人教版七年级数学上册教学导案全册
人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册(全册)教案七年级数学上册教学计划一、基本情况分析1、学生情况分析:这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。
在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。
对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。
学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。
2、教材分析:1、第1章有理数:本章主要学习有理数的基本性质及运算。
本章重点内容是有理数的概念,性质和运算。
本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。
本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。
本章难点在于理解合并同类项和去括号的法则。
3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。
本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。
本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
4、第4章几何图形初步:本章主要学习线段和角有关的性质。
本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。
本章的难点在于线段和角的有关计算。
二、教学目标和要求(一)知识与技能1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。
体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
人教版七年级数学上册教案(全册)

第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数意义的理解.教具准备投影仪.教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.(7)、你能再举一些用正负数表示数量的实际例子吗?(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.六、巩固练习课本第3页,练习1、2、3、4题.七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.九、板书设计1.1正数和负数第一课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们把这样的数(即以前学过的0•以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+13,…就是3,2,0.5,13,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、随堂练习。
人教版七年级数学上册教案(5篇)

人教版七年级数学上册教案(5篇)最新人教版七年级数学上册教案(5篇)教学过程一般按时间顺序书写,此外也可以加几点总体提示;对教学重点部分所需的时间需要有较好的认知;要有可以舍弃的内容和备用的内容,以便灵活处理。
下面是整理的最新人教版数学七年级上册教案,欢迎阅读与收藏。
最新人教版数学七年级上册教案篇1教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。
【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点【教学重点】数轴的意义及作用。
【教学难点】数轴上的点与有理数的直观对应关系。
课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m 处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
人教版初中七年级上册数学全册教学设计(完整版)

人教版初中七年级上册数学全册教学设计(完整版)一. 教材分析人教版初中七年级上册数学教材主要内容包括:第一章有理数;第二章整式的加减;第三章几何图形初步;第四章数据的收集、整理与分析。
本册教材主要让学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。
二. 学情分析七年级的学生已经掌握了小学阶段的数学知识,具备一定的逻辑思维能力和运算能力。
但部分学生对数学学科的学习兴趣不高,学习主动性不足。
因此,在教学过程中,需要关注学生的学习兴趣,激发学生的学习积极性。
三. 教学目标1.知识与技能:使学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。
2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:培养学生对数学学科的兴趣,提高学生的自信心。
四. 教学重难点1.教学重点:有理数、整式的加减以及几何图形的知识。
2.教学难点:有理数的混合运算、整式的加减运算以及几何图形的性质。
五. 教学方法1.情境教学法:通过生活实例引入知识,使学生感受到数学与生活的紧密联系。
2.启发式教学法:引导学生主动思考问题,培养学生的逻辑思维能力。
3.合作学习法:鼓励学生之间相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教师准备:熟练掌握教材内容,了解学生的学习情况。
2.学生准备:预习教材内容,了解本节课的学习目标。
3.教学资源:多媒体课件、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例引入本节课的知识,激发学生的学习兴趣。
例如,讲解温度、身高等概念,引出有理数的概念。
2.呈现(15分钟)讲解有理数的定义、性质以及运算规则。
通过示例演示有理数的加减乘除运算,让学生跟随老师一起动手操作,巩固知识点。
3.操练(15分钟)布置练习题,让学生独立完成。
题目难度可分为基础、提高、挑战三个层次,以满足不同学生的学习需求。
教师巡回指导,帮助学生解决问题。
新人教版七年级数学(上册)全册教案

数学教案(七年级上册)第1章有理数第2章整式的加减第3章一元一次方程第4章图形认识初步第一章有理数1.1正数和负数教学目标: 1、了解正数与负数是从实际需要中产生的。
2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3、会用正、负数表示实际问题中具有相反意义的量。
重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。
2、正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。
结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。
为了用数表示具有相反意义的量,我们把其中一种意义的量。
如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。
正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。
根据需要,有时在正数前面也加上“+”(读作正)号。
注意:①数0既不是正数,也不是负数。
0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。
②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。
三、巩固知识1、课本P3 练习1,2,3,42、课本P4例四、总结①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。
1.2.1有理数教学目标:1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。
2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。
重点:正确理解有理数的概念重点:有理数的分类 教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后 ,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。
人教版七年级上册数学全册教案

人教版七年级上学期数学全册教案课题: 1.1 正数和负数(1)1.1 正数和负数(2)1.2.1 有理数1.2.2数轴课题:1.2.3 相反数课题: 1.2.4 绝对值课题: 1.3.1 有理数的加法(一)课题: 1.3.1 有理数的加法(二)课题: 1.3.2有理数的减法(1)课堂练习引导学生思考并讨论教科书第28页的“思考”,教科书第27页的练习小结与作业课堂小结通过这节课,你有什么收获?本课作业教科书第31页习题1.3第11题本课教育评注(课堂设计理念,实际教学效果及改进设想)1,本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系.2,在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。
附板书:1.3.2有理数的减法(1)课题: 1.3.2 有理数的减法(2)教学目标1,理解加减法混合运算统一为加法运算的意义,学会把加减法统一成加法.2,会正确熟练地进行有理数加减混合运算,发展学生的运算能力.3,会使用计算器进行有理数的加、减混合运算,培养学生的程序意识,提高学生的学习积极性与学习数学的兴趣,以及学好数学的信心.教学难点把加、减混合运算统一成加法运算知识重点本节的重点是能把加、减法统一成加法运算,并用加法运算律合理地进行运算。
人教版七年级上册数学全册导学案精心整理版 131页

§2.5 有理数的乘法与除法(2)...................................... 27 § 2.5 有理数的乘法与除法(3)..................................... 30 §2.6 有理数的乘方(1).............................................. 32 §2.6 有理数的乘方(2)................................................ 33 §2.7 有理数的混合运算(1)........................................ 36 §2.7 有理数的混合运算(2).......................................... 37 数学活动 算“24” ............................................................... 39 §2.8 小结与思考(1).................................................... 42 §2.8 小结与思考(2).................................................... 43 第二章参考答案................................................................... 45 第三章......................................................................................... 53 §3.1 字母表示数 ..................................................................... 53 §3.2 代数式........................................................................ 55 §3.3 代数式的值(1)...................................................... 57 §3.3 代数式的值(2)...................................................... 58 §3.4 合并同类项(1)...................................................... 60 §3.4 合并同类项(2)...................................................... 62 §3.5 去括号(1).............................................................. 64 §3.5 去括号(2).............................................................. 65 小结与思考(1)................................................................. 67 第四章......................................................................................... 69 4.1 从问题到方程(1).................................................. 69
2023年部编本人教版七年级数学上册导学案(全册)

2023年部编本人教版七年级数学上册导学案(全册)第一单元:数学与你我他1. 观察身边的事物,描述它们与数学的关系。
2. 研究数学的重要性和在生活中的应用。
- 探索数学在日常生活中的应用场景。
- 分享身边有趣的数学事例。
3. 研究数学基本概念。
- 了解自然数和整数。
- 掌握数轴上的整数表示方法和比较大小。
- 研究如何用数轴解决实际问题。
第二单元:数的整数运算1. 回顾正整数的加减运算。
2. 研究关于正整数的乘法和除法运算。
- 掌握乘法的运算法则。
- 了解除法的基本概念和运算法则。
3. 练运用整数运算解决实际问题。
- 运用正整数的运算进行计算。
第三单元:图形的认识1. 研究图形相关术语和概念。
- 了解点、线、面的定义。
- 掌握不同类型的线段和角的特征。
2. 研究如何绘制简单的几何图形。
- 利用尺规画直线和圆。
- 绘制多边形和正方形。
3. 在实际情境中运用图形知识。
- 识别和描述身边的图形。
第四单元:一次函数1. 研究函数的概念。
- 了解函数的基本特点。
- 掌握自变量、因变量和函数关系的概念。
2. 认识一次函数。
- 研究一次函数的定义和表示方法。
- 探索一次函数的图象和性质。
3. 运用一次函数解决实际问题。
- 利用一次函数的性质进行计算和推理。
第五单元:平方根与立方根1. 研究平方数和立方数的概念。
- 掌握平方数和立方数的定义。
- 记忆一些常见的平方数和立方数。
2. 研究平方根和立方根的概念和性质。
- 了解平方根和立方根的定义。
- 掌握平方根和立方根的计算方法。
3. 运用平方根和立方根解决实际问题。
- 运用平方根和立方根进行计算和推理。
第六单元:既约分数和倍数1. 复分数的概念和分数的计算。
2. 了解既约分数的概念和性质。
- 掌握既约分数的计算方法。
- 理解既约分数的意义和应用。
3. 研究倍数的概念和计算方法。
- 探索倍数的性质和规律。
- 利用倍数进行计算和推理。
4. 运用既约分数和倍数解决实际问题。
新人教版七年级数学上册全册教案

新人教版七年级上册数学全册教案第一章 有理数1. 1正数和负数备课:七年级数学教研组【教学目标】一.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三、情感、态度与价值观:培养学生积极思考,合作交流的意识和能力.教学重点:两种意义相反的量教学难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学手段:多媒体等。
【教学过程】一、预习探究1、冬天,零度以下的数在天气预报中如何表示,如某地一月份某日的平均气温大约是零下3℃,可用____数表示,记作______。
2、零上24摄氏度表示为_______,零下3.5摄氏度表示为__________。
3、如果向南走2米记为+2,那么向北走10米应表示为 。
4、地图册上亚洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比 了392米。
二、课堂教学5、中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848米,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?学生思考讨论,尝试回答大于0的数叫做 ;小于0的数,或在正数前面加“-”号的数叫 ;0既不是 也不是 。
6、判断:下列各数中,哪些是正数?哪些是负数? 12, -9.24,31, -301, 427, 31.25, 0. 7、在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?8、北京冬季里某天的温度为-3℃~+3℃,它的确切含义是什么?9、课堂小结:三、反馈练习:1、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2、产品成本提高-10%,实际表示_________.3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
新课标人教版七年级数学上册教案全册

第一章第一节《生活中的立体图形》第1课时教学目标:1、经历从现实世界中抽象出几何图表的过程,感受图形世界的丰富多彩。
2、在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
教学重点:在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、棱台、球,并能用自已的语言描述它们的某些特征。
教学难点:用自已的语言准确地描述一些几何图形的某些特征。
教学方法:观察、讨论、归纳法。
教学技术与教具:几何画板、电脑课件、实物投影、实物教具。
活动准备:1、让学生回忆小学学过的几何图形(立体图形):圆柱、圆锥、正方体、长方体、棱柱、棱台、球等。
并展示实物教具和第3页下图,让学生系统回忆这些几何体的形状。
2、就是由这些基本图形构成了我们生活的空间,下面是一幅城市一角的街景照片,你能从中发现哪些熟悉的几何体?(实投)从而引出新课——生活中的立体图形(板书)教学过程:1、课件展示一些建筑物照片和一些邮票(有建筑画面),让学生感受立体几何图形就在我们生活的周围。
同时让学生观察每幅图中,能找到哪些熟悉的几何体(让学生上台说明,看谁能找到最多和最准确,以培养学生认真观察大胆发言的良好习惯)2、展示课本第2页各图(实投),让学生仔细观察回答又有哪些熟悉的几何体?培养学生敏捷的观察力。
3、展示第3页上图,让学生认真观察,然后分小组讨论,再回答下列问题:(1)上图中哪些物体的形状与长方体、正方体类似?(2)上图中哪些物体的形状与圆柱、圆锥类似?(3)请找出上图中与笔筒形状类似的物体。
(4)请找出上图中与地球形状类似的物体。
4、课件展示正方体、长方体、圆柱、圆锥、棱柱、棱台、球的几何透视图,让学生用自己的语言描述这些图形的特征。
5、课件展示棱柱和圆柱,分组讨论这两个几何体具有哪些相同点和不同点,在分组讨论交流中形成对棱柱比较全面的认识。
6、练习:说一说生活中哪些物体的形状类似于棱柱、圆柱、圆锥和球。
人教版七年级上册数学全册教案(2023新版教材)

人教版七年级上册数学全册教案(2023新版教材)一、教学目标1. 了解并掌握七年级数学上册的全部知识点。
2. 培养学生的数学思维能力和解决问题的能力。
3. 培养学生的数字运算能力和几何直观能力。
4. 培养学生的数学表达和沟通能力。
二、教学重点1. 掌握基本的数学概念和运算方法。
2. 理解几何图形的性质和计算方法。
3. 能够灵活运用数学知识解决实际问题。
三、教学内容第一章:数的概念1. 数的分类和表示法2. 自然数、整数、有理数第二章:数字运算1. 四则运算2. 整数的加减法3. 整数的乘除法4. 有理数的加减法5. 有理数的乘除法第三章:图形与几何1. 点、线、面的基本概念2. 直线和线段的性质3. 角的概念和性质4. 三角形的分类和性质5. 四边形的性质第四章:分数1. 分数的概念和表示法2. 分数的加减法3. 分数的乘除法4. 分数的化简和比较大小第五章:比例与相似1. 比例的概念和表示方法2. 比例的性质和运算3. 相似的概念和性质4. 相似三角形的判定第六章:数据的收集和整理1. 数据的收集和整理方法2. 统计图表的制作和分析四、教学方法1. 讲授与练相结合,注重基础知识的掌握和运用能力的培养。
2. 引导学生进行实际问题的思考和解决。
3. 运用多媒体教学手段,生动形象地展示数学概念和运算方法。
4. 鼓励学生进行小组合作和讨论,增强研究的互动性。
五、教学评估1. 每章节结束后进行小测验,检查学生对知识点的掌握情况。
2. 布置课后作业,巩固学生的研究成果。
3. 根据学生的表现评定平时成绩和期末成绩。
六、教学资源1. 七年级上册数学教材(人教版2023新版)2. 多媒体教学设备3. 练册和作业纸七、教学计划1. 每周授课2节课,共计40节课。
2. 每节课50分钟,包括讲授、练和互动环节。
3. 每章节的教授时间和安排根据教材内容进行合理调整。
八、教学反思这份教案旨在帮助教师全面了解七年级上册数学教材的内容,确定教学目标和重点,选择合适的教学方法和评估方式,以帮助学生全面掌握数学知识和提高解决问题的能力。
人教版七年级上数学教案(全册)

人教版七年级上数学教案(全册)第一课时三维目标一、科学知识与技能1.复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
通过备考并使学生系统掌控有理数这一章的有关基本概念;2.并使学生提升分辨概念能力;二、过程与方法利用数轴来认识、理解有理数的有关概念.三、情感态度与价值观1、引导学生自己总结本单元的自学内容。
并与同伴交流在本单元自学中的斩获和严重不足,培育他们的思考意识。
教学重难点理解掌握有理数的有关概念四、复习提问:1、什么叫做数轴?图画出来一个数轴去。
2、什么是有理数?有理数集包括哪些数?有理数和数轴上的点有什么关系?请问:整数和分数泛称为有理数。
有理数的分类:整数、分数泛称有理数;整数又包含正整数、零、正数整数,分数又包含正分数与负分数。
每一个有理数都可以用数轴上唯一确定的点来表示。
但反过来以后可以看到,数轴上任一点并不一定表示有理数。
表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。
3、观测数轴分别讲出a,b,c,d,e,f各点则表示的数是什么?4、点a与f,点b与e所表示的数分别存在什么关系?(互为相反数)互为相反数的几何意义?(互为相反数就是在原点两侧且至原点等距的两点所则表示的数。
)相反数的性质?(只有符号相同的两个数就是互为相反数,a的相反数为-a;)各点所表示的数的绝对值是多少?绝对值的几何意义?(在数轴上,表示数a的点到原点的距离叫做数a的绝对值)绝对值的代数意义?(a=a(a>0),a=0(a=0),a=-a(a<0)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
5、讲出各数的倒数?(一个数除以1税金的商是这个数的倒数,零没倒数)6、比较各点则表示的数的大小?方法一:零大于一切正数,而小于一切负数;两个负数,绝对值小的反而大。
方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。
【全册】人教版七年级数学上册 导学案教案

第一章有理数1.1正数和负数1.掌握正数和负数的概念;2.会区分两种不同意义的量,会用正、负数表示具有相反意义的量;3.通过正、负数学习,培养学生应用数学知识的意识;体验数学发展是生活实际的需要,激发学生学习数学的兴趣.用正、负数表示具有相反意义的量.一、温故知新1.小学里学过哪些数请写出来:整数、分数、自然数.2.阅读课本P2三幅图(重点是三个例子,边阅读边思考).3.回答下面提出的问题:在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1.正数与负数的产生:(1)生活中具有相反意义的量:如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:收入1000元与支出800元;(2)负数的产生同样是生活和生产的需要.2.正数和负数的表示方法:(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也可以在它前面放上一个“+”(读作正)号,如前面的5,7,50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3,-8,-47;(2)活动:两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示;(3)阅读P3例题前的内容.3.正数、负数的概念:(1)大于0的数叫做正数,小于0的数叫做负数;(2)正数是大于0的数,负数是小于0的数,0既不是正数也不是负数.一、师生合作(课本P3例题)先引导学生分析,再让学生独立完成.例(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增长值.解:这个月小明体重增长2_kg,小华体重增长-1_kg,小强体重增长0_kg;二、跟踪练习(2)2001年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.解:六个国家这一年商品进出口总额的增长率是:美国__-6.4%__; 德国__1.3%____; 法国__-2.4%__; 英国__-3.5%__;意大利__0.2%__; 中国__7.5%____.1.P4练习第1-4题.(直接做在课本上)2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作-2万元,-4万元表示支取4万元.3.已知下列各数:-15,-234,3.14,+3065,0,-239.则正数有3.14,+3065;负数有-15,-234,-239. 4.下列结论中正确的是( D )A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,-312,+3.1,-12,2004,+2010.其中是负数的有( B ) A .2个 B .3个 C .4个 D .5个以问题的形式,要求学生思考交流:1.正数、负数的概念:(1)大于0的数叫做正数,小于0的数叫做负数;(2)数0既不是正数,也不是负数,0是正数和负数的分界.2.引人负数后,你是怎样认识数0的,数0的意义有哪些变化?0不仅可以表示没有,还可以表示正数、负数的分界.3.怎样用正负数表示具有相反意义的量?用正数表示其中一种意义的量,另一种量用负数表示;特别在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.1.2.1 有理数1.掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2.了解分类的标准与集合的含义;3.体验分类是数学上常用的处理的问题的方法.重点:正确理解有理数的概念;难点:正确理解分类的标准和按照一定标准分类.一、温故知新通过上节课的学习,那么你能写出3个不同类的数吗?(4名学生板书)二、自主学习问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类.该分为几类,又该怎样分呢?先分组讨论交流,再写出来分为__五__类,分别是:正数,0,负数,正分数,负分数问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类?师生共同交流、归纳.三、引导归纳1.正整数,0,负整数统称为整数,整数和分数统称为有理数.2.正数集合与负数集合所有的正数组成正数集合,所有的负数组成负数集合.1.P6练习.(做在课本上)2.把下列各数填入它所属于的集合的圈内:15,-19,-5,215,-138,0.1,-5.32,-80,123,2.333.正整数集合负整数集合正分数集合负分数集合有理数分类⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数或者有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数到现在为止我们学过的大部分数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同.下列说法中不正确的是(C)A.-3.14既是负数、分数,也是有理数B.0既不是正数,也不是负数,但是整数C.-2000既是负数,也是整数,但不是有理数D.0是正数和负数的分界1.2.2 数轴1.掌握数轴概念,理解数轴上的点和有理数的对应关系;2.会正确地画出数轴,利用数轴上的点表示有理数;3.领会数形结合的重要思想方法.重点:数轴的概念与用数轴上的点表示有理数;难点:会在数轴上表示有理数,能根据数轴上的点写出有理数.一、温故知新1.观察下面的温度计,读出温度.分别是__5__℃;__-10__℃;__0__℃.2.在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m 和7.5 m 处分别有一棵柳树和一棵杨树,汽车站牌西3 m 和4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境?__________________________________ 东汽车站请同学们分小组讨论,交流合作,动手操作.二、自主学习1.由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗? 可以用直线上的点表示有理数.2.自己动手操作,看看可以表示有理数的直线必须满足什么条件?三、引导归纳(1)画数轴需要三个条件,即原点、正方向和单位长度;(2)数轴.1.请画一条数轴.__________________________________2.利用上面的数轴表示下列有理数:1.5,-2,2,-2.5,29,⎪⎪⎪⎪15,0. 3.写出数轴上的点A ,B ,C ,D ,E 所表示的数.小组讨论交流.1.观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?负数都在原点左边,正数都在原点右边. 2.每个数到原点的距离是多少?由此你又有什么发现?数轴上的点到原点的距离都是非负数.3.进一步引导学生完成P9归纳.1.画数轴需要的三个条件是什么?2.一般地,设a 是一个正数,则数轴上表示数a 的点在原点的__右__边,与原点的距离是__a __个单位长度;表示数-a 的点在原点的__左__边,与原点的距离是__a __个单位长度.3.数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具.1.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有__4__个.2.在数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( A )A .-5B .-4C .-3D .-23.你觉得数轴上的点表示的数的大小与点的位置有什么关系?原点的右边离原点越远的点表示的数越大;原点的左边离原点越远的点表示的数越小.1.2.3 相反数1.掌握相反数的意义;2.掌握求一个已知数的相反数;3.体验数形结合思想.重点:求一个已知数的相反数;难点:根据相反数的意义化简符号.一、温故知新1.数轴的三要素是什么?在下面画出一条数轴:2.在上面的数轴上描出表示5,-2,-5,+2 这四个数的点.3.观察上图并填空: 数轴上与原点的距离是2的点有__2__个,这些点表示的数是+2或-2;与原点的距离是5的点有__2__个,这些点表示的数是+5或-5. 从上面的问题可以看出,一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个表示a ,另一个是 __-a __,它们分别在原点的左边和右边,我们说,这两点关于原点对称.二、自主学习自学课本P9,P10的内容并填空:1.相反数的概念像2和-2,5和-5,3和-3这样,只有符号不同的两个数叫做互为相反数.2.练习(1)2.5的相反数是__-2.5__,-115和__115__互为相反数,-2010的相反数是2010; (2)a 和__-a __互为相反数,也就是说,-a 是__a __的相反数.小组讨论交流,发现规律.例如a =7时,-a =-7,即7的相反数是-7.a =-5时,-a =-(-5),“-(-5)”读作“-5的相反数”,而-5的相反数是5,所以,-(-5)=5.你发现了吗,在一个数的前面添上一个“-”号,这个数就成了原数的相反数.1.简化符号:-(+0.75)=-0.75,-(-68)=__68__,-(-0.5)=0.5,-(+3.8)=-3.8.2.0的相反数是__0__.3.数轴上表示相反数的两个点到原点的距离相等.P10第1,2,3,4题.1.一般地,如果a 是一个正数,那么数轴上与原点的距离是a 的点有两个,即一个是a ,另一个是-a ,它们分别在原点的右边和左边,我们说,这两点关于原点对称;2.要表示一个数或式子的相反数,只需要在这个数或式子前加“-”.1.在数轴上标出3,-1.5,0各数与它们的相反数:2.-1.6的相反数是__1.6__,2x的相反数是__-2x__,a-b的相反数是__b-a__.3.相反数等于它本身的数是__0__,相反数大于它本身的数是__负数__.4.填空:(1)如果a=-13,那么-a=__13__;(2)如果-a=-5.4,那么a=__5.4__;(3)如果-x=-6,那么x=__6__;(4)如果-x=9,那么x=__-9__.5.数轴上表示互为相反数的两个数的点之间的距离为10,求这两个数.(±5)1.2.4绝对值(一)1.理解、掌握绝对值概念.体会绝对值的作用与意义;2.会求一个已知数的绝对值,知道一个数的绝对值,会求这个数;3.掌握绝对值的有关性质.重点:给出一个数,会求它的绝对值;难点:理解绝对值的作用和意义.一、温故知新1.什么叫相反数?相反数有什么特点?问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线不相同(填相同或不相同),他们行走的距离(即路程远近)相同.2.如图,小黄狗,小白兔,小灰狗分别位于点A,B,C处,单位长度为1,小黄狗,小白兔,小灰狗分别距原点多远?小黄狗距原点3个单位长度,小白兔距原点1.5个单位长度,小灰狗距原点4.5个单位长度.二、自主学习1.绝对值的概念上面问题中,A,B,C三个点在数轴上分别表示什么数?离原点的距离是多少?归纳:在数轴上,表示一个数的点与原点的距离叫做这个数的绝对值.如:2的绝对值等于2,记作:|2|=2,-2的绝对值等于__2__,记作:|-2|=2.跟踪练习1.把下列各数表示在数轴上,并求出它们的绝对值.-4,3.5,-2,0,-3.5,5.2.从上题寻找规律,正数、零、负数的绝对值有什么特点? 一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;零的绝对值等于__零__.互为相反数的两个数绝对值相等. 你能用式子表示上面的意思吗? ①当a >0时,│a │=__a __;②当a =0时,│a │=__0__;③当a <0时,│a │=__-a __.跟踪练习:(1)什么数的绝对值等于它本身?什么数的绝对值等于它的相反数?非负数,非正数.(2)有人说因为2的绝对值等于2,-2的绝对值等于2,所以a 的绝对值等于a ,-a 绝对值也等于a .你认为对吗?你的观点呢?不对,当a 为负数时,a 的绝对值为-a ,-a 的绝对值等于-a .三、拓展提高1.求一个数的绝对值:例1 求下列各数的绝对值:12,-35,-7.5,0. 例2绝对值等于7的有理数有哪些?跟踪练习:(1)|+2|=__2__,|15|=__15__,|+8.2|=__8.2__; (2)|0|=__0__;(3)|-3|=__3__,|-0.2|=__0.2__,|-8.2|=__8.2__.2.与绝对值的意义有关的问题.例3 (1)如果|a |>a ,则a 是什么数?a 为负数.(2)如果a |a |=1,那么__a >__0;如果a |a |=-1,那么a __<__0.P11第1,2,3大题.(直接做在课本上)1.2.4 绝对值(二)1.理解、掌握有理数大小比较法则;2.能熟练运用有理数大小比较法则,结合数轴比较有理数的大小,能利用数轴对多个有理数进行有序排列;3.体验运用直观知识解决数学问题.重点:运用有理数大小比较法则,借助数轴比较两个有理数的大小;难点:利用绝对值比较两个负数的大小.一、温故知新1.比较下列各组数的大小:①2__<__3;②34__>__23; ③12__>__0;④0__<__0.001. 2.引入负数后,对于任意有理数(如-2和-1,-3和0,-2和2)怎样比较大小呢?二、自主学习阅读思考,发现新知.阅读P12,你有什么发现吗?讨论交流在数轴上表示的两个数,右边的数总要大于左边的数.也就是:(1)正数大于0,负数小于0,正数大于负数;(2)两个负数,绝对值大的反而小.自学例题 P13 (教师指导)重点书写格式示范指导三、拓展提高例1 写出3个小于-1并且大于-2的数.如:-1.2,-1.5,-1.8.例2 已知|x |=6,|y |=5,且x <y ,求x ,y 的值.解:∵|x |=6,|y |=5,又∵x <y ,∴x =±6,y =±5.∴x =-6,y =±5.1.比较下列各对数的大小:-3和-5; -2.5和-∣-2.25∣.-3>-5; -2.5<-|-2.25|.1.比较有理数大小的方法有两种:方法一:利用数轴,把数用数轴上的点表示出来,然后根据“数轴上左边的点所表示的数比右边的点所表示的数小”来比较.方法二:利用比较有理数大小的法则“正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的反而小”来进行.2.在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.1.3.1 有理数的加法(一)1.理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2.会利用有理数加法运算解决简单的实际问题.重点:有理数加法法则;难点:异号两数相加.一、温故知新1.比较大小:2__>__-3,-5__>__-7,4__<__|-5|.2.已知a=-5,b=+3,则︱a︳+︱b︱=__8__.3.9+12=__21__,11+0=__11__,4+(-2)=______,(+3)+(-8)=______,怎样计算4+(-2)呢.下面我们一起借助数轴来讨论有理数的加法.二、自主学习1.借助数轴来讨论有理数的加法:(1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了__6__米,这个问题用算式表示就是:4+2=6;(2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了__6__米.这个问题用算式表示就是:-2+(-4)=-6.如图所示:(3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了__2__米,写成算式就是-2+(+4)=2.用数轴表示如下图所示:(4)利用数轴,求以下情况时这个人两次运动的结果:①先向东走3米,再向西走5米,这个人从起点向(西)走了(2)米;②先向东走5米,再向西走5米,这个人从起点向(东)走了(0)米;③先向西走5米,再向东走5米,这个人从起点向(东)走了(0)米.写出这三种情况运动结果的算式:3+(-5)=-2;5+(-5)=0;(-5)+5=0.(5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了__5__米.写成算式就是5+0=5或(-5)+0=-5.2.师生归纳两个有理数相加的几种情况.3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则:(1)同号的两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得__0__;(3)一个数同0相加,仍得这个数.4.新知应用例1(老师演示,书写规范格式)计算:(1)(-3)+(-9);解:原式=-(3+9)=-12;(2)(-4.7)+3.9;解:原式=-(4.7-3.9)=-0.8;(3)(-25)+(+36).解:原式=+(36-25)=11.例2计算:(1)15+(-22);(2)(-13)+(-8);(3)(-0.9)+1.51.1.填空:(口答)(1)(-4)+(-6)=__-10__;(2)3+(-8)=__-5__;(3)7+(-7)=__0__;(4)(-9)+1=__-8__;(5)(-6)+0=__-6__;(6)0+(-3)=__-3__.2.课本P19第1-4题.有理数加法法则简单理解:同号取同号,绝对值相加,异号取(绝对值)大号,绝对值(大-小)相减.计算一般步骤:先确定符号,再算绝对值.1.有理数a,b在数轴上的位置如图所示,则a__<__b,︱a︱__>__︱b︱.1.3.1有理数的加法(二)掌握加法运算律并能运用加法运算律简化运算.灵活运用加法运算律简化运算.一、温故知新1.想一想,小学里我们学过的加法运算律有哪些?先说说,再用字母表示写在下面:2.计算:(1)30+(-20)=10;(-20)+30=__10__;(2)[8+(-5)]+(-4)=-1;8+[(-5)+(-4)]=-1. 思考:观察上面的式子与计算结果,你有什么发现? 二、自主学习1.请说说你发现的规律.2.自己换几个数字验证一下,还有上面的规律吗?3.由上可以知道,小学学习的加法交换律、结合律,在有理数范围内同样适合,即:两个数相加,交换加数的位置,和不变.式子表示为a +b =b +a ;三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为(a +b )+c =a +(b +c ).想想看,式子中的字母可以是哪些数?可以是正数,负数或零.三、新知应用例1 (教师示范书写格式)计算:(1)16+(-25)+24+(-35);解:原式=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(2)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:原式=[(-2.48)+(-7.52)]+[4.33+(-4.33)]=-10+0=-10.四、跟踪练习1.计算:(1)23+(-17)+6+(-22);解:原式=-10;(2)(-2)+3+1+(-3)+2+(-4);解:原式=-3;(3)(-413)+(-417)+413+(-1317). 解:原式=-1.例2 每袋小麦的标准质量为90千克,10袋小麦称重记录如下:91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1.10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总质量是多少千克?想一想,你会怎样计算,再把自己的想法与同伴交流一下.课本P20练习1,2.运用加法运算律简便运算的步骤:1.互为相反数的先加;2.能凑整的先加;3.同分母的先加;4.同号的放在一起加.1.计算:(1)(-7)+11+3+(-2);解:原式=5;(2)14+(-23)+56+(-14)+(-13).解:原式=-16. 2.绝对值不大于10的整数有__21__个,它们的和是 __0__. 3.填空: (1)若a >0,b >0,那么a +b __>__0;(2)若a <0,b <0,那么a +b __<__0;(3)若a >0,b <0,且│a │>│b │,那么a +b __>__0; (4)若a <0,b >0,且│a │>│b │,那么a +b __<__0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天共增加多少元?解:把取出记为负,存入记为正,得-950+5000-800+12000-10000-2000=3250(元) 答:共增加了3250元.4.课本P21实验与探究.1.3.2 有理数的减法(一)1.经历探索有理数减法法则的过程.理解并掌握有理数减法法则;2.会正确进行有理数减法运算; 3.体验把减法转化为加法的转化思想.有理数减法法则和运算.一、温故知新1.世界上最高的山峰珠穆朗玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为-154米,两处的高度相差多少呢?试试看,计算的算式应该是8844-(-154).能算出来吗,画草图试试;2.长春某天的气温是-2°C ~3°C ,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:℃) 显然,这天的温差是3-(-2).想想看,温差到底是多少呢?那么,3-(-2)=__5__.二、自主学习1.还记得吗,被减数、减数、差之间的关系是:被减数-减数=__差__;差+减数=被减数.2.请你与同桌伙伴一起探究、交流:要计算3-(-2)=?实际上也就是要求?+(-2)=3,所以这个数(差)应该是__5__,也就是3-(-2)=5;再看看,3+2=__5__;所以3-(-2)_=_3+2;由上你有什么发现?请写出来:减去一个数等于加上这个数的相反数.3.换两个式子计算一下,看看上面的结论还成立吗?-1-(-3)=__2__,-1+3=__2__,所以-1-(-3)__=__-1+3;0-(-3)=__3__,0+3=__3__,所以0-(-3)__=__0+3.4.师生归纳(1)法则:减去一个数等于加上这个数的相反数;(2)字母表示:__a -b =a +(-b )__.三、新知应用例1.例题(示范书写格式)计算:(1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)-312-514.1.下列运算中正确的是( D )A .3.58-(-1.58)=3.58+(-1.58)=2B .(-2.6)-(-4)=2.6+4=6.6C .0-(+25)-75=(+25)-75=25+(-75)=-1 D.38-145=38+(-95)=-57402.课本P23练习1—2题.1.有理数减法法则:减去一个数,等于加上这个数的相反数.;2.小学时学的减法都是大数-小数,够减,差的符号为正,现在引入了负数后,小数-大数不够减也能减了,差是负数.即:大数-小数=正数,小数-大数=负数.1.计算:(1)(-37)-(-47);解:原式=10(2)(-53)-16;解:原式=-69(3)(-210)-87;解:原式=-297(4)1.3-(-2.7);解:原式=4(5)(-214)-(-1). 解:原式=-1142.分别求出数轴上,下列两点间的距离:(1)表示数8的点与表示数3的点;(2)表示数-2的点与表示数-3的点.解:(1)8-3=5(2)-2-(-3)=13.若|m -n |=n -m ,|m |=4,|n |=3,则m -n =-1或-7.1.3.2 有理数的减法(二)1.理解加减法统一成加法运算的意义;2.会将有理数的加减混合运算转化为有理数的加法运算.有理数加减法统一成加法运算.一、温故知新1.一架飞机作特技表演,起飞后的高度变化如下表: 高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米 记作 +4.5千米 -3.2千米 +1.1千米 -1.4千米__1__2.你是怎么算出来的,方法是4.5+(-3.2)+(+1.1)+(-1.4)=1.二、自主学习 1.现在我们来研究(-20)+(+3)-(-5)-(+7),该怎么计算呢?还是先自己独立动动手吧!2.怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,老师巡视指导.3.师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法.再把加号记在脑子里,省略不写.如:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7,可以读作:“负20、正3、正5、负7的__和__”或者“负20加3加5减7”.4.师生完整写出解题过程:5.计算:-4.4-(-415)-(+212)+(-2710)+12.4. 解:原式=-4.4+415-212-2710+12.4 =[(-4.4)+12.4]+(4210-2510-2710) =8-1=7.1.下列各式可以写成a -b +c 的是( B )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )2.算式(-7)-9-(-3)+(-5)写成省略加号和括号的形式为-7-9+3-5,读作负7、负9、正3、负5的和,或读作负7减9加3减5.3.计算:(课本P24练习)(1)1-4+3-0.5;解:原式=-0.5;(2)-2.4+3.5-4.6+3.5;解:原式=0;(3)(-7)-(+5)+(-4)-(-10);解:原式=-6; (4)34-72+(-16)-(-23)-1. 解:原式=-3912. 4.数轴上A ,B 两点分别表示数a ,b ,若a =3,b =7,则A ,B 两点间的距离为__4__;若a =-1,b =-5,则A ,B 两点间的距离为__4__;若a =2,b =-6,则A ,B 两点间的距离为__8__;若a =-8,b =-4,则A ,B 两点间的距离为__4__;若a =m ,b =n ,则A ,B 两点间的距离为|m -n |.1.有理数加减混合运算,可以先运用减法法则把加减法统一成加法运算,再写成省略加号和括号形式,然后可运用加法运算律进行简便运算;2.数轴上A ,B 两点分别表示数a ,b ,则两点间的距离为|a -b |或|b -a |.1.4.1 有理数的乘法(一)1.理解有理数的运算法则,能根据有理数乘法运算法则进行有理数的简单运算;2.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力.有理数乘法法则.一、温故知新1.有理数加法法则内容是什么?2.计算:(1)2+2+2=__6__;(2)(-2)+(-2)+(-2)=__-6__.3.你能将上面两个算式写成乘法算式吗?(1)2×3=6;(2)(-2)×3=-6.二、自主学习1.自学课本P28—P29,回答下列问题.观察:3×3=9,3×2=6,3×1=3,3×0=0.发现规律:随着后一乘数逐次递减1,积逐次递减3,这一规律引入负数仍然成立,所以有:3×(-1)=-3,3×(-2)=-6,3×(-3)=-9,3×(-4)=-12.根据乘法的交换律又有:(-1)×3=-3,(-2)×3=-6,(-3)×3=-9,(-4)×3=-12.从符号和绝对值的角度观察发现:正数乘正数积为正数,正数乘负数积为负数,负数乘正数积为负数,积的绝对值等于各乘数的绝对值的积.利用这个规律计算:(-3)×3=__-9__, (-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0____.发现规律:随着后一个数逐次递减1,积逐次增加3按照这个规律填空:(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.可归纳如下结论:负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积. 由上可知:(1)2×4=__8__;(2)(-2)×4=__-8__;(3)(+2)×(-4)=__-8__;(4)(-2)×(-4)=__8__;(5)两个数相乘,一个数是0时,结果为__0__.观察上面的式子,你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得__0__. 例题讲解(教师示范书写步骤,格式)例1 计算:(1)(-3)×9; (2)8×(-1);解:原式=-27; 解:原式=-8;(3)(-12)×(-2). 解:原式=1.1.直接说出下列两数相乘所得积的符号.(1)5×(-3);“-”(2)(-4)×6;“-”(3)(-7)×(-9);“+”(4)0.9×8.“+”2.一个有理数与其相反数的积( C )A .符号必定为正B .符号必定为负C .一定不大于零D .一定不小于零3.书本P30第1题例2 计算:(1)6×16; (2)(-17)×(-7);(3)(-34)×(-43). 在有理数中仍然有:乘积为1的两个数互为倒数.1.课本P30练习1,2,3.(直接做在课本上)2.填空:(1)-7的倒数是__-17__,它的相反数是__7__,它的绝对值是__7__; (2)-225的倒数是-512,-2.5的倒数是-25; (3)倒数等于它本身的有理数是__±1__.3.下列说法错误的是( A )A .任何有理数都有倒数B .互为倒数的两个数的积为1C .互为倒数的两个数同号D .1和-1互为负倒数有理数乘法法则.1.4.1 有理数的乘法(二)1.探索多个有理数相乘的符号确定法则;2.会进行有理数的乘法运算;3.通过对问题的探索,培养观察、分析和概括的能力.重点:多个有理数相乘运算符号的确定;难点:正确进行多个有理数的乘法运算.一、温故知新1.有理数乘法法则:2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-4)+(-6)C .0×(-2)D .(-7)-(-10)3.计算:(1)(-114)×(-45); 解:原式=+(54×45)=1; (2)(-213)×(-6); 解:原式=73×6=14; (3)-320×56.解:原式=-(320×56)=-18. 二、自主学习1.观察:下列各式的积是正的还是负的?2×3×4×(-5);2×3×(-4)×(-5);2×(-3)×(-4)×(-5);(-2)×(-3)×(-4)×(-5).思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.新知应用例题3(P31)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?先确定符号,再算绝对值. 你能看出下列式子的结果吗?如果能,理由几个数相乘,如果其中有因数为0,那么积等于0.7.8×(-8.1)×0×(-19.6).1.计算:(课本P32练习1,2)1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.几个数相乘,如果其中有一个因数为0,积等于0.一、选择题1.若干个不等于0的有理数相乘,积的符号( C )A .由因数的个数决定B .由正因数的个数决定C .由负因数的个数决定D .由负因数和正因数个数的差决定2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15)3.下列运算错误的是( B )A .(-2)×(-3)=6B .(-12)×(+6)=3 C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24二、计算:(1)(-2)×54×(-910)×(-23);解:原式=-32; (2)(-6)×5×(-76)×27; 解:原式=10;(3)(-4)×7×(-1)×(-0.25);解:原式=-7;(4)(-524)×815×(-32)×14; 解:原式=124; (5)(-112)×(-113)×(-114)×(-115)×(-116)×(-117). 解:原式=32×43×54×65×76×87=4.1.4.1 有理数的乘法(三)1.熟练有理数的乘法运算律并能用乘法运算律简化运算;2.学生通过观察、思考、探究、讨论,主动地进行学习.重点:正确运用运算律,使运算简化;难点:运用运算律,使运算简化.一、温故知新1.请同学们计算,并比较它们的结果:(1)(-6)×5=-30, 5×(-6)=-30;(2)[3×(-4)]×(-5)=60, 3×[(-4)×(-5)]=60;(3)5×[3+(-7)]=-20,5×3+5×(-7)=-20.请以小组为单位,相互检查,看计算对了吗?二、自主学习1.下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.2.怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?3.归纳、总结乘法交换律:两个数相乘,交换因数的位置,积相等.即:ab =ba .乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:(ab )c =a (bc ).分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a (b +c )=ab +ac .三、新知应用计算:(1)(-0.4)×(+25)×(-5);解:原式=50;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册教案全册————————————————————————————————作者:————————————————————————————————日期:课题: 1.1 正数和负数(1)教学目标1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量学情分析教学流程教学过程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。
所以创设如下的问题情境,以尽量贴近学生的实际.这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生理解.教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.这阶段主要是让学生学会正数和负数的表示.强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.问题4:请同学们举出用正数和负数表示的例子.问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性课堂练习教科书第5页练习小结与作业课堂小结围绕下面两点,以师生共同交流的方式进行:1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要本课教育评注(课堂设计理念,实际教学效果及改进设想)密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。
当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。
教学反思:1.1 正数和负数(2)教学目标1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点深化对正负数概念的理解知识重点正确理解和表示向指定方向变化的量教学流程教学过程(师生活动)设计理念知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。
那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数·问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0既不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。
的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助。
所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.分析问题问题3:教科书第6页例题这种用正负数描解决问题说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。
这种描述在实际生活中有广泛的应用,应予以重视。
教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。
可视教学中的实际情况进行补充.述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.巩固练习教科书第6页练习阅读思考教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流小结与作业课堂小结以问题的形式,要求学生思考交流:1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?2、怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)本课作业1、必做题:教科书第7页习题1.1第3,6,7,8题2、选做题:教师自行安排本课教育评注(课堂设计理念,实际教学效果及改进设想)1、本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。
2、“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,。
除了表示一个也没有以外,还是正数和负数的分界。
了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.3、教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.4、本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.教学反思:课题:1.2.1 有理数教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学流程教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,.··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。