信号与线性系统分析吴大正习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请浏览后下载,资料供参考,期待您的好评与关注!
专业课习题解析课程
第2讲
第一章 信号与系统(二)
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e
t f t
,)( (3))()sin()(t t t f επ=
(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k
ε= (10))(])1(1[)(k k f k
ε-+=
请浏览后下载,资料供参考,期待您的好评与关注!
解:各信号波形为 (2)∞<<-∞=-t e
t f t
,)(
(3))()sin()(t t t f επ=
(4))(sin )(t t f ε=
(5))
t
f=
r
(t
(sin
)
(7))
f kε
=
t
(k
2
)
(
请浏览后下载,资料供参考,期待您的好评与关注!
请浏览后下载,资料供参考,期待您的好评与关注!
(10))(])1(1[)(k k f k ε-+=
1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f
请浏览后下载,资料供参考,期待您的好评与关注!
(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11)
)]7()()[6
sin(
)(--=k k k k f εεπ
(12)
)]()3([2)(k k k f k
---=εε 解:各信号波形为
(1))2()1(3)1(2)(-+--+=t t t t f εεε
(2)
)2()1(2)()(-+--=t r t r t r t f
请浏览后下载,资料供参考,期待您的好评与关注!
(5)
)2()2()(t t r t f -=ε
(8)
)]5()([)(--=k k k k f εε
(11)
)]
7
(
)
(
)[
6
sin(
)
(-
-
=k
k
k
k
fε
ε
π
请浏览后下载,资料供参考,期待您的好评与关注!
(12)
)]
(
)
3(
[
2
)
(k
k
k
f k-
-
-
=ε
ε
1-3 写出图1-3所示各波形的表达式。
请浏览后下载,资料供参考,期待您的好评与关注!
1-4 写出图1-4所示各序列的闭合形式表达式。
请浏览后下载,资料供参考,期待您的好评与关注!
1-5 判别下列各序列是否为周期性的。如果是,确定其周期。
请浏览后下载,资料供参考,期待您的好评与关注!
请浏览后下载,资料供参考,期待您的好评与关注!
(2))6
3cos()443cos()(2π
πππ+++=k k k f
(5))sin(2cos 3)(5t t t f π+=
解:
请浏览后下载,资料供参考,期待您的好评与关注!
1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
(1))()1(t t f ε- (2))1()1(--t t f ε (5)
)21(t f - (6))25.0(-t f
(7)dt
t df )
( (8)dx x f t ⎰∞-)(
解:各信号波形为 (1))()1(t t f ε-
请浏览后下载,资料供参考,期待您的好评与关注!
(2)
)1()1(--t t f ε
(5)
)21(t f -
请浏览后下载,资料供参考,期待您的好评与关注!
(6)
)25.0( t f
(7)dt t df )(
(8)
dx
x
f
t
⎰∞-)(
请浏览后下载,资料供参考,期待您的好评与关注!
请浏览后下载,资料供参考,期待您的好评与关注!
1-7 已知序列)(k f 的图形如图1-7所示,画出下列各序列的图形。
(1))()2(k k f ε- (2))2()2(--k k f ε
(3))]4()()[2(---k k k f εε (4))2(--k f (5)
)1()2(+-+-k k f ε (6))3()(--k f k f
解:
请浏览后下载,资料供参考,期待您的好评与关注!
请浏览后下载,资料供参考,期待您的好评与关注!
1-9 已知信号的波形如图1-11所示,分别画出)(t f 和dt t df )
(的波形。
解:由图1-11知,)3(t f -的波形如图1-12(a)所示()3(t f -波形是由对)23(t f -的波形展宽为原来的两倍而得)。将)3(t f -的波形反转而得到)3(+t f 的波形,如图1-12(b)所示。再将)3(+t f 的波形右移3个单位,就得到了)(t f ,如图1-12(c)所示。
dt
t df )
(的波形如图1-12(d)所示。