四年级数学简便计算方法总结及类型归类 (2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级数学简便计算:乘除法篇
一、乘法:
1.因数含有25和125的算式:
例如①:25×42×4
我们牢记25×4=100,所以交换因数位置,使算式变为25×4×42. 同样含有因数125的算式要先用125×8=1000。
例如②:25×32
此时我们要根据25×4=100将32拆成4×8,原式变成25×4×8。
例如③:72×125 我们根据125×8=1000将72拆成8×9,原式变成8×125×9。
重点例题:125×32×25 =(125×8)×(4×25)
2.因数含有5或15、35、45等的算式:
例如:35×16
我们根据需要将16拆分成2×8,这样原式变为35×2×8。
因为这样就可以先得出整十的数,运算起来比较简便。
3.乘法分配律的应用:
例如:56×32+56×68
我们注意加号两边的算式中都含有56,意思是32个56加上68个56的和是多少,于是可以提出56将算式变成56×(32+68)如果是56×132—56×32 一样提出56,算是变成56×(132-32)注意:56×99+56 应想99个56加上1个56应为100个56,所以原式变为56×(99+1) 或者56×101-56=56×(101-1)
另外注意综合运用,例如:36×58+36×41+36=36×(58+41+1)
47×65+47×36-47 =47×(65+36-1)
4.乘法分配律的另外一种应用:
例如:102×47
我们先将102拆分成100+2 算式变成(100+2)×47 然后注意将括号里的每一项都要与括号外的47相乘,算式变为:100×47+2×47 例如:99×69 我们将99变成100-1算式变成(100-1)×69
然后将括号里的数分别乘上69,注意中间为减号,算式变成:100×69-1×69
二、除法:
1.连续除以两个数等于除以这两个数的乘积:
例如:32000÷125÷8 我们可以将算式变为
32000÷(125×8)=32000÷1000
2.例如:630÷18 我们可以将18拆分成9×2 这时原式变为630÷(9×2)注意要加括号,然后打开括号,原式变成630÷9÷2=70÷2
三、乘除综合:
例如6300÷(63×5)我们需要打开括号,此时要将括号里的乘号变为除号,原式变为6300÷63÷5
四年级数学简便计算:加减法篇
一、加法:
1.利用加法交换律例如:254+158+246
我们首先观察发现254与246相加可以凑成整百,于是交换158和246两个加数的位置,变成254+246+158。
2. 拆分加数例如:568+203 我们发现203距离200较近,于是将203拆分成200+3,算式变成568+200+3。
例如:289+198 我们发现198距离200较近,于是将198改写成200-2,算是变成289+200-2。
3. 利用加法结合律例如:365+458+242 我们发现后两个加数可以相加成整百数,于是变成365+(458+242)。
二、减法:
1.交换减数位置:例如:452-269-152 我们发现452-152能得整百数,于是交换减数位置,算式变成452-152-269。
连续减去两个数等于减去两个数的和:例如:562-236-164
我们发现两个减数236与164的和能凑成整百,于是算式变成562-(236+164),注意括号里要变成两数相加。
2.拆分减数:例如:313-102 我们发现减数102距离100较近,可以拆分成100+2,但是在减法算式里要变成313-100-2。
例如:521-298 我们发现减数298距离300较近,可以拆分成300-2,但是注意在减法算式里要变成521-300+2。
三、加减混合:
1.加减换位:例如:526—257+274
可以将算式改为526+274—257。
减去两个数的和等于分别减去这两个数:例如:568—(254+168)我们可以打开括号,注意括号里的加号在打开括号后要变成减号,于是算式变成568—254—168,然后调整减数位置,因为568先减去168可以凑成整百数,于是算式变成568—168—254。
2、综合运用:例如:57+68—57+68
很多同学盲目地写成(57+68)—(57+68)是错误的,我们发现第二个57前面是减号,可以和第一个57合并成57—57,而第二个68前面是加号,只能和第一个68合并成68+68,所以算式应变成(57—57)+(68+68)。
例如:628—(254+128+146)
有些时候我们在同一道题中运用多种方法,总之一个原则,但不改变运算结果的前提下尽可能的使运算更加简便。
如上题,我们发现628先减去括号里的128比较简便,余下两个数254与146恰好相加是整
百,于是算式变为(628—128)—(254+146)。
四年级数学简便计算:方法归类
一、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
适用于加法交换律和乘法交换律。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
二、结合律
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
)
例:510÷17 ÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括号法
1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算)
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
1.分配法括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3.注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发
现规律。
还要注意还哦,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。
分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8 ×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
四年级数学简便计算:分类训练
第一种
(300+6)x12 25x(4+8) 125x(35+8) (13+24)x8
第二种
84x101 504x25 78x102 25x204
第三种
99x64 99x16 638x99 999x99
第四种
99X13+13 25+199X25 32X16+14X32 78X4+78X3+78X3
第五种
125X32X8 25X32X125 88X125 72X125
第六种
3600÷25÷4 8100÷4÷75 3000÷125÷8 1250÷25÷5
第七种
1200-624-76 2100-728-772 273-73-27 847-527-273
第八种
278+463+22+37 732+580+268 1034+780320+102 425+14+186
第九种 214-(86+14) 787-(87-29) 365-(65+118) 455-(155+230)
第十种
576-285+85 825-657+57 690-177+77 755-287+87
第十一种
871-299 157-99 363-199 968-599
第十二种
178X101-178 83X102-83X2 17X23-23X7 35X127-35X16-11X35
容易出错类型(共五种类型)
600-60÷15 20X4÷20X4 736-35X20 25X4÷25X4
98-18X5+25 56X8÷56X8 280-80÷4 12X6÷12X6
175-75÷25 25X8÷25X8 80-20X2+60 36X9÷36X9 36-36÷6-6 25X8÷(25X8) 100+45-100+45 15X97+3
100+1-100+1 48X99+1 1000+8-1000+8 5+95X28
102+1-102+1 65+35X13 25+75-25+75 40+360÷20-10
13+24X8 672-36+64 324-68+32 100-36+64
12×340+66×120 370×25+250×3 111×34+666×11 222×340+888×165
熟悉字母公式做题
⑴a+b =b+a
88+56+12 178+350+22 56+208+144
⑵(a+b)+c=a+(b+c)
(23+56)+47 286+54+46+4 582+456+544
⑶a×b=b×a
25×37×475×39×465×11×4125×39×16
⑷(a×b)×c=a×(b×c)
19×75×862×8×2543×15×641×35×2
⑸a×(b+c) =a×b+a×c
136×406+406×64702×123+877×702246×32+34×492
⑹a×(b-c) =a×b-a×c
102×59-59×2 456×25-25×56
43×126-86×13 101×897-897
⑺a-b-c=a-(b+c)
458-45—155 2354-456-54 68547-457-123-420
⑻a-b+c=a+c-b
4235-4067+76 3569+526-1569 45682-7538+14318
⑼a÷b÷c=a÷(b×c)
4500÷4÷7516800÷8÷25248000÷8÷1255200÷4÷65
⑽a÷b×c=a×c÷b
4500×102÷903600÷80×2125÷20×8250÷75×30
⑾a-b=a-(b+c)+c
429-293 1587-689 8904-1297 87905-388
⑿a-b=a-(b-c)-c
2564-302 25478-9006 5024-502 1251-409
⒀a+b=a+(b+c)-c
254+489 5021+897 654+793 654+4999
⒁a+b=a+(b-c)+c
124+4005 1235+607 248+803 2005+45687
⒂综合
254+246+744+1054 5897+568-897+432
45627-258-742-1627 321×46-92×27-67×46
75×32×125 65×16×125 360÷(18×4)
32×105 598+735 98×34 25+75-25+75
48×125540÷4599×38+38 103×56。