两角和与差的余弦公式证明

合集下载

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式1.两角和的正弦公式:对于任意两个角A和Bsin(A+B) = sinAcosB + cosAsinB证明:利用三角和差化积的公式,我们有:sin(A+B) = sin[(A/2+B/2) + (A/2-B/2)]= sin[(A/2+B/2)]cos[(A/2-B/2)] + cos[(A/2+B/2)]sin[(A/2-B/2)] = 2sin(A/2)cos(B/2) + 2cos(A/2)sin(B/2)= sinAcosB + cosAsinB这就是两角和的正弦公式。

2.两角差的正弦公式:对于任意两个角A和Bsin(A-B) = sinAcosB - cosAsinB证明:利用三角和差化积的公式,我们有:sin(A-B) = sin[(A/2-B/2) + (A/2+B/2)]= sin[(A/2-B/2)]cos[(A/2+B/2)] + cos[(A/2-B/2)]sin[(A/2+B/2)] = 2sin(A/2)cos(B/2) - 2cos(A/2)sin(B/2)= sinAcosB - cosAsinB这就是两角差的正弦公式。

3.两角和的余弦公式:对于任意两个角A和Bcos(A+B) = cosAcosB - sinAsinB证明:利用三角和差化积的公式,我们有:cos(A+B) = cos[(A/2+B/2) + (A/2-B/2)]= cos[(A/2+B/2)]cos[(A/2-B/2)] - sin[(A/2+B/2)]sin[(A/2-B/2)] = cosAcosB - sinAsinB这就是两角和的余弦公式。

4.两角差的余弦公式:对于任意两个角A和Bcos(A-B) = cosAcosB + sinAsinB证明:利用三角和差化积的公式,我们有:cos(A-B) = cos[(A/2-B/2) + (A/2+B/2)]= cos[(A/2-B/2)]cos[(A/2+B/2)] + sin[(A/2-B/2)]sin[(A/2+B/2)] = cosAcosB + sinAsinB这就是两角差的余弦公式。

两角和与差的余弦公式证明

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果,也进一步体验了数学的博大精深.。

两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比

两⾓和与差的余弦公式的五种推导⽅法之对⽐两⾓和与差的余弦公式是三⾓函数恒等变换的基础,其他三⾓函数公式都是在此公式基础上变形得到的,因此两⾓和与差的余弦公式的推导作为本章要推导的第⼀个公式,往往得到了⼴⼤教师的关注. 对于不同版本的教材采⽤的⽅法往往不同,认真体会各种不同的两⾓和与差的余弦公式的推导⽅法,对于提⾼学⽣的分析问题、提出问题、研究问题、解决问题的能⼒有很⼤的作⽤.下⾯将两⾓和与差的余弦公式的五种常见推导⽅法归纳如下:⽅法⼀:应⽤三⾓函数线推导差⾓公式的⽅法设⾓α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂⾜为M,那么OM即为α-β⾓的余弦线,这⾥要⽤表⽰α,β的正弦、余弦的线段来表⽰OM.过点P作PA⊥OP1,垂⾜为A,过点A作AB⊥x轴,垂⾜为B,再过点P作PC⊥AB,垂⾜为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应⽤三⾓函数线推导差⾓公式这⼀⽅法简单明了,构思巧妙,容易理解. 但这种推导⽅法对于如何能够得到解题思路,存在⼀定的困难. 此种证明⽅法的另⼀个问题是公式是在均为锐⾓的情况下进⾏的证明,因此还要考虑的⾓度从锐⾓向任意⾓的推⼴问题.⽅法⼆:应⽤三⾓形全等、两点间的距离公式推导差⾓公式的⽅法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直⾓坐标系内做单位圆,并做出任意⾓α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导⽅法巧妙的将三⾓形全等和两点间的距离结合在⼀起,利⽤单位圆上与⾓有关的四个点,建⽴起等式关系,通过将等式的化简、变形就可以得到符合要求的和⾓与差⾓的三⾓公式. 在此种推导⽅法中,推导思路的产⽣是⼀个难点,另外对于三点在⼀条直线和三点在⼀条直线上时这⼀特殊情况,还需要加以解释、说明.⽅法三:应⽤余弦定理、两点间的距离公式推导差⾓公式的⽅法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两⾓和与差的三⾓函数,所以构造出和⾓和差⾓是必须实现的. 构造出的和⾓或差⾓的余弦函数⼜需要和这两个⾓的三⾓函数建⽴起等式关系,因此借助于余弦定理、两点间的距离公式建⽴起等式关系容易出现,因此此种⽅法是推导两⾓和与差的余弦的⽐较容易理解的⼀种⽅法. 但此种⽅法必须是在学习完余弦定理的前提下才能使⽤,因此此种⽅法在必修四中⼜⽆法使⽤. 另外也同样需要考虑三点在⼀条直线上的情况.⽅法四:应⽤三⾓形⾯积公式推导推导差⾓公式的⽅法设α、β是两个任意⾓,把α、β两个⾓的⼀条边拼在⼀起,顶点为O,过B点作OB的垂线,交α另⼀边于A,交β另⼀边于C,则有S△OAC=S△OAB+S△OBC..根据三⾓形⾯积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和⾓公式及差⾓公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导⽅法通过三⾓形的⾯积的和巧妙的将两⾓和的三⾓函数与各个⾓的三⾓函数和联系在⼀起,体现了数形结合的特点. 缺点是公式还是在两个⾓为锐⾓的情况下进⾏的证明,因此同样需要将⾓的范围进⾏拓展.(五)应⽤数量积推导余弦的差⾓公式在平⾯直⾓坐标系xOy内,作单位圆O,以Ox为始边作⾓α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表⽰,有.于是,有.说明:应⽤数量积推导余弦的差⾓公式⽆论是构造两个⾓的差,还是得到每个⾓的三⾓函数值都是容易实现的,⽽且从向量的数量积的定义和坐标运算两种形式求向量的数量积将⼆者之间结合起来,充分体现了向量在数学中的桥梁作⽤.综上所述,从五种不同的推导两⾓和与差的余弦公式的过程可以看出,不同的推导⽅法体现出不同的数学特点,不同的巧妙构思,相同的结果,也进⼀步体验了数学的博⼤精深.。

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照第一种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp其中,adj表示邻边的长度,hyp表示斜边的长度。

现在考虑两个角度的和,即θ1+θ2、根据余弦函数的定义,我们可以得到:cos(θ1 + θ2) = adj1/hyp1现在我们将θ1和θ2分别表示为它们的余弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2将这两个式子相加,得到:cosθ1 + cosθ2 = (adj1 + adj2) / (hyp1 + hyp2)这就是两角和的余弦公式。

第二种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道余弦函数的复合角公式,即:cos(θ1 + θ2) = cosθ1⋅cosθ2 - sinθ1⋅sinθ2现在我们将θ1和θ2表示为它们的余弦函数和正弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2sinθ1 = opp1/hyp1sinθ2 = opp2/hyp2将这些式子代入复合角公式中,得到:cos(θ1 + θ2) = (adj1/hyp1)⋅(adj2/hyp2) -(opp1/hyp1)⋅(opp2/hyp2)= (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅hyp2)这就是第二种推导方式。

第三种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道正弦函数的平方与余弦函数的平方之和等于1,即:sin²θ + cos²θ = 1现在我们考虑θ1和θ2的和,即(θ1+θ2)。

我们可以得到:cos(θ1 + θ2) = adj1+2/hyp1+2现在我们将θ1+2表示为(θ1+θ2)的余弦函数和正弦函数:cos(θ1 + θ2) = adj1+2/hyp1+2= (adj1⋅cosθ2 - opp1⋅sinθ2) / (hyp1⋅cosθ2 + hyp2⋅sinθ2) = (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅ hyp2)这就是第三种推导方式。

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式

两角和与差的正弦余弦正切公式两角和的公式可以表示为:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)两角差的公式可以表示为:sin(A - B) = sinA * cosB - cosA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式可以通过三角函数的定义及相关几何知识进行推导。

我们以sin(A + B)的公式为例进行推导。

设点P(x, y)在单位圆上,与x轴正半轴的夹角为A + B。

则点P的坐标为(x, y) = (cos(A + B), sin(A + B))。

根据三角函数的定义可知:x = cos(A + B)y = sin(A + B)在单位圆上再取点Q(x', y'),与x轴正半轴的夹角为A,点Q的坐标为(x', y') = (cosA, sinA)。

同理再取点R(x'', y''),与x轴正半轴的夹角为B,点R的坐标为(x'', y'') = (cosB, sinB)。

由于圆上任意两点间的距离为1,因此PQ与PR的长度均为1,可以分别表示为:PQ = sqrt((x - x')^2 + (y - y')^2)PR = sqrt((x - x'')^2 + (y - y'')^2)同时利用勾股定理可知:PQ^2 = (x - x')^2 + (y - y')^2 = (cos(A + B) - cosA)^2 + (sin(A + B) - sinA)^2PR^2 = (x - x'')^2 + (y - y'')^2 = (cos(A + B) - cosB)^2 + (sin(A + B) - sinB)^2将上述两个式子相加得:PQ^2 + PR^2 = (cos(A + B) - cosA)^2 + (sin(A + B) - sinA)^2 + (cos(A + B) - cosB)^2 + (sin(A + B) - sinB)^2展开计算可得:PQ^2 + PR^2 = 2 + 2 * (cos(A + B) * cosA + sin(A + B) * sinA - cos(A + B) * cosB - sin(A + B) * sinB)利用三角函数的和角公式可进一步化简:PQ^2 + PR^2 = 2 + 2 * (cosA * cos(A + B) + sinA * sin(A + B) - cosB * cos(A + B) - sinB * sin(A + B))= 2 + 2 * (cosA * cos(A + B) - sinA * sin(A + B) + cosB * cos(A + B) - sinB * sin(A + B))利用余弦函数的差角公式可进一步化简:PQ^2 + PR^2 = 2 + 2 * (cos(A + B - A) + cos(A + B + A) - cos(B - A) - cos(B + A))= 2 + 2 * (cosA + cos(B + A) - cos(B - A) - cosA)= 2 + 2 * (cosA + cosB * cosA - sinB * sinA - cosB * cosA + sinB * sinA)= 2 + 2 * cosA因此,PQ^2 + PR^2 = 2 + 2 * cosA。

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式是指在给定两个角的情况下,通过公式计算它们的和或差的三角函数值的关系式。

这些公式在解决三角函数的实际问题和简化计算中起着重要的作用。

本文将介绍两角和与差的三角函数公式的基本知识点,包括公式的推导、证明和应用。

一、两角和与差的三角函数公式的推导1.两角和的公式对于两个角A和B,其正弦、余弦和正切的和公式如下:sin(A+B) = sinAcosB + cosAsinBcos(A+B) = cosAcosB - sinAsinBtan(A+B) = (tanA + tanB) / (1 - tanAtanB)这些公式可以通过将和角的正弦、余弦和正切分别展开为各自的和差形式,然后进行合并得到。

以正弦和公式为例,我们可以化简如下:sin(A+B) = sinAcosB + cosAsinB由正弦的和差公式可得:sin(A+B) = sinAcosB + cosAsinB= (sinAcosB + cosAsinB)(cosAcosB – sinAsinB)/(cosAcosB –sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cosAcosB – sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cos^2A - sin^2B)= sinAcos^2B - sinAsin^2B + cos^2AsinB - cosBsinA/(cos^2A - sin^2B)= sinA(cos^2B - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)2.两角差的公式对于两个角A和B,其正弦、余弦和正切的差公式如下:sin(A-B) = sinAcosB - cosAsinBcos(A-B) = cosAcosB + sinAsinBtan(A-B) = (tanA - tanB) / (1 + tanAtanB)同样,这些公式也可以通过将差角的正弦、余弦和正切展开为各自的差和比值形式,然后进行合并得到。

两角和与差的余弦公式

两角和与差的余弦公式

两角和与差的余弦公式余弦公式是三角学中常用的定理,用来计算三角形的角度和边长。

其中,两角和与差的余弦公式是一种特殊形式的余弦公式,用来计算两个角的和与差的余弦值。

在本文中,我们将详细介绍两角和与差的余弦公式,并且给出其证明及应用示例。

一、两角和与差的余弦公式的表述对于任意两个角A和B,其和与差的余弦值分别可以表示为:①余弦和公式:cos(A + B) = cosA * cosB - sinA * sinB②余弦差公式:cos(A - B) = cosA * cosB + sinA * sinB其中,cosA、cosB、sinA、sinB分别表示角A和角B的余弦和正弦值。

二、两角和与差的余弦公式的证明1.证明余弦和公式:我们先来证明余弦和公式cos(A + B) = cosA * cosB - sinA * sinB。

根据三角函数的定义,我们有:cos(A + B) = cos(α + β)= [exp(i(α + β)) + exp(-i(α + β))] / 2 (欧拉公式)= [exp(iα) * exp(iβ) + exp(-iα) * exp(-iβ)] / 2 (指数幂法则)= [(cosα + i * sinα) * (cosβ + i * sinβ) + (cosα - i * sinα) * (cosβ - i * sinβ)] / 2 (令exp(iα) = cosα + i *sinα,同样对于exp(iβ))= [(cosα * cosβ + i * cosα * sinβ + i * sinα * cosβ + i^2 * sinα * sinβ) + (cosα * cosβ - i * cosα * sinβ - i * sinα *cosβ - i^2 * sinα * sinβ)] / 2= [(cosα * cosβ + sinα * sinβ) + i * (cosα * sinβ + sinα * cosβ)] + [- (cosα * cosβ + sinα * sinβ) + i * (cosα * sinβ + sinα * cosβ)] / 2= (cosα * cosβ + sinα * sinβ)= cosA * cosB - sinA * sinB故余弦和公式成立。

两角和与差的正弦、余弦和正切公式(基础知识+基本题型)(含解析)

两角和与差的正弦、余弦和正切公式(基础知识+基本题型)(含解析)

5.5.1两角和与差的正弦、余弦和正切公式(基础知识+基本题型)知识点一、两角差的余弦公式 如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B ,则)sin ,(cos ),sin ,(cos ββαα==OB OA . 由向量数量积的定义,有)cos()cos(||||βαβα-=-=⋅OB OA OB OA ,由向量数量积的坐标表示,得βαβαsin sin cos cos +=⋅OB OA . 于是有βαβαβαsin sin cos cos )cos(+=-. 由以上的推导过程可知,βα,是任意角,则)(βα-也应为任意角,即对于任意角βα,有βαβαβαsin sin cos cos )cos(+=-,此公式称为差角的余弦公式,简记为)(βα-C【提示】(1)适用条件:公式中的βα,都是任意角,可以为常量,也可以为变角(2)公式结构:公式右端的两部分为同名三角函数的积,连接符号与左边角的连接符号相反 【拓展】(1)逆用:)cos(sin sin cos cos βαβαβα-=+(2)角变换后使用:ββαββαββααsin )sin(cos )cos(])cos[(cos +++=-+= (3)移项使用:βαβαβαsin sin )cos(cos cos --=;βαβαβαcos cos )cos(sin sin --=(4)特殊化使用导出诱导公式:ααπαπαπsin sin 2sincos 2cos)2cos(=+=-知识点二 两角和的余弦公式 运用)(βα-C 和诱导公式,有)](cos[)cos(βαβα--=+ )sin(sin )cos(cos βαβα-+-= βαβαsin sin cos cos -=,即βαβαβαsin sin cos cos )cos(-=+此公式就是两角和的余弦公式,简记作)(βα+C 提示:(1)公式中的βα,都是任意角(2)两角和与差的余弦公式右边函数名的排列顺序为:余⋅余 正⋅正,左右两边加减运算符号相反 (3)一般情况下,两角和的余弦公式不能按分配律展开,即βαβαcos cos )cos(+≠+ 【拓展】要学会顺用(从左至右,即展开)、逆用(从右至左,即化简)、变用(移项变形)公式()C αβ± (1)顺用公式()C αβ±,如:()()()()cos 2cos cos cos sin sin αβααβααβααβ+=++=+-+⎡⎤⎣⎦;()cos 2cos 2cos sin 2sin αβαβαβ+=-,()()()cos cos cos cos sin sin ααββαββαββ=+-=+++⎡⎤⎣⎦(2)逆用公式()C αβ±,如:()()()()cos cos sin sin αβαβαβαβ+--+- ()()cos cos 2αβαβα=++-=⎡⎤⎣⎦(3)变用公式()C αβ±,如:()cos sin sin cos cos αβαβαβ++=; ()cos cos cos sin sin αβαβαβ--=知识点三 两角和与差的正弦公式 运用()C αβ-和诱导公式,有()()sin cos cos 22ππαβαβαβ⎡⎤⎡⎤⎛⎫+=-+=-- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦cos cos sin sin sin cos cos sin 22ππαβαβαβαβ⎛⎫⎛⎫=-+-=+ ⎪ ⎪⎝⎭⎝⎭.即()sin sin cos cos sin αβαβαβ+=+.这就是两角和的正弦公式,简记作sin cos cos sin αβαβ+()S αβ+. 在公式()S αβ+中,用β-代替β,可得()()()sin sin cos cos sin sin cos cos sin αβαβαβαβαβ+-=-+-=-⎡⎤⎣⎦,即()sin sin cos cos sin αβαβαβ-=-. 这就是两角差的正弦公式,简记作()S αβ-. 【提示】(1)公式中的,αβ均为任意角.(2)两角和与差的正弦公式右边函数名的排列顺序为:正余±余正,左右两边加减运算符号相同. (3)一般情况下,两角和与差的正弦公式不能按分配律展开,即()sin sin sin αβαβ±=±.知识点四 两角和与差的正切公式 ()()()sin sin cos cos sin tan tan tan cos cos cos sin sin 1tan tan αβαβαβαβαβαβαβαβαβ++++===+--, 即()tan tan tan 1tan tan αβαβαβ++=-.这就是两角和的正切公式,简记作()T αβ+. 以β-代替上式中β,可得 ()()()tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβ+--+-==⎡⎤⎣⎦--+,即()tan tan tan 1tan tan αβαβαβ--=+.这就是两角差的正切公式,简记作()T αβ-. (1)适用条件:公式()T αβ±只有在(),,Z 222k k k k πππαπβπαβπ≠+≠+±≠+∈时才成立,否则不成立,这是由正切函数的定义域决定的.(2)特殊情况:当tan α或tan β或()tan αβ±的值不存在时,不能使用()T αβ±处理有关问题,但可改用诱导公式或其他方法.例如,化简tan 2πβ⎛⎫- ⎪⎝⎭,因为tan 2π的值不存在,不能利用公式()T αβ-,所以改用诱导公式来解.sin cos 2tan 2sin cos 2πβπββπββ⎛⎫- ⎪⎛⎫⎝⎭-== ⎪⎛⎫⎝⎭- ⎪⎝⎭. (3)公式()T αβ-也可以这样推导: ()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ---==-+若cos cos 0αβ≠,则将上式得分子、分母都除以cos cos αβ,得()tan tan tan 1tan tan αβαβαβ--=+.【拓展】(1)正切公式的逆用: ()()()tan tan tan tan 1tan tan αβααβαβαβα+-=+-=⎡⎤⎣⎦++;tantan 1tan 4tan 1tan 41tan tan 4πααπαπαα++⎛⎫==+ ⎪-⎝⎭-(2)正切公式的变形应用:()()tan tan tan 1tan tan αβαβαβ+=+-; ()()tan tan tan 1tan tan αβαβαβ-=-+; ()tan tan 1tan tan tan αβαβαβ+-=+;()tan tan 1tan tan tan αβαβαβ-+=-知识点五 辅助角公式辅助角公式:()sin cos tan b a x b x x a ϕϕ⎛⎫++= ⎪⎝⎭推导过程:sin cos a x b x x x ⎫+=+⎪⎭令cos ϕϕ==,)sin cos sin cos cos sin a x b x x x ϕϕ++()x ϕ+其中角ϕ所在象限由,a b 的符号确定,角ϕ的值由tan ba ϕ=确定或由cos ϕϕ==共同确定【提示】 (1)关于形如sin cos a x b x +(,a b 不同时为零)的式子,引入辅助角可以变形为()sin A x ϕ+的形式,有时也变形为()cos A x ϕ+的形式(2)辅助角公式能将异名三角函数式转化为同名三角函数式,它本身就是一个化简得过程,化简后,可轻松地求出函数的周期、最值、单调区间等考点一 三角函数式的化简 【例1】 化简下列各式 (1)sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒;(2)()2sin50sin101⎡⎤︒+︒︒⎣⎦;(3)()()1sin cos sin 2sin 2αβααββ+-+-⎡⎤⎣⎦ 解:(1)原式()()sin 158cos15sin8sin15cos8cos15sin8cos15sin8tan15cos 158sin15sin8cos15cos8sin15sin8sin15sin8︒-︒+︒︒︒︒-︒︒+︒︒==︒︒-︒-︒︒︒︒+︒︒-︒︒()1tan 45tan 30tan 45301tan 45tan 30︒-︒=︒-︒==+︒︒2=-(2)原式2sin 50sin10⎛=︒+︒ ⎝⎭2sin 50cos102sin10cos50cos10︒︒+︒︒⎡⎤=︒⎢⎥︒⎣⎦)sin 50cos10sin10cos50=︒︒+︒︒()5010=︒+︒== (3)原式()()()1sin cos sin sin 2αβαααβαβα=+-++-+-⎡⎤⎣⎦ ()()1sin cos 2sin cos 2αβαααβ=+-+⎡⎤⎣⎦ ()()sin cos cos sin αβααβα=+-+ ()sin sin αβαβ=+-= 化简三角函数式的标准和要求: (1)能求出值得应求出值;(2)使三角函数式的种数、项数及角的种类尽可能少; (3)使三角函数式的次数尽可能低; (4)使分母中尽量不含三角函数式和根式 考点二 三角函数的求值 【例2.】.(1)求sin105︒的值;(2)已知3sin 5θ=-,且θ是第三象限角,求cos 6πθ⎛⎫+ ⎪⎝⎭的值;(3)已知1tan ,tan 20,322ππαβαβπ⎛⎫==-<<<< ⎪⎝⎭,求()tan αβ-及αβ+的值解:(1)()sin105sin 6045︒=︒+︒sin 60cos45cos60sin 45=︒︒+︒︒ (2)因为3sin 5θ=-,且θ是第三象限角,所以4cos 5θ=-所以413cos cos cos sin sin 666525πππθθθ⎛⎫⎛⎫⎛⎫+=---⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)因为1tan ,tan 23αβ==-,所以()12tan tan 3tan 721tan tan 13αβαβαβ+--===+- ()12tan tan 3tan 121tan tan 13αβαβαβ-++===--+ 因为0,,22ππαβπ<<<<所以 322ππαβ<+<所以34παβ+=三角函数的求值问题主要包括三类:给角求值、给值求值、给值求角 (1)给角求值的求解策略求解的关键是能将所求角转化为特殊角,并注意公式的选用 (2)给值求值的求解策略已知角,αβ的某种三角函数值,求αβ±的余弦、正弦或正切的方法;先根据平方关系求出,αβ的另一种三角函数值,求解过程中应注意先根据角的范围判断所求三角函数值的符号,再根据求得的函数值和已知函数值代入和角或差角的正弦、余弦、正切公式中,求出和角或差角的正弦、余弦、正切(3)给值求角的方法解答这类题目的步骤:①求出角的某一个三角函数值;②确定角所在的范围;③求角 考点三 三角恒等式的证明 【例3】求证:()()sin 2sin 2cos .sin sin αββαβαα+-+=证明:因为sin 0α≠,()()sin 22cos sin αβαβα+-+()()=sin 2cos sin αβααβα++-+⎡⎤⎣⎦()()()sin cos cos sin 2cos sin αβααβααβα=+++-+ ()()sin cos cos sin αβααβα=+-+()sin αβα=+-⎡⎤⎣⎦ sin β=,所以()()sin 2sin 2cos sin sin αββαβαα+-+=.证明三角恒等式常用以下方法:(1)从复杂的一边入手,逐步化简,证得与另一边相等.在证明的过程中,应时刻“盯”住目标,分析其特征,向着目标“奔”去;(2)从两边入手,证得等式两边都等于同一个式子; (3)作差法,证明左边-右边=0. 考点四 辅助角公式的应用【例4】 将下列各式化成()sin A x ϕ+的形式:(1cos x x -;(2).4444x x ππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭解:(1)12cos 2x x ⎫=-⎪⎪⎝⎭原式2cos sin sin cos 66x x ππ⎛⎫=- ⎪⎝⎭2sin .6x π⎛⎫=- ⎪⎝⎭(2)1sin cos 22424x x ππ⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦原式sin sin cos cos 26464x x ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos 246212x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭sin 2212x ππ⎛⎫=-+ ⎪⎝⎭5sin .212x π⎛⎫=+ ⎪⎝⎭ 通过引入辅助角ϕ,可以将sin cos a x b x +这种形式的三角函数式化为一个角的一种三角函数的形式.这种变形方法可解决sin cos a x b x +的许多问题,如值域、最值、周期、单调区间等.另外,(2)在解法上充分体现了角的变换和整体思想.。

两角和与差的正余弦公式应用辅助角公式

两角和与差的正余弦公式应用辅助角公式

举例说明:利用两角和与差的正余 弦公式和辅助角公式,可以化简复 杂的三角函数式,进而求出最值。
添加标题
添加标题
添加标题
添加标题
结合应用举例:求三角函数的最值、 化简三角函数式等。
结合应用举例:在物理、工程等领域 中,可以利用两角和与差的正余弦公 式与辅助角公式的结合应用,解决一 些实际问题。
感谢您的观看
汇报人:XX
公式推导:通过两角和与差的正余弦公式推导出辅助角公式 角度范围:确定两角和与差的正余弦公式和辅助角公式的适用角度范围 实例解析:结合具体实例,展示如何应用两角和与差的正余弦公式与辅助角公式解决实际问题 注意事项:强调在应用过程中需要注意的事项,如公式的适用条件、计算精度等
两角和与差的正余弦公式与辅助角 公式的结合应用,可以解决一些三 角函数问题。
注意事项:使用公 式时需要注意角度 的范围和特殊情况 的处理
公式形式:sin(x+y)=sinxcosy+cosxsiny,sin(x-y)=sinxcosy-cosxsiny 应用场景:解决三角函数问题,如求角度、求长度等
辅助角公式:将两角和与差的正弦公式中的x和y视为辅助角,可以简化计算过程
证明方法:利用三角函数的加法定理进行证明
三角函数图像的变换 求解最值问题 解决周期和对称性问题处理切线问题
公式形式:asinx+bcosx=sqrt(a^2+b^2)sin(x+φ),其中φ为辅助角 应用举例:求函数y=sinx+cosx的值域 应用举例:求函数y=sin2x+cos2x的最小正周期 应用举例:求函数y=sin(x+π/4)+cos(x-π/4)的最大值
两角和与差的正余 弦公式与辅助角公 式的结合应用

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。

在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。

本文将从公式的定义、推导及应用方面进行详细解析。

一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP =OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难.此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式.在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.附方法六:等积法推导余弦的差角公式广东佛山袁锦前如图:在△ABC中,AD⊥BC于D,BE⊥AC于E,设∠DAC=α,∠ABD=β,求:cos(α-β)解:在△ABD中,BD=c·cosβ,AD=b·cosα在△ACD中,CD= b c·sinα,AD= c·sinβ11cos cos sin sin 22ABD ACDSSbc bc αβαβ∴+=+ ()1cos cos sin sin 2bc αβαβ=+ …………………………..○1 又∵2BAD πβ∠=-()c sin =c sin 22BE ππβααβ⎡⎤⎛⎫⎡⎤∴=⋅-+⋅--⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦()c cos αβ=⋅-()11cos 22ABCSAC BE bc αβ∴=⋅=- …………………………………………○2 由○1○2可得: ()cos =cos cos sin sin αβαβαβ-+。

两角和与差的余弦、正弦、正切公式

两角和与差的余弦、正弦、正切公式
由β=α- ,得cosβ=cos =cosαcos +sinαsin
= × + × = = .∵0<β< ,所以β= .
变式3.(1)已知tanα=2,tanβ=3,且α,β都是锐角,求α+β;
(2)已知α,β均为锐角,sinα= ,cosβ= ,求α-β.
解析:(1)tan = = =-1.
∵α,β都是锐角,∴0<α+β<π,由上式知α+β= .
课堂练习:
练习1:cos(450+300)=
练习2:cos200cos700-sin200sin700=
练习3: 练习4:
1.下列式子中,正确的个数为()
①sin =sinα-sinβ;②cos =cosα-cosβ;
③sin =sinαcosβ-cosαsinβ;④cos =cosαcosβ+sinαsinβ.
解析:(1)原式=sin 14°cos 16°+cos 14°sin 16°=sin =sin 30°= .
(2)原式=sinxcos +cosxsin +2sinxcos -2cosxsin - cos cosx- sin sinx=3sinxcos -cosxsin - cos cosx- sin sinx= sinx- cosx
=- × + × =- ,故得-sin =- ,即sin = .
变式2.化简求值:
(1)sin 75°;(2)sin 15°;
(3)若α,β均为锐角,sinα= ,sin(α+β)= ,求cosβ.
解析:(1)原式=sin =sin 45°cos 30°+cos 45°sin 30°= × + × = .
课题
两角和与差的余弦、正弦、正切公式
1.注意到 ,由公式C(α+β).,可以推出:

两角和差的余弦公式

两角和差的余弦公式

两角和差的余弦公式两角和差的余弦公式是数学中常用的一个公式,它可以用来求解两个角的余弦值之和或差。

由于它非常实用,因此被广泛应用于各种理论领域。

本文将介绍两角和差的余弦公式的定义、特点以及应用。

一、两角和差的余弦公式的定义两角和差的余弦公式用来求解两个角的余弦值之和或差,其可以表示为:cos(α+β) = cosα·cosβ-sinα·sinβcos(α-β) = cosα·cosβ+sinα·sinβ这里,α和β分别表示两个不同的角,cosα和cosβ表示α和β的余弦值,sinα和sinβ表示α和β的正弦值。

二、两角和差的余弦公式的特点两角和差的余弦公式的最大特点就是可以用来求解两个角的余弦值之和或差。

它可以用来计算任意两个角的余弦值之和或差,而不需要考虑它们之间的关系,这是一种非常方便的计算方法。

此外,两角和差的余弦公式还有一个重要的特点,就是可以用来求解任意三角形的外角和。

根据余弦定理,任意三角形的外角和等于180度。

这时,可以利用两角和差的余弦公式来求解,即:cos(α+β+γ) = cosα·cosβ·cosγ - sinα·sinβ·sinγ这样就可以很容易的求解出任意三角形的外角和。

三、两角和差的余弦公式的应用两角和差的余弦公式非常实用,因此被广泛应用于各种理论领域,如:(1)在几何学中,两角和差的余弦公式可以用来求解任意三角形的外角和,从而求出三角形的三个内角。

(2)在物理学中,两角和差的余弦公式可以用来求解三维空间中物体的运动轨迹,从而获得物体运动的位置、速度等物理量。

(3)在天文学中,两角和差的余弦公式可以用来求解太阳系中行星的运行轨迹,从而得到太阳系中行星的位置、速度等参数。

(4)在通信学中,两角和差的余弦公式可以用来求解信号传播的损耗,从而获得信号传播的距离、信号强度等参数。

四、总结以上就是两角和差的余弦公式的定义、特点以及应用情况。

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式1.两角和的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的和角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c,其中a、b、c分别为三角形ABC的对边、邻边和斜边。

根据正弦公式,sinC = c/c =1、所以,两角和的正弦公式为sin(A + B) = sinC = 12.两角和的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的和角C的余弦为cosC。

根据三角函数的定义,有cosA = b/c和cosB = a/c。

根据余弦公式,cosC = cos(A + B) = cos(AcosB - BsinA) = cosAcosB + sinAsinB = (b/c)(a/c) + (a/c)(b/c) = 2ab/c²。

3.两角和的正切公式:设角A和角B的正切分别为tanA和tanB,则它们的和角C的正切为tanC。

根据三角函数的定义,有tanA = a/b和tanB = b/a。

根据正切公式,tanC = tan(A + B) = (tanA + tanB) / (1 - tanAtanB) = (a/b + b/a) / (1 - (a/b)(b/a)) = (a² + b²) / (ab - ab) = a² + b² / ab。

4.两角差的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的差角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c。

根据差角公式,sinC = sin(A - B) = sin(AcosB + BsinA) = sinAcosB - cosAsinB = a/c(b/c) - (b/c)(a/c) = 2a b/c²。

5.两角差的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的差角C的余弦为cosC。

(完整版)两角和与差的余弦公式的五种推导方法之对比

(完整版)两角和与差的余弦公式的五种推导方法之对比

两角和与差的余弦公式的五种推导方法之对比两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果.。

两角和差的正弦余弦正切公式

两角和差的正弦余弦正切公式

两角和差的正弦余弦正切公式两角和差的正弦、余弦、正切公式是解决三角函数的运算中的常用工具。

它们可以通过已知两个角的三角函数值来求解它们的和或差的三角函数值。

这些公式在数学、物理、工程等领域中都有广泛的应用。

下面将详细介绍这些公式,以及它们的推导和应用。

1.两角和差的正弦公式sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)其中A和B为任意两个角。

为了推导这个公式,我们可以使用三角函数的和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)通过观察可以发现,两角和差的正弦公式可以通过将cos(A ± B)公式正负号变化得到。

2.两角和差的余弦公式cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)其中A和B为任意两个角。

可以看到,这个公式可以通过将sin(A ± B)的公式正负号变化得到。

3.两角和差的正切公式tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))其中A和B为任意两个角。

这个公式可以通过两角和差的正弦公式和余弦公式相除得到。

使用公式sin(A)/cos(A) = tan(A)和cos(A)cos(B) -sin(A)sin(B)=cos(A+B)得到。

这些公式在解决三角函数运算中有着广泛的应用。

例如,我们可以将它们用于证明或求解三角恒等式。

以下是一些常见的应用示例:1.求两个特定角的正弦、余弦或正切值的和或差的问题。

例如,已知sin(A) = 0.6,cos(B) = 0.8,求sin(A+B)的值。

根据两角和差的正弦公式,我们可以有:sin(A+B) = sin(A)cos(B) + cos(A)sin(B)= 0.6*0.8 + cos(A)*sin(B)如果我们已经知道了cos(A)和sin(B)的值,就可以计算出sin(A+B)的值。

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式1.两角和的正弦公式:对于任意两个角A和B,其正弦的和可表示为:sin(A + B) = sinAcosB + cosAsinB这个公式可以通过在单位圆上考虑角A和B的正弦值,利用三角函数的定义来推导得到。

2.两角差的正弦公式:对于任意两个角A和B,其正弦的差可表示为:sin(A - B) = sinAcosB - cosAsinB这个公式可以通过将角B改为-B,然后利用两角和的正弦公式得到。

3.两角和的余弦公式:对于任意两个角A和B,其余弦的和可表示为:cos(A + B) = cosAcosB - sinAsinB这个公式可以通过在单位圆上考虑角A和B的余弦值,利用三角函数的定义来推导得到。

4.两角差的余弦公式:对于任意两个角A和B,其余弦的差可表示为:cos(A - B) = cosAcosB + sinAsinB这个公式可以通过将角B改为-B,然后利用两角和的余弦公式得到。

5.两角和的正切公式:对于任意两个角A和B,其正切的和可表示为:tan(A + B) = (tanA + tanB) / (1 - tanAtanB)这个公式可以通过将正切用正弦和余弦表示,然后利用两角和的正弦和余弦公式进行推导。

根据两角和与差的正弦、余弦和正切公式,我们可以解决一些比较复杂的三角函数问题。

下面,我们通过一些例题来说明如何应用这些公式。

例题1:已知sinA = 1/2且cosB = 1/3,求sin(A + B)和cos(A - B)的值。

解:根据已知条件,我们可以得到sinA = 1/2和cosB = 1/3、根据两角和的正弦公式,我们可以求得sin(A + B)的值为:sin(A + B) = sinAcosB + cosAsinB= (1/2)(1/3) + cosA(1/3)= 1/6 + cosA/3进一步根据已知条件sinA = 1/2,可以得到cosA = √(1 - sin^2A) = √(1 - 1/4) = √3/2代入公式中,我们可以计算得到:sin(A + B) = 1/6 + (√3/2) / 3=1/6+√3/6=(√3+1)/6同样地,根据两角差的余弦公式,我们可以求得cos(A - B)的值为:cos(A - B) = cosAcosB + sinAsinB=(√3/2)(1/3)+(1/2)(√3/3)=√3/6+√3/6=√3/3所以,sin(A + B) = (√3 + 1) / 6,cos(A - B) = √3/3例题2:已知tanA = 3且tanB = 4,求tan(A + B)和tan(A - B)的值。

两角和差正余弦公式的证明

两角和差正余弦公式的证明

(方法1)如图所示,在直角坐标系妨中作单位圆O ,并作角起,"和一“,使 角优的始边为。

T ,交[0于点A ,终边交L "于点B ;角0始边为(旳,终边交两角和差正余弦公式的证明两角和差的正余弦公式是三角学中很重要的一组公式。

法进行探讨。

F 面我们就它们的推导证明方 由角d , 0的三角函数值表示 的正弦或余弦值,这正是两角和差的正余弦公 式的功能。

换言之,要推导两角和差的正余弦公式 ,就是希望能得到一个等式或方程 将CLIS ((T t 小或GMa F ”)与(I , P 的三角函数联系起来。

根据诱导公式,由角0的三角函数可以得到 0的三角函数。

因此,由和角公式容 易得到对应的差角公式,也可以由差角公式得到对应的和角公式。

又因为 即原角的余弦等于其余角的正弦 据此,可以实现正弦公式和余弦 公式的相互推导。

因此,只要解决这组公式中的一个,其余的公式将很容易得到。

(一)在单位圆的框架下推导和差角余弦公式 注意到单位圆比较容易表示 SlH 和 α±0 ,而且角的终边与单位圆的交点坐标可 以用三角函数值表示,因此,我们可以用单位圆来构造联系 “呦I 列与CE ,E 的三角 函数值的等式。

1.和角余弦公式角 "始边为(ZL ,终边交[0于点。

从而点A, B, C和D的坐标分别为XiL(IO, B(C(K亿dace) ,C(攻α+E f⅛a(cc+∕5) ,Q伽霸-dn∕J) O由两点间距离公式得Q =(CDS(α+∕J)-l)3+≡Λ2(tt+∕5 = 2-2cαs(α+/!);BD I =(C os∕l-OTsα)2+(-⅛ι∕J-anα)2= 2-2(CDSaelK/J-si∩csh∕J) O 注意到& 跖,因此c□sσtos^ SinaEin0 o注记:这是教材上给出的经典证法。

它借助单位圆的框架,利用平面内两点间距离公式表达两条相等线段,从而得到我们所要的等式。

两角和差的正余弦正切公式

两角和差的正余弦正切公式

两角和差的正余弦正切公式首先,我们来介绍两个角的和的正弦、余弦和正切的公式:1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B2.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B3.两角和的正切公式:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)接下来,我们来介绍两个角的差的正弦、余弦和正切的公式:1.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B2.两角差的余弦公式:cos(A - B) = cos A cos B + sin A sin B3.两角差的正切公式:tan(A - B) = (tan A - tan B) / (1 + tan A tan B)这些公式在解决三角函数相关问题时非常有用。

使用这些公式,我们可以将一个角分解成两个角的和或差,进而计算出复杂角度的三角函数值。

例如,我们可以使用两角和的正弦公式来计算sin75度的值。

由于75度可以表示为30度+45度的和,可以将sin75度表示为sin(30度+45度)。

应用两角和的正弦公式,我们可以得到:sin(30度+45度) = sin30度 cos45度 + cos30度 sin45度根据三角函数的定义,我们知道sin30度 = 1/2,cos30度 =sqrt(3)/2,sin45度 = sqrt(2)/2,cos45度 = sqrt(2)/2、将这些值代入公式,我们可以计算sin75度的值:sin(30度+45度) = (1/2)(sqrt(2)/2) + (sqrt(3)/2)(sqrt(2)/2) = (sqrt(2) + sqrt(6)) / 4类似地,我们还可以通过应用其他公式来计算两角的差,以及正弦、余弦和正切的值。

总结起来,两角和差的正弦、余弦和正切公式为:1. 两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B2. 两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B3. 两角和的正切公式:tan(A + B) = (tan A + tan B) / (1 - tanA tan B)4. 两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B5. 两角差的余弦公式:cos(A - B) = cos A cos B + sin A sin B6. 两角差的正切公式:tan(A - B) = (tan A - tan B) / (1 + tanA tan B)这些公式在解决实际问题以及求解复杂角度的三角函数值时非常有用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和与差的余弦公式的五种推导
方法之对比
欧阳学文
沈阳市教育研究院王恩宾
两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:
方法一:应用三角函数线推导差角公式的方法
设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.
过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.
过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM =OB+CP=OAcosα+APsinα=cosβcosα+sinβsinα.
综上所述,.
说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.
方法二:应用三角形全等、两点间的距离公式推导差角公式的方法
设P1(x1,y1),P2(x2,y2),则有|P1P2 |=
.
在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),si n(α+β))、.
∵,且,
∴,∴,


∴,
∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点
,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.
方法三:应用余弦定理、两点间的距离公式推导差角公式的方法
设,
则.
在△OPQ中,∵,
∴,
∴.
说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.
方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..
根据三角形面积公式,有

∴.
∵,,,
∴,
∵,∴sin(α+β)=sinαcosβ+sinβcosα.
根据此式和诱导公式,可继续证出其它和角公式及差角公式.
(1)sin(αβ)=sin[α+(β)]=sinαcos(β)+sin(β)cosα=sinαcosβsinβcosα;
(2)cos(α+β)=sin[90(α+β)]=sin[(90α)β]=sin(90α)cosβsinβcos(90α) =cosαcosβsinαsinβ;
(3)cos(αβ)=cos[α+(β)]=cosαcos(β)sinαsin(β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.
(五)应用数量积推导余弦的差角公式
在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).
由向量数量积的概念,有.
由向量的数量积的坐标表示,有
.
于是,有.
说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.
综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果,也进一步体验了数学的博大精深.。

相关文档
最新文档