安徽省合肥市庐江县2020-2021学年九年级上学期期末数学试题
2022-2023学年安徽省合肥市庐江县九年级(上)期末语文试卷(含答案)
2022-2023学年安徽省合肥市庐江县九年级(上)期末语文试卷一、语文积累与运用(35分)1.(10分)默写。
(1)经典诗文中胸怀“国之大者”的精神气度,激励着一代又一代的仁人志士,也滋养着我们。
《醉翁亭记》中“,”两句点明欧阳修意不在酒,在山水,把简政爱民;《岳阳楼记》中“,”两句直抒胸臆,让人感受到范仲淹以天下为己任,以利民为宗旨的济世情怀。
(2)人生需要自信乐观。
李白《行路难》其一)中“,”两句表现自己乘风破浪、云帆渡海、一往无前的精神。
刘禹锡《酬乐天扬州初逢席上见赠》中“,”两句记录了自己抛开悲苦积极进取的人生态度;苏轼《水调歌头•明月几时有》中“,”两句美好祝愿充分显示出词人博大的境界、旷达的态度和乐观的精神。
2.(12分)请运用所积累的知识,完成各小题。
却说鲁智深来到廨宇退居内房中,______了包裹行李,倚了禅杖,都来______了,但有一应锁yuè,同旧住持老和尚______了,尽回寺去。
且说智深出到菜园地上,东观西望,看那园pǔ。
只见这二三十个泼皮,都嘻嘻的笑道:“闻知和尚新来住持,我们邻居街坊都来作庆。
”智深不知是计,一个来抢左脚,一个便抢右脚,山前猛虎心惊;拳头落时(1)给加点的字注音,根据拼音写出相应的汉字。
廨.宇锁yuè园pǔ蛟.龙(2)依次填入文中横线处的词语,全都正确的一项是A.安稳参拜相别B.安顿参拜相别C.安顿稽首离别D.安稳稽首离别(3)以上文段节选自作者的《水浒传》,它是我国第一部体长篇白话小说。
(4)阅读名著时,为求更高的效率,主动舍弃、有意忽略与阅读目的无关或自己不感兴趣的内容,称为跳读。
如果你要探究《水浒传》中鲁智深重义轻财的人物形象,需要跳读到以下哪一个回目第一回张天师祈禳瘟疫洪太尉误走妖魔第四回赵员外重修文殊院鲁智深大闹五台山第二回王教头私走延安府九纹龙大闹史家村第五回小霸王醉人销金帐花和尚大闹桃花村第三回史大郎夜走华阴县鲁提辖拳打镇关西第六回九纹龙剪径赤松林鲁智深火烧瓦罐寺3.(13分)九(1)班开展“畅游红色故土•赓续红色精神”综合实践活动,请你参与。
安徽省合肥市庐江县柯坦中学2023-2024学年九年级上学期月考数学试题
安徽省合肥市庐江县柯坦中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .第四象限B .第三象限8.如图,在平面直角坐标系中,点垂线,交抛物线于点B 、点()24E ,,四边形CDFE A .4B .9.如图,四边形ABCD 是边长为程2240x mx ++=的两实数根,A .1.2B .10.已知,0ab >,42a +A .0a >,24b ac≥D .二、填空题11.已知关于x 的一元二次方程是.12.将二次函数22y x =+平移后的二次函数的图象的顶点坐标是三、解答题15.解方程(1)2x 2+4x +1=0(配方法)(2)x 2+6x =5(公式法)16.已知二次函数2y ax bx c =++的图象经过()1,5A ,()0,3B ,()1,3C --三点.(1)求这个函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标.17.在平面直角坐标系xOy 中,已知点()1,m -,()2,n 在二次函数23y x bx =+-的图象上.(1)当m n =时,求b 的值;(2)在(1)的条件下,当32x -<<时,求y 的取值范围.18.定义:如果关于x 的一元二次方程()200ax bx c a ++=≠满足0a b c -+=,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程22530x x ++=是否为黄金方程,并说明理由.(2)已知230x ax b -+=是关于x 的黄金方程,若a 是此黄金方程的一个根,求a 的值.19.已知关于x 的方程()23260x k x k +--=.若等腰三角形ABC 的一边6a =,另两边长b ,c 恰好是这个方程的两个根,求ABC 的周长.20.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用50米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).(1)若花园的面积为400米2,求AB 的长;(1)求抛物线的解析式;(2)设点P为抛物线的对称轴上一动点,当(3)在第二象限的抛物线上,Q的坐标;若不存在,请说明理由.。
2020-2021学年安徽省合肥市庐江县八年级(上)第一次月考数学试卷
2020-2021学年安徽省合肥市庐江县八年级(上)第一次月考数学试卷一.选择题(共10小题,每小题4分,满分40分)1.在直角三角形ABC中,∠A:∠B:∠C=2:m:4,则m的值是()A.3B.4C.2或6D.2或42.如图,将△ABC纸片沿DE进行折叠,使点A落在四边形BCED的外部点A'的位置,若∠A=35°,则∠1﹣∠2的度数为()A.35°B.70°C.55°D.40°3.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.48C.84D.964.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,=7,DE=2,AB=4,则AC的长为()若S△ABCA.3B.4C.5D.65.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS6.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB =∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.1.5C.2D.2.57.如图,在△ABC中,AC边上的高是()A.BE B.AD C.CF D.AF8.长度分别为1,5,x的三条线段首位连接能组成一个三角形,则x的值可以是()A.4B.5C.6D.79.如图,△ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且∠D+∠E=180°,若BD=6,则CE的长为()A.6B.5C.3D.4.510.如图,CD、BD分别平分∠ACE、∠ABC,∠A=70°,则∠BDC=()A.35°B.25°C.70°D.60°二.填空题(共4小题,每小题5分,满分20分)11.从如图的五边形ABCDE纸片中减去一个三角形,剩余部分的多边形的内角和是.12.如图,OP平分∠AOB,PM⊥OA于M,点D在OB上,DH⊥OP于H.若OD=4,OP=7,PM=3,则DH的长为.13.一个锐角三角形,所有内角的度数均为正整数,且最小角是最大角的,则这个锐角三角形三个内角的度数为.14.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.三.解答题(共9小题,满分90分)15.(8分)若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.16.(8分)已知三角形的两边a=3,b=7,若第三边c的长为偶数,求其周长.17.(8分)如图,点A,F,E,D在一条直线上,AB=CD,AF=DE,∠BAE=∠CDF.求证:BE=CF.18.(8分)如图,四边形ABCD中,∠A=∠C=90°,若AB=BC.求证:BD平分∠ABC.19.(10分)已知:AB=AC,BE=CD.(1)如图1,求证:∠B=∠C;(2)如图2,连接AO,不添加任何辅助线,直接写出图中所有的全等三角形.20.(10分)在四边形ABCD中,E为BC边中点.已知:如图,若AE平分∠BAD,∠AED =90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;21.(12分)【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=80°,∠ACB=50°.则∠A=度,∠P=度.(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC 的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.22.(12分)现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使点A落在CE上,则∠1与∠A的数量关系是.研究(2):如果折成图②的形状,猜想∠1+∠2与∠A的数量关系是;研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.23.(14分)如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?参考答案与试题解析一.选择题(共10小题,每小题4分,满分40分)1.解:设∠A、∠B、∠C的度数分别为2x、mx、4x,当∠C为直角时,2x+mx=4x,解得,m=2,当∠B为直角时,2x+4x=mx,解得,m=6,故选:C.2.解:如下图所示,∵△ABC纸片沿DE进行折叠,点A落在四边形BCED的外部点A'的位置,∴∠4=∠5,∠3=∠2+∠DEC,∵∠1+∠4+∠5=180°,∴∠1+2∠4=180°,∴∠1=180°﹣2∠4,∵∠3+∠DEC=180°,∴∠2=∠3﹣∠DEC=2∠3﹣180°,∴∠1﹣∠2=180°﹣2∠4﹣2∠3+180°=360°﹣2∠4﹣2∠3=2∠A,∴∠1﹣∠2=2×35°=70°,故选:B.3.解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∵△ABC≌△DEF,∴S△ABC =S△DEF,∴S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48,故选:B.4.解:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =2,∵S △ABD +S △ACD =S △ABC ,∴×2×4+×2×AC =7,∴AC =3.故选:A .5.解:∵在△ONC 和△OMC 中,∴△MOC ≌△NOC (SSS ),∴∠BOC =∠AOC ,故选:A .6.解:过点D 作DE ⊥BC 于E ,则DE 即为DP 的最小值,∵∠BAD =∠BDC =90°,∠ADB =∠C ,∴∠ABD =∠CBD ,∵∠ABD =∠CBD ,DA ⊥AB ,DE ⊥BC ,∴DE =AD =2,故选:C .7.解:在△ABC 中,AC 边上的高是线段BE ,故选:A .8.解:5﹣1<x <5+1,4<x <6,只有选项5符合题意.故选:B .9.解:如图,延长BE 使AF =AD ,连接CF ,在△ADB和△ACF中,,∴△ADB≌△ACF(SAS),∴∠F=∠D,BD=CF=6,∵∠D+∠BEC=180°,∠BEC+∠FEC=180°,∴∠D=∠FEC,∴∠F=∠FEC,∴CF=CE=6,故选:A.10.解:∵CD、BD分别平分∠ACE、∠ABC,∴∠CBD=∠ABC,∠DCE=∠ACE,由三角形的外角性质得,∠DCE=∠D+∠CBD,∠ACE=∠A+∠ABC,∴∠D+∠CBD=(∠A+∠ABC)∴∠D=∠A,∵∠A=80°,∴∠D=×70°=35°.故选:A.二.填空题(共4小题,每小题5分,满分20分)11.解:如图,剩余的部分是四边形,其内角和为360°,如图,剩余的部分是五边形,其内角和为540°,如图,剩余的部分是六边形,其内角和为720°,所以剩余部分的多边形的内角和是360°或540°或720°.故答案为:360°或540°或720°.12.解:作PE⊥OB于E,∵OP平分∠AOB,PM⊥OA,PE⊥OB,∴PE=PM=3,S=×OP×DH=×OD×PE,△ODP∴×7×DH=×4×3,解得,DH=,故答案为:.13.解:设最小角是x,则最大角是5x,中间一个是180﹣x﹣5x=180﹣6x,∵该三角形是锐角三角形,∴x≤180°﹣6x≤5x<90°,∴16≤x<18,∴x=17°,∴5x=85°.∴这个锐角三角形三个内角的度数为17°,78°,85°.故答案为:17°,78°,85°.14.解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠C=90°,∴∠C=∠DMB.在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(AAS),∴BD=AM=12米,∴BM=20﹣12=8(米),∵该人的运动速度为2m/s,∴他到达点M时,运动时间为8÷2=4(s).故答案为4.三.解答题(共9小题,满分90分)15.解:∵a、b、c是△ABC的三边的长,∴a+b﹣c>0,b﹣a﹣c<0,c﹣a﹣b<0,∴原式=a+b﹣c﹣b+a+c+c﹣a﹣b=a﹣b+c.16.解:∵三角形的两边a=3,b=7,第三边c,∴根据三角形三边关系可得:4<c<10,因为第三边c的长为偶数,所以c取6或8,则其周长为:6+3+7=16或8+3+7=18.17.证明:∵AF=DE,∴AF+FE=DE+FE,即AE=DF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴BE=CF.18.证明:∵∠A=∠C=90°,∴在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴∠ADB=∠CDB,∴BD平分∠ABC.19.证明:(1)∵AB=AC,BE=CD,∴AB﹣BE=AC﹣CD,即AE=AD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠C;(2)图中的全等三角形有△ABD≌△ACE,△AEO≌△ADO,△BEO≌△CDO,△ABO≌△ACO,理由是:∵在△ABO和△ACO中,,∴△ABO≌△ACO(AAS);由(1)知:△ABD≌△ACE;∵在△AEO和△ADO中,,∴△AEO≌△ADO(SAS);∵在△BEO和△CDO中,,∴△BEO≌△CDO(AAS).20.(1)证明:∵AE平分∠BAD,∴∠BAE=∠FAE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS);(2)证明:由(1)知,△ABE≌△AFE,∴EB=EF,∠AEB=∠AEF,∵∠BEC=180°,∠AED=90°,∴∠AEB+∠DEC=90°,∠AEF+∠DEF=90°,∴∠DEC=∠DEF,∵点E为BC的中点,∴EB=EC,∴EF=EC,在△ECD和△EFD中,,∴△ECD≌△EFD(SAS),∴DC=DF,∵AD=AF+DF,AB=AF,∴AD=AB+CD.21.【探究】解:(1)∵∠ABC=80°,∠ACB=50°,∴∠A=1880°﹣80°﹣50°=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2)∠P﹣∠A=90°.理由如下:∵BP、CP分别平分∠ABC、∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴∠P+(∠ABC+∠ACB)=180°,∴∠P+(180°﹣∠A)=180°,∴∠P﹣∠A=90°;故答案为:∠P﹣∠A=90°;【应用】解:∠Q=90°﹣∠A.理由如下:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A;故答案为:∠Q=90°﹣∠A.22.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠DAE,理由是:∵∠2=∠AFE+∠DAE,∠AFE=∠A′+∠1,∴∠2=∠A′+∠DAE+∠1,∵∠DAE=∠A′,∴∠2=2∠DAE+∠1,∴∠2﹣∠1=2∠DAE.故答案为:(1)∠1=2∠A;(2)∠1+∠2=2∠A.23.解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度==cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,∴90﹣()×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.。
安徽省合肥市庐江县2023-2024学年九年级上学期期末数学模拟试题
安徽省合肥市庐江县2023-2024学年九年级上学期期末数学模拟试题一、单选题1.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .2.已知关于x 的一元二次方程22470x x k ++-=一个实根为1,则另一个实根为( ) A .2B .3C .2-D .3-3.抛物线()234y x =-+的顶点坐标是( ) A .()3,4- B .()3,4-C .()3,4--D .()3,44.若反比例函数1k y x+=的图象经过点()12-,,则k 的值是( ) A .3B .3-C .1-D .25.如图,点C 是⊙O 的弦AB 上一点.若6AC =,2BC =,AB 的弦心距为3,则OC 的长为( )A .3B .4C D 6.已知二次函数y=x 2+bx+c 的图象如图所示,若y >0,则x 的取值范围是( )A .﹣1<x <3B .﹣1<x <4C .x <﹣1或x >3D .x <﹣1或x >47.如图,已知ABC V 与DEF V 位似,位似中心为O ,且ABC V 与DEF V 的周长之比是4:3,则:AO DO 的值为( )A .4:7B .4:3C .3:4D .16:98.如图,正方形ABCD 中,E 为DC 边上一点,且2DE .将AE 绕点E 逆时针旋转90°得到EF ,连接AF ,F C .则线段FC 的长度是( )AB .C .2 D9.如图,ABC V 和ADE V 均是等腰直角三角形,其中斜边AD 的端点D 在斜边BC 的延长线上,AD ,CE 相交于点F ,则以下判断正确的是( )A .ACE △是等边三角形B .2ADB CAD ∠=∠C .CDE V 是等腰三角形D .2AF DF =10.如上图,ABC V 和DEF V 是全等的等腰直角三角形,90ABC DEF ∠=∠=︒,4cm AB =,BC 与EF 在直线l 上,开始时C 点与E 点重合,让ABC V 沿直线l 向右平移,直到B 点与F点重合为止,设ABC V 与DEF V 的重叠部分(即图中阴影部分)的面积为2cm y ,CE 的长度为cm x ,则y 与x 之间的函数图象大致是( )A .B .C .D .二、填空题11.若23x y =,则x y y +的值为.12.点P 是线段AB 的黄金分割点,AP BP >,若6AB =,则AP =. 13.如图,反比例函数()20y x x=->的图象上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,则PAB V 的面积为.14.已知抛物线222y ax ax a =-+与y 轴交于点C ,顶点的纵坐标为1,直线24y x =-+与x 轴交于点E ,与y 轴交于点F . (1)a 的值为;(2)P 为线段EF 上一点,过点P 作MN EF ⊥,交抛物线于M ,N 两点,若PM PN =,则点P 的坐标为.三、解答题 15.解方程 (1)23840x x -+= (2)()()22213x x -=-16.如图,在平面直角坐标系中,ABC V 的顶点都在网格的格点上,按要求解决下列问题.(1)画出ABC V 关于y 轴的轴对称图形111A B C △;(2)以点O 为位似中心,在第一象限中出画出222A B C △,使得111A B C △与222A B C △位似,且相似比为1:3.17.在滨湖国际会展中心广场中央摆放着一个正六边形的鲜花图案,如图所示,已知第一层摆红色花,第二层摆黄色花,第三层是紫色花,第四层摆红色花⋯由里向外依次按红、黄、紫的颜色摆放.(1)这个鲜花图案有n 层,则这n 层共摆放了盆花(用含n 的代数式表示);(2)如果最外层共有96盆花,则最外层花的颜色是 ,请计算此时鲜花图案共有多少盆花摆成的.18.已知反比例函数4k y x-=的图象经过第一、三象限. (1)求k 的取值范围;(2)若0a >,此函数的图象经过第一象限的两点()15a y +,,()221a y +,,且21y y <,求a 的取值范围.19.2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓,引导学生爱读书,读好书,善读书.某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查,将调查结果的数据分成A 、B 、C 、D 、E 五个等级并绘制成表格和扇形统计图如下.(1)求统计图表中a =_________,m =_________.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为________. (3)该校每月末从每个班读书时间在E 等级的学生中选取2名学生参加读书心得交流会,九年级某班共有3名男生1名女生的读书时间在E 等级,现从这4名学生中选取2名参加交流会,用画树状图或列表的方法求该班恰好选出1名男生1名女生参加交流会的概率. 20.如图,AB 为O e 的直径,点C 在O e 上,点P 是直径AB 上的一点(不与A ,B 重合),过点P 作AB 的垂线交BC 的延长线于点Q .(1)在线段PQ 上取一点D ,使DQ DC =,连接DC ,试为断CD 与O e 的位置关系,并说明理由.(2)若618BP AP QP ===,,,求QC 的长. 21.某科技公司研制出一种新型产品,每件成本为2400元,销售单价为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元. (1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x 件,开发公司所获得的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出自变量x 的取值范围. 22.有这样一个问题:如图,Rt ABC ∆的内切圆与斜边AB 相切于点D ,AD m =,BD n =,求ΔABC 的面积(用含,m n 的式子表示).小冬根据学习几何的经验,先从特殊情况开始探究:解:如图,令3AD =,4BD =,设ΔABC 的内切圆分别与,AC BC 相切于点,E F ,CE 的长为x根据切线长定理,得3AE AD ==,4BF BD ==,CF CE x == 根据勾股定理得,222(3)(4)(34)x x +++=+ 整理,得2712x x += 所以11(3)(4)22ABC S AC BC x x ∆=⋅=++ 211(712)(1212)1222x x =++=⨯+= 请你参考小冬的做法. 解决以下问题:(1)当5,7AD BD ==时,求ΔABC 的面积;(2)当,AD m BD n ==时,直接写出ΔABC 的面积(用含,m n 的式子表示)为.23. 如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC ,OA=1,OC=4,抛物线y=x 2+bx+c 经过A ,B 两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.。
2023-2024学年安徽省合肥市庐江县九年级(上)期末数学试卷+答案解析
2023-2024学年安徽省合肥市庐江县九年级(上)期末数学试卷一、选择题:本题共9小题,每小题4分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.剪纸艺术是中国最具特色的民间艺术之一,其中蕴含着极致的数学美,下列剪纸图案是中心对称图形的是()A. B.C. D.2.下列成语描述的事件是必然事件的是()A.守株待兔B.画饼充饥C.水中捞月D.旭日东升3.已知矩形ABCD中,,,下列四个矩形中与矩形ABCD相似的是()A. B. C. D.4.如图,M为反比例函数图象上的一点,轴,垂足为点A,的面积为2,则k的值为()A.2B.C.4D.5.如图,点A、B、C、D为一个正多边形的顶点,点O为正多边形的中心,若,则这个正多边形的边数为()A.10B.12C.15D.206.若关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围是() A. B.且C. D.且7.已知点,,均在反比例函数的图象上,则,,的大小关系是()A.B.C.D.8.如图,直径AB 为6的半圆,绕A 点逆时针旋转,此时点B 到了点,则图中阴影部分的面积是() A. B.C.D.9.如图,边长为1的正六边形螺帽在足够长的桌面上滚动没有滑动一周,则O 点所经过的路径长为()A.6B.5C.D.二、单选题:本题共1小题,每小题4分,共4分。
在每小题给出的选项中,只有一项是符合题目要求的。
10.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为,则原抛物线的解析式为()A. B.C.D.三、填空题:本题共4小题,每小题5分,共20分。
11.已知1是一元二次方程的一个根,则方程的另一个根是______.12.如图,从一块直径是2的圆形铁皮上剪出一个圆心角为的扇形,如果将剪下来的扇形围成一个圆锥,则圆锥的底面圆的半径为______.13.如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,,若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是______.14.如图,在边长为1的正方形ABCD中,点E,F分别是边AD,CD上的动点,且,连接BE、AF,交于点连接DG,则线段DG的最小值是______;取CG的中点H,连接DH,则线段DH的最小值是______.四、解答题:本题共9小题,共90分。
人教版2020---2021学年度上学期九年级数学期末考试卷及答案含5套
第41页,共90页 第42页,共90页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级 数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( )A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+ 5. 下列各图中,是中心对称图形的是( )6. 方程042=-x的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验题号 一 二 三 总分 得分ABCD第7页,共90页 第8页,共90页田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (a20.(满分8分)某商场正在热销2008年北京奥运会吉祥物A BC图3E DA B CO E1D图1A密封线学校班级姓名学号密封线内不得答题图10“福娃”玩具和一枚徽章的价格各是多少元?21.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图的方格纸中,ABC∆的顶点坐标分别为()5,2-A、()1,4-B和()3,1-C(1)作出ABC∆关于x轴对称的111CBA∆,并写出点A、B、C的对称点1A、1B、1C的坐标;(2)作出ABC∆关于原点O对称的222CBA∆,并写出点A、B、C的对称点2A、2B、2C的坐标;(3)试判断:111CBA∆与222CBA∆是否关于y轴对称(只需写出判断结果).23.(本大题满分11分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;yAOxBC共计145元共计280元第21题图第41页,共90页第42页,共90页第7页,共90页 第8页,共90页(2)求证:AE=FC+EF.24.(13分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 是否存在最大值?若存在,求出它的最大值及此时的x 值;若不存在,请说明理由?参考答案一、选择题(本大题每小题3ABCDE FG第41页,共90页 第42页,共90页密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 °三、解答题(本大题满分56分) 19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a= -7 =a -120.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、(本题满分8分) 解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人22.满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C(3)111C B A ∆与222C B A ∆关于y 轴对称23. (满分11分) (1) ΔAED ≌ΔDFC.60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯题号 1 2 3 4 5 6 7 选择项 D D C A B A D 题号8 9 10 11 12 13 14 选择项ACDAACAADE FB 2yCAB C 1B 1A 1C 2A 2Ox∵四边形ABCD是正方形,∴ AD=DC,∠ADC=90º.又∵ AE⊥DG,CF∥AE,∴∠AED=∠DFC=90º,…∴∠EAD+∠ADE=∠FDC+∠ADE=90º,∴∠EAD=∠FDC.∴ΔAED≌ΔDFC (AAS).(2) ∵ΔAED≌ΔDFC,∴ AE=DF,ED=FC. …∵ DF=DE+EF,∴ AE=FC+EF. )24. (1) ∵点A(3,4)在直线y=x+m上,∴ 4=3+m.∴ m=1.设所求二次函数的关系式为y=a(x-1)2.∵点A(3,4)在二次函数y=a(x-1)2的图象上,∴ 4=a(3-1)2,∴ a=1.∴所求二次函数的关系式为y=(x-1)2.即y=x2-2x+1.(2) 设P、E两点的纵坐标分别为y P和y E .∴ PE=h=y P-y E=(x+1)-(x2-2x+1)=-x2+3x.…即h=-x2+3x (0<x<3).(3)略图7第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A .1B .﹣1C .D .﹣2.数据1,2,3,3,5,5,5的中位数和众数分别是( ) A .5,4 B .3,5 C .5,5 D .5,33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A . B . C . D .6.二次函数y=ax 2+bx+c 图象上部分点的坐标满足表格:x … ﹣3 ﹣2 ﹣1 0 1 …y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的原点坐标为( )A .(﹣3,﹣3)B .(﹣2,﹣2)C .(﹣1,﹣3)D .(0,﹣6) 7.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+3 8.如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )A .2B .4C .6D .8线内不得答二、填空题(共6小题,每小题3分,满分18分)9.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=______.10.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=______.11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是______.12.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为______.(结果保留π)13.如图,点A、B、C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是______.14.如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB线段CD的长度和为______.三、解答题(共10小题,满分78分)15.解方程:x2+4x﹣7=0.16.在一个不透明的箱子中装有3个小球,分别标有A,B,C3第7页,共90页第8页,共90页第41页,共90页 第42页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.为了了解我校开展的“养成好习惯,幸福一辈子”的活动情况,对部分学生进行了调查,其中一个问题是:“对于这个活动你的态度是什么?”共有4个选项: A .非常支持 B .支持 C .无所谓 D .反感根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)计算本次调查的学生人数和图(2)选项C 的圆心角度数; (2)请根据(1)中选项B 的部分补充完整;(3)若我校有5000名学生,你估计我校可能有多少名学生持反感态度.18.为落实国务院房地产调控政策,使“居者有其屋”,长春市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设路廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,试求出市政府投资的增长率.19.如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线; (2)若OB=5,OP=,求AC 的长.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3交AB ,BC 分别于点M ,N ,反比例函数y=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.密21.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.22.如图,已知抛物线y=ax2+bx(a≠0)经过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以O、D、E为顶点的四边形是平行四边形,直接写出点D23.已知某种水果的批发单价与批发量的函数关系如图(1所示.(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(之间的函数关系式;在图(2)指出金额在什么范围内,该种水果.(3)经调查,某经销商销售该种水果的日最高销量y(kg零售价x所示,该经销商拟每日售出不低于64kg得日获得的利润z(元)最大.第7页,共90页第8页,共90页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,在菱形ABCD 中,AB=6,∠ABC=60°,动点E 、F 同时从顶点B 出发,其中点E 从点B 向点A 以每秒1个单位的速度运动,点F 从点B 出发沿B ﹣C ﹣A 的路线向终点A 以每秒2个单位的速度运动,以EF 为边向上(或向右)作等边三角形EFG ,AH 是△ABC 中BC 边上的高,两点运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)用含t 的代数式表示线段CF 的长; (2)求点G 落在AC 上时t 的值; (3)求S 关于t 的函数关系式;(4)动点P 在点E 、F 出发的同时从点A 出发沿A ﹣H ﹣A 以每秒2单位的速度作循环往复运动,当点E 、F 到达终点时,点P 随之运动,直接写出点P 在△EFG 内部时t 的取值范围.参考答案一、选择题(共8小题,每小题3分,满分24分) 1. B .2.B .3.D . 4.D . 5.D .6.B .7C .8.D . 二、填空题(共6小题,每小题3分,满分18分) 9.已知一元二次方程x 2+mx ﹣2=0的两个实数根分别为x 1,x 2,则x 1•x 2= ﹣2 .得 答 题10.如图,网格图中每个小正方形的边长为1,则弧AB 的弧长l=.11.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 (5,3) . 12.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π)13.如图,点A 、B 、C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是 3 .14.如图,在平面直角坐标系中,抛物线y=a (x ﹣1)2+k (a 、k 为常数)与x 轴交于点A 、B ,与y 轴交于点C ,CD ∥x 轴,与抛物线交于点D .若点A 的坐标为(﹣1,0),则线段OB 与线段CD 的长度和为 5 . 三、解答题(共10小题,满分78分) 15.解方程:x 2+4x ﹣7=0. 解:x 2+4x ﹣7=0, 移项得,x 2+4x=7, 配方得,x 2+4x+4=7+4, (x+2)2=11, 解得x+2=±,即x 1=﹣2+,x 2=﹣2﹣16.解:如图所示:P (两次摸出的小球所标字母不同)==.17.解:(1)根据题意得:60÷30%=200(名),30÷200×=54°,则本次调查的学生人数为200名,图(2)选项C 数为54°;(2)选项B 的人数为200﹣(60+30+10)=100(名)形统计图,如图(1)所示,(3)根据题意得:5000×5%=250(名), 则估计我校可能有250名学生持反感态度.密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:设每年市政府投资的增长率为x ,根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x ﹣1.75=0, 解得:x 1=0.5,x 2=﹣3.5(舍去).答:每年市政府投资的增长率为50%. 19.(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°, ∴∠BAC+∠B=90°. 又∵OP ∥BC , ∴∠AOP=∠B , ∴∠BAC+∠AOP=90°. ∵∠P=∠BAC . ∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA ⊥AP . 又∵OA 是的⊙O 的半径, ∴PA 为⊙O 的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5, ∴OA=OB=5. 又∵OP=,∴在直角△APO 中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°. ∵∠BAC=∠P , ∴△ABC ∽△POA , ∴=. ∴=,解得AC=8.即AC 的长度为8.20.解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2,将y=2代入y=﹣x+3得:x=2, ∴M (2,2),把M 的坐标代入y=得:k=4, ∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1, 即CN=1,不 得 答∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得: OP ×AM=4, ∵AM=2, ∴OP=4,∴点P 的坐标是(0,4)或(0,﹣4).21.解:(1)设线段BC 所在直线对应的函数关系式为y=k 1x+b 1. ∵图象经过(3,0)、(5,50), ∴∴线段BC 所在直线对应的函数关系式为y=25x ﹣75. 设线段DE 所在直线对应的函数关系式为y=k 2x+b 2. ∵乙队按停工前的工作效率为:50÷(5﹣3)=25, ∴乙队剩下的需要的时间为:÷25=,∴E (,160),∴, 解得:∴线段DE 所在直线对应的函数关系式为y=25x ﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x ﹣112.5,得y=25×8﹣112.5=87.5. 答:当甲队清理完路面时,乙队铺设完的路面长为87.522.解:(1)根据题意得:,解得:,则抛物线的解析式是y=x 2+2x ; (2)y=x 2+2x=(x+1)2﹣1, 则C 的坐标是(﹣1,﹣1); (3)抛物线的对称轴是x=﹣1,当OA 是平行四边形的一边时,D 和E 一定在x 轴的上方.OA=2,密学校 班级 姓名 学号密 封 线 内 不 得 答 题则设E 的坐标是(﹣1,a ),则D 的坐标是(﹣3,a )或(1,a ).把(﹣3,a )代入y=x 2+2x 得a=9﹣6=3,则D 的坐标是(﹣3,3)或(1,3),E 的坐标是(﹣1,3);当OA 是平行四边形的对角线时,D 一定是顶点,坐标是(﹣1,﹣1),则E 的坐标是D 的对称点(﹣1,1).23. 解:(1)当批发量在20kg 到60kg 时,单价为5元/kg 当批发量大于60kg 时,单价为4元/kg … (2)当20≤m ≤60时,w=5m 当m >60时,w=4m …当240<w ≤300时,同样的资金可以批发到更多的水果.… (3)设反比例函数为则,k=480,即反比列函数为∵y ≥64, ∴x ≤7.5, ∴z=(x ﹣4)=480﹣∴当x=7.5时,利润z 最大为224元.24.解:(1)根据题意得:BF=2t , ∵四边形ABCD 是菱形, ∴BC=AB=6,∴CF=BC ﹣BF=6﹣2t ;(2)点G 落在线段AC 上时,如图1所示:∵四边形ABCD 是菱形, ∴AB=BC , ∵∠ABC=60°, ∴△ABC 是等边三角形, ∴∠ACB=60°, ∵△EFG 是等边三角形,密 封 线 内 不 得 答∴∠GFE=60°,GE=EF=BF •sin60°=t , ∵EF ⊥AB ,∴∠BFE=90°﹣60°=30°, ∴∠GFB=90°, ∴∠GFC=90°, ∴CF==t ,∵BF+CF=BC , ∴2t+t=6, 解得:t=2; (3)分三种情况: ①当0<t ≤时,S=0; ②当<t ≤2时,如图2所示,S=S △EFG ﹣S △MEN =×(t )2﹣××(﹣+2)2=t 2+t ﹣3, 即S=t 2+t ﹣3;③当2<t ≤3时,如图3所示:S=t 2+t ﹣3﹣(3t ﹣6)2,即S=﹣t 2+t ﹣;(4)∵AH=AB •sin60°=6×=3,∴3÷2=, ∴3÷2=,∴t=时,点P 与H 重合,E 与H 重合, ∴点P 在△EFG 内部时,﹣<(t ﹣)×2<t ﹣(2t ﹣3)+(2t ﹣3), 解得:<t <;即:点P 在△EFG 内部时t 的取值范围为:<t <.密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知四条线段满足,将它改写成为比例式,下面正确的是( ) A .B .C .D .2.二次函数y=﹣2(x ﹣1)2+3的图象的顶点坐标是( ) A .(1,3) B .(﹣1,3) C .(1,﹣3) D .(﹣1,﹣3) 3.下列事件中,必然事件是( ) A .抛出一枚硬币,落地后正面向上 B .打开电视,正在播放广告C .篮球队员在罚球线投篮一次,未投中D .实心铁球投入水中会沉入水底4.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( )A .∠ACDB .∠ADBC .∠AED D .∠ACB5.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=96.若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:17.已知函数y=x 2+2x ﹣3,当x=m 时,y <0,则m 的值可能是( )A .﹣4B .0C .2D .38.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( )A .12πcm 2B .15πcm 2C .20πcm 2D .30πcm 2二、填空题(本大题共有10小题,每小题3分,共30分) 9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .密封线内不得答题10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x2+px﹣2=0的一个根为2,则p的值.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.15.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)16.二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:(1)x2﹣4x+1=0;(2)x(x﹣2)+x﹣2=0.18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC关于点O成中心对称的△A1B1C1(其中A的对称点是A1,B的对称点是B1,C的对称点是C1);(2)直接写出点B1、C1的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果; (2)求两次摸出的球都是编号为3的球的概率.四、解答题(本大题共有4小题,共39分)21.如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB 于D .(1)求证:△ACB ∽△ADE ;(2)求AD 的长度.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.23.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AC 平分∠BAD ,点E 为AB 的延长线上一点,且∠ECB=∠CAD . (1)①填空:∠ACB= ,理由是 ; ②求证:CE 与⊙O 相切;(2)若AB=6,CE=4,求AD 的长.密封 线 内 不 得五、解答题(本大题共有3小题,共35分)24.如图1,在△ABC 中,∠A=120°,AB=AC ,点P 、Q 同时从点B 出发,以相同的速度分别沿折线B →A →C 、射线BC 运动,连接PQ .当点P 到达点C 时,点P 、Q 同时停止运动.设BQ=x ,△BPQ 与△ABC 重叠部分的面积为S .如图2是S 关于x 的函数图象(其中0≤x ≤8,8<x ≤m ,m <x ≤16时,函数的解析式不同).(1)填空:m 的值为 ;(2)求S 关于x 的函数关系式,并写出x 的取值范围; (3)请直接写出△PCQ 为等腰三角形时x 的值.25.如图(1),将线段AB 绕点A 逆时针旋转2α(0°<α<90°)至AC ,P 是过A ,B ,C 的三点圆上任意一点. (1)当α=30°时,如图(1),求证:PC=PA+PB ;(2)当α=45°时,如图(2),PA ,PB ,PC 它们的数量关系.26.如图,抛物线y=a (x ﹣m )2﹣m (其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m ).点A 关于直线l 的对称点为B ,作BC ⊥x 轴于点C ,连接PC 、PB ,与抛物线、x 轴分别相交于点D 、E ,连接DE .将△PBC 沿直线PB 翻折,得到△PBC ′.(1)该抛物线的解析式为 (用含m 的式子表示);(2)探究线段DE 、BC 的关系,并证明你的结论; (3)直接写出C ′点的坐标(用含m 的式子表示).密学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(共8小题,每小题3分,满分24分) 1.C 2.A .3.D .4.A .5.D .6.C .7.B .8.B . 二、填空题(本大题共有10小题,每小题3分,共30分)9.方程x 2﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 c <4 .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m . 11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= 70 °.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.13.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值 ﹣1 .14.如图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 3 .15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 ∠C=∠BAD (填一个即可)16.二次函数y=ax 2+bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 y 3<y 2<y 1 (用“>”“<”或“=”连接).三、解答题(本大题共有4小题,共39分)17.解方程:解:(1)方程变形得:x 2﹣4x=﹣1,配方得:x 2﹣4x+4=3,即(x ﹣2)2=3, 开方得:x ﹣2=±,得 答 题则x 1=2+,x 2=2﹣;(2)(x+1)(x ﹣2)=0, (x+1)(x ﹣2)=0, 解得x 1=﹣1,x 2=2. 18.解:(1)如图所示:.(2)根据上图可知,B 1(2,2),C 1(5,﹣1).19. 解:由圆周角定理得,∠D=∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°. 20.解:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为. 四、解答题(本大题共有4小题,共39分) 21. (1)证明:∵DE ⊥AB ,∠C=90°,∴∠EDA=∠C=90°, ∵∠A=∠A ,∴△ACB ∽△ADE ;(2)解:∵△ACB ∽△ADE ,∴=, ∴=,∴AD=4.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (m 2)与x (m 系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题解:(1)由图可得,扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=(30xm+m )(20xm+m )=600x 2m 2+50xm 2+m 2,即扩充后的绿地的面积y (m 2)与x (m )之间的函数关系式是:y=600x 2m 2+50xm 2+m 2;(2)∵扩充后的绿地面积y 是原矩形面积的2倍, ∴600x 2m 2+50xm 2+m 2=2×30xm ×20xm , 解得(舍去),即扩充后的绿地面积y 是原矩形面积的2倍,x 的值是.23.解:(1)①∵AB 为⊙O 的直径, ∴∠ACB=90°,故答案为90°,直径所对的圆周角是直角; ②连接OC ,则∠CAO=∠ACO , ∵AC 平分∠BAB , ∴∠BAC=∠CAD , ∵∠ECB=∠CAD . ∴∠BAC=∠ECB .∴∠ECB=∠ACO ,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE ⊥OC .∴CE 与⊙O 相切; (2)∵CE 与⊙O 相切, ∴CE 2=BE •AE , ∵AB=6,CE=4, ∴42=BE (BE+6), ∴BE=2, ∴AE=6+2=8, ∵△ACE ∽△CBE ,∴=,即=,∴AC=4, ∴AC=CE=4, ∴∠CAB=∠E , ∴∠ECB=∠E ,∴∠ABC=2∠ECB=2∠BAC ,BC=BE=2, ∴∠DAB=∠ABC , ∴AD=BC=2.五、解答题(本大题共有3小题,共35分)24.解:(1)如图1中,作AM ⊥BC ,PN ⊥BC ,垂足分别为M ,N .密 封 线 内 不 得 答 题由题意AB=AC=8,∠A=120°, ∴∠BAM=∠CAM=60°,∠B=∠C=30°, ∴AM=AB=4,BM=CM=4, ∴BC=8, ∴m=BC=8, 故答案为8.(2)①当0≤m ≤8时,如图1中,在RT △PBN 中,∵∠PNB=90°,∠B=30°,PB=x , ∴PN=x . s=•BQ •PN=•x ••x=x 2.②当8<x ≤16,如图2中,在RT △PBN 中,∵PC=16﹣x ,∠PNC=90°,∠C=30°, ∴PN=PC=8﹣x ,∴s=•BQ •PN=•x •(8﹣x )=﹣x 2+4x . ③当8<x ≤16时,s=•8•(8﹣•x )=﹣2x+32.(3)①当点P 在AB 上,点Q 在BC 上时,△PQC 不可能是等腰三角形.②当点P 在AC 上,点Q 在BC 上时,PQ=QC , ∵PC=QC ,∴16﹣x=(8﹣x ), ∴x=4+4.③当点P 在AC 上,点Q 在BC 的延长线时,PC=CQ , 即16﹣x=x ﹣8, ∴x=8+4.∴△PCQ 为等腰三角形时x 的值为4+4或8+4.25.证明:(1)如图(1),在PA 上截取PD=PA , ∵AB=AC ,∠CAB=60°, ∴△ABC 为等边三角形, ∴∠APC=∠CPB=60°, ∴△APD 为等边三角形, ∴AP=AD=PD ,∴∠ADC=∠APB=120°, 在△ACD 和△ABP 中,,∴△ACD ≌△ABP (AAS ),密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴CD=PB ,∵PC=PD+DC , ∴PC=PA+PB ; (2)PC=PA+PB ,如图(2),作AD ⊥AP 与PC 交于一点D , ∵∠BAC=90°,∴∠CAD=∠BAP , 在△ACD 和△ABP 中,,∴△ACD ≌△ABP ,∴CD=PB ,AD=AP , 根据勾股定理PD=PA , ∴PC=PD+CD=PA+PB .26.解:(1)把点A (0,m )代入y=,得:2am 2﹣m=m , am ﹣1=0, ∵am >1,∴a=, ∴y=,故答案为:y=;(2)DE=BC . 理由:又抛物线y=,可得抛物线的顶点坐标P (m ,﹣m ),由l :x=m ,可得:点B (2m ,m ), ∴点C (2m ,0).设直线BP 的解析式为y=kx+b ,点P (m ,﹣m )和点B (2m ,m )在这条直线上, 得:,解得:,∴直线BP 的解析式为:y=x ﹣3m , 令y=0, x ﹣3m=0,解得:x=,∴点D (,0);设直线CP 的解析式为y=k 1x+b 1,点P (m ,﹣m )和点C (2m ,0)在这条直线上,得:,解得:, ∴直线CP 的解析式为:y=x ﹣2m ;密 封 线 内 不 得 答 题抛物线与直线CP 相交于点E ,可得:,解得:,(舍去), ∴点E (,﹣);∵x D =x E , ∴DE ⊥x 轴,∴DE=y D ﹣y E =,BC=y B ﹣y C =m=2DE , 即DE=BC ; (3)C ′(,).连接CC ′,交直线BP 于点F , ∵BC ′=BC ,∠C ′BF=∠CBF , ∴CC ′⊥BP ,CF=C ′F ,设直线BP 的解析式为y=kx+b ,点B (2m ,m ),P (m ,﹣m )在直线上, ∴,解得:,∴直线BP 的解析式为:y=x ﹣3m , ∵CC ′⊥BP ,∴设直线CC ′的解析式为:y=x+b 1,∴,解得:b 1=2m ,联立①②,得:,解得:,∴点F (,),∴CF==, 设点C ′的坐标为(a ,), ∴C ′F==,解得:a=,∴, ∴C ′(,).密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题:每小题3分,共36分. 1.方程x 2=4x 的解是( )A .x=4B .x=2C .x=4或x=0D .x=0 2.在下列事件中,是必然事件的是( ) A .购买一张彩票中奖一百万元B .抛掷两枚硬币,两枚硬币全部正面朝上C .在地球上,上抛出去的篮球会下落D .打开电视机,任选一个频道,正在播新闻3.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1﹣x )=121C .100(1+x )2=121 D .100(1﹣x )2=1214.关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣3m+2=0的常数项为0,则m 等于( )A .1B .2C .1或2D .05.对于抛物线y=﹣(x ﹣5)2+3,下列说法正确的是( )A .开口向下,顶点坐标(5,3)B .开口向上,顶点坐标(5,3)C .开口向下,顶点坐标(﹣5,3)D .开口向上,顶点坐标(﹣5,3)6.二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( )A .k <3 B .k <3且k ≠0 C .k ≤3 D .k ≤3且k ≠0 7.二次函数y=ax 2+bx+c 的图象如图所示,则下列关系式中错误的是( )A .a <0B .c >0C .b 2﹣4ac >0 D .a+b+c >0 8.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )封线内不A. B. C. D.9.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是()A.内切 B.相交 C.外切 D.外离10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25π B.65πC.90π D.130π11.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30° B.45° C.60° D.90°12.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:每小题3分,共18分.13.已知关于x的方程x2﹣3x+k=0有一个根为1,个根为.14.抛物线y=3x2向右平移1个单位,再向下平移2所得到的抛物线是.15.如图,⊙O的直径AB=12,弦CD⊥AB于M,且M是半径的中点,则CD的长是(结果保留根号).16.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣•x2= .17.如图,已知以直角梯形ABCD的腰CD为直径的半圆O形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于 .三、解答题:本大题共7小题,19题10分,其余每题6分,共46分. 19.解方程:(1)3x 2﹣2x=4x 2﹣3x ﹣6 (2)3x 2﹣6x ﹣2=0.20.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.21.如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成2个半圆,每一个扇形或半圆都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,列出所有等可能情况,并求出点(x ,y )落在坐标轴上的概率;(2)直接写出点(x ,y )落在以坐标原点为圆心,2为半径的圆内的概率.。
2020-2021学年第一学期安徽省九年级第三次月考数学试卷(word版,含答案)
2020-2021 学年度第一学期九年级质量检测试卷(三)数学(沪科版)注意事项∶1.你拿到的试卷满分为 150 分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分。
“试题卷”共4页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4. 考试结束后,请将“试题卷”和“答题卷”一并交回。
一、选择题( 本大题共 10 小题,每小题4分,共40 分) 1.反比例函数xy 4-=(x >0)的图像位于( ) A.第一象限B.第二象限C.第二象限D.第二象限2.如图,直线l 1/l 2,/l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( ) A.2B.3C.4B.3103.如图,在 Rt △ABC 中,∠C =90°,sinB =0.5,若AC =6,则BC 的长为( ) A.8B.12C.36B.3124.抛物线y =-3x ²-1是由抛物线y =-3(x +1)²+1怎样平移得到的( ) A.左移1个单位上移2个单位 B.左移1个单位下移2 个单位 B.右移1个单位上移2个单位D.右移1个单位下移2 个单位5.若43=a b ,则aba -2的值为( ) A.1 B.45 C.47B.856.如图,A ,B ,C 是3×1的正方形网格中的三个格点,则 tan ∠ABC 的值为( )A.1B.45C.47D.85 7.△ABC 中,∠A ,∠B 都是锐角,且 sinA =22,cosB =21则△ABC 的形状是( )A.直角三角形B. 钝角三角形C.锐角三角形D. 锐角三角形或钝角三角形8.如图,正方形ABCD 的边长是2,E 是 BC 的中点,连接 BD 、AE 相交于点O ,则OD 的长为( ) A.324B.22C.328D.59.有以下命题∶①如果线段d 是线段a ,b ,c 的第四比例项,则有dc b a ; ②如果点C 是线段 AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项; ④如果点C 是线段 AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1. 其中正确的判断有( ) A. ②④B.①②③④C. ①③④D.②③④10.如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16,点P 是斜边AB 上任意一点,过点P 作 PQ ⊥AB ,垂足为P ,交边AC (或边 CB )于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )二、填空题(本大题共4 小题,每小题5分,共20 分) 11.抛物线y = (x +2)2-1的顶点坐标为___________。
2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)
2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。
安徽省合肥市庐江县部分校2024-2025学年八年级上学期第一次质量检测数学试卷(人教版)
安徽省合肥市庐江县部分校2024-2025学年八年级上学期第一次质量检测数学试卷(人教版)一、单选题1.下列四个图案中,是轴对称图形的是( )A .B .C .D . 2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .2cm ,3cm ,1cmB .2cm ,2cm ,6cmC .5cm ,10cm ,4cmD .7cm ,5cm ,10cm3.等腰三角形的两边长分别为2、4,则它的周长为( )A .8B .10C .8或10D .以上都不对 4.将四边形截去一个角后,所形成的一个新的多边形的内角和( )A .180°B .360°C .540°D .180°或360°或540° 5.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =24,DE =4,AB =7,则AC 长是( )A .3B .4C .6D .56.如图,ABC DEC ≌△△,B 、C 、D 在同一直线上,且6CE =,8AC =,则BD 长( )A .12B .14C .16D .187.如图,将ABC V 纸片沿DE 折叠,使点A 落在四边形BCED 内点A '的位置35A ∠=︒,则12∠+∠的度数是( )A .80︒B .70︒C .45︒D .35︒8.如图,在ABC V 中,AB AC =,点D ,E 分别在AC ,AB 上,且BC BD DE EA ===,则A ∠的度数为( )A .36︒B .1807︒C .30︒D .24︒9.已知直角三角形30︒角所对的直角边长为5,则斜边的长为( )A .5B .10C .8D .1210.如图,OC 平分AOB ∠,OD 平分AOC ∠,40AOD ∠=︒,则AOB ∠的度数是( )A .160︒B .120︒C .80︒D .60︒二、填空题11.点(),4A a ,点()3,B b 关于x 轴对称,则()2023a b +=.12.等腰三角形一腰上的高与另一腰的夹角为45度,则该等腰三角形的顶角的度数为 13.如图,△ABC 中,点D 在BA 的延长线上,DE ∥BC ,如果∠BAC =65°,∠C =30°,那么∠BDE 的度数是.14.如图,在Rt ABC △中,903012cm C A BC ∠∠===︒︒,,,动点P 从点A 出发,沿AB 向点B 运动,动点Q 从点B 出发,沿BC 向点C 运动,如果动点P 以2cm /s,Q 以1cm /s 的速度同时出发.设运动时间为()s ,t P Q 、在运动过程中,PBQ V 的形状不断发生变化,当t 时,PBQ V 是直角三角形.15.如图,△ABC 中,∠ACB =90°,AC ≤BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点处,设EF 与AB 、AC 边分别交于点E 、点F ,如果折叠后△CDF 与△BDE 均为等腰三角形,那么∠B =.16.如图,ABC V 中60BAC ∠=︒,将ACD V 沿AD 折叠,使得点C 落在AB 上的点C '处,连接C D '与C C ACB '∠,的角平分线交AD 于点E ;如果BC DC '=';那么下列结论:①12∠=∠;②AD 垂直平分C C ';③3B BCC ∠=∠';④DC EC '∥;其中正确的是:;(只填写序号)17.如图,ABC V 的周长是12,OB 、OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,则ABC V 的面积是.18.如图,在ABC V 中,108BAC ∠=︒,将ABC V 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为.三、解答题19.如图,在Rt ABC △中,90B ??,点E 是AC 的中点,2AC AB =,BAC ∠的平分线AD 交BC 于点D ,作AF BC ∥,连接DE 并延长交AF 于点F ,连接FC .求证:AF DA =.20.如图,在规格为88⨯的边长为1个单位的正方形网格中(每个小正方形的边长为1),ABC V 的三个顶点都在格点上,且直线m 、n 互相垂直.(1)画出ABC V 关于直线n 对称的A B C '''V ;(2)在直线m 上作出点P ,使得APB △的周长最小.(保留作图痕迹)21.如图,已知()1,0B -,()1,0C ,A 为y 轴正半轴上一点,点D 为第二象限一动点,E 在BD 的延长线上,CD 交AB 于F ,且2BDC BAO ∠=∠.(1)求证:ABD ACD ∠=∠;(2)求证:AD 平分CDE ∠;(3)若在D 点运动的过程中,始终有DC DA DB =+在此过程中,BAC ∠的度数是否变化?如果变化,请说明理由;如果不变,请求出BAC ∠的度数.22.综合实践课上,某数学兴趣小组对特殊三角形的旋转进行了探究.(1)问题发现如图1,ABC V 和ADE V 均为等边三角形,将ADE V 绕点A 旋转,当点 B ,D ,E 在同一直线上时,连接BD ,CE .填空: ①BD CE的值为; ②BEC ∠的度数为.(2)类比探究如图2,ABC V 和ADE V 均为等腰直角三角形,90BAC DAE ∠=∠=︒,AM DE ⊥于M ,将ADE V 绕点A 旋转,当点 B ,D ,E 在同一直线上时,连接BD ,CE .①求BEC ∠的度数;②请判断线段BE ,CE ,AM 之间的数量关系,并说明理由.(3)拓展延伸在(2)的条件下,若3AM =,4CE =,求四边形ABCE 的面积.23.在直线m 上依次取互不重合的三个点D ,A ,E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段DE ,BD ,CE 之间的数量关系是 ;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC V 中,BAC ∠是钝角,AB AC =,BAD CAE ∠<∠,BDA AEC BAC ∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC V 的面积是12,求FBD V 与ACE △的面积之和.。
2020-2021学年度上学期期末考试
2020-2021学年度上学期期末考试小题好拿分(人教版九年级全)【基础版】(选择15道填空15道共30道)姓名:一、单选题 1.下列立体图形中,主视图是三角形的是()【答案】A.【解析】 试题分析:A.圆锥的主视图是三角形,符合题意;B. 球的主视图是圆,不符合题意:C. 圆柱的主视图是矩形,不符合题意:D. 正方体的主视图是正方形,不符合题意.故选A ・ 考点:简单几何体的三视图.2. 如图是一个可以自由转动的转盘,当转盘转动停止后,下而有3个表述:①指针指向3 个区域的可能性相同:②指针指向红色区域的概率为卜③指针指向红色区域的概率为 丄・其中正确的表述是( )A ・®@B.①③ C •② D •③【答案】D.【解析】 试题分析:很据题意可得:红色区域占总而积的丄,白色区域占总而积的丄,黑色区域占 2 4总面积的丄; 4A.B.班级:由几何概率可知:指针指向红色区域的概率为指向白色区域的概率叫,指向黑色区 域的概率为丄,故只有③是正确的.故选D. 4考点:几何概率.3・下列标志中,既是轴对称图形又是中心对称图形的为()【答案】D.【解析】 试题解析:A 、不是轴对称图形,也不是中心对称图形.故错误:B 、 不是轴对称图形,也不是中心对称图形.故错误;C 、 不是轴对称图形,是中心对称图形.故错误:D 、 是轴对称图形,也是中心对称图形.故正确.故选D.考点:1•中心对称图形:2轴对称图形;3.生活中的旋转现象.4.在正方形网格中,ZBAC 如图所示放置,贝iJcosZBAC 等于()故选:D.5.如图,ADEF 是由AABC 经过位似变换得到的,点O 是位似中心,D, E, F 分別是OA, OB, OC 的中点,贝UDEF 与A ABC 的而积比是()!_3航 A.3 B. 3 C. 10 D. 10【答案】D 【解析】试题分析:根据图案, 可知ZBAC 是格点角,因此可知来那个直角边为1和3,根据勾般龙理可求得斜边为V10,从而根据余弦的意义求得皿心為豁 CD。
2020-2021学年安徽省合肥市蜀山区九年级(上)期末数学试卷及参考答案
2020-2021 学年安徽省合肥市蜀山区九年级(上)期末 数学试卷参考答案与试题解析
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分) 1.【分析】直接利用比例的性质变形得出答案.
【解答】解:∵3x﹣4y=0(xy≠0), ∴3x=4y, 则=,
故选:B. 【点评】此题主要考查了比例的性质,正确将已知变形是解题关键. 2.【分析】所给抛物线是顶点式,可直接得出抛物线的对称轴. 【解答】解:∵抛物线 y=a(x+h)2+k 的对称轴是直线 x=﹣h, ∴抛物线 y= (x+1)2﹣3 的对称轴是直线 x=﹣1.
第 1页(共 14 页)
∴△AOB 是等边三角形, ∴AB=OA=2, ∴正六边形 ABCDEF 的周长=6AB=12. 故选:C. 【点评】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB 是等边三角形是解题关键.
5.【分析】证明△ADE∽△ABC,相似比为 ,从而可得 S△ADE:S△ABC= ,即
11.(5 分)在平面直角坐标系中,点 A(﹣2,﹣3)关于坐标原点 O 中心对称的点的坐标
为
.
12.(5 分)扇形的圆心角是 45°,半径为 2,则该扇形的弧长为
.
第 2页(共 5 页)
13.(5 分)如图,反比例函数 y= 的图象经过矩形 ABCD 的顶点 D 和 BC 边上中点 E,若 △CDE 面积为 2,则 k 的值为 .
故选:D. 【点评】本题主要考查二次函数的性质,熟练掌握二次函数三种表达方式是解题关键. 3.【分析】过 P 作 PA⊥x 轴于 A,根据勾股定理求出 OP,根据锐角三角函数的定义求解即 可. 【解答】解:如图,过 P 作 PA⊥x 轴于 A, ∵P(3,4), ∴PA=4,OA=3, 由勾股定理得:OP=5, ∴α的余弦值是 = . 故选:C. 【点评】本题考查了勾股定理和锐角三角函数的定义的应用,主要考查学生的计算能力. 4.【分析】由正六边形的性质证出△AOB 是等边三角形,由等边三角形的性质得出 AB=OA, 即可得出答案. 【解答】解:设正六边形的中心为 O,连接 AO,BO,如图所示: ∵O 是正六边形 ABCDEF 的中心, ∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2,
2024-2025学年安徽省合肥市庐江县九年级数学第一学期开学监测试题【含答案】
2024-2025学年安徽省合肥市庐江县九年级数学第一学期开学监测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在四边形ABCD 中,AB CD =,对角线AC 、BD 相交于点O ,AE BD ⊥于点E ,CF BD ⊥于点F ,连接AF 、CE ,若DE BF =,则下列结论不一定正确的是()A .CF AE =B .OE OF =C .CDE △为直角三角形D .四边形ABCD 是平行四边形2、(4分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD ,B 与D 两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A .四边形ABCD 由矩形变为平行四边形B .BD 的长度增大C .四边形ABCD 的面积不变D .四边形ABCD 的周长不变3、(4分)一次函数y =kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是()A .x >0B .x <0C .x >-1D .x >24、(4分)若式子x 的取值范围是()A .x >23B .x >32C .x≥23D .x≥325、(4分)不等式组1{1x x >-≤的解集在数轴上可表示为()A .B .C .D .6、(4分)下列方程中是关于x 的一元二次方程的是()A .x =x 2﹣3B .ax 2+bx +c =0C .D .3x 2﹣2xy ﹣5y 2=07、(4分)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A .25301018060(%)x x -=+B .253010180(%)x x -=+C .30251018060(%)x x -=+D .302510180(%)x x -=+8、(4分)矩形、菱形、正方形都具有的性质是()A .对角线互相垂直B .对角线互相平分学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………C .对角线相等D .每一条对角线平分一组对角二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)直线22y x =+与y 轴的交点坐标是________________.10、(4分)若反比例函数y=(2k-1)2321k k x --的图象在二、四象限,则k=________.11、(4分)小玲要求△ABC 最长边上的高,测得AB =8cm ,AC =6cm ,BC =10cm ,则最长边上的高为_____cm .12、(4分)如图,在ABC ∆中,o o 9030C B AD ∠=∠=,,是ABC ∆的角平分线,DE AB ⊥,垂足为E ,1DE =,则ABC ∆的周长为________.13、(4分)如图,矩形ABCD 中,O 是两对角线交点,AE BD ⊥于点E,若OE :OD 1:2,AE 3cm,DE ________cm.===则三、解答题(本大题共5个小题,共48分)14、(12分)阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E 五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).阅读时间分组统计表组别阅读时间x (h)人数A 0≤x<10aB 10≤x<20100C 20≤x<30bD 30≤x<40140E x≥40c 请结合以上信息解答下列问题:(1)求a,b,c 的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20h 以下(不含20h)的学生所占百分比.15、(8分)某校九年级两个班各捐款1800元.已知(2)班比(1)班人均捐款多4元,(2)班的人数比(1)班的人数少10%.求两个班人均捐款各为多少元?16、(8分)如图,正方形ABCD 中,点E 在BC 边上,AF 平分∠DAE ,DF //AE ,AF 与CD 相交于点G .(1)如图1,当∠AEC =120,AE =4时,求FG 的长;(2)如图2,在AB 边上截取点H ,使得DH=AE ,DH 与AF 、AE 分别交于点M 、N ,求证:AE =AH +DG17、(10分)已知:在平面直角坐标系中有两条直线y=﹣1x+3和y=3x ﹣1.(1)确定这两条直线交点所在的象限,并说明理由;(1)求两直线与坐标轴正半轴围成的四边形的面积.18、(10分)我们将、称为一对“对偶式”,因为,所以构造“对偶式”再将其相乘可以有效的将和中的“”去掉.于是二次根式除法可以这样解:如,.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小________(用“”、“”或“”填空);(2)已知,,求的值;(3)计算:B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)把直线y =﹣x ﹣1沿着y 轴向上平移2个单位,所得直线的函数解析式为_____.20、(4分)如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠BPN=_____度.21、(4分)如图,菱形ABCD 中,DE ⊥AB ,垂足为点E ,连接CE .若AE =2,∠DCE =30°,则菱形的边长为________.22、(4分)已知一次函数y=x+b 的图象经过第一、二、三象限,写出一个符合条件的b 的值为_____.23、(4分)不等式()3153x x +≥-的正整数解有______个.二、解答题(本大题共3个小题,共30分)24、(8分)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元。
2021-2022学年安徽省合肥市庐江县初三数学第一学期期末试卷及解析
2021-2022学年安徽省合肥市庐江县初三数学第一学期期末试卷一、选择题(本题共10小题,每小题4分,满分40分。
)1.(4分)关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,则()A.a>0 B.a≠0C.a≠1D.a=12.(4分)下列事件中,属于必然事件的是()A.购买一张彩票,中奖B.从煮熟的鸡蛋里孵出小鸡,神奇C.篮球队员在罚球线投篮一次,投中D.实心铅球投入水中,下沉3.(4分)已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7 B.7 C.3 D.﹣34.(4分)随着人们健康生活理念的提高,环保意识也不断增强,以下是回收、绿色包装、节水、低碳四个标志()A.B.C.D.5.(4分)在平面直角坐标系中,若将抛物线y=x2﹣2x+1先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,2)B.(4,2)C.(﹣2,﹣2)D.(4,﹣2)6.(4分)如图,⊙O的半径为5,弦AB=6(不与A、B重合),下列符合条件的OP的值可以是()A.3.1 B.4.2 C.5.3 D.6.47.(4分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.8.(4分)如图,在△ABC中,∠BAC=65°,将△ABC绕点A逆时针旋转n度(0<n<180)得到△ADE,则n的值为()A.65 B.75 C.85 D.1309.(4分)⊙O半径为4,以⊙O的内接正三角形、正方形、正六边形的边心距为边作一个三角形,则所得三角形的面积是()A.B.C.2D.210.(4分)如图①,在▱ABCD中,动点P从点B出发,设点P经过的路程为x,△ABP的面积为y,函数的图象如图②所示,则图②中的a等于()A.3B.4C.14 D.18二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)若点A(2x﹣1,﹣5)和点B(3,y﹣3)关于原点对称y的值为.12.(5分)若标有A,B,C的三只灯笼按图所示悬挂,每次摘取一只(摘B前需先摘C),则最后一只摘到B的概率是.13.(5分)如图,四边形ABCD内接于⊙O,AD∥BC,∠A=126°,则∠BDC的度数为.14.(5分)如图,在Rt△ABC中,∠C=90°,∠B=30°,点F在边AC上,点E为边BC上的动点,将△CEF沿直线EF翻折,则点P到边AB距离的最小值是.三、(本题共2小题,每小题8分,满分16分)15.(8分)解方程:x2+2x﹣3=0.16.(8分)如图,矩形ABCD中,BC=4,旋转角为α,连接BB'.若∠AB'B=75°四、(本题共2小题,每小题8分,满分16分)17.(8分)某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,求南瓜亩产量的增长率.18.(8分)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)五、(本题共2小题,每小题10分,满分20分)19.(10分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.20.(10分)已知一抛物线的顶点为(2,4),图象过点(1,3).(1)求抛物线的解析式;(2)动点P(x,5)能否在抛物线上?请说明理由;(3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.六、(本题满分12分)21.(12分)为了科学精准地做好校园常态化疫情防控工作,某校通过新生培训、主题班会、专题教育、知识竞赛等方式,指导学生科学防疫.在该校九年级疫情防控知识竞赛中,请你根据图中信息解答下列问题:(1)该校九年级共有名学生,“D”等级所占圆心角的度数为;(2)请将条形统计图补充完整;(3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加县级知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,若两个数字之和为奇数,则选甲乙,则选丙丁,请用树状图或列表法说明此规则是否合理.七、(本题满分12分)22.(12分)如图,在△ABC中,∠ACB=90°,O点在△ABC内部,⊙O经过B、C两点且交AB于点D,以GD、GC为邻边作平行四边形GDEC.(1)求证:直线DE是⊙O的切线;(2)若DE=7,CE=5,求⊙O的半径.八、(本题满分14分)23.(14分)某超市经销A、B两种商品.商品A每千克成本为20元,经试销发现,该种商品每天销售量y(千克)(元/千克)满足一次函数关系,其每天销售单价、销售量的对应值如表所示:25 30 35 40销售单价x(元/千克)销售量y(千克)50 40 30 20商品B的成本为6元/千克,销售单价为10元/千克,但每天供货总量只有60千克,超市开展了“买一送一”活动,即买1千克的商品A(1)求y(千克)与x(元/千克)之间的函数表达式;(2)设这两种商品的每天销售总利润为w元,求出w(元)与x的函数关系式;(3)若商品A的售价不低于成本,不高于成本的180%,当销售单价定为多少时(总利润=两种商品的销售总额﹣两种商品的成本)参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分)1.【解答】解:∵关于x的方程(a﹣1)x2﹣6x+2=0是一元二次方程,∴a﹣7≠0,a≠1,故选:C.2.【解答】解:A.购买一张彩票,这是随机事件;B.从煮熟的鸡蛋里孵出小鸡,这是不可能事件;C.篮球队员在罚球线投篮一次,这是随机事件;D.实心铅球投入水中,这是必然事件;故选:D.3.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣6.故选:A.4.【解答】解:选项A、C、D不能找到这样的一个点,所以它们不是中心对称图形;选项B能找到这样的一个点,使这个图形绕某一点旋转180°后与原来的图形重合;故选:B.5.【解答】解:抛物线y=x2﹣2x+2=(x﹣1)2所以抛物线的顶点坐标为(2,0),先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是(4,2).故选:B.6.【解答】解:过O点作OH⊥AB于H,连接OA,则AH=BH=,在Rt△OAH中,OH==,所以OP的范围为2≤OP<5.故选:B.7.【解答】解:当a>0时,函数y=ax2+bx+4(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二,故可排除D;当a<6时,函数y=ax2+bx+1(a≠5)的图象开口向下,函数y=ax+1的图象应在一二四象限;当x=0时,两个函数的值都为2,1).正确的只有C.故选:C.8.【解答】解:∵在△ABC中,∠BAC=65°,∴∠ABC=180°﹣∠BAC﹣∠C=180°﹣65°﹣20°=95°,∵将△ABC绕点A逆时针旋转n角度(0<n<180°)得到△ADE,∴∠ADE=∠ABC=95°,∵DE∥AB,∴∠ADE+∠DAB=180°,∴∠DAB=180°﹣∠ADE=85°,∴旋转角n的度数是85°,故选:C.9.【解答】解:如图1,△ABC为⊙O的内接正三角形,连接OB,∵∠OBC=∠ABC=30°,∴OM=OB=4;如图2,四边形ABCD为⊙O的内接正方形,连接OD,∵∠ODC=∠ADC=45°,∴ON=DN=OD=4;如图3,六边形ABCDEF为⊙O的内接正六边形,连接OE,∵∠OED=∠FED=60°,∴EH=OE=2EH=7,∴半径为4的圆的内接正三角形、正方形,8,2,∵22+(2)2=(8)2,∴以三条边心距所作的三角形为直角三角形,∴该三角形的面积=×2×2.故选:C.10.【解答】解:由图②知,BC=6,BD=18﹣14=4,过点B作BH⊥DC于点H,设CH=x,则DH=7﹣x,则BH2=BC2﹣CH5=BD2﹣DH2,即:BH2=42﹣(6﹣x)2=66﹣x2,解得:BH=,则a=y=S△ABP=DC×HB==3,故选:A.二、填空题(本题共4小题,每小题5分,满分20分)11.【解答】解:∵点A(2x﹣1,﹣2)和点B(3,∴2x﹣8+3=0,y﹣5﹣5=0,解得:x=﹣2,y=8,则x y=(﹣1)8=1.故答案为:1.12.【解答】解:由摘取的顺序有ACB,CAB,∴最后一只摘到B的概率是=,故答案为:.13.【解答】解:∵四边形ABCD内接于⊙O,∠A=126°,∴∠C=180°﹣130°=54°,∵AD∥BC,∴∠ABC=180°﹣∠A=54°,∵BD平分∠ABC,∴∠DBC=27°,∴∠BDC=180°﹣27°﹣54°=99°,故答案为:99°.14.【解答】解:以F为圆心,CF为半径作⊙F,则点P到AB的距离的最小值=FH﹣FP=FH﹣FG.由翻折的性质可知,PF=CF=2,∴点P在⊙F上,∵AC=6,BC=7,∴AB=12,由△AHF∽△ACB,∴=,∴=,∴FH=2,∴点P到AB的距离的最小值=FH﹣FG=2﹣8.故答案为:2﹣6.三、(本题共2小题,每小题8分,满分16分)15.【解答】解:x2+2x﹣5=0∴(x+3)(x﹣2)=0∴x1=2,x2=﹣3.16.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠CBB'=∠AB'B=75°,由旋转的性质得:CB=CB',∴∠CB'B=∠CBB'=75°,∴∠BCB'=180°﹣75°﹣75°=30°,即旋转角α为30°;作B'E⊥BC于E,如图所示:则AB=B'E=CB'=4.四、(本题共2小题,每小题8分,满分16分)17.【解答】解:设南瓜亩产量的增长率为x,则种植面积的增长率为2x.根据题意,得10(1+5x)•2000(1+x)=60000.解得:x1=8.5,x2=﹣8(不合题意,舍去).答:南瓜亩产量的增长率为50%.18.【解答】解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣2.五、(本题共2小题,每小题10分,满分20分)19.【解答】解:(1)如图所示,△A1B1C7即为所求;(2)如图所示,△A2B2C6即为所求;(3)由图可得,△A1B1C2与△A2B2C8关于点(﹣2,0)中心对称.故答案为:﹣6,0.20.【解答】解:∵抛物线顶点为(2,4),∴设y=a(x﹣8)2+4,将(8,3)代入y=a(x﹣2)5+4得3=a+5,解得a=﹣1,∴y=﹣(x﹣2)8+4.(2)不能,理由如下:∵y=﹣(x﹣2)2+4≤4,∴点P(x,3)不能在抛物线上.(3)∵抛物线开口向下,对称轴为直线x=2,∴x<0时,y随x增大而增大,∵a<b<6,∴y1<y2.六、(本题满分12分)21.【解答】解:(1)该校九年级共有学生:150×30%=500(名),则“D”等级所占圆心角的度数为360°×=36°,故答案为:500,36°;(2)B等级的人数为:500﹣150﹣100﹣50=200(名),将条形统计图补充完整如下:(3)选取规则不合理,理由如下:画树状图如下:共有12种等可能的结果,两个数字之和为奇数的结果有8种,∴选甲乙的概率为=,选丙丁的概率为=,∵>,∴此规则不合理.七、(本题满分12分)22.【解答】(1)证明:连接OD,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∴∠COD=2∠ABC=90°,∵四边形GDEC是平行四边形,∴DE∥CG,∴∠ODE+∠COD=180°,∴∠ODE=90°,即OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线;(2)解:设⊙O的半径为r,∵四边形GDEC是平行四边形,∴CG=DE=7,DG=CE=5,∵∠GOD=90°,∴OD2+OG2=DG8,即r2+(7﹣r)5=52,解得:r4=2,r2=8,当r=2时,OG=5>2,不合题意,∴r=5,即⊙O的半径为5.八、(本题满分14分)23.【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(30、(40 ,解得:,∴y与x之间的函数表达式为y=﹣7x+100;(2)由y≤60,得x≥20,由y≥0,得x≤50,∴20≤x≤50.w=(x﹣20)(﹣2x+100)﹣7×(﹣2x+100)+(10﹣6)[60﹣(﹣3x+100)]=﹣2x2+160x﹣2760(20≤x≤50);(3)20×180%=36,由题意知20≤x≤36,w=﹣7x2+160x﹣2760=﹣2(x﹣40)8+440,∵﹣2<0,∴x<40时,w随x的增大而增大,∴x=36时,w的最大值=﹣2×(36﹣40)2+440=408,答:当销售单价定为36元时,才能使当天的销售总利润最大.。
2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)
2020-2021学年安徽省九年级(上)月考数学试卷(二)一、选择题(本大题共10小题,共40.0分)1.已知2a=3b,则a−bb的值为()A. 12B. −12C. 13D. −132.若反比例函数y=2−kx的图象分布在第二、四象限,则k的取值范围是()A. k<−2B. k<2C. k>−2D. k>23.如图,点D在△ABC的边AB上,DE//BC,DE交AC于点E,EF//AB交BC于点F,下列比例式不成立的是()A. ADDB =BFFCB. ADAB =BFBCC. DEBC =EFABD. DBAB =CFBC4.把二次函数y=−2x2+4x−1配方成顶点形式y=−2(x+ℎ)2+k,则h,k的值分别为()A. ℎ=−1,k=1B. ℎ=−1,k=−2C. ℎ=1,k=1D. ℎ=1,k=−35.如图,CD是Rt△ABC斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E,添加下列条件仍不能判断△CEB与△CAD相似的是()A. ∠CBA=2∠AB. 点B是DE的中点C. CE⋅CD=CA⋅CBD. CECA =BEAD6.肚脐眼是人上下身的分界点,已知某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,若该人的身高约为1.8米,则他的上身长度约为()(精确到0.1米)A. 0.9米B. 1.0米C. 1.1米D. 1.2米7.如图,在矩形ABCD中,AB=24,AD=10,将矩形ABCD沿某直线折叠,使点A与点C重合,折痕与AB交于点M,与CD交于点N,则线段MN的长是()A. 5B. 12C. 6512D. 6568.已知抛物线y=−x2−4x+5,下列说法正确的是()A. 抛物线与y轴的交点位于y轴的负半轴上B. 当x>−2时,函数值y随x的增大而减小C. 若2≤x≤5,则函数一定有最大值是9D. 抛物线与x轴的交点坐标是(−1,0)和(5,0)9.如图,△ABC中,CA=CB=5cm,AB=8cm,直线l经过点A且垂直于AB,现将直线l以1cm/s的速度向右匀速移动,直至经过点B时停止移动,直线l与边AB交于点M,与边AC(或CB)交于点N.若直线l移动的时间是x(s)、△AMN的面积为y(cm2),则y与x之间函数关系的图象是()A. B.C. D.10.如图,△ABC中,∠ACB=90°,CA=CB=3√2,点D、E分别在边AB,BC上,且∠CDE=45°,下列结论中:①△CAD∽△DBE;②若点D是AB的中点,则点E也是BC的中点;③若点D是AB的三等分点,则BE的长是4√2,其中正确的结3论有()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共4小题,共20.0分)11.已知a=3,b=6,则a,b的比例中项是______.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则a+b+c______0(填“>”或“=”或“<”).13.如图,点A(2,4)在第一象限,点B(b,3)在第二象限,且OA⊥OB,反比例函数y=(k≠0)的图象经过点B,则k的值为______.−kx14.如图,在矩形ABCD中,点E是边CD上一点,连接BE,过点C作CG⊥BE于G,CG的延长线交AD于F,连接DG并延长交BC于H,且点H恰好是BC的中点.(1)若∠CBE=35°,则∠CDH=______°.(2)若CE=6,DE=2,则DF的长是______.三、解答题(本大题共9小题,共90.0分)15.已知a:b:c=2:3:4,求a−3b−c的值.b16.如图,抛物线y=2x2+bx−2过点A(−1,m)和B(5,m).(1)求b和m的值;(2)若抛物线与y轴交于点C,求△ABC的面积.17.如图,小明为了测量大树AB的高度,在离B点21米的N处放了一个平面镜,小明沿BN方向后退1.4米到D点,此时从镜子中恰好看到树顶的A点,已知小明的眼睛(点C)到地面的高度CD是1.6米,求大树AB的高度.18.如图,在10×10网格中,点O是格点,△ABC是格点三角形(顶点在网格线交点上),且点A1是点A以点O为位似中心的对应点.(1)画出△ABC以点O为位似中心的位似图形△A1B1C1;(2)△A1B1C1与△ABC的位似比是______.19.已知△ABC的面积为S,点D,E分别在边AB,AC上,且DE//BC.【填空】(1)如图1,若AD:DB=1:1,则四边形DECB的面积a1=______(用含S的式子表示,下同);(2)如图2,若AD:DB=1:2,则四边形DECB的面积a2=______;(3)如图3,若AD:DB=1:3,则四边形DECB的面积a3=______;以此类推,…【猜想】根据上述规律猜想,若AD :DB =1:n ,则四边形DECB 的面积a n =______;【应用】计算a 1⋅a 2⋅a 3…a 10.20. 喷洒酒精能有效杀灭“新型冠状肺炎”病毒.根据实验知道喷洒酒精在教室内空气中的浓度y(单位:mg/m 3)与时间x(单位:ℎ)的函数表达式为y ={2x(0<x <m)−x 2+6x −4(x ≥m).其大致图象如图所示.请根据以上信息解答下列问题: (1)试确定点A 的坐标;(2)根据经验,当教室空气中的药物浓度不低于1mg/m 3时,杀灭“新型冠状肺炎”病毒的效果最佳,请通过计算说明单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为多少小时?(mk≠0)的图象相交于点A(1,6)和点21.已知一次函数y=kx+b与反比例函数y=mxB(n,−2).(1)试确定一次函数与反比例函数的表达式;(2)若点P在x轴上,且△PAB的面积为12,求点P的坐标;(3)结合图象直接写出不等式kx+b>m的解集.x22.如图,在平面直角坐标系xOy中,直线l:y=x−2与x轴、y轴分别交于点A和点B,抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(6,n)(1)求n的值和抛物线的解析式;(2)已知点P是抛物线上位于点B、C之间的一动点(不与点B,C重合),设点P的横坐标为a.当a为何值时,△APC的面积最大,并求出其最大值;(3)在y轴上是否存在点M,使△BMC与△BAO相似?若存在,直接写出点M的坐标(不用说理);若不存在,请说明理由.23.如图,四边形ABCD和四边形AEFG都是正方形,C,E,F三点在一条直线上,连接FA并延长交边CB的延长线于点H.(1)求证:△HCA∽△HFC;(2)求CF的值;BE(3)若HC=6,HB=2,求正方形AEFG的边长.答案和解析1.【答案】A【解析】解:∵2a=3b,∴ab =32,∴a−bb =ab−1=32−1=12;故选:A.根据已知条件得出ab =32,再把要求的式子化成ab−1,再代值计算即可得出答案.此题考查了比例的性质,熟练掌握比例的性质是解题的关键.2.【答案】D【解析】解:∵反比例函数y=2−kx的图象分布在第二、四象限,∴2−k<0,解得k>2,故选:D.根据反比例函数的图象和性质,由2−k<0即可解得答案.本题考查了反比例函数的图象和性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.3.【答案】C【解析】解:∵DE//BC,∴ADBD =AECE,∵EF//AB,∴AECE =BFCF,∴ADBD =BFCF,故A正确,不符合题意;∵DE//BC,∴ADAB =AEAC,∵EF//AB,∴AEAC =BFBC,∴ADAB =BFBC,故B正确,不符合题意;∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,∵EF//AB,∴△CEF∽△CAB,∴EFAB =CEAC,∴C错误,符合题意;∵DE//BC,∴DBAB =CEAC,∵EF//AB,∴CEAC =CFBC,∴DBAB =CFBC,故D正确,不符合题意;故选:C.利用平行线分线段成比例和相似三角形的判定与性质,逐一进行判断即可.本题主要考查了平行线分线段成比例,以及相似三角形的判定与性质,熟记平行线分线段成比例是解题的关键.4.【答案】A【解析】解:∵二次函数y=−2x2+4x−1=−2(x−1)2+1,∴ℎ=−1,k=1,故选:A.将题目中的函数解析式化为顶点式,即可得到h、k的值,本题得以解决.本题考查二次函数的性质、二次函数的三种形式,解答本题的关键是明确题意,利用二次函数的性质解答.5.【答案】D【解析】解:∵CE⊥CD,∴∠EDC=90°,∵∠BCA=90°,∴∠BCE=∠DCA=90°−∠BCD,∵CD是Rt△ABC斜边AB上的中线,∴DC=DB=DA,∴∠DAC=∠A,∴∠BCE=∠DCA=∠A,∵∠CBA=2∠A,∠CBA+∠A=90°,∴∠A=∠BCE=∠DCA=30°,∠CBA=60°,∴∠E=∠CBA−∠BCE=30°,∴∠BCE=∠DCA=∠E=∠A,∴△CEB∽△CAD,∴A不符合题意,∵点B是DE的中点,∴BE=BC,∴∠BCE=∠E,∴∠BCE=∠E=∠DCA=∠A,∴△CEB∽△CAD,∴B不符合题意,∵CE⋅CD=CA⋅CB,∴CECA =CBCD,∵∠BCE=∠DCA,∴△CEB∽△CAD,∴C不符合题意.由CECA =BEAD,由于∠E和∠A不能判断相等,故不能判断△CEB与△CAD相似,∴D符合题意,故选:D.根据相似三角形的判定方法一一判断即可.本题考查相似三角形的判定,直角三角形斜边中线的性质,直角三角形30度角的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.6.【答案】C【解析】解:∵某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,该人的身高约为1.8米,∴他的上身长度约为√5−12×1.8≈0.618×1.8≈1.1(米),故选:C.直接根据黄金分割的定义求解即可.本题主要考查了黄金分割以及近似数.关键是明确黄金分割所涉及的线段的比值.7.【答案】D【解析】解:∵矩形ABCD中,AB=24,AD=BC=10,∠B=90°,∴AC=√AB2+BC2=√242+102=26,由折叠可得,MN垂直平分AC,∴AO=CO=13,又∵CD//AB,∴∠NCO=∠MAO,∠CNO=∠AMO,∴△CON≌△AOM(AAS),∴MO=NO,∵∠AOM=∠B=90°,∠MAO=∠BAC,∴△ABC∽△AOM,∴OMBC =AOAB,即OM10=1324,解得OM=6512,∴MN=2OM=656.故选:D.先判定△CON≌△AOM,即可得到MO=NO,再根据△ABC∽△AOM,即可得到OM=6512,进而得出MN=2OM=656.本题主要考查了折叠问题、相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.8.【答案】B【解析】解:A、由于c=5>0,所以抛物线与y轴的交点位于y轴的正半轴上,故本选项不符合题意.B、由于y=−x2−4x+5=−(x+2)2+9的开口方向向下,对称轴是直线x=−2,所以当x>−2时,函数值y随x的增大而减小,故本选项符合题意.C、由于y=−x2−4x+5=−(x+2)2+9的顶点坐标是(−2,9),且开口方向向下,所以当x=−2时,函数一定有最大值是9,故本选项不符合题意.D、由于y=−x2−4x+5=−(x+5)(x−1),所以抛物线与x轴的交点坐标是(1,0)和(−5,0),故本选项不符合题意.故选:B.根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.此题考查二次函数的性质,抛物线与x轴的交点,正确判定开口方向,求得对称轴与顶点坐标是解决问题的关键.9.【答案】C【解析】解:过点C作CD⊥AB于D,在等腰△ABC中,AC=5,AD=12AB=4,则CD=3,在Rt△ACD中,tanA=CDAD =34=tanB,(1)当0≤x≤4,如图1,∵tan∠A=MNAM =34=MNx,即MN=34x,y=12×AM⋅MN=12x×34x=38x2,该函数为开口向上的抛物线,且对称轴为y轴,位于y轴的右侧抛物线的一部分;(2)当4<x≤8时,同理:y=12x×34(8−x)=−38x2+3x,该函数为开口向下的抛物线的一部分,对称轴为x=4,故选:C.用面积公式,分段求出△AMN的面积即可求解.本题考查的是动点图象问题,涉及到解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.【答案】D【解析】解:∵∠ACB=90°,CA=CB=3√2,∴∠A=∠B=45°.∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=45°,∴∠ACD=∠BDE,∴△CAD∽△DBE,故①正确;∵CA=CB=3√2,∴AB=√CA2+CB2=6,当点D是AB的中点时,BD=AD=12AB=3,由①结论可得:CADB =ADBE,即3√23=3BE,解得:BE=3√22=12BC,故点E为BC的中点,故②正确;若点D是AB的三等分点,则AD=2或4,由①中结论可得:CADB =ADBE,∴3√24=2BE或3√22=4BE,解得:BE=4√23.故③正确.综上,正确的共有3个.故选:D.根据外角定理结合已知条件可得∠CDB=∠A+∠ACD=∠CDE+∠BDE,从而可得∠ACD=∠BDE,又∠A=∠B=45°,故可判定△CAD∽△DBE,则①正确;根据勾股定理可得AB=6,当D为AB中点时,由由①结论可得:CADB =ADBE,可得BE=3√22=12BC,则可判断②正确;若点D是AB的三等分点,则AD=2或4,由①结论可得:CADB =ADBE,进而可得到BE=4√23.故③正确.本题考查了相似三角形的判定与性质、等腰三角形的性质,推出△CAD∽△DBE是解本题的关键.11.【答案】±3√2【解析】解:设c是a,b的比例中项,则c2=ab,∵a=3,b=6,∴c2=18,解得c=±3√2.故答案为:±3√2.首先设c是a,b的比例中项,根据比例中项的定义,即可得c2=ab,又由a=3,b=6,即可求得a,b的比例中项的值.此题考查了比例中项的定义.此题比较简单,解题的关键是熟记比例中项的定义.12.【答案】<【解析】解:∵抛物线对称轴为直线x=−1,抛物线与x轴的一个交点在−2、−3之间,∴另一个交点在0、1之间,∴当x=1时,y<0,则a+b+c<0,故答案为<.根据二次函数的对称性求得抛物线与x轴的另一个交点在0、1之间,即可判断当x=1时,y<0,即a+b+c<0.本题主要考查二次函数图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键.13.【答案】18【解析】解:如图,作BD⊥x轴,AC⊥x轴.∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴ODAC =BDOC,∵A(2,4),B(b,3),∴OC=2,AC=4,OD=−b,BD=3,∴−b4=32,∴b=−6,∴B(−6,3),∵设反比例函数y=−kx(k≠0)的图象经过点B,∴−k=−6×3=−18,∴k=18,故答案为18.作AC⊥x轴,BD⊥x轴.易得△ACO∽△ODB,根据比例式求出OD,可得出点B的坐标,代入y=−kx(k≠0)即可求出k的值.本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.14.【答案】20 4【解析】解:(1)∵CG⊥BE,H是BC的中点,∴HB=HC=HG=12BC,∴∠CBE=∠HGB,∵∠CBE=35°,∴∠HGB=35°,∴∠CHD=∠CBE+∠HGB=70°,在矩形ABCD中,∠BCD=90°,∴∠CDH=90°−∠CHD=20°,故答案为:20;(2)由(1)得∠HBG=∠HGB,∵∠HGB=∠DGE,∴∠HBG=∠DGE,∵∠BCE=90°,∴∠DCG+∠BCG=90°,∵CG⊥BE于G,∴∠HBG+∠BCG=90°,∴∠DCG=∠HBG,∴∠DGE=∠DCG,∵∠D=∠D,∴△DGE∽△DCG,∴DGDC =DEDG,∴DG2=DE⋅DC,∵HC=HG,∴∠HCG=∠HGC,∵AD//BC,∴∠HCG=∠GFD,∵∠HGC=∠DGF,∴∠GFD=∠DGF,∴DG=DF,∴DF2=DE⋅DC=2×(2+6)=2×8=16,∴DF=4,故答案为:4.(1)根据直角三角形斜边上的中线性质得出∠CBE=∠HGB=35°,再根据三角形外角性质得出∠CHD=70°,最后根据直角三角形两锐角互余即可得解;(2)由(1)得∠HBG=∠HGB,再根据直角三角形的两锐角互余可求得∠DGE=∠DCG,即可判定△DGE∽△DCG,可得出DG2=DE⋅DC,再根据矩形的性质及对顶角相等可求得DG=DF,即可得解.此题考查了矩形的性质,根据矩形的性质得出∠CBE=∠HGB及DG=DF是解题的关键.15.【答案】解:由a:b:c=2:3:4可设a=2k,b=3k,c=4k,则原式=2k−9k−4k3k =−113.【解析】根据比例设a=2k,b=3k,c=4k,然后代入比例式进行计算即可得解.本题考查了比例的性质,利用“设k法”表示出a、b、c求解更简便.16.【答案】解:(1)∵点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,∴−b2×2=−1+52,解得,b=−8,∴抛物线解析式为y=2x2−8x−2,把A(−1,m)代入得,m=2+8−2=8;(2)由y=2x2−8x−2可知,抛物线与y轴交点C的坐标为(0,−2),∴OC=2,∵A(−1,8)和B(5,8),∴AB=6,∴S△ABC=12×6×(2+8)=30.【解析】(1)根据点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,可以得到b 的值,即可得到函数解析式,把A(−1,m)代入解析式即可求得m的值;(2)求得C的坐标,然后根据三角形面积公式即可求得.本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】解:∵AB⊥DB,DC⊥DB,∴∠CDN=∠ABN=90°,∵∠CND=∠ANB,∴△CDN∽△ABN.∴CDDN =ABBN,即1.61.4=AB21,∴AB=1.6×21÷1.4=24(m),答:大树AB的高度为24m.【解析】由图不难得出,△CDN∽△ABN,再利用相似三角形对应边成比例,进而可求解线段的长.此题主要考查了相似三角形的应用,根据已知得出△CDN∽△ABN是解题关键.18.【答案】3【解析】解:(1)如图所示,△A1B1C1即为所求.(2)△A1B1C1与△ABC的位似比=OA1OA=3,故答案为:3.(1)连接OB、OC,分别延长OB、OC到点B1、C1,使OB1OB =OC1OC=OA1OA,再首尾连接即可;(2)由位似比=OA1OA可得答案.本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.19.【答案】34S89S1516S n(n+2)(n+1)2【解析】解:(1)∵AD:DB=1:1,∴ADAB =12,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =14,∴S△ADES =14,∴S△ADE=14S,∴a1=S−S△ADE=34S,故答案为:34S;(2)∵AD:DB=1:2,∴ADAB =13,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =19,∴S△ADES =19,∴S△ADE=19S,∴a2=S−S△ADE=89S,故答案为:89S;(3)∵AD:DB=1:3,∴ADAB =14,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =116,∴S△ADES =116,∴S△ADE=116S,∴a3=S−S△ADE=1516S,故答案为:1516S;【猜想】∵AD:DB=1:n,∴ADAB =1n+1,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =1(n+1)2,∴S△ADES =1(n+1)2,∴S△ADE=1(n+1)2S,∴a n=S−S△ADE=[1−1(n+1)2]S=(n+1)2−1(n+1)2S=n(n+2)(n+1)2S,故答案为:n(n+2)(n+1)2S;【应用】由【猜想】知,a n=n(n+2)(n+1)2S,∴a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112=12×12112=6121.(1)先算出ADAB =12,再判断出△ADE∽△ABC,得出S△ADES△ABC=14,进而得出S△ADE=14S,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论;【猜想】同(1)的方法,即可得出结论;【应用】先得出a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112,即可得出结论.此题是四边形综合题,主要考查了相似三角形的判定和性质,得出a n=n(n+2)(n+1)2S是解本题的关键.20.【答案】解:(1)由题意可得A为函数y=2x与y=−x2+6x−4的交点,所以2x=−x2+6x−4,解得x1=x2=2,代入y=2x得y=4,可得A(2,4).(2)当教室空气中的药物浓度不低于1mg/m3时,杀灭“新型冠状肺炎”病毒的效果最佳,由(1)得m=2,当0<x<2时,令y=1,2x=1,x=12;当x≥2时,令y=1,−x2+6x−4=1整理得x2−6x+5=0解得x1=1(不合题意,舍去),x2=5,所以x=5,所以单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为(5−12)= 4.5小时.【解析】(1)点A是一次函数与二次函数的交点,令函数值相等即可求解;(2)教室空气中的药物浓度不低于1mg/m3,分别令一次函数与二次函数等于1,求得相应的X值,再根据取值范围确定解,进而算出处于最佳状态的时间.本题考查了二次函数的应用:能把实际的问题转化为数学问题,建立函数模型.注意在自变量和函数值的取值上的实际意义.也考查了一次函数.21.【答案】解:(1)把A(1,6)代入y =mx 得m =1×6=6;∴反比例函数解析式为y =6x ,把B(n,−2)代入y =6x 得−2=6n ,解得n =−3, ∴B(−3,−2),把A(1,6),B(−3,−2)分别代入y =kx +b 得{k +b =6−3k +b =−2, 解得{k =2b =4,∴一次函数解析式为y =2x +4;(2)y =2x +4中,令y =0,则2x +4=0, 解得x =−2,∴一次函数y =2x +4的图象与x 轴的交点C 的坐标为(−2,0). ∵S △PAB =12,∴12PC ×6+12PC ×2=12. ∴PC =3,∴点P 的坐标为(−5,0)、(1,0).(3)由图象可知不等式kx +b >mx 的解集为:−3<x <0或x >1.【解析】(1)把A 点坐标代入y =mx 得m =6,则反比例函数解析式为y =6x ,再利用反比例函数解析式确定B 点坐标;进而利用待定系数法求出一次函数解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的坐标;(3)结合函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.【答案】解:(1)对于y =x −2,令x =0,则y =−2,令y =x −2=0,解得x =2,当x =6时,y =x −2=4=n ,故点A 、B 、C 的坐标分别为(2,0)、(0,−2)、(6,4);将点B 、C 的坐标代入抛物线的表达式得{c =−24=36+6b +c ,解得{b =−5c =−2,故抛物线的表达式为y =x 2−5x −2;(2)如图,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(a,a 2−5a −2),则点H(a,a −2),则△APC 的面积=S △PHA +S △PHC =12×PH ×(x C −x A )=12×(a −2−a 2+5a +2)×(6−2)=−2a 2+12a ,∵−2<0,故△APC 的面积存在最大值,当a =3时,△APC 的面积的最大值为18;(3)存在,理由:由点A 、B 的坐标知,△ABO 为等腰直角三角形,当△BMC 与△BAO 相似时,则△BMC 为等腰直角三角形, ①当∠BM′C 为直角时,则点M′的纵坐标与点C 的纵坐标相同,故点M′(0,4);②当∠BCM为直角时,则点M′是BM的中点,故点M(0,10);故点M的坐标为(0,4)或(0,10).【解析】(1)用待定系数法即可求解;(2)由△APC的面积=S△PHA+S△PHC,即可求解;(3)分∠BM′C为直角、∠BCM为直角两种情况,利用数形几何即可求解.本题是二次函数综合题,主要考查了一次函数的性质、等腰直角三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.23.【答案】(1)证明:∵四边形ABCD和四边形AEFG都是正方形,∴∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,∴△HCA∽△HFC;(2)解:∵四边形ABCD和四边形AEFG都是正方形,∴∠ABC=90°,由勾股定理可得AC=√2AB,同理可得:AF=√2AE,又∠FAE=∠BAC,∴∠FAE+∠EAC=∠BAC+∠EAC,即∠FAC=∠BAE,∴AFAE =ACAB=√2,∴△FAC∽△EAB,∴CFBE =ACAB=√2.(3)解:∵HC=6,HB=2,∴BC=6−2=4.由勾股定理得:AH=√AB2+HB2=2√5,由(1)得△HCA∽△HFC,∴HCHF =HAHC,即6HF =2√56,解得:HF=18√55,∴AF=HF−AH=18√55−2√5=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理有:2x2=(8√55)2,解得:x=4√105.即正方形AEFG的边长为4√105.【解析】(1)由四边形ABCD和四边形AEFG都是正方形,所以∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,所以△HCA∽△HFC;(2)由四边形ABCD和四边形AEFG都是正方形,所以AC=√2AB,AF=√2AE,可证明∠FAC=∠BAE,结合AFAE =ACAB=√2,可判定△FAC∽△EAB,所以CFBE=ACAB=√2;(3)因为BC=6−2=4,由勾股定理可得AH=2√5,由(1)得△HCA∽△HFC,所以HCHF=HA HC ,可得HF=18√55,所以AF=HF−AH=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理得方程2x2=(8√55)2,解出x即可得答案.本题考查了正方形的性质,相似三角形的判定与性质,勾股定理,关键是要学会综合运用这些知识.。
2020-2021学 年上 学期人教版九年级数学试题
2020-2021上学期人教版九年级数学期末试卷一.选择题(共12小题)1.如果一个数的绝对值小于另一个数,则这两个数的和是()A.正数B.正数或零C.负数D.负数或零2.下列各数:1,,4.112134,0,,3.14,其中分数有()A.6个B.3个C.4个D.5个3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.等式就像平衡的天平,能与如图的事实具有相同性质的是()A.如果a=b,那么ac=bc B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+c D.如果a=b,那么a2=b25.若M在第三象限,则M点的坐标可能是()A.(1,2)B.(2,﹣3)C.(﹣5,﹣6)D.(﹣3,5)6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(,0),顶点D的坐标为(0,),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A₂,作正方形A2B2C2C1,…,按这样的规律进行下去,第2021个正方形的周长为()A.()2020B.()2021C.4×()2020D.4×()2021 7.下列几何体,用一个平面去截,不能截得三角形截面的是()A.圆柱B.圆锥C.三棱柱D.正方体8.已知正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积是()A.27cm3B.27πcm3C.18cm3D.18πcm39.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.如图,在等边△ABC中,点D和点B关于直线AC对称,过点D做DE⊥BC,交BC 的延长线于点E,若CE=5,则BE的长为()A.5B.10C.5D.1511.某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是()A.测试该市某一所中学初中生的体重B.测试该市某个区所有初中生的体重C.测试全市所有初中生的体重D.每区随机抽取5所初中,测试所抽学校初中生的体重12.﹣2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之一段,那么n的最小值是()A.5B.6C.7D.8二.填空题(共6小题)13.若向前进10米记为+10,那么向后退10米记为.14.方程(b﹣3)b+2015=1的解是b=.15.点P到x轴和y轴的距离分别为2和3,且点P在第四象限,则P点的坐标为.16.一个直棱柱一共有21条棱,那么这个棱柱的底面的形状是.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序.(只填序号)三.解答题(共9小题)19.为全力迎接全国第十四届运动会,西安市将继续加快交通高质量发展,不断增强市民获得感和幸福感.某检修小组从O地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下,(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣1(1)求收工时距O地多远?(2)在第几次记录时距O地最远?(3)若每千米耗油0.2升,问共耗油多少升?20.把下列各数填在相应的集合中:22,,0.81,﹣3,,﹣3.1,0,3.14,π,1.6整数集合{…};负分数集合{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.已知方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,求a的值.23.已知点P(2x﹣6,3x+1)在y轴上,求P的坐标.24.计算下面圆锥的体积.25.国庆期间,广场上对一片花圃做了美化造型(如图所示),整个造型构成花的形状.造型平面呈轴对称,其正中间“花蕊”部分(区域①)摆放红花,两边“花瓣”部分(区域②)摆放黄花.(1)两边“花瓣”部分(区域②)的面积是.(用含a的代数式表示)(2)已知a=2米,红花价格为220元/平方米,黄花价格为180元/平方米,求整个造型的造价(π取3).26.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.27.若干个人相聚,其中有些人彼此认识,已知:(1)如果某两个人有相等数目的熟人,则他两没有公共的熟人;(2)有一个人至少有56个熟人.证明:可找出一个聚会者,他恰好有56个熟人.2020-2021上学期人教版九年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据一个数的绝对值小于另一个数,可知另一个数是正数,并且另一个数的绝对值较大,根据有理数的加法法则即可确定答案.【解答】解:∵一个数的绝对值小于另一个数,∴另一个数是正数,并且另一个数的绝对值较大,∴这两个数的和一定是正数.故选:A.2.【分析】根据有理数的分类判断即可.【解答】解:在1,,4.112134,0,,3.14中,分数有4.112134,,3.14,共3个.故选:B.3.【分析】分别求出四个方程的解各是多少,判断出x=3是所给方程的解的有多少个即可.【解答】解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.5.【分析】根据在第三象限的点的横坐标和纵坐标均为负数判断即可.【解答】解:A.点(1,2)在第一象限;B.(2,﹣3)在第四象限;C.(﹣5,﹣6)在第三象限,D.(﹣3,5)在第二象限,故选:C.6.【分析】根据相似三角形的判定定理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的周长公式计算三个正方形的周长,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的周长分别为C1,C2 (2021)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(两直线平行,同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,∵顶点A的坐标为(,0),顶点D的坐标为(0,),∴OA=,OD=,在直角△ADO中,根据勾股定理,得:AD==1,∴AD=AB=1,∵cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=1+=,同理,得:C1A2=+==()2,由正方形的周长公式,得:C1=4×()0C2=4×()1,C3=4×()2,…由此,可得∁n=4×()n﹣1,∴C2021=4×()2020.故选:C.7.【分析】当截面的角度和方向不同时,圆柱,球的截面不相同,无论什么方向截取圆柱都不会截得三角形.【解答】解:用一个平面截一个几何体,不能截得三角形的截面的几何体有圆柱.故选:A.8.【分析】首先根据题意可得将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,再计算体积即可.【解答】解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,∴所得几何体的体积=32•π•3=27π(cm3),故选:B.9.【分析】利用轴对称画图可得答案.【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.10.【分析】连接CD,构造含30°角的直角三角形DCE,根据BC=DC进行计算即可.【解答】解:如图,连接CD,∵△ABC是等边三角形,点D和点B关于直线AC轴对称,∴BC=DC,∠ACB=∠ACD=60°,∴∠DCE=60°,∵DE⊥CE,CE=5,∴∠CDE=30°,∴CD=2CE=10,∴BC=10.∴BE=BC+CE=10+5=15.故选:D.11.【分析】利用抽样调查的中样本的代表性即可作出判断.【解答】解:某市有9个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取5所初中,测试所抽学校初中生的体重,故选:D.12.【分析】将数轴上的3段看成3个抽屉,先考虑相反的情况,得到的结果再取反即为答案.令每个抽屉最多有2个点,则最多有6个点,由此可得出结论.【解答】解:∵令每个抽屉最多有2个点,则最多有6个点,∴n≥7.故选:C.二.填空题(共6小题)13.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若向前进10米记为+10,那么向后退10米记为﹣10.故答案为:﹣10.14.【分析】根据零指数幂的性质得到b+2015=0,右侧求得b的值.【解答】解:根据题意,得b+2015=0,或b﹣3=1.解得b=﹣2015或b=4故答案是:﹣2015或4.15.【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【解答】解:∵点P(x,y)在第四象限,P到x轴,y轴的距离分别等于2和3,∴点P的横坐标是3,纵坐标是﹣2,∴点P的坐标为(3,﹣2).故答案为:(3,﹣2).16.【分析】根据n棱柱有3n条棱可得答案.【解答】解:∵一个直n棱柱有3n条棱,∴21÷3=7,故答案为:7.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据调查的一般步骤,得出结论.【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.三.解答题(共9小题)19.【分析】(1)首先把题目的已知数据相加,然后根据结果的正负即可确定相距O多少千米;(2)分别写出各次记录时距离O地的距离,然后判断即可;(3)首先把所给的数据的绝对值相加,然后乘以0.2升,即可求解.【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣5)+(﹣1)=2(千米).答:收工时检修小组在O地东面2千米处;(2)第一次距O地|﹣4|=4千米;第二次:|﹣4+7|=3(千米);第三次:|3﹣9|=|﹣6|=6(千米);第四次:|﹣6+8|=2(千米);第五次:|2+6|=8(千米);第六次:|8﹣5|=3(千米);第七次:|3﹣1|=2(千米).所以距O地最远的是第5次;(3)从出发到收工汽车行驶的总路程:|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣5|+|﹣1|=40;从出发到收工共耗油:40×0.2=8(升).答:从出发到收工共耗油8升.20.【分析】根据整数包括正整数、0和负整数,可得整数集合;根据小于0的分数为负分数,可得负分数集合.【解答】解:整数集合{22,﹣3,0…};负分数集合{,﹣3.1…}.故答案为:22,﹣3,0;,﹣3.1.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】先求出每个方程的解,根据相反数得出关于a的方程,求出方程的解即可.【解答】解:解方程3x+2a﹣1=0得:x=,解方程x﹣2a=0得:x=2a,∵方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,∴2a+(﹣)=0,解得:a=﹣.23.【分析】根据y轴上点的横坐标为0列方程求出x的值,再求解即可.【解答】解:∵点P(2x﹣6,3x+1)在y轴上,∴2x﹣6=0,解得x=3,所以,3x+1=9+1=10,故P(0,10).24.【分析】根据圆锥的体积解答即可.【解答】解:圆锥的体积:=(cm3).25.【分析】(1)区域②的面积=2个正方形的面积.(2)分别求出区域①,②的面积,再乘以单价即可.【解答】解:(1)区域②的面积=2a2.故答案为:2a2.(2)整个造型的造价:220(2×22﹣×22)+180(2×22+•π•22)=2960(元).26.【分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.27.【分析】考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,从而求解.【解答】解:考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由于任意两人B i,B j都以A为共同熟人,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,因此1,2,…,n中包含着56,即B1,B2,…,B n中必有人恰好认识56人.。
安徽省合肥市庐江县安徽省庐江第四中学等4校2022-2023学年九年级上学期月考数学试题
安徽省合肥市庐江县安徽省庐江第四中学等4校2022-2023学年九年级上学期月考数学试题
学校:___________姓名:___________班级:___________考号:___________
1
24416
11
三、解答题
16.图为抛物线的一部分,它经过A (1,0)-,B (0,3)两点.
四、填空题
18.对于抛物线243y x x =-+.
(1)它与x 轴交点的坐标为,与y 轴交点的坐标为,顶点坐标为;
五、解答题
19.已知:如图,在△ABC 中,AB=AC=5,BC=8,D ,E 分别为BC ,AB 边上一点,∠ADE=∠C .
(1)求证:△BDE∽△CAD ; (2)若CD =2,求BE 的长.
20.两个长为2,宽为1的矩形ABCD 和矩形EFGH 如图1所示摆放在直线l 上,DE=2,将矩形ABCD 绕点D 顺时针旋转α角(090α︒<<︒) ,将矩形EFGH 绕点E 逆时针旋转相同的角度.
(1)当两个矩形旋转到顶点C ,F 重合时(如图2),∠DCE= °,点C 到直线l 的距离等于 ,α= °;(2)利用图3思考:在旋转的过程中,矩形ABCD 和矩形EFGH 重合部。
安徽省合肥市庐江县2023-2024学年九年级上学期期中数学试题
安徽省合肥市庐江县2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....已知x =1是一元二次方程的一个解,则m 的值是(.﹣3B 0.用配方法解方程,下列变形结果正确的是(()2712x -=()223x -=.若点()10y ,,(1,22x x c ++上,则)213y y y <<321y y y >>的对应点为点E ,点30=︒,则DAC ∠7.如图,正五边形ABCDE 内接于O ,点F 是 DE上的动点,则AFC ∠的度数为()A .60°B .72°C .144°D .随着点F 的变化而变化8.定义运算:21m n n mn =--☆,例如:25335317=-⨯-=-☆,则方程26x =☆的根的情况为()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根9.函数y kx k =+和函数244y kx x -+=+(k 是常数,且0k ≠)在同一平面直角坐标系中的图象可能是()A .B .C .D .10.在平面直角坐标系中,过点()0,P p 的直线AB 交抛物线2y x =于A ,B 两点,已知()(),,,A a b B c a ,且a c <,则下列说法正确的是()A .当0ac >且1a c +=时,p 有最小值B .当0ac >且1a c +=时,p 有最大值C .当0ac <且1c a -=时,p 有最小值D .当0ac <且1c a -=时,p 有最大值二、填空题13.如图,在正方形若90CC D '∠=︒,AB 14.如图1,E 是等边ABC 边向右作等边AEF △,连接系如图2所示(P 为抛物线的顶点)(1)当ECF △的面积最大时,FEC ∠的大小为(2)等边ABC 的边长为.三、解答题15.解方程:()22118x -=.16.如图,在平面直角坐标系中,每个小正方形的边长均为1个单位长度,点O 和ABC 的顶点均在小正方形的格点上,请完成下列问题:关于点O的中心对称图形(1)画出ABC绕点B逆时针旋转90︒得到的(2)画出ABC17.某公司今年销售一种产品,1月份获得利润加,3月份的利润比2月份的利润增加求3月份的利润是多少万元?18.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有__________颗棋子,第5个图中有(2)写出你猜想的第n个图中棋子的颗数(用含n(3)请求出第多少个图形中棋子的个数是274个.19.如图,AB是⊙O的直径,CD是⊙O的一条弦,且∠=∠;(1)求证:BCO D(2)若42CD=,1OE=,求⊙O的半径.20.某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度OM=米,顶点P到底部OM的距离为9米.将该抛物线放入平面直角坐标系中,12在x轴上.其内部支架有两个符合要求的设计方案:方案一:“川”字形内部支架(由线段AB PN DC ,,构成),点OB BN NC CM ===,点A D ,在抛物线上,AB PN DC ,,方案二:“H ”形内部支架(由线段A B '',D C '',EF 构成),点OB B C C M ''''==,点A ',D ¢在抛物线上,A B '',D C ''均垂直于D C ''的中点.(1)求该抛物线的函数表达式;(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.21.如图1,在ABC 中,BA BC =,D 、E 是AC 边上的两点,且满足以点B 为旋转中心,将CBE △按逆时针方向旋转得到ABF △(1)求证:DF DE =;(2)如图2,若AB BC ⊥,其他条件不变,探究AD DE EC ,,22.我们可以用一元二次方程知识研究下面关于“减半”矩形的问题,即:任意给定一个矩形ABCD ,是否存在另一个矩形A B C D ''''的周长和面积分别是矩形的一半.(1)阅读探究过程并完成填空;∴1x =______;2x =______;∴满足要求的矩形A B C D ''''存在;(2)请你继续解决下列问题:①如果已知矩形ABCD 的边长分别是2和1,请你仿照上述方法研究是否存在满足要求的矩形A B C D '''';②如果矩形ABCD 的边长为m ,n ,请你研究满足什么条件时,矩形A B C D ''''存在?23.抛物线()240y ax bx a =+-≠与x 轴交于点()2,0A -和()4,0B .(1)求该抛物线的解析式;(2)若抛物线与y 轴交于点C ,连接BC .点P 是线段BC 下方抛物线上的一个动点(不与点B ,C 重合),过点P 作y 轴的平行线交BC 于M ,交x 轴于N ,设点P 的横坐标为t .①求PM 的最大值及此时点M 的坐标;②过点C 作CH PN ⊥于点H ,若9BMN CHM S S =△△,求点P 的坐标.。
2023届安徽省合肥市庐江县汤池镇初级中学数学九上期末质量跟踪监视试题含解析
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,⊙O 的半径为2,点A 的坐标为()2,?23,直线AB 为⊙O 的切线,B 为切点,则B 点的坐标为( ) A .38,?25⎛⎫- ⎪ ⎪⎝⎭ B .()3,?1- C .49,?55⎛⎫- ⎪⎝⎭ D .()1,?3- 2.下列各式正确的是( )A .235+=B .()233-=C .114293=⨯D .4499--=-- 3.如图,点D 、E 分别在ABC 的边AB 、AC 上,且DE 与BC 不平行.下列条件中,能判定ADE 与ACB △相似的是( )A .AD AE AC AB = B .AD AB AE AC = C .DE AE BC AB =D .DE AD BC AC= 4.如图所示,矩形纸片ABCD 中,6AD cm =,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm 5.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( )A .m 1≥B .1mC .1mD .1m <6.若点(3,4)A 是反比例函数k y x=图象上一点,则下列说法正确的是( ) A .图象位于二、四象限 B .当0x <时,y 随x 的增大而减小C .点()2,6-在函数图象上D .当4y ≤时,3x ≥7.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若()()12,2,,3A x B x 是抛物线上两点,则12x x ≤,其中正确的个数是( )A .2B .3C .4D .58.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A .94m >B .94m <C .94m =D .9-4m < 9.已知圆内接四边形ABCD 中,∠A :∠B :∠C =1:2:3,则∠D 的大小是( )A .45°B .60°C .90°D .135°10.已知二次函数26y x x m =-+(m 是实数),当自变量任取1x ,2x 时,分别与之对应的函数值1y ,2y 满足12y y >,则1x ,2x 应满足的关系式是( )A .1233x x -<-B .1233x x ->-C .1233x x -<-D .1233x x ->-11.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .212cm πB .215cm πC .220cm πD .230cm π12.下列手机应用图标中,是中心对称图形的是( )A .B .C .D .二、填空题(每题4分,共24分)13.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.14.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.15.如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m .因为上游水库泄洪,水面宽度变为6m ,则水面上涨的高度为_____m .16.如图,点B 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴并交反比例函数y =﹣3x (x <0)的图象于点A ,以AB 为边作平行四边形ABCD ,其中C 、D 在x 轴上,则平行四边形ABCD 的面积为_____.17.如图,用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm .18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .三、解答题(共78分)19.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?20.(8分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.21.(8分)如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=33(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.22.(10分)解方程:(x+3)2=2x+1.23.(10分)关于x的一元二次方程2x2x m0-+=的两个实数根分别为1x,2x.(1)求m 的取值范围;(2)若()1212102x x x x ++=,求m 的值. 24.(10分)二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表:x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴 ;(2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.25.(12分)解下列方程:(1)x 2﹣2x ﹣2=0;(2)(x ﹣1)(x ﹣3)=1.26.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D 作DF ⊥AB ,垂足为F ,连接DE .(1)求证:直线DF 与⊙O 相切;(2)求证:BF =EF ;参考答案一、选择题(每题4分,共48分)1、D【解析】过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,3),即OC=2.∴AC是圆的切线.∵OA=4,OC=2,∴∠AOC=60°.又∵直线AB为⊙O的切线,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.-.故选D.又∵OB=2,∴OD=1,3B点的坐标为(3)2、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案. 【详解】解:A23A错误;B 3=,故B 正确;C =,故C 错误;D 23=,故D 错误; 故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.3、A【分析】根据两边对应成比例且夹角相等的两个三角形相似即可求解. 【详解】解:在ADE 与ACB 中,∵AD AE AC AB=,且A A ∠∠=, ∴ADE ACB ∽.故选:A .【点睛】此题考查了相似三角形的判定:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.4、B【分析】设AB=xcm ,则DE=(6-x )cm ,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】设AB x =,则DE=(6-x )cm ,由题意,得()906180x x ππ⋅=-, 解得4x =.故选B .【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.5、D【解析】由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.6、B【分析】先根据点A(3、4)是反比例函数y=kx图象上一点求出k的值,求出函数的解析式,由此函数的特点对四个选项进行逐一分析.【详解】∵点A(3,4)是反比例函数y=kx图象上一点,∴k=xy=3×4=12,∴此反比例函数的解析式为y=12x,A、因为k=12>0,所以此函数的图象位于一、三象限,故本选项错误;B、因为k=12>0,所以在每一象限内y随x的增大而减小,故本选项正确;C、因为2×(-6)=-12≠12,所以点(2、-6)不在此函数的图象上,故本选项错误;D、当y≤4时,即y=12x≤4,解得x<0或x≥3,故本选项错误.故选:B.【点睛】此题考查反比例函数图象上点的坐标特点,根据题意求出反比例函数的解析式是解答此题的关键.7、B【分析】先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(0,0),(4,0)可对③④进行判断;根据二次函数的性质求出x的值,即可对⑤进行判断.【详解】设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得:a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称轴为直线x=421--⨯=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),开口向上,∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,由x2﹣4x=2,解得:x1=2由x2﹣4x=3,解得:x2=2若取x1=2x2=2,则⑤错误.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.8、B【分析】根据方程有两个不等的实数根,故△>0,得不等式解答即可.【详解】试题分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<94.故选B.【点睛】此题考查了一元二次方程根的判别式.9、C【分析】根据圆内接四边形对角互补,结合已知条件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度数.【详解】∵四边形ABCD为圆的内接四边形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=24×180°=90°.故选C.【点睛】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.10、D【解析】先利用二次函数的性质确定抛物线的对称轴为直线x=3,然后根据离对称轴越远的点对应的函数值越大可得到|x1-3|>|x2-3|.【详解】抛物线的对称轴为直线x=-621-⨯=3,∵y 1>y 2,∴点(x 1,y 1)比点(x 2,y 2)到直线x=3的距离要大,∴|x 1-3|>|x 2-3|.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质. 11、B【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解. 【详解】圆锥的侧面积=2π×3×5÷2=15π.故选:B .【点睛】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.12、B【解析】根据中心对称图形的概念判断即可.【详解】A 、不是中心对称图形;B 、是中心对称图形;C 、不是中心对称图形;D 、不是中心对称图形故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、y =﹣(x +1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE重合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按逆时针方向旋转n°后(0<n<180),如果BA∥DE,那么n的值是( )
A.105B.95C.90D.75
10.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为( )
(1)请直接写出线段AF,AE的数量关系;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
17.如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.
(1)任意闭合其中一个开关,则小灯泡发光的概率等于多少;
(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.
18.在如图中,每个正方形有边长为1的小正方形组成:
(1)观察图形,请填写下列表格:
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
(1)求出y与x的函数关系式
(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?
(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.
23.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
A.200(1+x)2=1000
B.200+200×2x=1000
C.200+200×3x=1000
D.200[1+(1+x)+(1+x)2]=1000
7.用配方法解方程 时,方程可变形为()
A. B. C. D.
8.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值( )
14.如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为_____.
三、解答题
15.解方程:(x﹣2)(x﹣1)=3x﹣6
16.已知抛物线y=x2+mx﹣10与x轴的一个交点是(﹣ ,0),求m的值及另一个交点坐标.
A.2B.2 C.4 ﹣2D.2 ﹣2
二、填空题
11.抛物线y=﹣ x2向上平移1个单位长度得到抛物线的解析式为_____.
12.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=_____
13.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是______.
3.抛物线y=2(x+3)2+5的顶点坐标是( )
A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)
4.下列说法正确的是( ).
A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.
B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖
C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨
D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等
5.已知AB、CD是⊙O的两条弦,AB∥CD,AB=6,CD=8,⊙O的半径为5,则AB与CD的距离是( )
A.1B.7C.1或7D.无法确定
6.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )
安徽省合肥市庐江县2020-2021学年九年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.以下五个图形中,是中心对称图形的共有( )
A.2个B.3个C.4个D.5个
2.方程x=x(x-1)的根是()
A.x=0B.x=2C.x1=0,x2=1D.x1=0,x2=2
21.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.
(1)画出△A1OB1;
(2)在旋转过程中点B所经过的路径长为______;
(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.
22.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求二次函数解析式;
(2)该二次函数图象上是否存在点M,使S△MAB=S△CAB,若存在,求出点M的坐标.
20.如图在Rt△ABC中,∠C=90°,BD平分∠ABC,过D作DE⊥BD交AB于点E,经过B,D,E三点作⊙O.
(1)求证:AC与⊙O相切于D点;
(2)若AD=15,AE=9,求⊙O的半径.
参考答案
1.B
【分析】
根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.
【详解】
解:从左起第2、4、5个图形是中心对称图Βιβλιοθήκη .故选:B.【点睛】
本题考查了中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
正方形边长
1
3
5
7
…
n(奇数)
黑色小正方形个数
…
正方形边长
2
4
6
8
…
n(偶数)
黑色小正方形个数
…
(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.
19.如图,二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,顶点坐标为(1,﹣4)
2.D
【详解】
解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,