电子元器件厚膜技术介绍

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子元器件厚膜技术介绍

厚膜技术是通过丝网印刷的方法把导体浆料、电阻浆料或介质浆料等材料淀积在陶瓷基板上,经过高温烧成,在基板上形成粘附牢固的膜。经过连续多次重复,就形成了多层互连结构的电路,该电路中可包含集成的电阻、电容或电感[1]。

厚膜技术主要用于高可靠和高性能的场合,如军事、航空、航天和测试设备中。这些技术也成功地应用于大批量生产的低成本设备,这些应用领域包括汽车(发动机控制系统、安全防抱死系统等)、通信工程(程控交换机用户电路、微型功率放大器等)、医疗设备和消费电子(家用视听产品)等。

过去,由于材料和工艺技术等各方面的局限,厚膜产品一般用在中低频率。

随着电子整机小型、轻量、多功能、高可靠化的要求日趋迫切,厚膜工艺和材料等各方面也朝高密度、大功率、高频化方向发展。人们相继开发了适合于微波和RF电路应用的厚膜浆料、基板材料、介质材料和工艺。这些厚膜技术和材料日益成熟,加上厚膜工艺开发周期短,成本低,适合于大批量生产的特点,应用不断扩大。90年代迅速发展的共烧陶瓷多芯片组件(MCM-C),是厚膜混合技术的延伸与发展,是厚膜陶瓷工艺的体现。MCM-C的基板根据烧成温度的不同,分为高温共烧陶瓷(HTCC)基板和低温共烧陶瓷(LTCC)基板两种。低温共烧陶瓷技术的导体的电阻率较低,介质材料的高频性能好,工艺灵活,能满足各种芯片组装技术的要求,适合于在微波和RF电路应用。

本文从厚膜材料、厚膜细线工艺、低温共烧陶瓷(LTCC)等方面介绍了微波和RF电路中厚膜技术的研究成果及广泛应用。

2 厚膜材料

厚膜材料包括厚膜浆料和厚膜基板材料。厚膜浆料有导体浆料、电阻浆料、介质浆料和包封浆料等。通用的厚膜基板是陶瓷材料,如96%氧化铝及99%氧化铝、氧化铍和氮化铝陶瓷。最常用的是96%氧化铝陶瓷。

2.1 厚膜浆料

厚膜浆料主要由三部分组成:功能相、粘结相和载体。功能相决定了成膜后的电性能和机械性能。在导体浆料中,功能相一般为贵金属或贵金属的混合物。电阻浆料中的功能相一般为导电性金属氧化物。在介质中,功能相一般为玻璃和/或陶瓷。粘结相通常是玻璃、金属氧化物或者是两者的组合,其作用是把烧结膜粘结到基板上。载体是聚合物在有机溶剂中的溶液。载体决定了厚膜的工艺特性,是印刷膜和干燥膜的临时粘结剂。功能相和粘结相一般为粉末状,在载体中进行充分搅拌和分散后形成膏状的厚膜浆料。生带介质是在聚酯膜上流延形成柔软的带或膜。

烧结后的厚膜导体是由金属与粘结相组成的。金属与陶瓷基板的粘结机理有两种:机械键合和化学键合。机械键合是通过玻璃软化并扩散进入基板间孔隙形成的。一般认为硼-硅-铝玻璃在氧化铝基板上形成的就是这类键合。化学键合是通过金属氧化物与氧化铝或基板上的其它成分反应形成尖晶石结构。靠化学键结合附着力强,但烧成温度较玻璃粘结相高。氧化铜和氧化钙是用于厚膜导体化学键合的典型氧化物。在标准的厚膜烧结温度850℃下,形成化学键合的反应动力太慢,需要使用玻璃和氧化物的组合,玻璃把氧化物运送到基板上来帮助形成键合,有效地增加了反应动力。有些氧化物也可代替玻璃作助熔剂。

在RF和微波电路中,导体比在低频电路中多了作微带传输线的作用,应考

虑导体的射频电阻和趋肤深度的影响。工艺上要求导体膜加厚,导体膜厚度为趋肤深度的3~5倍,表面光洁度好。厚膜导体中金属的电阻率本身就比较低,如表1所示。在微波频率下选用不含玻璃的厚膜导体较好,常用的有无玻璃的金、银、铂-银和铜等浆料。例如美国杜邦(DUPONT)公司的氧化物键合导体材料和美国电子科学实验室(ESL)的MICRO-LOK系列导体材料都是这类产品。

Sadayuki Nishiki等人[2]在20MHZ到10GHz的频率范围内测量了9种

厚膜导体微带传输线的损耗。这些导体材料是金、银、铜、铂-金、铂-银、金-钯、银-钯及它们与不同键合方式的组合。键合方式包括:化学键合、机械键合、化学键合和机械键合的组合、树酯与氧化铝之间的机械键合。测试结果与相同图形的薄膜性能比较后,得出一个厚膜导体传输损耗的经验公式。在考虑了基板介质损耗和表面粗糙度后,测量值与理论值的比值对厚膜导体来说是1.4,

对薄膜来说是1.2。该差别是厚膜微带线边缘较圆滑造成的。厚膜导体的传输

损耗与薄膜接近,铜厚膜的传输损耗最低。作者认为厚膜导体完全可以用到

10GHz。

采用普通的丝网印刷工艺,厚膜导体的分辨率线条/间距为250μm/

250μm。通过对导体浆料中的各成分进行优化,制作出很低电阻率的新型细线印刷导体的浆料,以满足提高布线密度的需要。Jerry Steinberg等人[3]对在氧化铝和介质基板上的高粘附力厚膜金导体进行了研究。采用化学共沉淀制作出小的、球形的、大小均匀的金粉末,选少量的氧化物作助熔剂,严格控制工艺参数,制作出了能键合2mil金丝的高粘附力厚膜金浆料。该浆料烧结膜表面光滑,线键合性好,粘附力高;电阻率低,烧成膜厚大于7μm时,方阻小于4mΩ/□;印刷分辨率高,批量生产时可印刷0.18mm的线宽和间距,实验室内可制作线宽

50μm,间距150μm的图形。

为了进一步提高丝网印刷的分辨率,人们开发了可光刻的厚膜浆料和光致成图浆料。例如金属-有机物浆料和薄印浆料等,这些浆料大部分为金浆料,结合先进的工艺,其细线水平几乎达到薄膜的工艺水平,详细情况将在后面介绍。

低温共烧陶瓷(LTCC)技术由于导体的电阻率较低,介质材料的高频性能好,最适于做微波MCM的基板材料。在LTCC技术中,厚膜导体除了作高密度互连的导带外,也是多层电路互连通孔的填充材料。在功率电路中,人们利用填充金属的通孔阵列把器件上的热量传到热沉上。

在微波LTCC中,从降低成本和可靠性的考虑,利用银作内层导体,金作表层导体。银有极好的导电性和导热性,可在空气中烧成,比金便宜,适合作内层导体。厚膜导体材料必须与LTCC生带系统相匹配,特别是通孔填充材料,要作为良好的导电和导热通路,又不能导致任何物理弯曲或封装的开裂。Todd Williams等人[4]研究了A6低温共烧陶瓷系统的银通孔金属化问题。A6是一种

低介电常数、低损耗的微波和RF用LTCC材料。Todd Williams等人认为通孔填充浆料应考虑下述关键特性:通孔填充浆料中的玻璃或氧化物与生带中的匹配;通孔填充材料和生带的收缩率随温度变化应紧密配合;热膨胀系数相匹配;电导率要高;流变性与工艺相对应;热导率要高。通过仔细选择无机材料,使LTCC

相关文档
最新文档