合脉冲信号的分 析,而且由于A/D转换器速度的限制,FFT分析仪仅适合测 量低频信号
未经视频滤波
经过视频滤波
锯齿波发生器、本振和显示
锯齿波发生器既控制显示器上曲线的位置,又控制LO的频 率,所以就可以通过校准,用显示器的水平轴来表示输入信 号频率 任何振荡器都不是绝对稳定的,而是在一定程度上被随机噪 声调频或调相的。LO的不稳定性会直接影响由LO和输入信 号混频后的中频,因此,LO的相位噪声调制边带也会在显 示器上任何谱分量的两边出现,LO越稳定,相位噪声越低 YIG振荡器经常被用作本振,也由一些频谱仪采用压控振荡 器作为本振,其调节范围较小,但较YIG调整起来更快;为 了增加频谱仪的频率精度,本振信号可以是合成信号,也就 是说,本振经锁相环锁定在参考信号上。参考信号通常由一 个温控晶振产生,为了增加频率精度与长期的稳定性,大多 数频谱仪广泛采用恒温控制晶振
模拟滤波器
模拟 数字 15:1 滤波器 数字 5:1
FFT滤波器
如果单纯为了测试精度而设置非常窄的分辨率带宽,则会造 成无法容忍的长时间扫描,因此在非常高的分辨率的情况下 建议采用FFT滤波器,从时域特性计算频谱,见下图。当采 用FFT滤波器时,频率非常高的信号不能通过A/D直接采样, 须经过与本振混频变为中频并在时域对带通信号取样
频谱仪测试时几个重要参数的设置
- 49 -频谱仪测试时几个重要参数的设置冯菊香(玉林师范学院,广西 玉林 537000)【摘 要】频谱仪的最佳工作状态是由诸多因素、参数决定的,而各种参数之间又相互关联,因此在设置频谱仪时需要统筹考虑。
文章从频谱仪的基本原理出发,对输入衰减、前置放大、混频、分辨率带宽、视频带宽、扫频宽度和扫描时间等参数作了重点介绍,并就它们之间的最佳工作状态关系设置进行了阐述。
【关键词】频谱仪;分辨率带宽;视频带宽;扫频宽度 【中图分类号】TM935.21 【文献标识码】A 【文章编号】1008-1151(2009)10-0049-02频谱分析仪是信号分析处理中常用的仪器设备,它不仅用于测量各种信号的频谱,而且还可测量功率、失真、增益和噪声特性等。
其覆盖的频率范围可达40GHz甚至更高,因而被广泛用于所有的无线或有线通信应用中,包括开发、生产、安装与维护等。
从工作原理上看,频谱分析仪可以分为模拟式与数字式两大类。
数字式频谱分析仪主要用于超低频或低频段,其中最有代表性的为傅立叶分析仪。
模拟式频谱分析仪根据使用滤波器的不同,又分为带通滤波器频谱分析仪与外差式扫频频谱分析仪。
(一)频谱仪的基本原理频谱分析仪的基本电路是超外差接收机,亦即利用超过输入信号频率的本地振荡频率通过混频器获得差频输出。
频谱仪显示屏的水平坐标为频率轴,垂直坐标为功率轴,主要用于观测和记录某个指定频率段内的载波频谱。
其基本原理如图1:图1 频谱分析仪基本原理框图 信号的流程是:射频信号RF 接入频谱仪,经过前端的衰减器和放大器,达到频谱仪的量程电平指标后,再经过混频器,通过与本振信号的和频或差频而产生中频频率,然后,通过中频带通滤波器和检波器峰值检波后的信号,再经过视频滤波器滤波,经由A/D 转换后显示出来。
由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。
当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出被测信号在不同频率上的电压包络,从而得到被测信号的频谱。
扫频式频谱分析仪的信号测量方法
扫频式频谱分析仪的信号测量方法摘要:近年来,我国对扫频式频谱分析仪的应用不断增加,在频谱仪中,增益压缩是频谱分析仪校准规范和检定规程规定的必测项目,但现有的增益压缩校准检定方法存在不足。
为了更好地测量评估频谱分析仪的信号测量,本文首先分析了扫频式频谱分析仪的工作原理,其次探讨了扫频式频谱分析仪的性能指标,最后就扫频式频谱分析仪信号测量进行研究,以供参考。
关键词:信号;频谱分析仪;调幅引言随着频谱分析仪的发展,传统扫频式频谱仪对于扫频终止点到下一次扫频起始点之间死区时间越来越短,但始终存在。
近年来,不存在死区时间的实时频谱分析仪在信号分析中越来越盛行。
在瞬态、偶发信号的测量分析以及频谱监测等应用中,相比传统的扫频式频谱分析仪,实时频谱分析仪进行频谱观测或是查找小信号时具有独特优势。
1扫频式频谱分析仪的工作原理扫频频谱分析仪主要有两种形式,一种是调谐滤波频谱分析仪,通过在频谱分析仪的测量频率范围内调整带通滤波器的中心频率和带宽来检测信号。
让中心频率在关注的频率范围内反复进行信号扫描,逐一遴选出输入信号的相关分量信号,通过检波器和视频放大器后将信号送到显示装置的垂直偏转电路。
产生调谐滤波器中心频率信号的信号发生器负责提供显示装置的水平偏转电路。
这种原理的频谱分析仪成本低廉,容易制造,测量信号真实可靠,但是受限于灵敏度较低、分辨紧邻信号能力差的问题。
另一种就是扫频超外差式频谱分析仪,这种频谱分析仪现在被广泛使用。
2扫频式频谱分析仪的性能指标2.1非线性失真(1)单音频输入。
对于非线性网络,如果输入是单音信号,除了产生幅度失真外,还会产生谐波失真。
当网络的增益一定时,谐波信号的电平取决于谐波的阶次和输入信号的电平。
输入信号电平变化1dB,则谐波电平变化ndB(n为谐波阶次)。
假设没有增益压缩,二阶失真分量的功率增加比基频分量的功率增加要快,直到二阶失真分量的功率等于基频分量的功率,这个点称为二阶截获点。
二阶失真分量电平与基波信号电平之差等于基波信号与截获点之差。
频谱分析仪的技术指标
频谱分析仪的技术指标
频谱分析仪的主要技术指标有频率范围、分辨力、分析谱宽、分析时间、扫频速度、灵敏度、显示方式和假响应。
1、频率范围:频谱分析仪进行正常工作的频率区间。
现代频谱仪的频率范围能从低于1赫直至300吉赫。
2、分辨力:频谱分析仪在显示器上能够区分最邻近的两条谱线之间频率间隔的能力,是频谱分析仪最重要的技术指标。
分辨力与滤波器型式、波形因数、带宽、本振稳定度、剩余调频和边带噪声等因素有关,扫频式频谱分析仪的分辨力还与扫描速度有关。
分辨带宽越窄越好。
现代频谱仪在高频段分辨力为10~100赫。
3、分析谱宽:又称频率跨度。
频谱分析仪在一次测量分析中能显示的频率范围,可等于或小于仪器的频率范围,通常是可调的。
4、分析时间:完成一次频谱分析所需的时间,它与分析谱宽和分辨力有密切关系。
对于实时式频谱分析仪,分析时间不能小于其最窄分辨带宽的倒数。
5、扫频速度:分析谱宽与分析时间之比,也就是扫频的本振频率变化速率。
6、灵敏度:频谱分析仪显示微弱信号的能力,受频谱
仪内部噪声的限制,通常要求灵敏度越高越好。
动态范围指在显示器上可同时观测的最强信号与最弱信号之比。
现代频谱分析仪的动态范围可达80分贝。
7、显示方式:频谱分析仪显示的幅度与输入信号幅度之间的关系。
通常有线性显示、平方律显示和对数显示三种方式。
8、假响应:显示器上出现不应有的谱线。
这对超外差系统是不可避免的,应设法抑止到最小,现代频谱分析仪可做到小于-90分贝毫瓦。
频谱分析仪的使用方法及功能
频谱分析仪的使用方法及功能
频谱分析仪是一种精确的测量设备,用于测量电磁场和其他电磁信号的幅度,频率,相位和调制信号的参数。
它利用模拟信号的接收和分析,常用在无线电传输系统,电磁干扰检测,以及诸如雷达系统和无线网络等相关领域的研究和开发等。
频谱分析仪的使用方法主要有以下几点:
(1)第一步是将频谱分析仪连接到要测量的信号源,比如天线、传输线和待测电路等,同时将频谱分析仪的输出连接到显示仪或数据采集系统。
(2)第二步是设置频谱分析仪的参数,以确定电磁信号分析的精度和量程。
(3)第三步是进行信号接收和分析,比如测量电磁幅度,检测电磁信号的频率,电磁信号的相位,以及调制信号的参数等。
(4)最后一步是将所测得的信号参数显示到显示仪或数据采集系统上,可以通过人机界面操作查看和分析结果。
频谱分析仪具有以下几种功能:
(1)频率响应:以检测信号的频率响应,并将其显示出来;
(2)相位响应:以测量信号的相位响应,并显示出来;
(3)灵敏度:以测量信号的灵敏度,并将其显示出来;
(4)驱动能力:以测量被测信号的驱动能力,并将其显示出来;
(5)调制度:以测量信号的调制度,并将其显示出来;
(6)频率分辨率:以测量信号的频率分辨率,并将其显示出来;
(7)噪声抑制:以抑制外部噪声;
(8)可调节频率:以调节所测信号的频率;
(9)自动检测:自动检测被测信号的参数;
(10)频率范围:可以检测频率在20Hz-20GHz之间的信号。
以上是频谱分析仪的使用方法及功能。
它能够准确地测量电磁场和其他电磁信号的参数,同时具有高可靠性、高精度和灵活性,在现代电子工程领域具有广泛的应用。
频谱分析仪基础知识-史上最好的
史上最好的频谱分析仪基础知识(收藏必备)前言频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
频谱分析仪
简介频谱分析仪是对无线电信号进行测量的必备手段,是从事电子产品研发、生产、检验的常用工具。
因此,应用十分广泛,被称为工程师的射频万用表。
1、传统频谱分析仪传统的频谱分析仪的前端电路是一定带宽内可调谐的接收机,输入信号经变频器变频后由低通滤器输出,滤波输出作为垂直分量,频率作为水平分量,在示波器屏幕上绘出坐标图,就是输入信号的频谱图。
由于变频器可以达到很宽的频率,例如30Hz-30GHz,与外部混频器配合,可扩展到100GHz以上,频谱分析仪是频率覆盖最宽的测量仪器之一。
无论测量连续信号或调制信号,频谱分析仪都是很理想的测量工具。
但是,传统的频谱分析仪也有明显的缺点,它只能测量频率的幅度,缺少相位信息,因此属于标量仪器而不是矢量仪器。
2、现代频谱分析仪基于快速傅里叶变换(FFT)的现代频谱分析仪,通过傅里叶运算将被测信号分解成分立的频率分量,达到与传统频谱分析仪同样的结果,。
这种新型的频谱分析仪采用数字方法直接由模拟/数字转换器(ADC)对输入信号取样,再经FFT处理后获得频谱分布图。
在这种频谱分析仪中,为获得良好的仪器线性度和高分辨率,对信号进行数据采集时ADC的取样率最少等于输入信号最高频率的两倍,亦即频率上限是100MHz的实时频谱分析仪需要ADC有200MS/S的取样率。
目前半导体工艺水平可制成分辨率8位和取样率4GS/S的ADC或者分辨率12位和取样率800MS/S的ADC,亦即,原理上仪器可达到2GHz的带宽,为了扩展频率上限,可在ADC前端增加下变频器,本振采用数字调谐振荡器。
这种混合式的频谱分析仪可扩展到几GHz以下的频段使用。
FFT的性能用取样点数和取样率来表征,例如用100KS/S的取样率对输入信号取样1024点,则最高输入频率是50KHz和分辨率是50Hz。
如果取样点数为2048点,则分辨率提高到25Hz。
由此可知,最高输人频率取决于取样率,分辨率取决于取样点数。
FFT运算时间与取样,点数成对数关系,频谱分析仪需要高频率、高分辨率和高速运算时,要选用高速的FFT硬件,或者相应的数字信号处理器(DSP)芯片。
频谱仪的扫描速度问题
频谱仪的扫描速度问题频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分析仪依信号处理方式的不同,一般有两种类型;即时频谱分析仪(REAL-TIME SPECTRUM ANALYZER)与扫瞄调谐频谱分析仪(SWEEP-TUNED SPECTRUM ANALYZER).即时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(DETECTOR),再经由同步的多工扫瞄器将信号传送到CRT萤幕上,其优点是能显示周期性杂散波(PERIODIC RANDOM WAVES)的瞬间反应,其缺点是价昂且性能受限於频宽范围,滤波器的数目与最大的多工交换时间(SWITCHING TIME).最常用的频谱分析仪是扫瞄调谐频谱分析仪,其基本结构类似超外差式接收器,工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系,信号流程架构如图1.3所示.影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(GAUSSIAN-SHAPED FILTER),影响的功能就是量测时常见到的解析频宽(RBW,RESOLUTION BANDWIDTH).RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低於频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助於不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW 固然有助於宽频带信号的侦测,将增加杂讯底层值(NOISE FLOOR),降低量测灵敏度,对於侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念.频谱仪的扫描速度问题用频谱仪对电信号进行测量时,为了减少测量误差,我们往往要根据所要测量的信号特点来设定仪器的分辨率带宽、视频带宽和扫描速度(或时间),这几项仪器参数设定是频谱仪使用中的三大基本设定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频谱分析仪应用解惑之频率分辨力杨鼎深圳市鼎阳科技有限公司频谱分析仪应用解惑之频率分辨力带宽是频域分析中的常见指标,在上一部分的文章《频谱分析仪应用解惑之带宽》中,我们讲述了频谱分析仪中常见的分辨率带宽和视频带宽,文中提到RBW 的带宽和矩形系数是影响测量频率分辨力的两个主要因素,另外还有近端的相位噪声和本振的剩余调制。
相位噪声是一个复杂的因素,本文仅从频谱分析仪的频率分辨力这个角度来阐述。
在具体操作上,仪器的显示点数也在形式上影响着观察到的频率分辨力。
如图1所示为影响频率分辨力的四个因素。
图 1 影响频谱分析仪频率分辨力的四个因素我们先来解释几组测量中容易混淆的概念,一组是分辨率(Resolution ),准确度(Accuracy )和精确度(Precision ),一组是频谱分析仪的频率分辨率和频率分辨力。
频谱分析仪是个复杂的测量系统,其准确度和精确度须要测量不确定度表示,本文不在此详述。
分辨率是个显示度量单位,通俗讲就是测量刻度的精细程度,是一个静态参数。
准确度和精确度是用来度量测量值和真实值之间差别的参数。
准确度表示测量值和真实值之间偏离的程度,是对系统误差和校准的度量;精确度用来表示多个测量值分布的离散程度,是对测量过程中随机噪声的度量。
我们举一个例子:多次测量一个值然后求平均。
见图2,平均值和真值之间的偏差表明了这次测量活动的准确度,多次测量值分布的位置表明了这次测量活动的精确度。
而分辨率,准确度和精确度之间其实是没有什么关系的,准确度差的测量系统可能拥有很高的精确度,分辨率高的测量系统可能也完全不具备好的精确度和准确度。
例如,一把尺子的分辨率到1 mm ,但是由于刻度分布不均,测量值和真实值的差别达到了10 mm ,准确度认为比较差,这种情况下这把尺子分辨率再高也并卵,然而由于测量系统的科学严谨,若干次测量的偏差都在2 mm 左右分布,表明这个测量过程的精确度还是比较高的。
杨鼎深圳市鼎阳科技有限公司图 2 准确度和精确度再来结合频谱分析仪的基本概念,频率分辨率就是频率轴的最小刻度单位,通常的频谱分析仪的频率分辨率都能够达到1Hz。
但这并不是指拥有区分出频率相差1Hz的两个正弦波的能力,分辨率仅仅指显示刻度。
实际的频率分辨力要靠分辨率带宽(RBW)来完成,也就是实际能够区分出的频率是个在某个频率点上具有一定带宽的信号,而不是落在某个频率点上的一条细线,通常的频谱分析仪的分辨率带宽能够达到1 kHz,100 Hz等。
分辨率带宽原理上是选频高斯滤波器的形状,量化的定义是距离滤波器峰值衰减3dB处的带宽,同时还约束了矩形系数的要求,作用上指将两个不同频率的信号清晰分辨出来的能力,这两个概念已经在上一篇文章中详细阐述。
通常,频谱分析仪的矩形系数都能够达到5:1左右,如图3所示。
图 3 矩形系数示意如下图4所示,随着频率分辨能力的变化,两个临近的不等幅信号的分辨程度是不同的。
图 4 RBW分辨不等幅信号的能力如图5表示了鼎阳科技SSA3032X在RBW为1 Hz时的频率分辨能力。
图 5 鼎阳科技SSA3032X在RBW为1 Hz时的频率分辨能力细心的同学可能会问,为何RBW滤波器的矩形系数定义会以60dB为界?如果矩形系数代表了频谱分析仪分辨不等幅正弦信号的能力,那如何约束高于底噪而低于60dB的不等幅信号的测量能力?这就要涉及到频谱分析仪本地振荡器(后文简称LO,Local Oscillator)的稳定程度,因为本振本身的不稳定,其相位噪声可能将靠近载波频率附近60dB以下的信号全部淹没,这时矩形系数已经没有测量意义了。
什么是相位噪声?相位噪声如何会影响频谱分析仪的频率分辨能力?频谱分析仪的LO都是由参考源(通常是晶体振荡器,XO)倍频而来。
没有哪种参考源是绝对稳定的,它们都在某种程度上受到随机噪声的频率或相位调制的影响,这个影响程度随时间在变化。
时间的稳定度可以分为两类:长期稳定度和短期稳定度。
长期稳定度是指时钟频率偏离绝对值的多少,一般用ppm(百万分之一)来表示;短期稳定度是时钟相位瞬态的变化,在时域上称抖动(jitter),在频域上称相位噪声(Phase Niose),表示为指相对于载波一定频偏处的1Hz带宽内的能量与载波电平的比值,相应的单位为归一化的dBc/Hz。
如图6所示为抖动和相位噪声之间的区别。
图 6 抖动和相位噪声在系统层面,相位噪声反映了仪器整个时钟环路的稳定度,数字部分的ADC与数字中频处理也会有影响,但是对相位噪声最主要的影响因素仍是参考源及时钟环路,选型和设计需要谨慎。
现代频谱分析仪普遍基于外差(Heterodyne)接收机“频率选择”的结构,混频器将输入的射频信号和本振信号相乘然后滤波,得到变频后的中频信号。
即使输入的射频信号是一个很纯净的正弦波,混频器也会将本振的相位噪声忠实地带入混频结果,形成一个具有相同相位噪声的中频信号。
并不是所有的测量都会受到相位噪声的影响。
相位噪声和中频的能量是固定的比例关系,当信号电平远大于系统底噪时,这个相位噪声才会大于系统的底噪,那么它将就会明显地出现在载频的周围,如图7所示。
图7 本振的相位噪声体现在对能量信号的测量结果中在矢量信号分析中,信号的相位也包含着重要的信息,本振的抖动将恶化中频相位的信噪比,所以相位噪声对矢量信号的EVM也有着重要的影响。
因此,当我们对包含了本振相位噪声的中频进行“峰值检测”时,相位噪声就会体现在测量结果中。
在某个RBW下,距离这个频率很近同时幅度又高于系统显示平均噪声电平的另一个信号,虽然可被RBW 在频率轴分辨出来,但仍会隐藏在相位噪声之下,如图8所示。
当然,相位噪声也是一种随机噪声,它和系统的显示平均噪声电平一样,随分辨率带宽的变化规律一致,若将分辨率带宽缩小10 倍,显示相位噪声电平将减小10 dB。
这个原理将在后续文章中阐述。
这种情况下需要使用超过实际分辨率的RBW来测量,代价就是增加了系统的扫描时间。
图8 相位噪声会影响不等幅信号的分辨能力相位噪声只会影响载波附近的小信号的分辨。
随着距离载波的频率而逐渐衰减,近端的相位噪声固然影响了频率分辨能力和幅度动态范围;但是当距离载波足够远时,远端的相位噪声会低于系统的显示噪声平均电平,如图9所示为基于鼎阳科技SSA3032X在SPAN=4MHz时观察到的相位噪声和显示平均噪声电平。
图9 鼎阳科技SSA3032X在SPAN=4 MHz时观察相位噪声和显示平均噪声电平需要说明,在将参考源倍频得到本振的过程中,稳定度也将按倍频比例恶化,其结果是相位噪声变差。
因此相位噪声的标定通常要对应特定的测量频率,例如在500 MHz,1 GHz等频率点测量;典型的相位噪声曲线经常要提供多个频率点的情况,例如偏离1 kHz,10 kHz,100 kHz分别给出测量值,便于横向比较。
图10 鼎阳科技SSA3032X在1 GHz偏移10 kHz处的相位噪声如何确定一台频谱分析仪的相位噪声呢?一般情况下我们关注的是近端相位噪声,也就是距离载频1 MHz以内的相位噪声。
使用一个高精度信号源(此信号源的相位噪声必须小于频谱分析仪的相位噪声)设置1 GHz,0dBm的正弦波,频谱分析仪设置的RBW在合适的扫描时间例如1 kHz,此时分别观察距离峰值10 kHz,100kHz位置的差值,根据RBW 归一化到1Hz即可得到在1 GHz下偏移10 kHz,100kHz的相位噪声水平。
如图10所示为鼎阳科技SSA3032X 在1GHz,偏移10KHz处的相位噪声。
下面来说下剩余调频(Residual FM)。
调制在时钟上的噪声,造成RBW滤波器的高斯形状上有波浪一样的凸起,就像频率调制的效果。
这个现象限制了频谱分析仪能够做到的最小RBW,也就是限制了频谱分析仪的频率分辨力,因为不知道在这种情况下这种波浪到底来源于被测信号还是来源于本振。
本振信号精确的剩余调频需要使用相噪仪来测量。
现在我们使用的参考源的剩余调频已经很小,在1 kHz的RBW和视分比为1的条件下测试,剩余调频只有十几Hz,相比于当前RBW几乎可以忽略。
最后要注意频谱分析仪显示点对于实际观察到的频率分辨率的影响。
由于频谱分析仪的测量结果只能通过Marker来读出某个确定点的频率和幅度,所以观察结果的分辨率和精确度都受到Marker的影响。
Marker的分辨率通常和仪器的分辨率一致,常为1 Hz。
而Marker的精确度则由Span和扫描点数所决定,关系为Span/(扫描点数-1)。
例如,鼎阳科技SSA3032X的屏幕显示像素点为751,那么在3GHz扫宽情况下,每个Marker的精确度能到3 GHz/750=4 MHz,我们称这个宽度范围为数据桶“Bucket”,数据桶中所有的数据经过检波最终显示为一个点。
这时我们看到的所有显示结果和Marker读数都是在4 MHz为步进单位。
在这种情况下还能够分辨出数据桶内的数据吗?如何能够提高频率分辨力呢?很多频谱分析仪提供了Marker的频率计数器功能,可以在Marker步进单位很低的情况下,识别出数据桶内部最大峰值所在的真实频率点。
图11 鼎阳科技SSA3032X的频率计数器本为虽然主要讲述频谱分析仪频率轴的分辨力,但是其中也涉及到了各种噪声,包括相位噪声,本底噪声(也就是显示平均噪声电平),这些噪声同时影响着频率分辨力和幅度的动态范围,请继续阅读下一篇《频谱分析仪应用解惑之噪声与测量》。
『关于鼎阳』鼎阳科技(SIGLENT)是一家专注于通用电子测试测量仪器及相关解决方案的公司。
从2005推出第一款数字示波器产品至今,10年来鼎阳科技一直是全球发展速度最快的数字示波器制造商。
历经多年发展,鼎阳产品已扩展到数字示波器、手持示波表、函数/任意波形发生器、频谱分析仪、台式万用表、直流电源等通用测试测量仪器产品。
2007年,鼎阳与高端示波器领导者美国力科建立了全球战略合作伙伴关系。
2011年,鼎阳发展成为中国销量领先的数字示波器制造商。
2014年,鼎阳发布了中国首款智能示波器SDS3000系列,引领“人手一台”型实验室使用示波器由功能示波器向智能示波器过渡的趋势。
目前,鼎阳已经在美国克利夫兰和德国汉堡成立分公司,产品远销全球70多个国家,SIGLENT正逐步成为全球知名的测试测量仪器品牌。
『关于鼎阳硬件设计与测试智库』鼎阳硬件设计与测试智库(简称鼎阳硬件智库)由深圳市鼎阳科技有限公司领衔创办,是中国第一家“智力众筹”模式的硬件智库。
鼎阳硬件智库顺时顺势,倡导“连接-分享-协作-创造”的理念,高举志愿者服务的大旗,相信互联网是“爱”的大本营,相信人们都有发自内心分享的愿望。
鼎阳硬件智库选择硬件领域最普遍的七类问题:电源,时钟,DDR,低速总线,高速总线,EMC,测试测量进行聚焦。